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Preface

The present volume contains papers selected from those submitted by mathe-
maticians lecturing at the minisemester organized by the International Stefan Ba-
nach Mathematical Center in Warsaw with the cooperation of the Juliusz Schauder
Center for Nonlinear Studies in Toruri. This minisemester was held during the pe-
riod of September 22 — October 3, 1997 at Warsaw and it was devoted to topological
methods in differential inclusions and optimal control problems.

The orginazers: Helena Frankowska, Lech Gérniewicz, Marian Mrozek, Paolo
Nistri, Stawomir Plaskacz invited for the plenary talks the internationally distin-
guished experts working actively in this field. Therefore, this meeting became very
useful for a large group of young participants.

The intention of the editors is to provide a presentation of some of the most
interesting results concerning areas discussed during the workshop. That is why
the present publication consists mainly of research articles, but several survey or
expository papers are included as well.

The contributions were received by the editors in Fall 1997 — Spring 1998 and ref-
ereed thereafter. They are grouped in three sections: differential inclusions (J. An-
dres), topological fixed-point theory (L. Gérniewicz) and optimal control (P. Nistri)
and authours are arranged in the alphabetical order of the names. The referee pro-
cesed in each group have been managed by the related editors.

The editors would like to express their gratitude to all the participants, the
authors and other people who contributed to the program and activities of the
minisemester. We are also indebted to the Banach Center, the Schauder Center for
the organization and, in particular, to the Nicholas Copernicus University for the
highly appriciated help to publish this volume. '

J. Andres
L. Gérniewicz
P. Nistri

Olomouc — Toruti — Florence
May 1998.
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Differential Inclusions and Optimal Control
Lecture Notes in Nonlinear Analysis
Volume 2, 1998, pages 9-18

CONTROL AND OPTIMIZATION
OF NONLOCAL STEADY-STATE PROBLEMS

WALTER ALLEGRETTO AND PAaoLo NISTRI

1. Introduction
In a previous paper [1] the authors considered the problem of finding positive
solutions to the nonlocal elliptic partial differential equation
) —V[aVu+bu] =[h—guu inQ
with associated mixed boundary conditions

(I1) u=0 ondp and a%+(g-ﬁ)u=0 on 00y

where 90 = 0Qp U 80y, 8Qp N8y = B, INp closed and we require that
regularity conditions hold at points of N' = 8Qp N0y (see [7], [8], [9], [11]). ©@
is a smooth domain in R™. Here the nonlocal term % is given by

@) = [ Bale,y)uls)dy

where Bj(z,y) = Bs(lz — y|) € C§° is a mollifier in R, i.e., Jgn Bs(z,y)dy =1
for any z. Bs(|z —y|) = 0if |z —y| > 4, Bs(|z — y|) bounded away from zero if
|z —y| < p<é.

1991 Mathematics Subject Classification. 49J20, 93C10, 93C20.
Key words and phrases. Nonnegative solutions, nonlinear elliptic equation, nonlocal term,

optimal control.
Research supported in part by NSERC (Canada) and CNR (Italy)
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10 WALTER ALLEGRETTO AND PAoLO NISTRI

The solutions of (I)-(IT) represent the steady-states of an evolution equation
similar to those previously introduced by [4], [5] and [2], (see also the extensive
references therein).

The aim of this paper is to consider a related control problem to (I)-(I).
Namely, motivated also by the results in [11], we consider here the problem

(1) ~V[aVu + bu] = [h ~ gTu — f/22 + u2I(u > 0)
subject to mixed boundary conditions

du S
(2) u=ug >0 ondilp and az- +(b-A)u=0 on 0y,

where u > 01is the density of population of a species, I'(u > 0) is the characteristic
function of the set {z | u(z) > 0}, ¢ > 0 and the term f/e% + u2I(u > 0) is
the so-called “harvesting” term. The function f(z) represents the harvesting
intensity, which is the control parameter, a(z) the diffusion process, 5(:3) =
(b1(2) ... ba(z)) a possible drift, A(z) the intrinsic rate of growth of the species
and g(z) the crowding effect. The assumptions on all the above functions will
be presented later in Section 1.

The parameter € > 0 introduces a discontinuity in the harvesting term which
makes it possible to have “dead zones”: nonempty extinction regions (u = 0) C
§2. This is fundamentally different from the problem considered in [1].

Following [10] we associate with (1)-(2) a cost functional to be maximized on
the set of all the pairs (u, f) with u > 0 solution to (1)-(2) corresponding to f
from a certain class of functions. For given a > 0 the form of the cost functional
is

3) Tl fy = L al(u > a) + pfu—gf,

where ¢;(z), ¢ = 1,2,3, are nonnegative weights to be chosen. The meaning of
maximizing Jy is to maximize the region of £ in which the density is bounded
away from zero taking into account the economic benefit of the harvesting ¢; fu
and its cost —gaf.

We point out that (3) is slightly different from the functional considered in
[10], where the cost functional contained the term I(u > 0) instead of the term
I(u > a), @ > 0. This modification is necessary since our approach does not
allow us to prove the existence of the maximum even in very particular cases of
the cost functional containing I'(u > 0).

The paper is organized as follows. In Section 1 we first prove in Theorem 1
the existence of nonnegative solutions of (1)-(2) with u4 = 0 corresponding to a
given control function f € L*°()), 0 < f < M a.e. in Q, for some constant M.
The positivity of such solutions in dependence of £ > 0 is also studied. Then in
Theorem 2 the case of Dirichlet boundary conditions on both 8Qp (with ug > 0,
ug # 0), and Iy is considered. It is shown how the extinction region depends
on the parameter € > 0 for a given f.



CONTROL AND OPTIMIZATION OF NONLOCAL STEADY-STATE PROBLEMS 11

In Section 2 we assume as the set of admissible controls the closure in the
L?(Q)-topology of the class of functions considered in Section 1. The existence
of nonnegative solutions of (1)-(2) corresponding to all the admissible controls
is proved by means of the results of Section 1.

Finally, the properties of the solution map S which associates to f the set of
nonnegative solutions of (1)-(2) are investigated. The more relevant property of
S, which allows us to solve the associated optimization problem is the closure of
its graph in the w-L3() x L®(%) topology, where w-L?(Q2) denotes the weak
topology in L2(0).

We would like to point out that the approach presented here in Section 1 for
the existence results is quite different from that of [10]. In particular the presence
in (1) of the nonlocal term % does not allow us to use any method based on order
arguments as was shown earlier in [2]. Moreover, we consider here the case of
mixed boundary conditions and the state equation is of more general form.

The optimization problem is also solved in a completely different way. In fact,
in [10] the solution map is shown to be single-valued monotone and differentiable
with respect to the control f. These properties permit the differentiation of the -
cost functional and the use of the steepest ascent algorithm in searching for
a local maximizer of the cost functional. In our case the solution map is, in
general, a multivalued one without any other relevant property than the closure
of its graph in a suitable topology. In fact, the closure of the graph of S in the
w-L2(Q) x L*°(Q) topology will permit us to solve the proposed optimization
problem.

2. Existence

We consider here the nonlocal problem

(1) ~V[aVu+bu] = [b - gTlu — fv/e? +u2I(u > 0)
subject to mixed boundary conditions

2) wuw=ug>0 ondlp and ag%+(g-ﬁ)u:0 on Ofy.

We search for nonnegative solutions of (1)-(2). As mentioned in the Introduction,
(1)-(2) is a possible biological model for the steady-states of a species whose
density of population is « > 0 in presence of a nonlocal term %(z) = f;. Bs(lz —
y|)u(y) dy and of a discontinuous (¢ > 0) harvesting term of which the function
f is the control parameter.
We assume the following conditions:
(A) the function a is a piecewise smooth function, smooth near 8y, sat-
isfying 0 < a; < a(z) < ap for a.a. z € Q; f,g,h € L™®(Q) with g(z),
h(z) > ¢ > 0, f > 0 for a.a. ¢ € ) and some constant ¢, ug and
b= (b,...,bn) are smooth functions in .
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(B) if ug = 0 the function f satisfies

ess irelg [h(z) — f(z)] > w1,

where g is the least eigenvalue of —V[aVu + bu] subject to (2).
To better understand the meaning of assumption (B) suppose u > 0, rewrite (1)
in the form

52
“ BT

and consider the second term on the right hand side as a perturbation for &
small. For ¢ = 0 and Dirichlet boundary conditions in [2] it has been shown that
while (B) may be modified, it cannot be removed.

For convenience we introduce the linear operator G : L®(Q) — C%(Q) de-
fined as follows

~V[aVu+bu] =[h— f — gulu

u = Guw, w e L¥(0)

if and only if u satisfies (1)-(2) with the right hand side replaced by w, i.e.
G = (-V[eV- + b- )7t By well known regularity results, see [11], it follows
that G is a continuous and compact operator for a small.

We consider first the case when ug = 0, i.e., homogeneous boundary condi-
tions. We have

Theorem 1. Under assumptions (A)-(B) and ug = 0 there exist g9,e1 > 0
such that
(a) 0 <e<eg then (1)-(2) has a nonnegative nontrivial solution;
(b)  if e > &1 then (1)-(2) has only the solution v = 0 in L= ().

Proof. (a) We draw on the results of [1] and [2], and thus only present a
short proof for the reader’s convenience emphasizing the few differences.
Without loss of generality, we assume that the left hand side of (1) is coercive,
otherwise we add a linear term to both sides. Let 0 < A < 1 and consider first
the equation
—V[aVu +bu] = A[h — f — gulu™

subject to boundary conditions (2). If A is small enough, the only solution is
u = 0. Indeed, solutions are nonnegative and satisfy

~V[aVu +bu) — Alh — flu = —AgTu < 0,

whence u = 0 since the least eigenvalue of the operator on the left hand side
is positive for A small. Suppose thus 0 < Ag < A <1 and that 0 < u € C%,
for some a, is a solution. Let an, hy, fr, g, denote smooth approximations to
a, h, f, g respectively. Without loss of generality, we assume that they satisfy the
same L bounds as the original coefficients, and that they converge in L? for
any large p. We may also assume that b7 > 0 on 0y for if not, we replace u by
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v = e~¥u, with Vw - 7 3> 0 on 80, chosen suitably in what follows. Consider
now the linear eigenvalue problem

—V]anVun + Eunl — Nhn = fn = gnT|un = knun

subject to conditions (2). Observe that k exists, and it is bounded above
and below by constants independent of n. If we normalize the eigenvectors by
[n]lre= = 1, it follows that uy, is bounded in H12NCY, see [11], for some a > 0,
and we may assume 0 < u, — w weakly in H>? and strongly in C®° for some
ap < a. Since w > 0, and thus w > 0 by the maximum principle, we conclude
that kn — 0 and w = u/||u||z~. Finally, suppose u, assumes its max in O at
P,. In view of the boundary conditions, Py ¢ 00 as there either u, = 0 or
a(Bun/0n) = —(5- f)un < 0. It follows that P, € Q, and from the equation we
get
Al = fu] +div (B) + kn
Adn ,
for a constant K independent of n,A. Next suppose P, — P, then w(P) =
lim %(P,) and for any Q@ € ©, u(Q) < w(P) by equicontinuity of the u,. By
a reflection process, see [11], and the generalized Harnack inequality [6], we
conclude first that w is bounded in L* and then in C* for some a. Since
h(z) — f(z) > p for a.a. z € 0, we also have that ||lul|cs cannot be too small
and thus, as in [1] and [2], Deg(I—T, Br—B;,0) = 1 where B, is the ball of radius
p centered at zero in C*(Q), and T, = G([h - f — gwlwt) subject to (2). Let
0 < I,n(u) < 1 denote a smooth approximation to I (u), Im(§) =01if £ <0, and
consider the perturbation Z(w) = G(e? fIm(w)/(V€* + w?+w)) on Br—B;. If we
choose € > 0 small enough, independent of m, then Deg(I-T—-Z, B z—B,,0) =1
and thus there exists a solution 0 < wy, of

<K

u(Pp) <

2

~V][aVwm + bwm] = [h— f + 9Om)wm — —EHM—

€2 + w2, + wn
We again have wn, — w weakly in H"?, strongly in C% with w >0, nontrivial.
Since &2 fIn(wm)/(1/€2 + w2, + wy) is bounded, we may take it to be weakly
convergent in L? to a function z. If w(z) > 0, then z = e2f/(Ve? +w? + w),
while on the set {w = 0} we have Vw = 0 almost everywhere. We assumed
the coefficients are piecewise smooth and thus, on @ — T’ we have w € H 2%,
where T is a set of measure zero. We conclude that w satisfies —V[aVw + bw] =
[h— f + g&]w + 2, a.e. on  — T whence z = 0 a.e. on the set {w=0}.

(b) Again assume without loss of generality that b-7 > 0 on 8Qy. Suppose
that u > 0, u # 0, is a solution and select a constant co >0 such that the linear
problem

—V[aVw + bw| =[h—f — gTlw + cow
subject to (2) does not have eigenvalue zero. Let once again Gn, hn, fn, gn be
smooth approximations and consider the problem

—e2f

—V ann+5w —hy — + o — _wn:{ﬁ-—
[CL 'n] {n fn 0 Q’nu] m+u

I(u>0)—cou} )

n
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where { -}, denotes a mollifier. This problem has a solution w,, € C%, and we
may assume as before that w, — u in €% and weakly in A2, Since u > 0,
u # 0, then maxw, > 0 for n large, and @(P,) < K where maxw, = wi (Pp).
We conclude as in (a), that T(P) < Ky if u(P) = maxu and consequently that
u < Ki in Q, by the generalized Harnack inequality, with K independent of
%, . We then have

. 2
—VieVu +bu] < (hKl - —mﬁf-f—) sign(u).
&2 + Klz + K
For ¢ > O sufficiently large, the right hand side is nonpositive in {} and thus
u<0in Q,ie uv=0. O

We now pass to the case ug > 0, ug Z 0. In this case © = 0 as a solution is
impessible, we do not require condition (B), and we can show the existence of a
nonnegative solution of (1)-(2), for any & > 0, by using the earlier proof to show
that Deg (I — T, Bg,0) = 1, where T : C*(Q2) — C%(f2) is the compact operator
composition of G with the Nemytskii operator generated by the right hand side
of (1) regularized, and then passing to a limit. Briefly but specifically, suppose
a,h,g, f are smooth. We consider

g2 f
Tt > 0),

subject to u = Aug on d€lp and the same natural boundary conditions on 89 N,
for 0 < A < 1. Again if X is small, then —~V[aVu + bu] — A[h — flu < 0 and
u = Aug on 9p shows that u is bounded in terms of ug,. Otherwise, either
[lullLe= = Allugl|ze or we again have W(P) < K for a P € Q at which u assumes
its maximum. If P is away from 8Qp N 80, we proceed exactly as before to
bound u in L* and then in C* for some a. Otherwise we map a neighborhood
of P to a quarter sphere, and reflect the coefficients as before and u as an
even function to the whole of the upper hemisphere. Since wy extends as a O
function, we use results in [6] to bound u in L° and then in C®. QObserve that
the L bound is independent of &, m and the C* bound is independent of m.

We now prove that for £ > 0 sufficiently large there exist extinction zones
for the solutions of (1) found above subject to the Dirichlet boundary conditions
u=1uq > (#) 0 on d0p. We have the following result.

—V[aVu + bu] = )\([h — f—gTut -

Theorem 2. Assume (A). Let § > 0 be given. Then there exists g > 0 such
that if € > go then p(u > 0) < 4.

We need first the following.

Lemma 1, Let {A,} be a sequence of measurable sets contained in © with
u{An) > 0 > 0. Then there exists a subsequence and a function 7, 0 < 7 < 1
such that I(An) = 7 in LY(Q) and [, 1 > 6.

Proof. Let fr, = I(Ay) for any n € N, {f,} is a sequence of bounded measur-
able functions and so, passing to a subsequence if necessary, f, — T weakly in
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L?(Q). Therefore by the Banach-Saks’s Theorem (1/n) 37, f; = 7 in L*(Q).
But

1 n

i
i=1

i >4§
L1(%)

and thus

>y>0
L2()

S5
=1

for some v > 0, which implies that 7 # 0. Moreover, by passing again to a
subsequence if necessary, {(1/n) ¥ .., fi} converges a.e. in Q to 7, thus 7 takes
only values in [0,1] and ||7||z: > §, whence p(r # 0) > 4. O

We prove now Theorem 2.

Proof of Theorem 2. Suppose not, since gww > 0 we have

- f52
—V[an+ bLU‘] - [h. e _f]cu S —m[((ﬂ > 0)

and as mentioned above, 0 < w < k for some k independent of . Le.,

—V[aVw + bw] < [h— flk - I(w > 0).

N
Ve TR +k

Let £, — oo and suppose I(w, > 0) > §. Since w, < k, we may assume
wn — w > 0 weakly in H»? and strongly in L2. Let z, solve

—V[aVzn + b2a] = fI{wn > 0)
with z, = 0 on 9§lp, while r solves
—V[aVr +br] = [h— flk

and 7 = ug on 80p. Since I(w, > 0) — 7 in L' (and thus L? for large p) then
2p — z in C*(Q) for some « > 0 with

—V[aVz+bz] = fr.

Furthermore, since fr > 0 is nontrivial, z > 0 in (). Finally, for any given
M >0, Mz, +w, < 7 if ¢ is large enough, ie., Mz +w < r whence w < 0
somewhere in Q if M is large enough, contradicting w > 0. fal

Remark 1. Observe that if f vanishes somewhere in §, then the previous
arguments will show the result if fr # 0, i.e., if u{f(z) =0} < 4.
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3. Control and Optimization

As the set of admissible controls for problem (1)-(2) we consider
V={feL®(Q)|0< f(z) < M for a.a. € 0},

where M = ess infyeq[h(z) — p1] if ug = 0. Otherwise M > 0 is chosen for
convenience. Obviously

V={feL>o()|0< f(z) < M for a.a. z € Q},

where the closure is in the L?()-topology. Since V is convex and closed it is
weakly closed in the w-L?(2) topology and vice versa. In Section 1 for & > 0 as
determined in Theorems 1 and 2, we proved that the set

S(f)={u e L* | u >0 is a solution of (1)-(2)}

is a nonempty (compact) set for any f € L°(Q}) with 0 < f(z) < M for a.a.
z €.
We can prove the following.

Theorem 3.

(a) S(f) #0 for any f€V;

(b) S:V — L(Q) has closed graph in the w-L?(Q2) x L>®(Q)-topology;
(c) S(V) is a compact set in L°°(Q).

Proof. (a) This is established in Section 1 for 0 < f < M. Otherwise, let
fm € V with 0 < fp, < M such that f,, = f in L?(Q) weakly and suppose um,
solves (1), (2) with I replaced by I,,. We still have u,, uniformly bounded, and
by a limit argument conclude the existence of a function u € S(f). Observe that
u = 0 is possible if ug = 0.

(b) Let {(un, fn)} C L®(Q) x V, u, € S(fn) such that u, — u in L=(Q),
u > 0and f, = f € V in L?(Q?) weakly. The same arguments as in (a) show
that u € S(f).

(c) Let {un} C S(V) be any sequence and let {f,} C V be such that u, €
S(fn). By passing to a subsequence if necessary we have u, — u in L>(2) and
fn = f in L?(Q) weakly and so v € S(f).

Remark 2. The previous results guarantee that the multivalued map S is
upper-semicontinuous in the w-L2(Q) x L>(Q)-topology (see [3], Corollary 1,
p- 42).

Finally, we can solve our optimization problem. Consider the cost functional

Ja(”:f):fnmf(uza)'i'fhfu—%f, a > 0.

We assume that the nonnegative weights ¢; € L%(Q), i = 1,2,3. We can prove
the following,.
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Theorem 4. For any a > 0, the cost functional J, (u, f) attains a mazimum

- on the set S = {(u, f) € L®(Q) xV |u e S(f), feV}.

Proof. Let {(un, fa)} C S be a maximizing sequence. We have u, — ug in

L*(Q) and f, = fo in L2(2) weakly. Consider

lim [ ql(un > @)+ @ fntin — g3 fn
Q

n—oo

& limsup/ g l(un > a) —|~limsup/ Q2 fntn — g2fn
Q )

n—roo n—oo

< [ limsup g1 I(u, > a) + limsup / @2 frtin — g3 fn.
T—+00 Q

 n—ooo

On the other hand,

limsup I(un > @) < I(up > )

n—+00

a.e. in 2. Rewriting the second term as

/Q[qwn ~glfs = /Q[tam —gs)fn + /Q @2[un — o) fn,

by our assumptions on gz, g3 we get

lim Jo(un, fn) < Ja(uo, fo)
M—+00

with vy € S(fo) by Theorem 3.

(1
2]
(3]

(5]
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BOUNDED, ALMOST-PERIODIC
AND PERIODIC SOLUTIONS OF
QUASI-LINEAR DIFFERENTIAL INCLUSIONS

JAN ANDRES

1. Single—valued stimulation

Let us start by recalling two classical results which can be found e.g. in the
book [D] (for the latter one cf. also [H1]).
Consider the system of ordinary differential equations

(0) X'+ AX = f(t,X),

where X € R™, A is a constant hyperbolic (n x n)-matrix (i.e. with nonzero real
parts of the associated eigenvalues) and f: R**! — R” is continuous.

Theorem 1 (P. Bohl). System (0) admits (a unique) entirely bounded solu-
tion X (&), namely

sup | X ()] < oo,
tE(—o0,00)

provided additionally

(1) SUPte(—c0,00) if(t,O)l < 00,
(i) f(t,X) is Lipschitzian in X with a sufficiently small Lipschitz constant.
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Theorem 2 (G. L Birjuk). Let the assumptions of Theorem 1 be satisfied.
If f(t,X) is still (uniformly) almost-periodic (in the sense of H. Bohr) in a t-
variable, uniformly w.r.t. X from any compact subset of R™, then system (0)
possesses a (unique) almost—periodic solution.

Remark 1. In particular, if f(t+w, X) = f(t, X), then (0) admits, under the
same assumptions, an w-periodic solution (see [D]). In fact, for the boundedness
as well as for the periodicity result the Lipschitzianity can be replaced by a
suitable growth restriction (see e.g. [AK]).

Hence, our main purpose is to give the multivalued analogies for the Cara-
théodory quasi-linear differential inclusions. Besides that, our attention will be
paid to the appropriate methods, including the multiplicity criteria in the frame
of the generalized Nielsen fixed-point theory. In the almost—periodic case, the
new definitions of almost—periodic measurable multifunctions will be presented
as correct. '

2. Abstract existence and multiplicity results

Consider the system of differential inclusions
(1) X' e F(t,X),

where F : I x R® ~ R” is a set-valued Carathéodory mapping, ie.
(i) the set of values of F' is nonempty, compact and convex for all (¢, X) €
I x R™;
(i) the map F(t, ) is us.c. foraa. t €I
(iii) the map F(-,X) is measurable for all X € R, i.e. for any open U €
R™ and every X € R® the set {t € (—o0,00) | F(-,X)NU # 0} is
measurable;
I is an arbitrary (possibly infinite) real interval.

By a solution X (t) of (1), we always mean a locally absolutely continuous
function X () satisfying (1) for a.a. t € I. The space of all locally absolutely
continuous functions from I to R™ will be denoted by ACi.c(I,R™).

Considering (1) with the constraint, namely

XeScC,R"),

where S is a nonempty subset, we start with the following existence result (see
[A2], Theorem 3, [AGG], Corollary 2.34). Let us recall that the appropriate
topology in C(I,R"™) is the one of the uniform convergence on compact subin-
tervals of I.

Theorem 3 (Existence criterium I). Consider the boundary value problem

&) { X' € F(t, X),

XeSs,
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on a given interval I C R, where F': I x R™ ~» R" is a Carathéodory map and
S is a subset of C(I,R"). Let G : I x R™ x R™ ~ R™ be a Carathéodory map
such that G(t,c,c) C F(t,c) for all (t,c) € I x R™. Assume that:
(i) there exists a bounded retract @ C C(I,R™) of C(I,R™) such that the
associated problem

{ X' e G(t, X, q(t)),
Xesng,

is solvable on I with an Rj-set (i.e. an intersection of a decreasing
sequence of compact contractible metric spaces) of solutions T(q) for

each q € Q;
(ii) there exists a locally (Lebesgue) integrable function o : I — R such that

IG(t, X(t),q9(®))| < a(t) a.e. inl,
Jor any pair (¢, X) € I'r, where Uy denotes the graph of T';

(ifi) T(Q) C S.

Then problem (2) has a solution.

(3)

For the multiplicity results, it will be convenient to use the following defini-
tion (cf. [A3] and the references therein).

Definition 1. We say, that the mapping 7' : Q@ ~ S is retractible onto Q if
there is a retraction r : P — @Q, where P is an open subset of C(I, R™) containing
QUS and p € P\Q, r(p) = q implies that p & T(q).

Its advantage consists in the fact that, for a retractible mapping 7 : Q ~ S
onto ¢ with a retraction r in the sense of Definition 1, its composition with T,
roT: @~ @, has a fixed point § € Q if and only if § € T(7).

In [A3], the following statement has been proved.

Theorem 4 (Multiplicity criterium I). Consider boundary value problem (2)
on a given intervel I C R, where F': I x R* ~» R"™ is a Carathéodory mapping
and S is a subset of C(I,R™). Let G : I x R® x R® ~» R” be a Carathéodory
mapping and assume that:

(i) there ezists a (nonempty) compact, connected subset Q of C(I, R™) such
that, for any q € Q, the set T(g) of all solutions of the problem

" [ X <6ttt
XesS
on I € R is nonempty;

(ii) T(Q) is bounded in C(I,R"), i.e. there exists a positive (single-valued)
function ¢ : I — R™ such that |7(q)| < ¢(t) for allt € I, 7 C T(q) and
q€Q;

(iii) there exists a locally Lebesgue integrable function o : I — R such that

IG(t, X(),q(t))| < a(t) g.e. inl,

for any pair (¢, X) € I'r, where I'r denotes the graph of T';
(iv) T(Q) C S.




22 JAN ANDRES

Assume, furthermore, that the (multivalued) operator T : @ ~ S, reloted to
problem (4), is retractible onto Q with @ retraction v in the sense of Definition 1,
having Rs-values, for any q € @ and, if T is not single-valued, then assume

particularly that T(Q) C Q. At last, let
G(t,c,c) C F(t,c)

take place a.e. in I, for any c € R™. Then the original problem (2) admits at least
N(rlreg) o T(+)) solutions belonging to Q, where N(-) denotes the generalized
Nielsen number (for the definition and more details see [A3], [AGJ], [KM]).

Since the topological structure of the solution set to (3) or (4) plays an
important role, we recall still some appropriate results in [AGG], Theorem 4.7,
[A2], Lemma 7, [ADG], Theorem 4.

Proposition 1 ([AGG]). Let F': I x R" ~ R™ be a Carathéodory mapping,
where either I = [0,00) or I =[0,%], t € (0,00), and assume that

(3) |F(t, X)| < p@)(1 X1+ 1)

for every (t,X) € I x R™, where p: I — [0,00) is a suitable Lebesgue-integrable
bounded function. Then the set T'(q) of solutions X (t) of the global initial value
problem for (1), i.e. X(t) satisfying (1) a.e. in I and X(0) = Xo € R", 45 an
Rj-set, for every Xy € R™.

Summing up the conclusions of Proposition 1 (more precisely, of its para-
metrized modification — cf. also Remark 3 below) and Theorem 4, we can give
immediately the following multiplicity criterium for the global initial value prob-
lems.

Theorem 5 (Multiplicity criterium II). Let G : I x R* x R" ~» R" be
o Carathéodory product-measurable mapping, where either I = [0,00) or I =
[0,2], T € (0,00). Assume, furthermore, that there exists a (nonempty) compact,
connected subset Q of C(I,R™) such that |G(t, X, q(t))| < pu(t)(|X]|+1) holds for
every (t, X, q) € IXR"xQ, and problem (4) has, for every q € Q, a nonempty set
of solutions T'(q) with the property T(Q) C S, where S is a nonempty bounded
subset of {p(t) € C(I,R") | p(0) = Xo, Xo € R"}. At last, let the mapping
T :Q ~ S be retractible onto @ with a retraction v in the sense of Definition 1
and, if T is not single-valued, then let T(Q) C @ be satisfied. Then the global
initial value problem

{ X' e F(t, X),
Xe@ns

admits at least N (r|pg)oT(+)) solutions, provided G(t,c,c) C F(t, c) takes place
a.e. in I, for any c € R™.
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3. Results for quasi-linear differential inclusions

For boundary value problems, the situation becomes more delicate. The
appropriate known results, concerning the topological structure of the solution
set, are therefore related mostly to quasi — linear systems with the given boundary
conditions, namely

© { X'+ A(t)X € F(t, X),

X €5,

where F'(2, X) : I x R ~» R™ is a Carathéodory function and § C C(I,R™) is as

above, but A(t) : I - R isa single-valued bounded continuous (n x n)-matrix.

As we shall see, the study of the structure of the solution set related to the

associated linearized problem, namely

) { X'+ A(t)X € F(t,q(2)),
XesSng,

for each ¢(t) € @ C C(I,R™), becomes significantly easier, especially when Q
as well as § are nonempty, convex, and @ is bounded and closed in the given
topology of the uniform convergence on compact subintervals of 7.

Since, under the above assumptions, the solution set of problem (7) is convex
(see [A2], Lemma 7) and, under the assumptions of Theorem 3 for G, X,q) =
—A(t)X + F(t,qg), it is compact (see [A2], Theorem 2 and [AGG], Proposi-
tion 2.32), Theorem 3 simplifies as follows.

Theorem 6 (Existence criterium II). Consider boundary value problem (6)
on a given interval I C R, where F: ] x B” ~ R” is g Carathéodory map, A :
I = R™ is a single-valued bounded continuous (n X n)-matriz and S C C(I,R™)
1s nenempty and convez. Let there exist a nonempty, convex, closed and bounded
set @ C C(I,R™) such that the associated linearized problem (7) admits for each
q(t) € Q a solution and let T(q) be the set of such solutions. Then the original
problem (6) is solvable, provided only

sup |F(t,X)| < aft) feraa tel,
|X|<D

where o : I = R is a locally (Lebesgue) integrable Junction and D is a sufficiently
big positive constant, and

(iii) T(Q) C S.

Remark 2. If S is closed in the given topology of the uniform convergence
on compact subintervals of I, then (iii) is satisfied.

In the absence of convexity, the following slightly modified result can be very
useful.
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Proposition 2 ([ADG]). Consider the problem
X'+ A@t)X € F(t,X),
® {

L(X) =8,

on a compact interval I, where A and F' are as above, and L : C(I,R") — R"

is a linear operator such that the homogeneous problem

©) { X'+ ADX =0,
L(X)=0

has only the trivial solution on I. If F is additionally Lipschitzian in X for a.a.
t+ € T with a sufficiently small Lipschitz constant k (i.e. h(F(t,X),F(t,Y)) <
E|X Y| forall X,Y €R" and a.a. t € I, where h(-, -) denotes the Hausdorff
metric — see Chapter 5 below) and (5) is satisfied, then the solution set of (8)
is o (nonempty) compact AR-space (i.e. more than Rs-set). If the Lebesgue
measure of the set {t | dim F(t,X) < 1 for some X € R™} is still zero, where
dimY denotes the covering dimension of a space Y, then the solution set of (8)
is infinite-dimensional.

Let us recall that a metric space M is an AR-space (absolute retract space)
if, whenever it is a closed subset of another metric space N, then there exists
a continuous retraction r : N — M, r(z) = = for x € M. In particular, it is
contractible and so connected.

Remark 3. Since the composition F(t,q(t)) of the above continuous in X
multifunction F' with any ¢ € @, where @ is same as in Theorem 3 or Theorem 4,
is measurable (see e.g. [ADTZ], p. 34]), the assertion of Proposition 2 is true for
the linearized problem

X'+ A(t)X € F(t,q(t)),
(10) { L(X) =6,

even without the Lipschitzian restriction. On the other hand, if F' is “only”
w.s.c. in X then, in order to get the same for (10), we must assume (cf. [ADTZ],
p. 34) measurability of the composition F (t,q(t)) either explicitly or (see [ADTZ],
p. 36) the product — measurability for F(t,X):I xR" ~ R™

Hence, applying Proposition 2 to Theorem 3, we arrive at

Theorem 7 (Existence criterium IIT). Consider boundary value problem (8)
on a compact interval I. Assume that A : I = R** is o single-valued continuous
(n x n)-matriz and F : I x R™ ~» R is a Carathéodory product — measurable
mapping satisfying (5). Furthermore, let L:C(I,R™) — R" be a linear operator
such that problem (9) has only the trivial solution on I. At last, let there exist
o bounded retract Q C C(I,R") of C(I,R™) such that all (existing) solutions
T(q) of the associated linearized problem (10) belong to Q, for each g € Q. Then
the original problem (8) is solvable, provided T(Q) C {X € C(I,LR™) | L(X) =
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6}. If F is additionally Lipschitzian in X for a.a. t € I with a sufficiently
small Lipschitz constant and the Lebesgue measure of the set {t | dim F(¢, X) <
1 for some X € R™} is zero, then the solution set of (8) is an infinite dimensional
AR-space.

Similarly, applying Proposition 2 to Theorem 4, we arrive at

Theorem 8 (Multiplicity criterium III). Consider boundary value problem
(8) on a compact interval I and for A, F, L assume the same as in Theorem 7.
Then the original problem (8) has N(r|pg) o T(+)) solutions, provided there
exists a (nonempty) compact, connected subset Q@ C C(I,R™) of C(I,R™) such
that
(i) T(Q) is bounded,
(ii) T'(q) is retractible onto () with a retraction r in the sense of Definition 1

and, if T(q) is not single-valued, then T(Q) C @Q,

(i) T(Q) c{X € C(I,R") | L(X) =6},
where T'(g) denotes the set of (existing) solutions of (10).

4. Bounded and periodic solutions

In order to prove the existence of a bounded solution of (1) by means of
Theorem 6, it is sufficient to show the solvability of (7), where

Q=S5={r(t) e C(R,R") | sup Ir(t)] < D}

with a suitable sufficiently big constant D. This was done in [A2], where the
following theorem has been obtained.

Theorem 9 (Boundedness result). Let a continuous single-valued matriz
function A(¢) : R — R™ be bounded and a Carathéodory (multivalued) mapping
F(t,X) : R x R® ~+ R™ be essentially bounded in t and can be for a.a. t € R
globally absolutely estimated by a single-valued continuous function &(X), i.e.
|F(¢, X)| < ®(X) for all X € R® and a.a. t € R. Let, furthermore, system

X'+ AR)X =0
possesses on I = (—o0,00) an ezponential dichotomy (for the definition and

sufficient conditions see e.g. [C]). At last, let there exist a sufficiently small
constant C' such that

$
(11) lim sup (X) <C
[X|=oo | X|

is satisfied with ® defined above. Then the inclusion

(12) X'+ A@)X € F(t,X)

4 — Dilferential...
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admits an entirely bounded solution X (1) such that

sup |X(¢)| < D.
teR

Remark 4 (Periodicity result). If still A(t) = A(f + w) and F(t,X) =
F(t + w, X), then system (12) admits obviously an w-periodic solution. This
also follows from Theorem 7 jointly with additional information concerning the
topological structure of the solution set, provided F is Lipschitzian in X with a
sufficiently small Lipschitz constant.

As an example of application of Theorem 8, consider the Carathéodory sys-
tem

'+ az € e(t, z,y)yM™ + g(t, z,y),

13
12) y' +by € f(t,z,1)z 1™ + h(t,z,y),

where a, b are constants with eb > 0 and m, n are odd integers such that
min(m,n) > 3.

Let, furthermore, the multifunctions e, f, g, h be product-measurable and w-
periodic in a #-variable.

At last, let suitable positive constants 61, dz, eq, fo, Zo, Fo, G, H exist such
that

le(t,2,9)| < Eo, |f(tz.y)| < Fo

fora.a. t€ |0 d all 5
l9(t,2,9)| < G, Ih(t,ﬂ:,y)tsﬂ} oras t€0u] andall (a,9) € B,

and
(14) 0<eg<elt,z,y)
for z > —d1, ¥ > 8 and a.a. t as well as for z < &, y < —&; and a.a. t,

(15) 0< fo £ £t z,9)

for z > 61, y < dy and a.a. t as well as for z < —dy, y > —d2 and a.a. ¢, or (14)
for z < 61, y > &, and a.a. { as well as for z > —§;, y < —d and a.a. ¢, (15) for
z > 8,y > —d and a.a. t as well as for z < —d;, y < 6> and a.a. 1.

Then we can proceed quite analogously to [A3], where the multifunctions
have been however considered lower-semicontinuous in (z,y) for a.a. t € [0,w],
to prove the following

Theorem 10 (Multiplicity result). If the above constants é1, 02, eo, fo, G,
H satisfy the inequalities
1, s0/m) (H ) "
—|egd -G >h>=],
|ﬂ| | 0tg | 1 fO
1 c(1/n) G\"
|b| i.f061 Hl > ’52 3 a ’

then system (13) admits, under the above assumptions, at least three w-periodic
solutions.
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5. Almost-periodic multifunctions and selectors

Since we consider the Carathéodory differential inclusions, it seems natural to
use one of the concepts of nonuniform almost-periodicity, when investigating the
related almost-periodic problems. For our purposes, the generalized concepts of
almost-periodicity in the sense of H. Weyl (cf. [A2]) and V. V. Stepanov (cf. [DS])
will be of a particular importance because of their effective applications.

At first, let us recall (see e.g. [L]) the classical definition of Weyl-like and
Stepanov-like a.p. functions.

Definition 2. A locally Lebesgue integrable single-valued function p(t) with
nonempty values is called a.p. in the sense of Weyl (or Stepancv) if for every
e > 0 there exists a positive number k = k(g) such that in each interval of the
length & there is at least one number 7 satisfying

(16) lim [sug%—{ f:H |p(t + 7) — p(t)] dt}] <e

=00 ac

a4+l
(or sup %{ j |p(t + 7) —p(t)|dt} <e  for afixed l).

aER

Remark 5. Since the Lebesgue integral is absolutely convergent, Defini-
tion 2 has a meaning, provided the (finite or infinite) limit, lim;_,o0[-], exists.
But this is always true (see [L], p. 221). On the other hand, we must understand
that the space of all Weyl-like a.p. functions is not (in difference to Stepanov-like
a.p. functions) complete with the above metric (see [L]).

If a (multivalued) essentially bounded vector map P(t) € R” with nonempty
closed values is (Lebesgue) measurable, i.e. if for any open U C R™ the set

{t € (—o0,00) | P(t)NT # 0}

is measurable, then we can replace (16) by

=00

(17) lim [itég %{ /:-H h(P(t + 1), P(t))dt}] <e
(Or ggﬁ l{ /:H h(P(t + 1), P(t))dt} <e  for afixed l)

for the same goal, provided h(P(- + 7), P(-)) is measurable, where h(-, -) is
the Hausdorff distance, namely

h(M,N) := max{h+(M,N),h_(M,N)} ,
where

ht :=sup{p(z,N) | z € M}, h~(M,N) =kt (N, M),
p(z, N) :==inf{ly — 2| |y € N}.
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Indeed. This is true, because P(t) is known (see e.g. [ADTZ], p. 18 and the ref-
erences therein) to be measurable if and only if there exists a sequence {p,(t)}
of measurable selectors of P(t) such that the following so called Castaing repre-
sentation takes place, namely

P#) = |J pal®).

neEN

Thus, the problem easily transforms to the single-valued one. The local conver-
gence of the Lebesgue integral in (17) follows then by means of the well-known
Lebesgue dominated theorem. The (finite or infinite) limit, lim;, [ ], exists by
the same reasons as in the single-valued case.

Hence we can give

Definition 3. An essentially bounded measurable (multivalued) function
P(t) € R™ with nonempty closed values is called a.p. in the sense of Weyl (or
Stepanov) if for every € > 0 there exists a positive number k = k(g) such that in
each interval of the length k there is at least one number 7 satisfying (17).

In the single-valued case, Definition 2 reduces to Definition 1. For the con-
tinuous (multivalued) functions, condition (17) can be simply rewritten into

WPt +7),P(t)<e forallteR.

Proposition 3 ([DS]). A Stepanov-like a.p. multifunction P(t) possesses a
family of Stepanov-like a.p. selectors py(t) such that

Pt) = | pa(®).

nenN

Although the stronger concept of Stepanov’s almost-periodicity is certainly
sufficient to guarantee a Weyl-like a.p. selector, it is not clear whether or not it is
so for Weyl-like a.p. multifunctions. Moreover, since a periodic measurable mul-
tifunction possesses obviously a periodic measurable selector, we can introduce
still another definition allowing us to deal with Weyl-like a.p. selectors.

Definition 4. A (multivalued) function P(t) € R" is called selectionally
a.p. in the sense of Weyl if it can be written as the sum P = P, + P,, where
P, is a finite linear combination of essentially bounded measurable (multivalued)
periodic functions with nonempty closed values and P; is a measurable essentially
bounded function with nonempty closed values having the following property:
for every £ > 0 there exists a positive number k = k() such that in each interval
of the length k there is at least one number 7 satisfying

(18) lim [sup %{ f:H |Pa(t +7) = Pg(t}ldt}] <e,

=00 | aeR
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where
a1
/ |Pa(t + 7) — Pa(t)|dt
‘ a+l
= { / |p2(t + 7) — pa(t)|dt | p2 is a mesurable selector of Pg},
a

i.e. the integrals in {18) are considered in the sense of Aumann (see e.g. [ADTZ],
p- 72 and the references therein).

Remark 6. Since a measurable multifunction with nonempty closed values
is always measurably selectionable (see e.g. [ADTZ], p. 18), the integral set
in (18) is nonempty (eventually a trivial singleton). Thus, every selectionally
Weyl-like a.p. function P(¢) has (under the assumptions of Definition 4) a Weyl-
like a.p. selector in the form of the sum of Weyl-like a.p. selectors of P, and
P;. Moreover, one can readily check that Definition 4 generalizes the one for
(multivalued) periodic functions as well as Definition 2.

In the sequel, we need still to consider (because of applications) a.p. mul-
tifunctions containing a parameter, where the following kind of uniformity is
necessary to take place.

Definition 5. An essentially bounded in ¢ (multivalued) Carathéodory func-
tion F(t,X) € R™ (i.e. measurable in ¢, upper semi-continuous for a.a. X and
with nonempty, compact and convex values) is called a.p. in the sense of Weyl
(or Stepanouv) uniformly w.r.t. X € R", if for every ¢ > 0 and every D > 0 there
exists a positive number k& = k(g, D) such that in each interval of the length k
there is at least one number T satisfying

(19)  lim [Sup%{ f aHh(F(t+T,X),E(¢,X))dtH 2

=00 acR

a+l
(or sup %{ [ R(F(t+ T,X),F(t,X})dt} < ¢ for a fixed l),

acR

for | X| < D, where h(-, -) in (19) denotes the Hausdorff distance.

Definition 6. An essentially bounded in ¢ {multivalued) Carathéodory func-
tion F(t,X) € R" is called selectionally a.p. in the sense of Weyl, uniformly
wart. X € R®, if it can be written as the sum F = F} + Iy, where F is a
finite linear combination of (multivalued) Carathéodory functions which are es-
sentially bounded and periodic in ¢ and (Lipschitz-) continuous in X for a.a.
t € R, and Fy is a Carathéodory multifunction which is essentially bounded in
t and (Lipschitz-) continuous in X for a.a. ¢ € R (cf. Proposition 4 below) and
satisfies (cf. (18))

(20) lim [sup %{ [:Jﬂ! |Fh(t+7,X) — Fg{t,X)ldt}] <e,

I—co a€ER
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for | X| < D. The integrals are again understood in the sense of Aumann.

Remark 7. Under the assumptions of Definitions 5 and 6, a Carathéodory
function F(t, X) is known (see e.g. [ADTZ], p. 35) to be weakly superpositionally
measurable. It means that the Nemytskii operator F(t, X (t)), where X (¢) is a
continuous single-valued function, possesses a (Lebesgue) measurable selector. If
F(t, .) is additionally continuous (i.e. also lower-semi-continuous) for a.a. t € R,
then F(t,X) is even product-measurable, and consequently superpositionally
measurable (see e.g. [ADTZ], p. 34) and having a measurable selector (see e.g.
[ADTZ], p. 18). It means that the Nemytskii operator F(t, X (t)), where X (t) is
again a continuous single-valued function, becomes measurable.

We conclude this section by the following proposition which is crucial (jointly
with Definitions 5 and 6) for the applications to differential inclusions. For more
details see [ADTZ], pp. 24-25 and the references therein.

Proposition 4. Let F(t,X) : R*! ~s R" be a multivalued function such
that:

(i) F(t, -) with nonempty closed convex values is (Lipschitz-) continuous
(with a sufficiently small Lipschitz constant L), namely

hF(t,X), Fi,Y) <LIX -Y| for a.a. t € R,

where h( -, -) denotes the Hausdorff distance,
(i) F(-,X) is measurable with nonempty closed values.

Let, furthermore, X (t) : R — R" be a single-valued continuous map and Y (t) be
a measurable selector of F(-,X(-)) (which exists according to Remark 7), i.c.
Y(t) C F(t,X(t)) for a.a. t € R. Then there exists a Carathéodory selector f
of F' such that f(t, ) is (Lipschitz-) continuous (with not necessarily the same,
but sufficiently small Lipschitz constant (cf. [AC], p. 77)) and satisfies Y () =
f(&,X(t)) for a.a. t € R.

Remark 8. In view of Proposition 3 or Remark 7, it is clear that if F(¢, X)
is additionally Stepanov-like (see Definition 5) or selectionally Weyl-like (see
Definition 6) a.p. in t-variable, uniformly w.r.t. X € R®, then the Carathéodory
selector f C F in the conclusion of Proposition 4 can be also considered a.p. in
the sense of Weyl, uniformly w.r.t. X € R,

6. Almost-periodic solutions

Finally, consider the following special form of inclusion (12), namely
(21) X'+ AX € F(t, X),

where the matrix A(¢) = A is constant and F': R x R” ~» R is a Carathéodory
mapping which is Lipschitzian in X for a.a. { and essentially bounded in ¢.

We shall still assume that F is either Stepanov-like (see Definition 5) or
selectionally Weyl-like (see Definition 6) a.p. in ¢, uniformly w.r.t. X € R™.
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Thus, according to Propositions 3 and 4 (see also Remark 8), there exists a
Carathéodory selector f C F' which is Lipschitzian in X for a.a. t and Weyl-like
a.p. in %, uniformiy w.r.t. X € R". Since the required smallness of the Lipschitz
constant for #' implies also the one for f C F' (see again Proposition 4), the
almost-periodicity problem for (21) can be reduced to the one for (0), i.e.

X'+ AX = f(t, X),

where f C F' is such a selector.
Using the boundedness result in Theorem 9, we have proved in [A2] the
following

Theorem 11 (A.-p. result). Let the following assumptions be satisfied:

(i) a (single-valued) constent (n x n)-matriz A is hyperbolic, i.e. all the
associated eigenvalues have nonzere real parts;

(ii) o (multivalued) Carathéodory map F(t,X) : R x R® ~» R" is essen-
tially bounded in t and Lipschitz-continuous in X for a.a. t € R with a
sufficiently small constant;

(iii) F(t,X) is either Stepanov-like or selectionally Weyl-like a.p. in t uni-
formly w.r.i. X € R", (see Definitions 5 and 6).

Then inclusion (21) admits an a.-p. solution in the sense of Weyl.

7. Concluding remarks

In the single-valued case, as we could see, Theorem 9 improves Theorem 1 of
P. Bohl and so does Remark 4 w.r.t. Remark 1 (cf. also [A1], [AK]). Similarly,
Theorem 11 generalizes Theorem 2.

In the case of inclusions, there are only few papers of the other authors
devoted to the existence of bounded solutions (see e.g. [CMZ]), almost-periodic
solutions (see e.g. [H2]) or to the multiplicity results (see e.g. [B]). On the other
hand, those related to the existence of periodic solutions are rather frequent (see
e.g. [BGP], [DGP] and the references therein).

It remains an open question, whether Weyl-like a.p. multifunctions possess
Weyl-like a.p. selectors and if the interval I in Proposition 2 can be noncom-
pact. If so, then the conclusions of Theorems 7, 8 and 11 could be significantly
improved.

The author is indebted to Professors B. D. Gelman (Voronezh State Univer-
sity) for informing him about the paper [DS], Z. Dzedzej (University of Gdansk)
for giving him the manuscript [ADG] and L. Gérniewicz (University of Toruii)
for his kind invitation to present the results of this article in the Banach Center
Workshop on Differential Inclusions and Optimal Control.
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NONCOMPACT VERSION OF
THE MULTIVALUED NIELSEN THEORY AND
ITS APPLICATION TO DIFFERENTIAL INCLUSIONS

JAN ANDRES, LECH GORNIEWICZ AND JERZY JEZIERSKI

0. Introduction

The purpose of this paper is to proceed furthermore in our investigations
initiated in [AGJ], where the multivalued Nielsen theory has been developed for
admissible maps (in the sense of [G1]) on compact connected ANR-spaces. Since,
for example, the Poincaré self-maps on tori generated by the Carathéodory vector
fields belong to this class, one could obtain in such a way multiplicity results for
differential inclusions.

In [A1] multiple bounded solutions have been proved again in the frame of
Nielsen theory, but using another approach. More concretely, such problems were
transformed to those for the lower estimate of fixed points of the related opera-
tors on bounded, compact, connected neighbourhood retracts of Fréchet spaces.
Although such operators are composed by those with Rs-values on compact con-
nected ANRs, and subsequently the appropriate Nielsen number gives a lower
estimate of fixed points (i.e. only a particular case of more general coincidence
points as in [AGJ]), the compactness of ANRs is unpleasant for applications
because of infinite dimensional function spaces.

Therefore, we decided to avoid this difficulty by considering a rather gen-
eral class of admissible self-maps with only a certain amount of compactness,
so called compact absorbing contractions (shortly, CAC), but on arbitrary con-
nected ANR-spaces. Since the generalized Lefschetz number is well-defined for

1991 Mathematics Subject Classification. 47H04, 47TH10, 58C06.
Key words and phrases. Nielsen number, connected ANRs, compact absorbing contrac-
tions, multiplicity results, Carathéodory differential inclusions.
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these mappings (see e.g. [FG], [GR]), the results in [AGJ] could be elaborated
in a desired manner. The final theory seems to be the most general of all their
analogies, including the single-valued case treated in [Sc].

On this basis, we have developed here the effective method for obtaining the
multiplicity criteria to a large family of multivalued boundary value problems
on possibly infinite intervals. In a certain sense, our method extends therefore
also those in [AGG] for solving the sole existence problems. As an illustrating
example, the existence of at least two entirely bounded solutions has been shown
to a planar system of inclusions with a semicontinuous right hand-side.

1. Topological preliminaries

Let H be the Cech homology functor with compact carriers and coefficients
in the field of rational numbers () on the category of metric spaces.

We shall use also the notation H(-,Z) for the Cech homology functor with
integer coefficients Z. A nonempty space X is called acyclic if we have

Hi(X) = { Q forz-—O,
{0 foris#0.

We recall that a compact space X is said to be an Eg-set if it is an intersection
of a decreasing sequence of compact contractible spaces. It follows from the
continuity property of the functor H that every Rs-space is acyclic; in particular,
every compact contractible space is acyclic.

A single-valued continuous map p : X — Y is called a Vietoris map if p is
proper and, for every z € X, the set p~1(z) is acyclic.

An us.c. map ¢ : X ~ Y is called acyelic if p(z) is acyclic for every z € X.

For a multivalued map ¢ : X ~+ Y, we shall consider the graph I',{(z,y) |
y € ¢(z)} of ¢ and two natural projections:

XL, 5 F,;

where py(z,¥) =z, ¢.(z,y) =y.

Observe that if ¢ : X ~+ X is acyclic, then p, : T, = X is a Vietoris map,
and we have ¢(z) = ¢,(p; " (x)) for every z € X.

The above observation allows us to give the following (cf. [G1], [G2])

Definition 1.1. A multivalued map ¢ : X ~ Y is called admissible if
there exist a compact metric space I' and two (single-valued) continuous maps
p:I'—= X and g : " = Y such that

(i) pis a Vietoris map,
(ii) p(z) = q(p~(z)) for every z € X;
then (p,q) is called a selected pair for ¢ and we write (p,¢) C .
Recall (see e.g. [G1]) that any acyclic map ¢ : X ~ X is admissible, and so
we have (py,q,) C @.
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Lemma 1.2 ([Gl]). If ¢ : X ~» Y and ¢ : Y ~~ Z are admissible maps,
then the composition Yo : X ~ Z of ¢ and ¢ is also admissible.

Remark 1.3. In what follows, by a multivalued map we shall mean a pair
(p,q), X <~ I -4V, of single-valued maps with p to be a Vietoris map.

Since any admissible map can be represented by an associated pair (p, q), for
such a pair X ¢—TI' -5V we let:

Clp,g) ={yeT|ply) =9y}

and
Fix(p,q) = {z € X | z € q(p™"(2))}-
Of course, C(p,q) # 0 if and only if Fix(p,q) # 0. Roughly speaking, the set
C(p, q) is bigger than Fix(p, q) in general.
We recommend [Gr] and [FG], [GR] for the notion of generalized Lefschetz
number and its properties. Note that for a pair (p,q), X ¢TI -5 X, its gener-
alized Leschetz number is denoted by A(p,q) and we let

Alp,q) = Algx o piY),

provided A(g. o p;!) is well-defined; in that case (p, q) is called a Lefschetz pair.
Now, we recall some elementary facts concerning absolute neighbourhood
retracts.

Definition 1.4. A space Y is called an absolute reiract (an absolute neigh-
bourhood retract) whenever, for any metrizable X and closed A C X, each
f: A=Y is extendable over X (over an open neighbourhood U of A in X).

We use then the notation: ¥ € AR (Y € ANR).
The following theorem characterizes ARs (ANRs) in terms of retraction prop-
erty {up to a homeomorphism):

Theorem 1.5. A metrizable space is an AR (an ANR) if and only if it is
a retract of (some open subset of) some normed space.

Proposition 1.6. If X € ANR and U is an open subset of X, then U &
ANR.

Until the end of this section, a pair (p, q), X &or Ay, representing a mul-
tivalued map will be denoted by ¢, i.e., by a multivalued map ¢ : X ~ ¥ we
always understand the pair (p, g) of the above type (¢(z) = q(p~(z)).

Since p is Vietoris and ¢ is continuous, our multivalued map ¢ is always u.s.c.
with compact values (see [G1] or [G2]).

A multivalued map ¢ : X ~ Y is called compact if

P = | vl2)
TEX
is a compact subset of ¥'. In what follows, ¢ € K(X) denotes ¢ : X ~+ X being
compact.
Following [FG], we shall define several classes of maps of a great importance
for our work. '
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Definition 1.7. A map ¢ : X ~+ X is called locally compact if for each
& € X there exists an open subset V of X such that @ € V' and the restriction
w|y of f to V is compact.

All mappings considered in this section are assumed to be locally compact.

Definition 1.8. A map ¢ : X ~» X is said to be a compact absorbing
contraction if there exists an open subset U of X such that ¢(U) is a compact
subset of U and X C |2 ¢~ *(U).

We use the notation: ¢ € CAC(X).

Definition 1.9. A map ¢ : X ~ X is called eventually compact if there
exists an iterate ™ : X ~» X of ¢ such that ™ is compact.

We use the notation: ¢ € EC(X).

Definition 1.10. A map p : X ~ X is called a compact attraction if there
exists a compact subset K of X such that, for each open neighbourhood V' of K,
we have X C |~ (V). The compact set K is then called an attractor for ¢.

We use the notation: ¢ € CA(X).
Definition 1.11. A map ¢ : X ~» X such that

o0
U {£™(z)} is relatively compact for every € X
n=1

is called asymptotically compact if the set C, = [ioey'(X) is a non-empty,
relatively compact subset of X. The set C, is then called the center of ¢ .

We use the notation: ¢ € ASC(X).
The following diagram shows the relations between the above classes of map-
pings:

CAC(X)
u
EC(X) C  CA(X)
U U

K(X) C EC(X)NASC(X) c ASC(X).
However, the following important question still remains open:

Open problem. Is there any of the reverse inclusions to those in the above
diagram to be true as well?

We recall the main result proved in [FG].

Theorem 1.12. Let X € ANR and ¢ € CAC(X). Then ¢ is a Lefschetz
map and if A(p) # 0, then Fix(p) # 0.

From Theorem 1.12 it follows immediately that

Corollary 1.13. If X € AR and ¢ € CAC(X), then A(p) = 1 and, in
particular, Fix(p) # 0.
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2. Nielsen number for CAC-maps

It has been shown in [FG] (c¢f. Theorem 1.12 above) that, for any multivalued
CAC-map from an ANR-space, the Lefschetz number A(p, g) € Z is defined and
A(p,q) # 0 implies the existence of a coincidence point z € T’ (p(z) = ¢(z)) of
the pair (p, q).

On the other hand, we have constructed in [AGJ] the Nielsen number N(p, q)
for a class of multivalued selfmaps on a compact ANR. N(p, ) is a non-negative
integer, a homotopy invariant and C(p,q) > N(p, q).

In this section, we generalize this construction: we drop out the compactness
assumption imposed on X by replacing (p,q) to be a CAC.

As in the single-valued case, the definition of a Nielsen number is done in two
stages: At first, C'(p, ¢) is split into disjoint classes (Nielsen classes) and then we
define essential classes.

Fix a universal covering p, : X — X. We define I' = {(#2) e X xT|
p2(Z) D p(2)} (pullback) and the map 5: T’ — X by (%, 2) = Z.

Property A. For any z € X, the restriction q1 : q1p-1(z) ° pHz) = X
admits a lift g, making the diagram

commautative.

Remark 2.1. Note that a sufficient condition of guaranteeing property A
is, for example, that p~!(z) is an co-proximally connected set, for every z € X
(see [KM], [G2]). It is well-known (see [G2]) that any co-proximally connected
subset of an ANR-space is an Rg-set.

Lemma 2.2. If (p,q) satisfies (CAC + A) then there is a lift §: I' = X
making the diegram

q ~ P
71—

X X
pxl lpr ]px
¥l p—Eiy

commutative.

Proof. Notice that the assumptions (3.1), (3.2), (3.3) in [AGJ] are satisfied.
Let
9)(={O£:X—>X|pxasz}

denote the group of covering transformations of the covering X. Similarly we
define .
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The lifts p, ¢ define homomorphisms:
p':0x = 0r by the formula p'(a)(Z,2) = (0F, 2)

and
g :0r = 8x by the equality ¢-a=q(a)- 7.

Let us recall that 6x is isomorphic with 71 (X) and if (p, g) represents a single-
valued map (i.e. gp~*(z) = o(z) for a single-valued map ¢ : X — X), then §ip' :
fx — Ox is equal to the homomorphism g, : €x — 6x given by g- o = @i1(a) - 7,
where 7 is given by the formula p(Z) = gp~(Z). However, the homomorphism
o1 corresponds to the induced map gy : 1 (X) = m (X).

Thus, the composition @i’ : #x — 8x can be considered as a generalization
of the induced homotopy homomorphism. 0

Property B. There is a normal subgroup H C 8x of finite index (0x/H-
finite), invariant under the homomorphism qip* (qp'(H) C H).

Remark 2.3. In particular, if X is a connected space such that the fun-
damental group m;(X) of X is abelian and finitely generated, then X satisfies
property B (see [Sp]). Note also that if (p,q) is admissibly homotopic to a
single-valued map f, then property B holds true (see [AGJ]).

Let us notice that (CAC + A + B) makes the diagram

~ @i ~ P
Xg<—Tyg— Xy

PxH l lPFH lPXH
r q

X r X

commutative, where px g : X g — X is a covering corresponding to the normal
subgroup HAfx =~ mX and fH is a pullback. As above, we can define homo-
morphisms ffH :0xm — 0w, Qm @ Org — Oxm, where Oxp = {a: )?H - XH |
PXHQ = DXH}-

Lemma 2.4 ([AGJ], Lemma 5.1). We have:

(i) Cp,q) = UaeHXH pruC(Pu,aqn),
(i) if praC(Pw,ade)NpraC (P, Biw) is not empty, then there exists ay €
Oxm such that B =7v-a- (Gmdyy) ™",

(iii) the sets praC(pH,aqn) are either disjoint or equal.
Thus, C(p,q) splits into disjeint subsets prayC(Py, o - Gu) colled Nielsen classes
modulo o subgroup H.

Now, we shall define essential classes. We consider the diagram

= Ong ~ EH -~
Xg<—Tyg— Xy

PXH l lprﬂ lpxar
P q

X r X
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Lemma 2.5. The multivalued map (Prr,dx) is o CAC.

Proof. X is a metric ANR, because it is locally ANR (see [Hu]). Since prg
is a homeomorphism between f);{l (z) and p~'(pz), Py is Vietoris. U C X

satisfies the definition of the CAC for (p, q), then U = Py (U) satisfies the same
for (Pa, agy). To see the last relation, we note that

A @(0) C cllpxy (@) C Alpxy (lp(D)))).

Since cl(p(U)) is compact and covering pxp is finite, pyi (cl((U))) is also
compact. Thus, so is ¢l @(U). O

Definition 2.6. A Nielsen class mod H of the form prgC(Px, ay) is called
essentiol if A(Py,aqy) # 0.

By Lemma 6.5 in [AGJ], this definition is correct, i.e., if
praC(pn, agu) = praC(Pu, B3n),
then
APw,agn) = Apr, BTu).

Definition 2.7. The number of essential classes of (p,q) mod a subgroup
H is called the H-Nielsen number and is denoted by Ng(p, q).

Now, we can give two main theorems of this section.

Theorem 2.8. A multivalued map (p,q) satisfing (CAC +A+ B) has at least
Ny(p,q) coincidence points.

Proof. We show that each essential H-Nielsen class is nonempty. Consider
an essential class pryC(Dw,aqy). Then A(Pm,agy) # 0 implies a point Z €
C(Pwy,0qm), by which pruC(Pr, agy) is nonempty as required. a

Theorem 2.9. Ng(p,q) is a homotopy invariant (with respect to the homo-
topies satisfying (CAC+A + B)).

Proof. Let the map (p, g¢) be such a homotopy. It is enough to see that the
class praC(Pom, agorr) is essential if and only if the same is true for the class
praC(piu, agiy). However, this is implied by the eguality of Lefschetz numbers

Apon, aforr) = APrp, o).

3. Application to differential inclusions

Now, we will apply the Nielsen theory developed in the foregoing section for
obtaining the multiplicity results to differential inclusions

(1) _ X' e F(t,X),
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where F : J x R™ ~+ R” is a set-valued (upper) Carathéodory mapping (for the
definition and more details see e.g. [G2], [AGG]) and J is an arbitrary (possibly
infinite) real interval. By a solution X(f) of (1), we always mean a locally
absolutely continuous function X (t) satisfying (1) for a.e. t € J.

Considering (1) with the constraint, namely

(2) XeScCWRY),

where S is a nonempty subset, we start with the following essential result (see
[A1] Theorem 2, [AGG] Proposition 2.32). Let us recall that the appropriate
topology in C(J,R™) is the one of the uniform convergence on compact subin-
tervals of J.

Lemma 3.1. Let G : J x R x R™ ~+ R™ be a Carathéodory mapping and
assume that:
(i) there ezists a subset Q of C(J,R") such that, for any q € Q, the set
T(q) of all solutions of the problem
3) { X' € G(t, X,q(t)),
X eSs,

on J € R is nonempty,

(ii) T(Q) is bounded in C(J,R™), i.e. there ezists a positive (single-valued)
function ¢ : J — R™ such that |7(t)| < ¢(t) for alit € J, T € T(q) and
q€Q,

(iii) there exists a locally Lebesgue integrable function o : J — R™ such that
|G, X (1), q(®) S aft)  ace in

for any pair (g, X) € I'r, where 't denotes the graph of T

Then T(Q) is a relatively compact subset of C(J, R™). Moreover, the multivalued
operator T : @ ~+ § is u.s.c. with compact values if still

(iv) T(Q) C S.
It will be also convenient to use the following definition.

Definition 3.2. We say that the mapping T : @ ~» U is retractible onto
Q, where U is an open subset of C(.J,R") containing @, if there is a retraction
r:U—QandpeU\Q,r(p) =g implies that p & T(g).

Its advantage consists in the fact that, for retractible mapping T': @ ~» U
onto Q with a retraction r in the sense of Definition 3.2, its composition with r,
rlrgyeT : @ ~ @, hasa coincidence point 7 € @ if and only if 7is a coincidence
point of T'.

The following statement characterizes the matter.
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Theorem 3.3. Let the assumptions of Lemma 3.1 be satisfied, where Q) is a
closed connected subset of C(J,R™) with a finitely generated abelian fundamental
group. Assume, furthermore, that the operator T : Q ~» U, related to problem
(3), is retractible onto Q with o retraction r in the sense of Definition 3.2 and
with Rs-values. At last, let

(4) G(t,e,c) C F(t,c)

take place a.e. in J, for any ¢ € R". Then the original problem (1)}-(2) admits
at least N(t|p(q) o T(+)) solutions belonging to Q.

Sketch of proof. By the hypothesis, @ is a connected (metric) ANR-space
with a finitely generated abelian fundamental group and T'(g) is an Rs-mapping.
Since T is also, according to Lemma 3.1, u.s.c. and such that T(Q) is compact,
r o T is compact, admissible and consequently a CAC-mapping. This follows
from the commutativity of the following diagram:

where (pr, gr) is a pair of natural projections of the graph I'r and pr is Vietoris
(for more details see [G1]). Therefore, according to Theorem 2.8 (see also Re-
marks 2.1 and 2.3), (pr,r|r(g) ©T) admits at least N (r|r(g) o T'(-)) coincidence
points. Because of Definition 3.2, they represent the solution of (3) and, in view
of (4), they also satisfy the original problem (1)-(2). O

Since the topological structure of the solution set to (3) plays an important
role, we recall still another slightly modified result in [ADG].

Lemma 3.4. Consider the problem

{K+A@X6mey

(5) L(X)=0,

on a compact interval J, where A J — R™ is a single-valued bounded continu-
ous (n X n)-matriz function, F : J X R™ ~» R" is a Carathéodory function and
L:C(J,BR™) = R™ is a linear operator such that the homogeneous problem

© {K+A@X=m

L(X)=0

has only the trivial solution on J. Assume, additionally, that F' is Lipschitzian
in X for a.a. t € J with e sufficiently small Lipschitz constant and

(7) [F(t, X)| < p@®)(1X] +1)

6 — Differential...
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holds for every (¢,X) € J x R™, where pp : J —+ [0,00) is a suitable Lebesgue-
integrable bounded function. Then the solution set of (5) is a (nonempty) compact
AR-space (i.e. more than Rs-set).

Since the composition F(¢,¢(t)) of the above continuous in X multifunction
F with any q € @, where @ is the same as in Theorem 3.3, is measurable (see
e.g. [ADTZ] p. 34), the assertion of Lemma 3.4 is true for the linearized problem

{ X'+ A(t)X € F(t,q(2)),

® L(X)=0,

even without the Lipschitzian restriction. On the other hand, if F' is "only”
u.s.c. in X then, in order to get the same for (8), we must assume (see [ADTZ]
p. 36) the product-measurability for F(t,X) : J X R® ~» R™.

Hence, applying Lemma 3.4 to Theorem 3.3, we arrive at

Theorem 3.5. Consider boundary value problem (5) on a compact interval
J. Assume that A : J — R" is @ single-valued continuous (n x n)-matriz and
F:J x R" ~ R" is a Carathéodory product-measurable mapping satisfying (7).
Furthermore, let L : C(J,R") — R™ be a linear operator such that problem (6)
has only the trivial solution on J. Then the orginal problem (5) has N(r|rq) ©
T(-)) solutions, provided there ezists a closed connected subset @ of C(J,R")
with a finitely generated abelian fundamental group such that

(i) T(Q) is bounded,

(ii) T(q) is retractible onto Q with a retraction r in the sense of Defini-

tion 3.2,

(iii) T(Q) C {X € AC(J,R") : L(X) = O},

where T'(q) denotes the set of (existing) solutions to (8).

Remark 3.6. In the single-valued case, we can assume the unique solvability
of the associated linearized problem, and therefore we can consider problems on
not nessesarily compact intervals, when applying Theorem 3.3 directly.

4. Nonirivial example
Consider the Carathéodory system
{ o'+ az € e(t, z,y)y™™ +9(t, ,y),

9
©) y' +by € f(t, 3,1z + h(t,z,y),

where a, b are positive numbers and m,n are odd integers with min(m,n) > 3.
Let suitable positive constants Eo, Fy, G, H exist such that

ie(t! z, y)l S EO: If(t!way)l S FO
lgtt,z,9)| <G, |hlt,zy)| < H

hold for a.a. t € (—00,00) and all (z,y) € R?.
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Futhermore, assume the existence of positive constants eg, fy, 81, 62 such that
(10) 0<e Lelt,z,y)

for x > ~é1, y > 2 and a.a. £ as well as for z < §;, y < —d2 and a.a. ¢, jointly
with

(11) 0<f0§f(t=$1y)

for © > 61, y < 62 and a.a. ¢t as well as for < —61, y > =62 and a.a. t.
Another possibility is that (10) holds for z < 61, y > 2 and a.a. t as well as
for z > —d1, y € —d2 and a.a. ¢ and that (11) holds at the same time for z > §;,
y > —0y and a.a. t as well as for z < —§;, y < §, and a.a. t.
As a constraint S, consider at first the periodic boundary condition

(12) (#(0),y(0)) = (z(w), y(w)).

More precisely, we take § = Q = Q1 N Q> N @3, where
Q1 = {g(t) € C([0,w],R?) | llg(2)|| := max{tgfgﬁ] iQI(t)latg%gf’] le2(2)[} < D},
@2 = {a(9) € (0.1 R*) | min [0:()| 2 61 > 0or min |02(8)] 2 62 >0}

Qs = {a(t) € C([0,w], R*) | ¢(0) = g(w)};

the constants 1,89, D will be specified below.
Important properties of the set () can be expressed as follows.

Lemma 4.1. The set Q defined above satisfies:
(i) Q is a closed connected subset of C([0,w], R?),
(ii) @ € ANR, _

(i) (@) = Z.

Proof. Since @) is an intersection of closed sets @1, @3, @3, we conclude that
Q is a closed subset of C([0,w], R?) as well. The connectedness follows from the
proof of (iii) below.

For (ii), it is enough to show that @ is neighbourhood retract of @;. Hence,
let € > 0 be such that §; —e > 0 and 6, — e > 0.

Defining

= : t t D d
U={geQs]| max{trerﬁ} lq1( )l,tgﬁ] lg2(t)|} < D +¢ an

[tg[léﬂ] | (t)] > 61 —¢eor S, laz(t)] > 62 — €]},

[ is obviously an open neighbourhood of @) in (Js.
Now, we will define the retraction r : I/ — ). Let us take

A={(z.y) € B | max(|z],|y|) < D and [|z| > & or |y| > &]}
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and
V ={(z,y) € R* | max(|z|,|y]) < D +¢ and [|z| > 6 — e or |y| > &2 — €]}

There exists a retraction ro : V — A.
Now, notice that for every ¢ € U and every ¢ € [0,w] we have g(¢) € V.

Definer : U — @,
7(q)(t) = rola(t)).

It is easy to see that r is a desired retraction and the proof of (ii) is complete.
At last, we will show (iii). It is obvious that 71 (A) = Z, where A is defined
above. At the same time, A = @ N R?, when regarding R? as a subspace of
constant functions of Q3. For (iii), it is sufficient to show that A is a deformation
retract of Q).
We define
p:@x[0,1]—+ A

by the formula
p(a, M) = (g + (1 = Vg, Age + (1 = N)@),

where ¢ = (q1,¢2) € @ and @1 = ¢1(0), @2 = ¢2(0). One can readily check that p
is a deformation retraction, which completes the proof of our lemma. m]

Besides (9) consider still its embedding into
{ o' +az € [(1 - pleo + pe(t, z, y)ly"/™ + py(t, 2,y),
y' +by € [(1 - ) fo + uf (b, y)let /™ + ph(t, z,y),

where u € [0,1] and observe that (13) reduces to (9) for p = 1.
The associated linearized system to (13) takes for p € [0, 1] the form

(14) { '+ az € [(1 - p)eo + pe(t, qu(t), 2 (D)]g2 ()™ + pg(t, a1 (1), ¢2(8)),
' +by € [(1 = W) fo+ pf(t,q(®), g2())ar ()™ + ph(t, q1(t), ¢2(2)),

or equivalently

(13)

(15) { 2+ az = [(1— pleo + ped ()™ + pgi,

y' +by = [(1— p)fo+ pfila ()™ + phy,

where e; C e(t,q1(t),%2(2)), fir C f(t,qu(t),92(8), gt C 9(t,q(t),q2(t), he C
h(t, (), g2 (t)) are measurable selectors. These exist, because the Carathéodory

functions e, f, g, h are weakly selectionally measurable (see e.g. [ADTZ]).
Tt is well-known that problem (12)-(15) has, for each g(t) € @ and every fixed
quadruple of selectors ey, ft, gt, ht, a unique solution X () = (z(t), y(¢)) namely

o) = [ * Ga(t, (L — pheo + pes)ae(s)™ + pgalds,
X(t) = Ow
y(t) = A Galt, $)[((L = 1) fo + fs)aa (8™ + puhalds,
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where
{ e_a(t#erw)
T T for0 <t <s<w,
— e aw
Gi(t,s) = < =)
e
— for0<s <t <w,
L ] — e—aw
s e-b(tfs+w)
—— for0<t<s<w,
1—gbw
G2(t15) = N
e b(t—s)
R for0<s<t<w.
L1 —e-bw

Since the solution set T, (g), p € [0,1], of (12)-(14) is for every fixed ¢ € @,
according to Lemma 3.4, a compact AR-set, provided Carathéodory multifunc-
tions e, f, g, h are product-measurable, T, (¢) has Rs-values. Moreover, T),(q) is,

in view of Lemma 3.1, u.s.c. with compact values and such that 7, () is compact
for every p € [0,1]. Thus, T, (g) will be a particular case of a CAC-self-mapping
if T,(Q) C Q. In order to verify that T,,(Q) C 5 = @, it is sufficient to prove just
that 7,,(Q) € @, ¢ € [0, 1], because § = Q is closed. Hence, the Nielsen number
N(T,) is well-defined for every p € [0,1], provided only product-measurability
of e, f,g,h and T,(Q) C Q.

Since X (0) = X(w), i.e. Tu(Q) C s, it remains to prove that T,(Q) C Q1
as well as T,(Q) C Q2. Let us consider the first inclusion. In view of

—aw e—bw

min Gl(t S) i—g:a: >0 and min Gg(t,s) >

— >0
£,5€[0,w] 1- £,5€[0,w] —1—etw ’

we obtain for the above solution X (¢) that

max 0] < max [ 1G1 €510 = w)eo + eulaa(s)™ + g s

< [(eo + Eo)D"/™ + G]/ G1(t,s)ds = é[(eo + Eo)DY™ 4+ G]
0
and

max [y()] < max f G, (L = 1) fo + ufslar ()7 + phol ds
€lo,w] Jo

te(0,w]

< [(fo + Fo)DY/™ + H] /Ow Ga(t,s)ds = %[(fo + Fo)DY™ + H.

Because of

|1 X ()| = niax{ max, |=(2)], max [y(t)]}

< max {%[(eo + Bp) DM 1. 5[(f0 + PRIy H]},



46 JAN ANDRES, LECH GORNIEWICZ AND JERZY JEZIERSKI

a sufficiently large constant D certainly exists such that || X (t)|| < R, 1.e. T,(Q) C
@1, independently of p € [0,1] and ey, ft, g, he.

For the inclusion T,(Q}) C @2, we proceed quite analogously.

Assuming that g(t) € @2, we have

ith . S . - '
either tg[%ﬂ]l‘h(t)i >d, >0 or tg[lol’r:)]|q2{t)| >8>0
Therefore, we obtain for the above solution X (¢) that (see (10))

in (o)) = min, [ 1G1 (8 51— weo + peulan(s) ™ + gl ds

w
m ! m
> |egbs’ —G|f Gl(t,s)ds:a1305;/ -G >0,
0

provided G < 605é/m, for g1 > —d1, g2 > 02 as well as for g1 < 63, g2 < =63 (or
another alternative as above) or (see (11))

. - i w _ 1/n
s O] = min [ 1Ga(t 9[- k) + fler ()17 + ol

n “ 1
% |l ®e H|f Ga(t, s)ds = 3|fots;‘/” - H| >0,
0

provided H < fgﬁ%/n, for g1 > &1, g2 < d5 as well as for g1 < -8y, g2 > —d2 (or
another alternative as above).

So, in order to prove that X (t) € @2, we need to fulfil simultaneously the
following inequalities

(16) { (1/a)leody™ - G| > 8 > (H/ fo)"
(1/0)] 081" = H| > 65 > (G/eo)™.

Let us observe that the ”amplitudes” of the multifunctions g, h must be suffi-
ciently small. On the other hand, if eg and f; are sufficiently large (for fixed
quantities a,b, G, H), then we can easily find 1, d2 satisfying (16).

After all, if there exist constants d;, d» obeying (16), then we arrive at X (¢) €
Q2, i-e., T, (Q) C Q2, independently of u € [0,1] and ey, f, g¢, he. This already
means that T,(Q) C @, ¢ € [0, 1], as required.

Now, since all the assumptions of Theorem 3.5 are satisfied, problem (12)-
(13) possesses at least N(T},(-)) solutions belonging to @, for every p € [0,1].
In particular, problem (9)-(12) has N(Ti(-)) solutions, but according to the
invariantness under homotopy, N(T1(-)) = N(Tp(-)). So, it remains to compute
the Nielsen number N (75(-)) for the operator Tp : @ — @, where

a7 Tolg) = (eo /; " Gt $)q2(5)/™ds, fo [D * G (s>1/"ds).
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Hence, besides (17) consider still its embedding into the one-parameter family
of operators

T(q) =vTo(g) + (1 -v)reTo(g), v €[0,1],
where 7(g) := (r(g1),7(g2)) and
r(g:) = q:(0) fori=1,2.

One can readily check that r : @ - QNR? is a retraction and T5(3) : QNR? = Q
is retractible onto @ N R? with the retraction 7 in the sense of Definition 3.2.
Thus, r o Tp(g) : Q NR? — Q@ N R? has a fixed point § € Q@ N R? if and only if
7 = To(q). Moreover, roTp(gq) : @ — QNR? has evidently a fixed point § = QNR?
if and only if § = T5(g). So, the investigation of fixed points for T°%(q) = roTp(q)
turns out to be equivalent with the one for 7°(g) : Q NR?2 — @ N R2.

Since, in view of invariantness under homotopy, we have

N(T1(-)) = N(To(-)) = N(T'(-)) = N(T°(+)),

where
0 o eoefaw “ s 1 foe—bw ¢ bs 1/n
T%q) = (—1 = /0 e s (s) /mds, T L e”’q1(s) /nds

and
e —1/m e
1) = (LE0/m, 27O) o 7= @08 = @0), 0 0) € QN

it remains to estimate N (7°(-)). It will be useful to do it by passing to a simpler
finite-dimensional analogy, namely by the direct computation of fixed points of

the operator
T°@: QNR2 - QNR?,

belonging to different Nielsen classes.
There are two fixed points @ = (¢1,432) and §— = (=1, —G) in @ N R?,

where
. _ (e (mn/mn—1) & (1/mn—1)
qL = a b )

B (eo>(m/mn—1) (fo)(mn/mn—l)
9 = — — u
a b

These fixed points belong to different Nielsen classes, because any path u con-
necting them in @ N R? and its image T°(u) are not homotopic in the space
@ N R2. Thus, according to the equivalent definition of the Nielsen number

)
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to F. Wecken (see e.g. [Sc]), N(T°(g)) = 2. By means of the reduction property
which is true here (see [A2]), we have moreover

N(T1(+)) = N(T°(+)) = N(T°(q)) =2

and so, according to Theorem 3.5, system (9) admits at least two solutions
belonging to @, provided suitable positive constants d1,d2 exist satisfying (16)
and e, f, g, h are product-measurable.

In fact, system (9) possesses at least three solutions satisfying (12), when the
sharp inequalities appear in (16), by which the lower boundary of @ becomes
fixed-point free. Indeed. Since

A(T1(+),Q) = AT°(+),Q) = MT°(9), @ NR?)

" holds for the generalized and ordinary Lefschetz numbers (see [G1]) and
IMT°(@), @ NR?)| = N(T°(2)),

according to [BBPT], we obtain

IA(TL(-), Q) = 2.

Futhermore, since for the self-map Tj(-) on the convex set @1 N Q3 such that
Ty (@1 N Q3) is compact we have

ATi(-),@1NQs) =1

(see [G1]), it follows from the additivity, excision and existence properties of the
fixed-point index (see [BK]) that the mapping 71(-) has the third coincidence
point in @1 N Q3 \ Q representing a solution of problem (9)-(12) and belonging
to Q1 \ Q.

As we could see, problem (9)-(12) admits at least two solutions in Q1 N Qs
for an arbitrary w > 0. Futhermore, because of rescaling (9), when replacing t
by t + (w/2), there are also two solutions of (9) satisfying X (—w/2) = X (w/2)
for an arbitrary w > 0 and belonging to @1 N Qa.

Therefore, according to the intuitively clear Lemma 3.2 in [AGG] and by the
obvious geometrical reasons, related to the appropriate subdomains of Q1 N Q2
system (9) possesses at least two entirely bounded solutions in @1 N Qs.

Of cource, because of replacing ¢ by (—t) the same result holds for (9) with
negative constants a, b as well.

Finally, let us consider again system (9), where a,b,m,n are the same but
e, f,g,h are this time Ls.c. in (z,y) for a.a. t € (—o0,00) multifunctions with
the same estimates as above. Since each such mapping e, f, g, h has, under
our regularity assumptions including the product-measurablity, a Carathéodory
selector (see e.g. [R]), the same assertion must be also true in this new situation.

So, after summing up the above conclusions, we can give finally
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Theorem 4.2. Let suitable positive constants §y,0o exist such that the in-
equalities

(18)

1 1/m (H)n
—lepdy,’" —G|>dh > =] ,
% 120>,

1

Fodl/m —H| >8> (S "
|| ? - €o

are sotisfied for constants ey, fo, G, H estimating the product-measurable semi-
continuous multifunctions e, f,g,h as above, for constants a,b with ab > 0 and
for odd integers m,n with min(m,n) > 3. Then system (9) admits at least two
entirely bounded solutions. In particular, if the multifunctions e, f,g, h are still
w-periodic in t, then system (9) admits at least three w-periodic solutions, pro-
vided the sharp inequalities appear in (18).
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ON THE SEMILINEAR MULTI-VALUED FLOW UNDER
CONSTRAINTS AND THE PERIODIC PROBLEM

RALF BADER

1. Semilinear differential inclusions under constraints

Let A : D(A) — E be a closed, linear, densely defined operator on a Ba-
nach space E (in general unbounded) being the infinitesimal generator of a Cp-
semigroup {U(t)}:>0. Let D be a convex subset of E and let F : [0,T] x D —
28\  be a multi-valued mapping. Given zy € D we consider the initial value

problem
#'(t) € Az(t) + F(t, (1)),
1 -

z(0) = zq.
A continuous mapping z : [0,T] — D is called a mild solution of (1) if z satisfies
the integral equation

(2) z(t) = U(t)zo + jgt U(t—s)f(s)ds  for every t € [0,T],

where
f € Np(z) := {g € L*([0,T], E) | g(t) € F(t,z(t)) a.e. on [0,T]}.
Let for 2 € D denote by
Tote) = {u € B1 Jigint, “2 <o)
the tangent cone to D at z and let y be the Hausdorff measure of noncompactness
(MNC). With these notations we can formulate:

1991 Mathemaiics Subject Classification. 49K24, 34C30, 34C25; Secondary 47D06.

Key words and phrases. Multi-valued maps, Co-semigroup, initial value problem under
constraints, Rs-sets, periodic solutions, equilibria.
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Proposition 1. Let E be ¢ Banach space, D C E closed and convezr and
let A be the generator of a Co-semigroup {U(t)}t>0 leaving the set D invariant.
Assume that F : [0,T) x D — 28\ 0 is upper semi-continuous, bounded with
closed, conver values and that

(3) F{t,z)NTp(z) #0 for each t € [0,T] and z € D.

Then for each xg € D) there exists a mild solution of (1) provided that for bounded
QcD

(4) pom  X(F((E=ht+h)N[0,T] x 1)) < k()x()

for each t € [0,T] with k € L' ([0, T}, R) or the semigroup {U(t)}s>0 is compact.

The set D is an invariant set of {U(#)}s>0, if and only if for each ¢t > 0 we
have U(t)D C D. Recall that this condition can be characterized solely in terms
of the generator A (see [10]).

The existence of solutions of (1) was shown in [3] (see also [12]) under anal-
ogous assumptions as in Proposition 1, except that instead of our seperated
boundary conditions, i.e. D is an invariant set of {U(¢)}:>0 and (3), it was as-
sumed that

(5) F(t,z) NTE(z) #0  for each t € [0,T] and z € D,
where
. . . dU(h)z+ hy, D)
ELifedh. e =:
(6) Tp(z) == {y € E| hlirgir;fo - =0;.

Now Proposition 1 follows since, under the given assumptions, ¥ € Tp(z) implies
y € TY(z). Recall that from convexity of D we have that Tp(-) is lower semi-
continuous with closed convex values and thus, by the Michael selection theorem,
there is a continuous selection g of Th( ) with g(z) = y. Then apply the known
fact that for single-valued continuous maps the seperated conditions imply (5)
(see [10]).

2. Topological characterization of the solution set
The purpose of this section is to show the following

Theorem 2. Let the conditions of Theorem 1 be fulfilled and assume in
addition that D is bounded and has nonempty interior. Then for each xzo € D
the set of mild solutions S(zo) of (1) is an Rs-set, i.e. the intersection of a
decreasing sequence of compact absolute retracts (see [9]).

We construct maps Fy, : [0,7] x D — 2%\ § such that
(i) F(t,z) C Faya1(t,z) C Fu(t,z) on [0,7] x D for each n > 1,
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(i) du(Fn(t,z),F(t,z))— 0on [0,T] x D as n — oo, where dy denotes the
Hausdorff distance and
(iii) the maps (¢,z) — Fr(t,z) NTp(z) have continuous selections f,, by the
Michael selection theorem®.
These maps f, now, in turn, can be approximated by locally lipschitz fn being
still selections of Tp(-) since D has nonempty interior. Using the maps f,, one
shows that the set S, (zo) of solutions to (1) with F,, instead of F is contractible.
Moreover, using standard methods occuring in the existence theory of (1) we see
that xo(Sn(zo)) —+ 0, where xo denotes the Hausdorff MNC in C([0,7], E).
Hence, as it was observed in [3], it follows that S(zp) is indeed an Rs-set in view
of Hyman’s result (see [9]).
We would like to mention that the same conclusion for the semilinear system
was obtained in [5] but without constraints.

3. Periodic solutions of the semilinear system

Let F : [0,00) x D — 2B\ @ be T-periodic, i.e. F(t,z) C F(t + T,z) for
every t € [0,00) and every x € D. We will be concerned with the existence of
T-periodic, mild solutions to

(7) z'(t) € Az(t) + F(t,z(t)).

In the sequel we give some existence principles under varying conditions on D,
F and A similar to those given in [11] for single-valued perturbations F.

Theorem 3. Let E be a Banach space and D C E closed, conver and
bounded with int D # 0. Let A be the generator of a Co-semigroup {U(t)}s>0 of
type (1,w) leaving the set D invariant. Assume that F : [0,00) x D — 28\ () is
upper semi-continuous, bounded, T -periodic with closed, convex values such that
(3) holds. Then the periodic problem (7) has o solution in each of the following
cases:

(i) t = U(t) is continuous with respect to the norm in L(E) for t > 0,
WT +4 [ k(s)ds < 0 and (4) holds,

(ii) E is separable and wT + [} k(s)ds < O and (4) holds,
(i) U(¢) is a compact semigroup.

In view of our above obtained results the translation operator along trajec-
tories is topologically admissible for the fixed point theory of multi-valued maps
(see [8]). Each of the assumptions (i)-(iii) implies that this operator is a condens-
ing map (see [2]). Hence the theorem follows by an application of an appropriate
fixed point result (see e.g. [1]).

The consideration of semigroups of type (1,w) does not seem to be a serious
restriction since there is an equivalent norm on E such that this always can be
achieved. Recall that our assumptions remain valid under equivalent renorming.

In the next result we consider also the case w = 0.

*here we have used lower semi-continuity of Tp(-) giving the reason why we have not
worked with the cone TH (z) given in (6); TY(-) is not lower semi-continuous.
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Theorem 4. Let the suppositions in front of Theorem 3 be fufilled. Then
the periodic problem (7) has a solution provided

0eD, w<0, F iscompactand 1€ o(U(T)).

(o(U(T)) denotes the resolvent set of U(T)). For ¢ > 0 we consider y' €
Ay —ey+ F{t,y) and obtain by Theorem 3 existence of a periodic solution z. to
the perturbed equation. Assumption 1 € o(U(T)) comes into play when proving
convergence of z. as € = 0+ to a solution of (7).

In [6] there is an example showing that without the condition “1 € o(U(T))”
the theorem may be false (in this example there is actually 4 = ().

In the remaining results we would like to dispense with the assumption
int D # 0.

Theorem 5. Theorem 4 remais true if the condition “D has nonempty in-
terior” is replaced by the condition that the metric retraction on D exists, i.e.
there is a continuous map r : E — D such that |r(z) — z| = d(z, D).

Reduction to the above results is possible since the map F(-,r(-)) has (4)
with T (- ) replaced by Tp,(-) where Ds := {z € E | d(z, D) < §} is a set with
nonempty interior,

Let us note that in case E is uniformly convex each closed, convex and
bounded set posesses the metric retraction.

In the case when D is compact and convex we can use similar arguments and
we have

Theorém 6. Let E be a Banach space and D C E compact, convez and
let A be the generator of a Cy-semigroup leaving D invariant. Assume that
F :[0,00) x D — 28\ () is upper semi-continuous, T-periodic with closed, convex
values such that (4) holds. Then the periodic problem (7) has a solution.

4. Equilibria
Let F: D — 2F \ () and consider the autonomous equation
(8) z'(t) € Az(t) + F(z(t)).

A stationary solution to (8), i.e. a point zg € D(A)ND satisfying 0 € Azg+F(zo)
is called an equilibrium of (8).

From the results on periodic solutions we can derive sufficient conditions
on the existence of equilibria. Here we would like to state the result which
follows from Theorem 6 and generalizes the well-known result from Browder [4]
on equilibria.

Theorem 7. Let E be a Banach space and D C E compact, conver and
let A be the generator of a Cy-semigroup leaving D inveriant. Assume that
F : D — 2P\ 0 is upper semi-continuous with closed, convex values and such
that

Flz)NTp(z) #0 for each z € D.

Then (7) has an equilibriuvm.



(8]

(9]
(10]
(11]

(12]

ON THE SEMILINEAR MULTI-VALUED FLOW UNDER CONSTRAINTS 55

REFERENCES
R. BADER, Fized point theorems for compositions of set-valued maps with single-valued
maps, submitted.

, The periodic problem for semilinear differential inclusions in Banach spaces
(to appear in Comment. Math. Univ. Carolin.).

D. BOTHE, Multivalued differential equations on graphs and applications, Ph. D. Disser-
tation, Universitdt Paderborn, 1992,

F. BROWDER, The fized point theory of multivalued mappings in topological vector spaces,
Math. Ann. 177 (1968), 283-301.

G. ConTi, V. OBUKHOVSKII AND P. ZECCA, On the topological structure of the solution
set for a semilinear functional-differential inclusion in a Banach space, Topology in Non-
linear Analysis (K. Geba and L. Gérniewicz, eds.), vol. 35, Polish Academy of Sciences
Institute of Mathematics, Banach Center Publications, Warszawa, 1996, pp. 159-169.

K. DEIMLING, Periodic solutions of differential equations in Banaech spaces, Manuscripta
Math. 24 (1978), 31-44.

, Multivalued Differential Equations, de Gruyter, Berlin-New York, 1992,

L. Gérniewicz, Topological approach to differential inclusions, Topological Methods in

Differential Equations and Inclusions (A. Granas and M. Frigon, eds.), NATO ASI Series
C, vol. 472, Kluwer Academic Publishers, 1995, pp. 129-190.

D. M. HYMAN, On decreasing sequences of compact absolute retracts, Fund. Math. 64
(1969), 91-97.

R. MARTIN, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley,
New York, 1976.

J. Priss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979),
601-612.

SHI. SHUZHONG, Viability theorems for a class of differential-operator inclusions, J.
Differential Equations 79 (1989), 232-257.

RALF BADER

Mathematisches Institut
Universitdt Miinchen
Theresienstr. 39

D-80333 Miinchen, GERMANY

E-mail address: bader@rz.mathematik.uni-muenchen.de



Differential Inclusions and Optimal Control
Lecture Notes in Nonlinear Analysis
Volume 2, 1998, pages 57-71

DIRICHLET PROBLEMS WITH VARIABLE BOUNDARY DATA

DorOTA BORS AND STANISLAW WALCZAK

0. Introduction

In this paper we consider the Dirichlet problem described by systems of
ordinary differential equations of the form

(0.1) u'(t) = Gult, u(t))
with variable boundary data
(0.2) uw(0) =as,  u(m) =by,

where u(-) € HY(I,R?), I = [0,7], as,b, € R* and G = G(t,u) is a scalar
function defined on I x R™.

We say that problem (0.1)-(0.2) is well-posed, in the sense of Hadamard, if
for any boundary data (0.2), there exists a unique solution u = u(t; as, b,) and
this solution continuously depends on a; and b,. The question of the existence
and uniqueness of solutions for Dirichlet problem (0.1)-(0.2) was considered in
many papers and monographs (cf. [6] and references therein). The problem of the
continuous dependence on boundary data for scalar equations was investigated in
papers [3], [4], [5], [8] (see also references therein). In these papers the authors,
basing themselves on direct methods, prove some sufficient conditions under
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which a solution of the Dirichlet problem belongs to the C? class and continuously
depends on boundary data (as,bs). In our paper we investigate system (0.1)-
(0.2) using variational methods. Without going into details, the main result of
this paper may be formulated as follows: if the function G satisfies some growth
conditions, then for any (as,bs), there exists a solution us(-) € H§(I,R*) and
() tends to ug(-) in the norm topology of H' provided that {(as,bs)} tends
to (ag, bo) in R™ x R™. Thus we prove that problem (0.1)-(0.2) is well-posed in
the sense of Hadamard.

Our paper is divided into two parts. In the first part we consider the coercive
case, in the second one the case related to the Mountain Pass Theorem.

I. Coercive case

1. Formulation of the problem and the principal lemma

Let I = [0,7]. By H' we shall denote the space H' = H'(I,R") = {u(-) |
I - R™ | u(-) is absolutely continuous on I and v'(-) € L?(I,R™)}. The norm
in H' is given by the formula

wn=mwn+([wwWﬂYUa
I

Let H} = H}(I,R") denote the subspace of H' of all functions u such that
1(0) = u(w) = 0 with the norm

nw=(fmeﬂym{
I

() = Gult, u(t)),
w(0) = a, u(r) = bs,

Consider a system
(1.0)

where G : I x R* = R, u(+) € HY, a5, b, € R and |as| < G, |bs| < b for some
@,b> 0. If we put u(t) = v(t) + as(f) where a,(t) = (1/7)(bs — as)t + a5, then
we obtain an equivalent system

v'(t) = Gy(t,v(t) + as(t)),
1) ( u(t,v(t) + as(t))

v(0) = v(r) = 0.

We shall impose the following conditions on the function G:

(1.2) the functions G, G, are measurable with respect to ¢ for any u € R"
and continuous with respect to u for ¢t € I a.e.;
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(1.3) for any r > 0, there exists h € L'(I,R*) such that
IG(t,u)l < h(E),  |Gult,u)| < A(F)

forte I ae, |u| <
(1.4) there exist a constant b < 1/2 and some functions 8 € L*(I,R"), v €
L*(I,R), such that

G(t,u) < bluf® — (B(2), u) — 7(2)

fort el a.e.

It is easy to see that system (1.1) is the Euler-Lagrange’s equation for the
functional of action

(1.5) Fo(v) = F,(v) = / (%h}’(t) + e.|? — G(t,v(t) + o:s(t))) dt,
T

where e; = (1/7)(bs —as), s =0,1,2,..., and v(-) € H}(I,R™). Under assump-
tions (1.2), (1.3), functional (1.5) is well-posed and Fj(-) is of class C* (cf. [7]).
Moreover, the Fréchet derivative of Fy(-) is given by the formula

(Fy(v), k) = /((v'(t) +es, 1)) = (Gu(t,0(F) + as(t), h(D)))dt
I

for any h € Hj.

Remark 1.1. Directly from assumptions (1.2), (1.3) and theorem 10.8i
(cf. [2]) it follows that functional (1.5) is lower semicontinuous with respect to
the weak topology of HJ.

Denote by V; the set of all minimizers of the functional Fy(-), i.e.

V, = {v € H} | Fs(v) = min F5(2), 2 € Hy}.

We say that a set he H} is the upper limit of the sequence of sets V;, s =
1,2,..., if and only if any point z € ¥y is a cluster point (with respect to the
norm topology of H}) of some sequence {v,} where v € V for s = 1,2,.... The
upper limit of V; will be denoted by limsup V, = Vg (cf. [1]).

We shall prove the following

Lemma 1.1 (Principal lemma). If

1° the function G satisfies assumptions (1.2),(1.3) and (1.4),

2° the sequences of functionals Fy(-) and F.(-) tend uniformly to Fy(-)
and Fi(-), respectively, on any ball B, = {v(-) € Hj | ||v|]| < r} with
r >0,
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then

(a) for any boundary date ag,bs, the set Vs of minimizers of the func-
tional Fy(-) is nonempty and compact in the strong topology of H,
i=0,4, 25 0

(b) there emists a ball B, C H} such that V; C B, for s =0,1,2,... and
any sequence {vs}, vs € Vs, is compact in the strong topology of H},

(c) limsup V; is ¢ nonempty set and limsup Vs C Vo, where Vy is the set of
minimizers of the functional Fo(-) (if Vi is a singleton, i.e. Vs = {v,}
fors=0,1,2,..., then limuv, = vp),

(d) for anye > 0, there exists S > 0 such that V; C Vo +eBy for all s > S.

Proof. From (1.4) and the Poincaré inequality we get

Fy(v) = / (%h}’(f) + es|2 — G(t,v(t) + as(t))) dt
(1.6) !

> (5 =) IolP = Callll = C2 = (ol

where b is described in (1.4) and Cy, Cy are some constants. Since (1/2) —b > 0,
the functional Fy(-) is coercive and weak lower semicontinuous (cf. Remark 1.1).
This implies that there exists at least one minimizer v; of Fy(-). Thus V; is a
nonempty set. The trinomial y{-) does not depend on s, so by (1.3), we have
the following inclusions

(1.7) Vo € {v(-) € H | y(lloll) < D} C B,

forsome D >0,¢p>0and s=0,1,2,....

Let us fix, for a moment s (s = 0,1,2,...), and let {v;} C V; be a sequence.
We have proved that V, is bounded in H} (cf. (1.7)) and weakly closed. Passing,
if necessary, to a subsequence, we may assume that v; tends to some vy € V;
weakly in H}. Since Fl(y) =0for1=0,1,2,..., we get

0 = (Fy(wi), v — vo) — (Fy(vo), v — vo) = [lv; — Uo”?qg
(1.8) + f (Golt, U0 (t) + as(£)) = Gt i (8) + s (£)), 00 (2) — vo(£)) .
I

Since H} is compactly embedded into C°, we get that the last component in
(1.8) tends to zero if I — oo. Thus equality (1.8) implies that v; — vp strongly

in H}.
In this way we have proved that the set V; is compact in the strong topology of
H} for any s =0,1,2,.... Let {v;} C H{ be a sequence such that v; € V; for

s=1,2,.... Since V; C By, s = 1,2,..., for some g > 0 (cf. (1.7)), we may
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assume without loss of generality that v, tends to some v € B, weakly in H}.
Let us notice that vy — v strongly in H}. Indeed, by direct calculations we get

(FC';(US) - Fé(‘v)avs - 'U) — H'Us = ’U“?_Ié

(1.9) + f (Go(t, v(8)) = G2, vs (1)), v (£) — v(t))dt.

I

It is easy to see that assumption (2°) of our lemma implies that Fj(v,) — 0.
Taking account (1.9) in a similar way as in equality (1.8) and by the embedding
theorem we can demonstrate that vs — v in the strong topology of H3. We shall
show that

v € Vo = {U € Hy | Fy(v) = min Fy(v), v € H}).
Denote by
ms = min{Fy(v) | v € Hj} = min{F,(v) | v € B,} s = 0,1,2,.... Since F,(-)
tends uniformly to Fy(-) on B, (by assumption (2°)), we obtain that m, — myg.
Suppose that v does not belong to V5. For any vy € Vj, we have

(1.10) m, —mo = Fy(vs) — Fo(vo) = (Fs(vs) — Fo(vs)) + (Fo(vs) — Fy(vp)).
If s = oo, we get

ms_mO_)O: Fs(vs)_Fﬁ(Us)_')Uu
Fg('ﬂs) = Fo(ijo) — FO(U) — FU(UO) > 0.

Thus we have got a contradiction with (1.10). It means that v € 7, and
limsup Vy C Vp. We have shown that any sequence {v,}, vs € Vi, fors =1,2,...
is compact with respect to the norm topology of H}. It is easy to notice that
conditions (c¢) and (d) of lemma are equivalent. Thus the proof is completed. O

2. Continuous dependence on boundary data

Further, we shall consider a situation when the sequence of boundary data
{(as,bs)} converges to some (ag,bo) € R™ x R™. Without loss of generality we
may assume that (ag,bo) = (0,0). Basing ourselves on the principal lemma,
we shall prove some sufficient conditions for the continuous (or semicontinuous)
dependence on boundary data of the solutions of variational and boundary value
problems (1.1) and (1.5). We shall prove the following

Theorem 2.1. If

1° the sequence {(as,bs)} tends to (0,0) in R™ x R",
2° the function G satisfies basic assumptions (1.2), (1.3) and (1.4),
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then

(a) the set Vi of minimizers of the functional Fy(-) defined by (1.5) is
nonempty and compact in the strong topology of Hg for s =0,1,2,...,

(b) there exists a ball By, 0 < ¢ < o0, such that Vs C B, for s =0,1,2,...
and any sequence {vs}, v, € Vi, s = 1,2,..., is compact in the norm
topology of H},

(¢) limsupV; is a nonempty set and limsup Vy, C Vo (if Vi are singlelons,
ie. Vo = {vs}, then limv, = vg),

(d) for any e > 0, there exists S > 0 such that V; C Vo +eBy for all s > S.

Proof. It is enough to show that the sequences Fy(-) and Fi(-) tend uni-
formly to Fp(-) and Fy(-), respectively, on any ball B,. Suppose that F(-)
does not tend uniformly to Fy(-) for some r > 0. Thus there exist an a > 0 and
some sequence {vs} C By, such that

(2.1) |Fs(vs) — Fo(vs)| >a, s=12,....

Since the space Hj is compactly embedded into C°, we may assume that v,
tends to some vp uniformly on I. We have

)~ el = | [ (B4 +ecf - Gt ) + ) )
I
/(1 ! 2 ! I
~ [ (3100 - Gtv0(0) )] < lesbvAls — il
I
+lealVAlehlza + glesP + [ 160, v4(6) - Gt (el
I

+ f (Gt vo(t) + ao(t)) — Glt, ve (%) + aa(£))]dt.
I

Since (as,bs) = (0,0) and vs(t) — vo(t) uniformly for ¢ € I, the right-hand side
of the inequality tends to null. So, we have got a contradiction with (2.1). This
means that F,(-) tends to Fy(-) uniformly on B,. Now, let us suppose that
F!(-) does not tend to Fg(-) uniformly on B,. This implies that there exist
some sequences {vs} C B, and {hs}, [|hs]| < 1, such that

(2.2) (Fi(vs) — Fj(vs),hs) > A for some A > 0.
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It is easy to calculate that

[(F(0s) — F(ws), bl = | [ (0} (£) + ey B 2)) — (0(8), B (1))t
+ [ (Gt vs(6)), ha(®)) = (Gnlt, e ) + 0 8)), B (£)) )t
I
< [ledd @1+ [ 16,0 0.(6) = Goltva(®) + sl hs(Olas
I I
< \/Er'(|es| + [ 164,00 - Gult @l
74

+ / (G (b, B0 (8) + 00 (8)) — Gt va(2) + as(t))ldt) .

I

By a similar motivation as above, we get a contradition with inequality (2.2).
Thus we have shown that Fy(-) and F!(-) tends uniformly on B, to Fy(-) and
F§(-), respectively. Applying Lemma 1.1, we complete the proof. O

Let us return to boundary value problem (1.1). Denote by V; a set of solutions
of (1.1). For the convex functional, the set V; coincides with the set of minimizers
of F¢(-). Thus Theorem 2.1 implies

Corollary 2.2. If

1° the assumptions of Theorem 2.1 are satisfied,

2° the functional Fy(-) (cf. 1.5) is convexz for any as,bs (it enough to as-
sume that G(t, ) is convex for t € I a.e.), then the conclusions (a)-(d)
of Theorem 2.1 hold with V; replaced by V;.

Finally, let us return to original problem (1.0), i.e.

u' (I'I) = Gu (ta u(t))i

(2.3) u(0) = a5, u(w) = bs

with the functional of action

(2.4) o) = [ (3hOP - Gt ) a
I

where u(-) € H'(I,R") and w(0) = as, u(r) = bs. Denote by U,, s =0,1,2,...,
a set of solutions of problem (2.3). It easy to see that U, = V; + ay. Thus,
directly from Theorem 2.1 we get
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Corollary 2.3. If
19 the sequence {(as,bs)} tends to some (ao,bg) in R® x R™,
20 the function G satisfies assumptions (1.2)-(1.4) and the functional o(-)
(cf. 2.4) is conves,
then all conditions (a)-(d) of Theorem 2.1 hold with V, replaced by U, s =
0,1,2,....

II. Superlinear case

In the second part of our paper we shall consider boundary value and varia-
tional problems related to the Mountain Pass Theorem. To begin with let us
recall some definitions. :

3. Definitions and the principal lemma

Let F : E — R be a functional of class C* defined on a real Banach space E.
A point v € E is called a critical point of F if F'(v) = 0 and, moreover, the
number ¢ = F(v) is referred to as a critical value. We say that the functional
F' satisfies the Palais-Smale conditions (P.S.) if any sequence {vs} C E such
that F'(vs) — 0 and |F(vs)] < C for some C > 0 is compact in the strong
topology of E. In this part we shall use the following version of the Mountain
Pass Theorem (cf. [7], [9]).

Theorem 3.1. If

1° there exist vo € E, vi € E and o bounded neighbourhood B of vy, such
that v; € E\ B,

2° infap F' > max{F(vo), F(m)},

3° ¢ = infyep maxgepo,1) F(9(s)) where M = {g € C([0,1],E) | g(0) =
vo, g(1) =i},

4° F satisfies the (P.S.) condition,

then ¢ is o critical value and ¢ > max{F{(v), F(v1)}.

By M, we shall denote a family of continuous mappings g : [0,1] = B,,
g(0) =vg, g(1)=vi, By ={v e E||v|| <r, 7>0},v1 € B,. Let Fy(-): E —

R, s=0,1,2,..., be a sequence of functionals of class C'. Put
(3.1) es(r) = .4 e, F(g(r)).

Denote by Vs a set of critical points which correspond to the critical value c,(r),
ie.

(3.2)  Vi(r) ={v € By | Fs(v) = cs(r) and F,(v) =0}, g Dl 2

Now, we shall prove the following
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Lemma 3.3. If

1° the functional Fy(-) satisfies the (P.5.) condition,

2° the sequences F(-), Fi(-), s=1,2,..., tend uniformly on the ball B,
to Fo(-), F§(-), respectively,

3° the sets Vi(r) defined by (3.2) are nonempty for s =0,1,2,...,

then

(a) any sequence {vs}, vs € Vs(r), s =1,2,..., is compact,

(b) limsup V;(r) is a nonempty set and lim sup Vy(r) C Vu(r),

(c) for any £ > 0, there exists S > 0 such that Vi(r) C Vy(r) + eBy for
s> 5.

Proof. Let us notice that lim ¢s(r) = ¢o(r), where c4(r) are described in (3.1).
Indeed, by assumption (2°), we have

cs(r) = inf max [(Fs(9(r)} — Folg(r)})) + Folg(r))]

< inf Trél[%fg](e + Fo(g(r))) = & + colr)

for an arbitrary ¢ > 0 and for k sufficiently large. Similarly, cp(r) < € + cs(r).
Thus
(3.3) lim eg(r) = eo(r).
Let {vs} be an arbitrary sequence such that v, € Vy(r) for s = 1,2,.... By
assumption (2°) and (3.3), we have
As = Fy(vs) — Fe(vs) = Fo(vs) —es(r) = 0
and
lim Fy(vs) = lm(A;s + ¢s(r)) = lim A; + lim ¢, (r) = co(r).
Similarly, 0 = lim(F,(vs) — Fg(vs)) = —lim Fj(vs) because F,(v,) = 0. We
have shown that the sequence Fy(v;) is bounded and Fj§(vs) — 0. Assumption
(1°) implies that {vs} is compact. Let ¥ be a cluster point of this sequence.
Passing, if necessary, to a subsequence, we may assume that v, — ¥. Suppose
that 7 ¢ Vp(r), i.e. Fo(¥) # co or Fg(v) # 0. Let us notice that the inequality
F§(v) # 0, is false. Indeed, by assumption (2°), we have
Fy () = lim Fy(vs) = Him(F(vs) ~ Fa(vs)) = 0.
Let us put a = Fo(?) — Fy(vo), where vy € Vp(r). Of course, a # 0. We have

¢s(r) — co(r) = Fs(vs) — Folvo)
= [Fs(vs) — Fo(vs)] + [Fo(vs) — Fo(D)] + [Fo(¥) — Fo(vo)]
= [Fs(vs) — Fol(vs)] + [Fo(vs) — Fo(D)] + a.

Y — Differential...
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By (3.3) and assumption (2°), we have ¢,(r)—¢o(r) = 0, Fs(vs)—Fp(vs) — 0 and
Fy(vs) — Fo(0) — 0. Since a # 0, we have got a contradiction. Thus 7 € V(7).
We have proved that limsup V;(r) is a nonempty set and limsup Vi (r) C Vy(r).
It is easy to notice that (a) and (b) imply condition (c). 0

4. Formulation of the problem

In this part we consider a system

u’(t) = Gu(t, u(?)),

(4.0) u(0) = ay, u() = by,

where G : I x R* = R, u(+) € H'. If we put u(t) = v(t) + a,(t), where
as(t) = (1/7)(bs — as)t + as, then we obtain an equivalent system

V" (t) = Gy(t,v(2) + as(t)),

(4.1) v(0) = v(w) = 0.

By F,(-) we shall denote the functional of action of system (4.1)

(4.2) Fs(v) = [ (%W(t) + eg|* - %[642 - G(t,v(t) + as(t)) + G(t, as(t))> dt,
I

where e, = (1/7)(bs — as), s =0,1,2,..., and v(-) € H}(I,R").
We shall assume that

(4.3) the functions G(t,u), Gy(t,u) are measurable with respect to ¢t € I for
any v € R®, continuous with respect to u € R™ for ¢t € I a.e., |as| < @,
|bs| < D for some @,b > 0 and for all s, and G(t,0) =0 for t € I a.e.,
(4.4) for any r > 0, there exists h € L°°(I, R*) such that

G, w)| Sh(t),  |Gult u)| < h(2)

fort € I a.e., |u| <r,
(4.5) there exist p > 2, a > 0 and R > 0, such that

a < pG(t,u) < (Gu(t, u),u)

fort € I a.e., and |u| > R,
(4.6) there exist ¢ > 0 and b < 1, such that

G(tyw) < Dlul

for [u<gandt €T ae.
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For given as and by, we define

. s = 1 f s 1
(4.7) & = 1, g X (9(7))

where the functional F(-) is defined by (4.2) and M is a family of continuous
mappings g : [0,1] = H(I,R™) such that g(0) = vo, g(1) = v1(+), where v;(+)
is a given function. Let ¢, be the given number defined by (4.7). For fixed
(as,bs), denote

(4.8) Vs = {v € H} | Fs(v) = ¢ and F!(v) = 0}.

Remark 4.1. The functional F,(-) defined by (4.2) is continuously differ-
entiable on H} (cf. [7], Theorem 1.4).

5. Continuous dependence on boundary data

Basing ourselves on Lemma 3.3 and the Mountain Pass Theorem (cf. Theo-
rem 3.1), we shall prove some sufficient conditions for the continuous dependence
on boundary data of the solution of a variational and boundary value problem
of forms (4.0) and (4.1).

First, we prove

Lemma 5.1. If the function G satisfies conditions (4.3), (4.4) and (4.5),
then there ezists a ball B, C H} such that V, C B, for any a,, b, where V, is
the set of critical points, given by (4.8).

Proof. Note that the set of critical values is bounded from above. Indeed,

= i <
¢ = lnf s Fy(g(r)) < o, Fy(tv1)

L 1
max /1 (ilwl(t) +el? - §§esl2 — G(t, T (t) + as(t)) + G(t,as(t))) dt

T€[0,1]

t a2 le 2_ @ &
i jf(ml(t)g +5le = 246 s(t)))dt

T€[0,1]

J/:r (fvi @ + %le.-;l2 ~ ;% + G(t,as(t))) dt

A

1A

gj a
< ||lv 2+(—ez——)7r+c=5,
< Il + ( lesf® = 2
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For any as, bs and v € Vy, we have (by (4.4), (4.5))
pe > peg = st(’U) - (Fsr(v)u'u + as)

> P2 p 4+ 222 f (200! (8),es) + lea)dt + f adt
2 2 Jr I+

+ | (20— RR()dt
-

-9 ; -2
= 25210l + (- 2) | @it + = B2l +

where
I*={t|jv+as >R}, I-={t|[v+asl<R}
Since p— 2 > 0, for r = \/2(pé — C)/(p — 2), we have ||v|| < r,ie. V, C B,. O

Basing ourselves on the above lemma, we prove

Theorem 5.2. If

1° the function G satisfies assumptions (4.3)-(4.6),
2° the sequence {(as,bs)} tends to (ap,bp) = (0,0) in R™ x R",

then

(a) the set Vs of critical points of the functional Fy(-), defined by (4.8),
is nonempty for s = 0,1,2,..., v = 0 does not belong to V, and any
sequence {vs}, vs € Vs, s =1,2,..., is compact,

(b) limsup V; is a nonempty set and imsupV, C Vo (if Vs are singletons,
i.e. Vs = {us}, then limv, = vy),

(¢c) for any e > 0, there exists S > 0 such that V; C Vo +¢eBy for alls > S.

Proof. Similarly as in the proof of Theorem 2.1 from Part 1 one can show
that Fs(-) and Fi(-) tend uniformly to Fy(-) and Fy( - ), respectively, provided
that (ag,bs) — (0,0). Basing oneself on assumptions (4.4) and (4.5), one can
prove that, for any (as,bs), the functional Fi{-), s = 0,1,2,..., satisfies the
(P.S.) condition. Indeed, let {vi} be a sequence such that {F;(v;)} is bounded
and Fl(vx) — 0 as k — 0. We have |Fy(vg)| < Cy and ||F)(v)|| <€ C; for s,
k € N and for some C, C3 > 0. By assumption (4.4), (4.5) we get

pCy + Ca||lvi|| + Callas|| = pCr + Coallug, + a|
p—

2
5 llvell® + C.

> st(Uk) - (F;(’Uk),’t)k = as) et

Thus we obtain

2
ol < er(pC’l + Cy||ve|| + Callas|| + C) for k € N.
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The above inequality implies that the sequence {vx} is bounded and we may
assume without loss of generality that vy tends to some vy weakly in Hi. Since
the space H} is compactly embedded into C°, then vy, tends to vy uniformly
on I. Of course,

(F!(vg) — Fl(vo),vp —vg) =0 ask — 0.

By direct calculations we get
(Fi(on) = Fyton),ve =) = | Iok(®) = oh (0

- ﬁ(Gv (tavk(t) + Cks(t)) - Gﬂ(t=U0(t) + o (t}), Uk(t) - UO(t»dt'

It is easy to show that the above integrals tend to null as vy tend to vy in Hj.
Thus |jux — vl|* — 0 as & — 0. This means that vy — vy strongly in H}.
We have shown that, for any s =0,1,2,..., Fy(-) satisfies the (P.S.) condition.
Now, we shall show that there exists v; which satisfies the assumptions of the
Mountain Pass Theorem (cf. Theorem 3.1) and the choice of v; does not depend
on the boundary values @, bs. Similarly as in Theorem 3.3 (cf. [6]) we can prove
the inequality
G(t,70) > TPG(t,7) > gq-l’

fort € [0,7] a.e., 7 > 1 and [3] = R, where a and p are described in (4.5). For any
v € R" such that [v+a,| > R, we put 7 = (jv+ay|) /R, T = R/(|v+ as|) (v + o)
and get, by direct calculations,
»
G(t, T7) = G(t,v + o) > g% = Glv + s

for t € [0,7] a.e. and @ = a/(pR?) > 0 (because @ > 0, p > 2, R > 0). Thus
G(t,v+a,) > alv+as|? — h(t) for t € [0,7) a.e. and v € R", where the function
h(-) satisfies assumption (4.4). Consequently, if v € Hg, and v # 0 is fixed and
[ > 0, then

Fy(lv) = /I (%{IU"(]&) +e* ~ %|6312 — G(t, lv(t) + as(t) + G(2, as(t))) dt

12
< bl +1Callll - ar2e [ poiolPa + C;
I
for some Cy, Cy > 0. Since @ > 0, p > 2, we have
Fi(lv) = —0 as |l = co.

Therefore, there exist lo > 0, R > 0 such that lllov]] > R and F, (lov) < 0. This
means that v; = lov ¢ Eﬁ. We have shown that there exists v; which does not
depend on the boundary data as, bs and a ball with centre at the origin such
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that v; does not belong to the closure of the ball. Similarly as in Theorem 3.3
(cf. [6]) one can prove that infep Fy > max{F(0), Fs(vi)} = F,(0) = 0, where
B is some ball with centre at the origin and with radius g; > 0. The Mountain
Pass Theorem with vo = 0, E = H} and ¢ = ¢, (cf. (4.7)) implies that, for
any as, bs, the set of critical points corresponding to the critical value ¢, is not
empty, i.e.
Vi = {v € H} | F5(v) = ¢5; and Fi(v) = 0} #£ §.

Moreover,

Cs = yléljt;r Tl'é‘t[an.?ilFs(g(T)) > max{F,(0), Fs(v1)} = 0.

Thus v = 0 does not belong to V; for s =0,1,2,.... By Lemma 5.1, there exists
a ball B, C H} such that Vi(r) = V;, where the sets V;(r) and V; are defined
by (3.2) and (4.8), respectively. Applying Lemma 3.3, we get assertions (b) and
(c) of our theorem. O

Let us return to the superlinear boundary value problem for the system of
0.D.E. which is described in (4.1). Denote by V; a set of nontrivial solutions
of problem (4.1) which correspond to the critical value cq, ie. Fs(v) = ¢;. Of
course, V, = V; and directly from Theorem 5.2 we get

Corollary 5.3. If the assumptions of Theorem 5.2 are satisfied, then

(a) the set V, is nonempty for s = 0,1,2,..., v = 0 does not belong to V,
and any sequence {vs}, v; € Vg, s =1,2,..., is compact,

(b) limsupV; is a nonempty set and limsupV, C Vg (if V; are singletons,
i.e. Vi = {vs}, then limuv, = vy),

(c) for any e > 0, there exists S > 0 such that Ve CVo+eB; foralls> S.
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ON DISCONTINUOUS DIFFERENTIAL EQUATIONS

ALBERTO BRESSAN AND WEN SHEN

1. Introduction

Consider the Cauchy problem for an ordinary differential equation
(1.1) £ =gt Z0) =T, te[0,T].

When g is continuous, the local existence of solutions is provided by Peano’s
theorem. Several existence and uniqueness results are known also in the case
of a discontinuous right hand side [7]. We recall here the classical theorem of
Carathéodory [8]:

Theorem A. Lef g:[0,T] x R* — R™ be a bounded function.

(i) If the map t — g(t,z) is measurable for each x and the map = — g(t, z)
is continuous for each t, then the Cauchy problem (1.1) has at least one
solulion.

(ii) If the map t — g(t,x) is measurable for each x and the map = — g(t,z)
is Lipschitz continuous for each t, with a uniform Lipschitz constant,
then the Cauchy problem (1.1) has a unigue solution, depending Lip-
schitz continuously on the initial data T.
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By a solution of (1.1) we mean an absolutely continuous function z : [0,T] =
R™ such that

(1.2) z(t) =%+ /t g(t,z(t)) dt  forallte [0,T].

More recent results rely on the notions of directional continuity and of bounded
directional variation of a vector field. More precisely, given a closed convex cone
I’ ¢ R™, we say that a (possibly discontinuous) map ¢ : R™ +— R is directionally
continuous if at each point p € R™ one has

¢(p") = o(p).

We say that the map ¢ has bounded directional variation if

(1.3) lim
p'—p, p'—pel

N
() sup{ D160 ~ o)l | N2 1, pi=pics €T forevery i <o
=1

The following existence and uniqueness results were proved in [1], [9] and in [2],
respectively.

Theorem B. Let [g(t,z)] < L < M for all t,z.

(i) Assume that g is directionally continuous in the direction of the cone
(1.5) I'= {(t,z) | || < Mt} c B*+L.

Then the Coauchy problem (1.1) admits at least one solution.

(ii) Assume that g has bounded directional variation in the direction of the
cone T in (1.5). Then the Cauchy problem (1.1) has a unique solution,
depending Lipschitz continuously on the initial data T.

Further uniqueness results can be found in [3] and [4]. Concerning existence,
see also the interesting work [10].

Aim of the present paper is to prove two theorems on the existence and the
uniqueness of solutions to the autonomous Cauchy problem

(1.6) i=f(z), z(0)=zeR", te[0,T],

extending the classical results of Carathéodory. As a preliminary, we observe
that the equation (1.1) can be rewritten as an autonomous problem on R"*!, in-
troducing the variable zo = ¢ and the vector field f(zo,z) = (1, g(zo,z)). Under
the assumptions of Theorem A, the function f can jump across the hyperplanes
of the form xy = constant. These hyperplanes are certainly transversal to f.
Namely, taking the inner product of f with their normal vector, one trivially has

f-n= (l,g(ﬂfg,:ﬂ)) : (1’0) =1.
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The next theorem shows that this transversality condition is indeed the key
ingredient toward the existence of solutions.

Theorem 1. Assume that f in (1.6) has the form

(1.7) f(z) = F(g1(ni(z),x),--. ,gn(Tn(2), 7)),
where:

(i) FEach map 7; : R™ = R is continuously differentiable. Each g; : R x
R™ +— R is a Carathéodory function, i.e. measurable in t and continuous
in . Moreover, F : RN — R™ is continuous.

(i) For some compact set K C R™, at every point x one has

(1.8) f(z) € K, Vri(z)-2>0 for every z € K.

Then the Cauchy problem (1.6) has at least one solution.

Remark 1. The assumption (ii) can be easily recognized as a transversality
condition. Indeed, by (1.8); every trajectory of (1.6) satisfies the differential
inclusion # € K. Hence by (1.8)s this trajectory must cross transversally any
hypersurface of the form 7;(x) = constant. According to the definition (1.7),
these are the surfaces across which f can jump.

To guarantee the existence of solutions, some kind of transversality condition
is necessary, as shown by obvious counterexample

) 1 ifzx <0,
= ] z(0) = 0.
-1 ifx >0,

Our second result is concerned with the uniqueness and continuous dependence
of solutions.

Theorem 2. Assume that f in (1.6) has the form

(1.9) f(z) = g(r(z),2),
where:

(i) The function 7 : R™ — R is continuously differentiable. The map g :
RxR™ — R™ is measurable w.r.t. t and uniformly Lipschitz continuous
w.r.t. z.

(ii) There exists a compact convex set K such that

(1.10) flz)e K, Vr(z)-z>0 for everyz € R™, z € K.

Moreover, the gradient VT has bounded directional variation w.r.t. the
cone' ={Az| X >0, z€ K}.
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Then the Cauchy problem (1.6) has a unique solution, depending on the initial
data T in a locally Lipschitz continuous way.

Remark 2. In the case where m =n+ 1, z = (zq, ... ,2,) and 7(x) = zo,
the above theorem reduces to part (ii) of Theorem A. Roughly speaking, in
Carathéodory’s theorem one allows jumps across the hyperplanes zp = constant.
On the other hand, in Theorem 2 we allow jumps across the hypersurfaces 7(z) =
constant, provided that these surfaces are transversal to the vector field f and
the direction of their tangent planes does not wiggle too much.

The reader should also notice that in Theorem 2 the assumption of bounded
directional variation is placed on the gradient V. This situation is quite different
from part (ii) of Theorem B, where one assumes that the vector field f itself has
bounded directional variation.

Remark 3. In Theorems 1 and 2, the scalar functions 7, 7; were assumed
to be C!. This assumption simplifies some technical aspects of the proofs, but
may likely be relaxed. We conjecture that the same results hold if 7,7; are
only assumed Lipschitz continuous, and the conditions (1.8), (1.10) are duly
reformulated in terms of Clarke generalized gradients [5].

Remark 4. If in Theorem 2 we drop the key assumption that the directional
variation of V7 be bounded, then the uniqueness of solutions may fail. This will
be illustrated by an example in the last section of this paper. On the other hand,
the uniqueness result stated in [4] allows f to have discontinuities along a set of
lines whose slopes have unbounded directional variation. However, the validity
of this theorem relies on the very special structure of f, linked to the solution of
a scalar conservation law.

2. Proof of Theorem 1

Tt is not restrictive to assume that £ = 0 and that K is convex: otherwise,
one can simply shift the coordinates and replace K by its convex closure. Define
the Picard operator u — Pu

t

@) (PO = [ FanE),ue) - avlmue)ue) de.
0

We will prove that this operator is continuous on the compact set

(2.2) Ui{u:[O,T]H]leu(O):O, MEKforallt>s}.

t—s
Let £ > 0 be given. Applying the theorem of Scorza-Dragoni [11] to each map
gi,i=1,...,N, we obtain the existence of a closed set J; with

(2.3) meas(R\ J;) < ¢,
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such that g; is continuous restricted to the set J; x R™. Define the closed set
A={zecR" |r(z) € J; foreveryi=1,... ,N}.

By (1.7), the composed map f is continuous restricted to A. Without loss of
generality, K is convex. Using the extension theorem of Dugundji [6] (see page
188) we now construct a continuous map f: R™ +— K such that f: fon A

Call |K| = max.ecx |z|. By (2.2), every function u € U thus takes values
inside the closed ball

X = {z € R™ | |o| < TIK]}.

By (1.8); and the continuity of the gradients V7;, there exists a strictly positive
&g such that

(2.4) Vri(z) - 2> 8 >0 forallz € X, z € K,

because the sets X, K are compact. As a consequence, for each u € If the maps
t — 7i(u(t)) from [0,T] into R are strictly increasing. Namely,

drilu(t
(2.5) W=vn-uz&.>o.

For a fixed u € U, call I, C [0,T] the set of times ¢ such that u(t) ¢ A4, i.e.
I.={te[0,7]| n(u(®)) ¢ J; for somei=1,--- ,N}.
Because of (2.3) and (2.5), the measure of I,, satisfies

(2.6) meas(l,) < —.

To prove the continuity of P, call P the Picard operator corresponding to the
function f, i.e.

(Pu)(t) = /2 Flu(s))ds.

Clearly, P is continuous, hence for any fixed u € U there exists a § > 0, such
that

(2.7) §|')Bw —Pu|| <e whenever v € U, |lv —u|| < 4.

We now observe that the difference between the Picard operators P and P is
small. Indeed, for every v € I{, (2.6) implies

@8)  [Po=Pul < sup|f(@) - Flo)] - meas(F,) < 2/K] - -

Together, (2.7) and (2.8) yield

(2.9) ||Pv— Pul| < |[Pv = Po|| + ||Pv — Pul| + |[Pu — Pul| < e+ 4|K]¥,
0
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for every v € U with {|v — u|| < §. Since ¢ > 0 in (2.9) was arbitrary, this shows
that the Picard operator u — Pu is continuous, mapping the compact set I/
into itself. By applying the Schauder fixed point theorem we thus obtain the
existence of a solution to the Cauchy problem (1.6).

3. Proof of Theorem 2

For any given £ € R™, the existence of a solution follows from Theorem 1.
The main part of the proof consists in showing that, given a radius R > 0 and
any two solutions

&(t) = f(z(t),  =(0) =
9(t) = F®),  v(0) =yo,

with |zo, |yo] < R, one has the estimate

To,

(3.1)

(3.2) |lz(®) =y < C -lzo -l  t€[0,T],

for some constant C'R depending only on f and R. The uniqueness of solutions
is an obvious consequence of (3.2). The proof is given in four steps.

STEP 1. We first study the case where f, in addition to the assumptions
(1) and (ii) in Theorem 2, is piecewise smooth. More precisely, we assume that
f has the form
(3.3) f(z) = gr(z) if ¢ < 7(z) < T,
for some increasing sequence of times {7, | £ € Z}. Here the functions g, have
uniformly bounded C! norm, say with

(3.4) su{) lgx (2)] < Cy, su}c) |Dypgi(z)| < Cy
T,k x,

for some constants Cp,Cy. Under these additional regularity assumptions, the
uniqueness of solutions of (1.6) is clear. Our aim is to derive the uniform estimate
(3.2) by studying the evolution of infinitesimal tangent vectors.

Consider a one-parameter family of solutions

(3.5) #(t) = f(@°(t)),  =°(0) = a5,
regarded as small perturbations of a reference solution 2°(-) = x(-). Define the

first order tangent vector

(3.6) v(t) = 51_13114. M.

Call t, k € Z, the times where the reference solution z(-) crosses the hypersur-
faces 7(z) = 7. By (1.10), all these crossings are transversal. According to the



ON DISCONTINUOQUS DIFFERENTIAL EQUATIONS 79

standard theory of piecewise smooth differential equations [7, 8], if the limit (3.6)
exists at time ¢ = 0, then the tangent vector v is well defined for all ¢ € [0, T,
t # tg, k € Z. The time evolution of v is governed by the linear equation

(3.7) V(t) = Dagr(z(t)) - v(t)  for t €y, teta[,

together with impulses at the crossing times ¢;. To describe the linear impulse
at time tg, call

i i Vr{z(tr))
V7 (z(te))]

the unit normal vector to the surface v = 7, at the point z(¢;). Moreover, define

(fig. 1)

(3.8) )
o= tiirﬁ f(z(t) = gr(2(tr)), fr= tilf-ﬂ f(z(t) = gr(z(te+1)),
(3.9) Vi = lim+ v(t), Vi = lim v(t).
=t t—-%t;‘_H

’C(x)='rk

Figure 1

With the above notations, an elementary computation shows that, at the
crossing time ¢, the values v(tx+) = vy and v(tx—) = V—; satisfy the linear
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relation

= ~ Vp_1'nm
(3.10) Vi =Vg—1+ (fk = fk—l)M-

k—1 D
Our next goal is to derive a priori bounds on the size of v. In the following,
with the Landau symbol @(1) we denote a quantity whose norm is uniformly
bounded. The bound may depend on T, on the constants Cy, C; in (3.4) and
do > 0 in (2.4), and on the total directional variation of V7, but not on the
particular solution z(-) in (3.1).
Recalling (3.8), from (3.4) we deduce

(3.11) Fe — fr = ge(@(trr1)) = ge(@(te)) = OQ) Ergr — tr)-
Moreover, recalling (3.9), from (3.7) we deduce
(3.12) Ve — Vi = V(tg,) - v(t) = O1) (kg1 — )| Vil

In the following, we use the superscripts V* and Te to denote the components
of a vector which are normal and tangent to the surface 7(z) = 7%, respectively.
More precisely, we set

(3.13) I AR S L

The same notations are used for f;. In addition, for every integer k, we define
L Vi

(3.14) St

2p = vt — fiFwy.

The quantities @y and Zj are defined similarly. By (1.10), the quantities | f;;v i =
fr - ng are uniformly positive. We thus have the estimates

(3.15) lwk| = OQ) - [vil, |2k = O(1) - [val,
Vil < [V [vEe| < | £ fwe] + 2] + | £ wel

(3.16)
=O(1) - (lwe| + |z]).

Bounds on the size of v can thus be obtained from estimates on wy and z.
From (3.13) and (3.10) it follows

o Vi -1
ke fr-np
1 . =~ Vi—1-nDg
= Vi—1 0+ (Jg D = fp—1 D)=
(3.17) o (/s fir i) ==
Vi—1-Dg

= ———— = Wg—1 + O(1) - V-1 | |Og — g1 |-
fr—1-np
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In addition, using (3.11) and (3.12) we deduce
Vi1 Np—1 — Vi—1 - 0j_1

Sre—1mpy
Vi—1"Mp_1 Vi1 g
fr—1 mpq fe—1-mp_q

Together, (3.12), (3.17) and (3.18) yield

Wh—1 — Wg—1 =

(3.18)

+ = O(1)(tk ~ tr—1) [Ve—l-

(3.19) wi = wg—1 + O(1) - {|ng — np_1| + [tx — to—1|}HVE—1]-

Similar estimates can be obtained for the component z;, namely

_ s 7Tt ~
2k — Zh—-1 = [ng - Ekwk] - [Vk!if - fkfllwk—l]'
~T), T 7T T Tk Fli-1
(3.20) = [Vt + (" = fel)we — fifwe] = W57 = fl1 W]
. =T ~T—1 Tr (= fle-1 _ T Yo
= (Vili = ¥I3') + fi* (@1 — we) + (fp27" = fr)Be—1
+ (Ff = F ) (wi ~ e—y) = OQ) g — 01| [Foa,
and

P ~T Ty s s
(3-21) Zp—1 — Zp—1 = (ka_ll - Vkif) + (fgiil - fgﬁll)wk—l

+ F T (Wt — 1) = O(D)|te — trer | [Vi]-
Therefore,
(3.22) 2 = 2Zp—1 + 0(1) A — nk_li + b — tk_1|}|vk_1|.

Introducing the scalar quantity yx = |wi| + |2x|, from (3.19), (3.22) and (3.16)
we deduce

ye < (1+0Q) - {|ne — 1| + [t — te—1|}ya-1.
By induction on k, for any integers p < g we obtain

g

(3.23) yg <exp{C’ Y (Ing — g1 + [t — te—1])}yps
k=p+1

for some constant C'. Recalling the assumption on the directional variation of
VT, we now have

(3.24) 2 [ty — tp-1| < T, Z [ng —ng_;| < const.
% %

From (3.23) and (3.24), since by (3.15)-(3.16) the quantities y; are uniformly
equivalent to the corresponding norms |v(t;)|, we finally obtain the estimate

(3.25) [v(t)| < CR - [v(s)] forevery 0 < s <t < T,

I I — Diiferential...
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valid for some constant CR and any reference trajectory z( - ) taking values inside
the ball B = {z € R™ | |z| < R+ T|K]|}. Observe that CR may depend on R
through the quantity

(3.26) 8o = min{Vr(z) -z | z € K, |z| < R+ T|K]|}.

STEP 2. Relying on the uniform bounds (3.25) on tangent vectors, it is
easy to derive the estimate (3.2) in the piecewise smooth case. Indeed, let the
initial data xo,yo be given. Choose R so that |zo, |yo| < R. We then construct
a one-parameter family of solutions z? : [0, T] = R™, satisfying

8'(t) = f(e*(®), 2°(0)=6yo+ (1 -0z, H€[0,1]
Defining the tangent vectors

f+e oy
vi(t) = ]ir% M’
e

for all ¢ € [0, 7], from (3.25) it follows

v -a0l < [ [Fa'e|e= [ volesc, [ vols

= CRlyO - mﬂl}

(3.27)

proving (3.2). In this piecewise smooth case, the evolution equation in (1.6) thus
generates a uniformly Lipschitz continuous flow. In the following, to denote the
unique solution of the Cauchy problem (1.6), we shall use the semigroup notation

We recall that, if w : [0,T] — R™ is any Lipschitz function, one has the error
estimate

(3.28) |w(t)—S:w(0)| < L- /Ot (hmmf lw(r 4 h) = Spw(7)|

im in - )d’r, t €[0,T],

where L is the Lipschitz constant of the semigroup w. r. t. the initial data. In
particular, if w solves the perturbed equation

(3.29) w(t) = f(w(t)) +e(b),

and satisfies the bounds |w(t)| < R+t K|, then from (3.27) and (3.28) we deduce

t
(3.30) w(t) - Sew(©)] < C, - [0 le(s)|ds ¢ € [0,T].
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STEP 3. The general case will be treated using an approximation procedure.
Fix any radius R arbitrarily large, and define

381 U= {u :[0,T]) = R™ | |u(0)| < R, ﬂ%:—:(‘ﬂ € K for all ¢ > s}.

Lemma 1. Let f,g,7 be as tn Theorem 2, and let R and € > 0 be given.
Then there exists a piecewise smooth function f : R™ — K of the form

(3.32) F@) =Gk(x) if T < 7(z) < Tho,

with the following properties. Each gy is smooth, and its Lipschitz constant
satisfies

(3.33) Lip(gk) < supLip(g(t, -)).
teR
Moreover, the Picard operators determined by f and f' are close, namely

T -
(3.34) sup fo Flu(®) — Fu)|dt <e.

ueU

To construct f, we first apply the theorem of Scorza-Dragoni [11] to the
Carathéodory function g and obtain a closed set J with meas(R \ J) < ¢, such
that the restriction of g to J x R™ is continuous. The complement of J is an open
set, which can be written as a disjoint union of countably many open intervals,
say Jay,by[, ¥ > 1. We then define

Tx(9(t, z)) ift € J,
(3.35) g*(t,x) =< O -7mx(g(by,z))+ if t =6b, + (1 — fa, for
+(1—6) 7x(g(ay,z)) somerv>1, 0<8<1,

where 7 denotes the orthogonal projection on the compact convex set K. By
(3.35), the function g* is continuous in ¢ and Lipschitz continuous in z. More
precisely

(3.36) sup Lip(g*(t, -)) = sup Lip(g(¢, -))-
teR teJ
Moreover, recalling that |K| = max.ex |2|, for any u € U we have
(337) _
/0 lg* (T(u()), u(t)) — g(r(u(?)), u(t))|dt < 2|K|- meas{t | 7(u(t)) ¢ J}
< 2|K|€/60,
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where dy > 0 is the constant in (3.26). We now choose a small §* > 0 and, for
each k € Z, we define 7, = kd* and let g be a mollification of the function
g*(ké*, - ). We then define

g(t, z) = gr(z) if 7, <t < Ty,

and let F be as in (3.32). From (3.36) it thus follows (3.33). If §* is suffi-
ciently small and the mollification kernel is sufficiently close to the identity, this
construction yields

T
(3.38) / lg* (7 (w(t)), u(®)) — g(r(u(?)),u(t)|dt < e for all u € U.
0
Since € > 0 was arbitrary, (3.37) and (3.38) together yield Lemma 1.

STEP 4. We can now conclude the proof of Theorem 2. Let z,y be any
two solutions, as in (3.1). To prove the estimates (3.2), let € > 0 be given,
choose R = max{|zo|, |yo|} and construct a function f according to Lemma 1.
According to STEP 2, the semigroup g generated by the evolution equation
& = f(z) is Lipschitz continuous, more precisely

(3.39) |8we — Sigal S C, - |z —ya|  whenever |a. |, ly.| < B, ¢ € [0,T],

for some constant CR not depending on €. Define the quantities e; and e, as

-~

Al o) = F) = )., o

ey(t) = Fy(®) - Fly(®),

The functions z and y are thus solutions to
a(t) = fle(t)) + ea(t),  2(0) =0,
() = fly®) + ey (), ¥(0) = .
By (3.39) we can now use (3.30) and deduce
ly(®) - z()| < ly(t) — Siwol + |Siwo — Sewol + |Sszo — 2(2)]
(3.41) sc;3£W%@na+4gwo—zd+c;3£7%@n¢

< QCRE + CR|’_1,I0 — x|

for every t € [0,T]. Indeed, by (3.40) and (3.34) it follows

T T
£|%www<a L;%&mm<a

Since € was arbitrary, from (3.41) we deduce (3.2).
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4. A counterexample

In Theorem 2, the assumption that Vr has bounded directional variation is
essential for the uniqueness of the solutions, as shown by the following coun-

terexample.
Consider a function g : R x R? = R? such that
2k+1 1
1,1 if £ e —
R e]zk(k+1}’k]’

(4.1) g(t,z) =g(t) = for any k > 1.

el RE |t tEL,

T k41" 2k(k+1)]°

In the plane with coordinates (1, z3), define the sequences of points Py, Py, Qx
and @}, by setting (fig. 2)

(1 L BhEL =l
B = (E’O)’ Qe = (2k(k+1)’2k(k+1))’

P = li) Q. = 4k +1 2k—-1
kT \k'2k ) P \4k(E+1) dk(k+ 1))

(4.2)

Figure 2

We can now construct a C! function 7 : B2 — R with

(4.3) Vr(z)-(1,1) >0  Vr(z)-(1,-1)>0 for all z € R?
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and such that, for every integer k > 1,

1

-, along the segment joining Py, Py,
; k

TCESI along the segment joining Qg, Q.-

Letting f(z) = g(7(z)), and defining
K=e{(1,1);1-1}={1N A <1},

all of the assumptions in Theorem 2 are satisfied, except the one on the direc-
tional variation of V7. Indeed, at all points P the gradient V7 is parallel to
the vector (1,0). On the other hand, at each point @ this gradient is parallel
to the vector (1, 1/(2k + 1)). Since V7 is continuous and never vanishes, its
total variation in the direction of the cone I' = {(z1,22) | |z2| < 1} cannot be
bounded.

From the definitions (4.1)-(4.4) it follows that, for each k > 1,
(4.5)

o) = { (1,1)  on the quadrilateral with vertices Py, Py, Q% Qk,

(1,—1) on the quadrilateral with vertices Qx, Q%, Py 1> Prt1-

One can easily check that the Cauchy problem on R?

i = f(zx), z(0) = (0,0)

has two distinct solutions (Figure 2)}. Namely, one solution passing through all
the points @, P, k > 1, and a second solution passing through all the points
! PI
koL ke
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UNIQUENESS OF OPTIMAL TRAJECTORIES AND
THE NONEXISTENCE OF SHOCKS
FOR HAMILTON-JACOBI-BELLMAN AND
RICCATI PARTIAL DIFFERENTIAL EQUATIONS

CHRISTOPHER I. BYRNES AND HELENE FRANKOWSKA

1. Introduction
In this paper, we study a Bolza problem arising in optimal control

T
(1) minimize [ L(z(t),u(t)) dt + o(z(T))

to
subject to

{ z' = f(z) + g(z)u(t), u(t)eR™

z(to) = zo,

(2)

where o € [0,7], g : R* = Myuxm, f : R®* = R", L : R* x R™ — R and

w:R" = R

Under appropriate smoothness hypothesis it can be shown that any optimal
trajectory-control pair (Z,%) of the above problem verifies the maximum princi-
ple. There exists an absolutely continuous function P : [tp,T] — R™ such that
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(Z,P) solves the Hamiltonian system

0H
zt = 5(1,1}), z(to) = zo

0
2= Eep), 1) = -veEm),

where H : R® x R" —+ R is defined by

(4) H(z,p) = sup{{p, f(z) + g(x)u) — L(z, u)}.

The above system, in general, does not have a unique solution because the ini-
tial condition for p(-) at #g is not known. For this very reason, the necessary
condition for optimality given by the maximum principle is not sufficient,.

Thanks to Proposition 3.2 below, the above system may be rewritten in a
more familiar form of the Pontryagin principle involving an adjoint equation and
a maximum condition. It may however happen that even for smooth f,g, L the
Hamiltonian H is non differentiable.

As it will be shown below, B(-) may be chosen in such way that —p(to) is
equal to the gradient with respect to x of the value function V : [0,T] x R® - R
associated to the above problem provided (8V /9z) (%o, zo) does exist. We may
consider then the Cauchy problem

=), ato) =0
(5) -
,  OH v
- = 8—$($,P)a p(to) = —a—m(to,ﬂ?o)-

When V H is locally Lipschitz, then there exists at most one solution to the above
problem and in this way the necessary condition becomes sufficient. Certainly,
we do not have the above sufficient conditions, when V (g, - ) is not differentiable
at zg.

In [7] it was proved that in the context of the Mayer problem (i.e. L =0) it
is enough to pick any

e (Limsup ‘3—V(t0, a:)) \ {0}

T—2o T

to obtain the optimal design similar to (5), where Limsup denotes the upper
limit of sets (see for instance [1]).

An alternative geometric approach for quantifying the nonuniqueness in the
initial condition p(to) was studied in [4] and begins with consideration of the
canonical Hamiltonian system

2 = aff (@p),  z(t) =20

Bp
,_ _OH _
p= a_m(xﬁp)a p(t) "_PO‘

(6)
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and the final transversality condition

(7) p(T) = —Vo(z(T)).

If one assumes that the Hamiltonian system (6) is complete, then the flow defined

via
*(«Go)) - (o)

where (z,p)(-) solves (6) for initial conditions (x(0), p(0)), which is always de-
fined for small ¢ is, in fact, defined for all . In particular, if the Hamiltonian H
is C*, k > 1, then

& : R x R —» R*"

is C* and, for each ¢, the map
Py(-) = 2(t, )

is a C* diffeornorphism
$, : R>" — R2",

If o is at least C?, then the subset My
My = {(z,p) | p= —Vip(z)}

defined by the tranversality conditions (7) is a closed, connected, smooth sub-
manifold of dimension n. Therefore, for ¢ € [T — to, T}, the subset

Mi = &7_¢(M7)

is a closed, connected smooth submanifold of R?" consisting of those pairs
(z(t),p(t)) which are initial conditions, for initial time ¢ and for trajectories
(z(-),p(-)) of the system (6), satisfying (7). In particular, to say there is a
unique value of the costate variable for every = and every initial time ¢ is to say

(8) M, = graph (—m(z,t)), z €R", te0,T],

where 7 : R® x [0,7] — R" is a (single-valued) mapping. Thus, it is of particular
interest to find conditions under which M, will always be the graph of a function.
The mapping 7 is, of course, intimately related to the construction of an optimal
control (see Corollary 2.2). Since M; is connected, such a 7 would be necessarily
continuous.

Moreover, to say (8) holds for a C! function 7 defined on R x [to,T] is to
say (see e.g. [4]) that 7 satisfies

or  O8H Or OH
(9) a—gg(ﬁa—ﬂ)—a—xa—p

(:L‘, ”‘"’T)
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together with the side constraint
(10) (a2, T) = Vip(x).

This “Riccati” Partial Differential Equation has, of course, a long history going
back to [8], who introduced this system in the case f(z) = 0, g(z) = Id as
the fundaemental equations of the calculus of variations. It was extended to
optimal control problems in the context of invariant imbedding (see e.g. [20] and
the bibliography contained therein). In this context, it follows from the HJB
equation (11) given below that, when the value function V is C?, the mapping
7= V,V is a solution of (9). Conversely, when M, is always the graph of a C'
function, the value function is C2.

Moreover, the smoothness properties of M; can be used to improve upon
known regularity for value functions. At one extreme, using Sard’s Theorem,
a generalization of the Poincaré Lemma and the fact that M; is a Lagrangian
submanifold, one can also show (see [4]), that (8) holds for a continuous function
m if, and only if, 7 = V,V for the value function V of (1)-(2), which is then
necessarily C1.

On the other hand, whenever H and ¢ are at least C* and the submanifolds
M; are graphs, we can conclude from the variational equation that the value
function is at least C*. In particular, if all data is C* or C* then, under these
conditions, V is C® or C¥. Such higher order regularity results are particularly
important in getting error estimates for the various schemes for obtaining ap-
proximating polynomials to the solutions of nonlinear Hamilton-Jacobi-Bellman
equations (see e.g. [18]).

The second point of view on (8) follows from the Maximum Principle. Indeed
it can be proved that for every po € Limsup,_,,, (0V /0x)(to, ) the solution
(@(-),p(-)) of

OH
3= “5;(93,13), z(to) = o

OH
p= —%(m,p), p(to) = —po

is such that z(-) is optimal and p(-) is the corresponding costate (see [11]
Thus (8) yields, Limsup,,_,, (0V /0z)(to, z) is a singleton and, by [13], V (to, -)
C!. Consequently, also 7(-,t) = V.,V (L, -).

The aims of our work are

).
€

(a) to show the equivalence between differentiability of value function, uni-
queness of optimal solutions to Bolza problem and the absence of shocks
in the method of characteristics for the Hamilton-Jacobi-Bellman equa-
tion

av av
(1) S rH (0-50) =0 V@)=l

(b) to derive a general criterion which gives necessary and sufficient condi-
tions for the absence of shocks for a general class of nonlinear systems
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in terms of the matrix Riccati differential equation

(12) P+ (50 OVP + P (a(0), p(0)
8*H 6’H

+ Py (@(t), p)P + 5oz (a0, p(0) = 0, P(T) = ~¢" (=(T)),

whose solution P(-) may escape to infinity in a finite time § < 7.

Namely, we prove that the optimal solution is unique (or, equivalently, V € C*)
if and only if the characteristic system

0H
T = _(Ii ): "T(T) =i
19) ap p T

~# = S @,p), P(T) = ~Ve(or)

verifies the following property: if (x1,p1), (22,p2) solve the above system for
some final conditions zk., 2 and z1(¢p) = z2(t0), then also z; (T") = z2(T), (and
consequently, 1 = %2, p1 = p2) i.e. that My, is the graph of a single-valued
function.

We next show that if for every extremal pair (z,p) (i.e., a solution to (13)),
the matrix Riccati equation (12) has no nonnegative escape time (i.e. its solution
is well defined on [0, T]), then My, is the graph of a single-valued function.

We also provide some sufficient conditions for the nonexistence of shocks. Ex-
amples of systems satisfying such conditions include many nonlinear mechanical
systems and are given in Section 2.

Finally, we show that even when the value function V is merely Lipschitz,
each optimal trajectory enters immediately into the domain of differentiability
of V, provided the Hamiltonian is strictly convex in the last variable, which may
be helpful to eliminate characteristics of HIB equation which are not related to
the gradient of the value function.

2. Statements of results

Consider the minimization problem
T
(P) minimizef L{z(t), u(t))dt p(x(T))
to
over solution-control pairs (z,u) of control system
{ a'(t) = f(z(t)) + g(z(t))u(t), u € L'(to,T;R™)
z(to) = xo,

where ¢y € [0,T], zop € R™ and the mappings f : R® = R", g : R® = M,xm,
L:R*"xR™ = R, ¢:R" — R are given.
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We associate to these data the Hamiltonian H defined on R™ x R™ by

H(z,p) = sup((p, f(z) + g(z)u) — L(z,u))
u
and observe that if for some {z,p) the element T € R™ is so that

H(z,p) = (p, f(2)) + (p, g(x)1) — L(=,7)
and if L is differentiable with respect to u, then

(15) 9(z)*p = g—i(w,ﬁ)-

If the Hamiltonian H is differentiable, then we say that the Hamiltonian system
(0) = 52 (alt) p(0)

~5 () = S (a(t), p(0)

is complete if for all =g, po € R™ it has the unique solution (z,p) defined on R
and satisfying 2(0) = zo, p(0) = pe.

We denote by (- ;%0, o, ©) the solution to (14) starting at time ¢y from the
initial condition zo and corresponding to the control u(-).

The value function associated to this problem is defined by

T
V(tO) ﬁo) e uGLgI%fu,T) [to L('T'(t; tﬂ? mﬂ,u),u{t))dt =+ lJD(E(T|;t0:u Zo, ’U.)),

when (%, zo) range over [0,T7] x R™.

We now describe a class of nonlinear systems, including a variety of nonlinear
mechanical systems, for which the value function of the Bolza problem is indeed
smooth, and for which there is a unique optimal control expressed via state
feedback.

Example 2.1. Consider a C? nonlinear system

{ ' = f(z) + g(zx)u, z€R", uecRF
y = h{z), y € R™,

which is loseless, i.e., there exists a C? positive definite function W on R” such
that the dissipative equality holds for all measurable controls u( - ):

%
W ((t)) - W(2(0)) = [ (1s(5), ¥(#))ds.

This equality can be interpreted as an equality between the energy spended in
moving from the state z(0) to the state z(t), W(z(t)) — W(z(0)) and the energy
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supplied to the system, which is the integral of the product (u,y). Such systems,
together with a wide range of physical examples, are discussed in detail in [23].
For example, a nonlinear mechanical system with potential energy E(z) and
kinetic energy ||2'||? may be expressed as a loseless system

? o
3.71—-.'1:2,
Bz '
Mz, = —E'(z) + u,
Iy =@,

where 5 = z', y = h(r1,29) = 72, and
W(Lﬂl,ﬂig) = E(?Jl) + ”M.’EQ“z

In general, for a loseless system, an interest is in the class of optimal control
problems defined by the explicit performance measure

i
gl = fo (Uall? + lyl2)dt + W ((T)),

a problem which has an appealing interpretation as a minimum energy problem
for the case of nonlinear mechanial systems.
In general, one can derive an infinitesimal form of the dissipative equality,

LW =0, L W=h",

which is often referred to as the Kalman-Yakubivitch-Popov (KYP) Lemma.
Moreover, from the KYP Lemma, one immediately checks that W is a solution
to the Hamilton-Jacobi-Bellman equation and that, in fact, the following three
assertions hold:

(i) The value function V(t,z) = W(z) is continuously differentiable,

(ii) For every (to,%o) there exists a unique optimal trajectory,

(iti) Forallt € [0, T, the submanifold M; is a graph; in fact M; = gr(—VW).
Finally, since the Lagrangian is strictly convex in u, one sees that the optimal
synthesis is given by the smooth feedback law u = —h(z) (we refer to [21] for a

similar treatment of the infinite horizon problem for the rigid body model of a
robot arm, as well as to [22] for a treatment of the H*-control problem).

In this paper we impose the following assumptions:
(H;) f and g are locally Lipschitz,
(Hy) For every (to,zo) € [0,T]xR™ an optimal solution of (P) does exist and

V :[0,T] x R® — R is locally Lipschitz,
(Hs) L(z, -) is continuous, convex and for some ¢ > 0

V(z,u) € R" x R™, L(z,u) > c||ul®.
Furthermore, for all » > 0, there exists k, > 0 such that
VYu € R™, L(-,u) is ky-Lipschitz on B,.(0),

(Hs) f,9,L(-,u) are differentiable and ¢ € C1,
(Hs) The Hamiltonian H is differentiable, VH(-, -) is locally Lipschitz and
the Hamiltonian system (16) is complete.
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Remarks. (a) Assumption (H,) holds for instance under linear growth con-
ditions on data (see [14], [12]). We provide a sufficient condition for it in Sec-
tion 4.

(b) The completeness assumption in (Hs) is verified for instance if the map-
ping VH(-, -) is locally Lipschitz and has a linear growth:

M, 20, Vz,p € R, |[VH(z,p)|| < Ma(|lz]| + [lpll +1)-

(¢) (Hy) does not imply in general that the Hamiltonian H is differentiable.

Theorem 2.1. Assume that (Hy)-(Hs) hold true. Then the following three
statements are equivalent:
(i) The value function V is continuously differentiable.
(ii) For every (to,zo) € [0,T) x R™ the optimal trajectory of problem (P) is
UNIGUE.
(iii) For the Hamiltonian system

- #(t) = %—gf”’p“”’ (e,
—p/() = Gt p(®), P(T) = ~Vip(ar)

define the set

M; == {(z(t),p(t)) | (z,p) solves (17) on [¢t,T] for some z7 € R"}.

Then My is equal to the graph of a continuous function —m; : R™ — R". Fur-
thermore, if (iii)) holds true, then m () = (8V /0z)(t, -) and a solution (z,p) to
(17) restricted to [to, T| satisfies: x is optimal for problem (P) with zo = z(to)
and p is the corresponding co-state of the Pontryagin mazimum principle. In
particular, p(t) = —(0V /0z)(t, x(t)) for all t € [0,T].

The proof of the above theorem is given in the next section.

Remark. Under all assumptions of Theorem 2.1 suppose that for every z,
L(z, -) is differentiable and (OL/0u)(z, -) is injective. Then, by the maximum
principle, the (equivalent) statements (i)-(iii) are equivalent to

(iv) For every (to,zo) € [0, T]x R™ there exists a unique optimal control %( -)

solving the problem (P). Furthermore, if z denotes the corresponding
optimal trajectory, then -

08 welnT) 50 = (360 ) (se0rFem).
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Equation (18) provides an optimal synthesis in the following sense: First, (18)
gives the following formula

(19)  Y(tz)€[0,T] x R, u(t,z) = —(g—i(m, .)) 4( (@) i =t :c))

for a unique optimal control law. Secondly, this law generates the unique opti-
mal trajectory emanating from each fixed initial condition. We note that (19)
expresses the optimal control law as a function, not necessarilly smooth or con-
tinuous, of the state. Nontheless, existence of an optimal synthesis u(t,z) im-
plies uniqueness of optimal trajectories and hence, according to Theorem 2.1,
smootheness of the value function — regardless of the method actually used to
construct the optimal synthesis.

Corollary 2.2 (Feedback Law). Under all of the assumptions of Theo-
rem 2.1, suppose that an optimal synthesis u(t, z) exists. Then, the value function
is C' and the optimal feedback law v = u(t,z) satisfies the relation

ov oL
*
== — (% —_— =
(20) 9(z)" 5~ (t,2) + 5=(=,u(t,z)) =0
Moreover, if L is C* in (z,u) and strictly convez in u, then the optimal synthesis
is expressible as a feedback low (19).

Our next series of results give sufficient conditions for M; to be the graph of
a C! function. In particular, in the light of Theorem 2.1, it can also be viewed as
either a uniqueness result or as giving sufficient conditions for the value function
to be at least C2.

In general, when the data are smooth, M, is always a smooth manifold and
one can compute the onset of shocks by computing the times for which tangent
spaces of the submanifolds M; acquire a vertical component. Since at the final
time T', the tangent space is always a graph

Ta()(Mr) = graph(—¢"(z(T))
one can propose to propagate the tangent space backward in time, as before, by
a matrix Riccati equation with final condition
P(T) = —¢"(z(T).

Theorem 2.3. Assume that o, H € C? and that (Hs) holds true. Then the

following two statements are equivalent:
(i) Yt € [0,T], M; is the graph of a C' function from an open set D(t)
into R™,
(ii) Y(z,p) solving (17) on [0,T), the matriz Riccali equation

S (cO.p)F + Pt (a(0),(0)

2
(21) +PZ L (0(0), pO)P + %?@:(t),p(t» =

P(T) = —¢"(2(T))

P.'

13 — Differential...
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has a solution on [0,T]. Furthermore, if (Hy) holds true, then in the state-
ment (1), D(t) = R™.

(See [11] for the proof of a more general statement).

Corollary 2.4. Suppose H,p are C?, that (Hs) holds true and that

(1) H is concave in x;
(2) @ is conver.

Then for all t € [0,T] a C* function n(-,t) exists such that
M; = graph(—=(-,1)).

We note that conditions (1), (2) are satisfied by the standard LQ problems
in classical optimal control. Moreover, the above provides a new proof for LC
theory; i.e., linear problems with nonlinear but convex terminal cost.

We next deduce from the variational equation of ODE that for C* (or CV)
data, to say V is C is to say V is C'° (or C%), giving a further amplification of
Theorem 2.1.

Convention 3.1. For the Bolza problem (1)-(2), we assume from now on
that the Hamiltonian (4) is C", with r at least 2 and with locally Lipschitz second
derivatives. Our notation also includes the cases r = co and r = w. We also
assume that the terminal cost, ¢, is C* for | > 2. Setting k = min{l—1,r—1}, we
say that the data of the problem are C*. Finally, we assume that the Hamiltonian
system is complete, so that the flow ® is C* and defined for all ¢ and z.

We are particularly interested in what degree of smoothness the value func-
tion enjoys; e.g. for computational reasons it is useful to know whether optimal
controls will be smooth, or just continuous. One approach to this question lies
in the geometry of the submanifolds M;; e.g. can one represent My, for ¢ € [0, T,
via

(22) My = graph(-n(-,?))

for = a C* function defined on R™ x [0,T]. One consequence of this assumption
follows immediately from the implicit function theorem as in [4]:

Lemma 2.5. If n is a C! function satisfying (22) on R™ x [0,T], then =
is C*.

The proof reposes on showing that the submanifold
N = {(xrpvt) ;p = _W(I1 t)})

which is C! is, in fact, C* since & and Mz are C*. One then applies the implicit
function theorem to the map

P: N~ R
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defined via
P(.’E,p,t) = (z,1).

By Theorem 2.1, if 7 satisfies (22), then the value function V of (1)-(2) satisfies
oV
t) = — (¢, z).
"z, = 5 (t,2)

In particular, as a corollary to Theorem 2.1 and Lemma 2.5, we deduce the
following regularity result.

Theorem 2.6. Assume k > 2. To say the value function V is C? on R™ x
[to,T] is to say that the value function is C* on R™ x [to, T). In particular, for
C® (or for analytic) data, the value function is C* (or analytic), whenever it
is C2.

Example 2.2 (Vector Burger Equation). Consider again the control system

2’ =u, z,u € R?

and the cost functional
1 T
Teou) =3 [t de+o(a(m))
0

for some arbitrary but fixed C* function ¢. An analysis of this problem boils
down to the existence of solutions to the Riccati PDE; i.e., to the vector Burgers’
equation

o 0
=™ . T)=Ve(:).

According to Theorem 2.4 it will have a global solution if  is convex, in harmony
with the classical analysis of Burgers’ equation.

Furthermore, an analysis of the Riccati PDE in this example shows that
global existence and uniqueness for optimal controls is equivalent to convexity
of .

Remark. For the above example, convexity of the terminal cost can also
be shown to be necessary by an analysis of the ordinary Riccati differential
equation. However, even for linear problems with quadratic integrands, positive
semidefiniteness of " is not necessary for existence and uniqueness of an optimal
control. In this sense, Theorem 2.4 is as sharp for nonlinear systems and the
classical theory as it is for linear systems, as our next example shows.

Example. Consider the problem

T
il %fo (@) + u(t)?) dt — %:cz(T)
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subject to the constraint
at=m, z(0) = zp.

This problem has a concave terminal cost, but the Riccati ordinary differential
equation

p.l =1- p2
always has a solution when integrated backward in time from the final condition
P(T) = 1, which in turn is equivalent to the nonexistence of shocks for the

corresponding state-costate system. According to Theorem 2.1, the optimal
control, which is in fact given by

us(t) = p(t) = —‘;—Z(t,x(ﬂ)

is unique.

‘We end this section by a result stating that even when V' is merely Lipschitz,
the optimal trajectories avoid points of nondifferentiability of V.

Theorem 2.7. Assume (Hy)-(Hs) and that H(z, -) is strictly convexr. Let
(%,7) be a trajectory-control pair of the system (14). If T is an optimal solution
to the Bolza problem, then for all t €ty,T], V is differentiable at (¢,7(t)).

3. Proofs of results from Section 2

Our arguments rely heavily on the following extension of the Pontryagin
maximum principle.

Theorem 3.1. Assume that (H;)-(Hs) hold true and let (Z,%T) be an opti-
mal solution-control pair of (P). Then T € C* and there ezists a continuously
differentiable p : [to, T) — R™ such that (Z,p) solves the Hamiltonian system

o ‘Z—i(m(ﬂ,p(tn, 2] =,

() = S (2(0),9(0), #(T) = ~Vp(a(T)),

p(tﬂ) S —6+V$(t0, ﬂ’,‘.(}),

(23)

where 8, Vz(to, o) denotes the superdifferential of V(to, -) at zo (see [1], [15]).
Furthermore,

vt €lto, T], (H(Z(t),p(t)), —p(t)) € 04V (¢, %(2)).

To prove the above, we need the following result.
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Proposition 3.2. Assume that H is differentiable. Then

%—f(m,p) = {f@) + 9@ | {0, (=) + 9oy - L(z,v) = H(z,p)}
and
E ) = {1+ (@ - Gh(@) | 0.@) + glolu)

- L0 = Hp)}
See for instance [16] for the proof.
Proof. Fix v € R™ and let Ay — 04, v — v be such that

r oy
D, Va(to,zo)(v) := limsup V (to, Zo + hv') — V (o, 7o)

h—0+,v'—v h
— lim V(to, zo + hivr) — V(tﬂamﬂ)n
k—ro0 hk

Consider the solution zz( -} to the system

{ '(t) = f(2(8) + g(=(8))u(?),

:L‘(tg) = zg + hpvg

and define ¢ : [0,7] x R™ = R"™ by ¥(¢,z) = f(z) + g(z)@(t). Then the sequence
(zx — T)/hy converge to the solution w(-) of the linear system

(24) w'(t) = g—:f(t,f(t))w, w(to) = v.

Let X(-) denote the fundamental solution of

x(t) = SLFNXEW,  X(to) =1d.

Then w(t) = X (t)v for all ¢ € [to, T]. Thus

D,V to, 0)(v)
« tm sup Jio T (0, T0) = LE@E), TE))dkt + (e (T)) ~ p(E(T))

k—o0 h'k

iy
= ( [ xr G @, s+ X@)IeE D)0,
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Let p(-) denote the solution of the adjoint system
{ 7 = 52,30)* ~ 22 (a1t),7(2)
p(T) = —Vo(=(T)).
Consequently, for all v € R”
D,V (to, zo)(v) < {—p(to),v)

and so p(tp) € —84 Vi (to, zo). By the maximum principle for a.e. t € [to, T,

(p(t), f(®(t)) + 9(z(t))u(®)) — L(Z(t), u(t)) = H(Z(t), p(t)).
Since H is differentiable we deduce from Proposition 3.2 that (T, p) solves the

Hamiltonian system (23).
To prove the last claim fix 7 € ]¢p, T]. By Proposition 3.2

(p(7),7' (7)) - L(&(7),u(r)) = H(=(7),p(r)) and F'(r) =o(r, (7).
Fix v € R*, a € R and denote by z; the solution to
% =t &), z(r) =Z(7) + hv.

By the variational equation, (z; —T)/h converge uniformly when h — 0+ to the
solution w of the linear system (24), with ¢, replaced by 7 and therefore

V(r + ha, (1) + h(aZ'(1) + v))) — V(1,Z(1))

lim sup 3
h—0+
I — V(T + ho, Z(T + ha) + hw(r + he)) — V(r, T(1))
h—0+4+ h
1 T
<timoup 1 (¢en) + [ Lan(s), (s - (D)
h—04 T+ha

_ f TL(?E(s),E(s))ds)

T
(@@, wr) + [ (GEE6T), 006 ) ds - aL(atr), u(r)
= (~p(r), ) ~ aL(E(7), 7(r)) = aH(E(r),p(r)) + (~p(r), 4 (7) + 1)

Since v, a are arbitrary the last statement follows.
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Lemma 3.3. Assume (H;)-(Hs) and that (P) has a unique optimal trajec-
tory z(-). Then the set

02V (to,an) = _Limsup { ¥ .0}

z;—+x0,ti 1o Oz

is a singleton. Consequently, V(to, -) is differentiable at xg.
Proof. Let Py, P, € 02V (to, o) and (&,z) = (to,z0), ¢ = 1,2 be such that

Jm 'a_m(tkaxk) = P
Consider an optimal solution-control pairs (z%,u%) of (P) with (to,zo) replaced
by (ti,z%). From Theorem 3.1 it follows that there exist absolutely continuous
functions pi such that, for all k and ¢ = 1,2, (2%, pt) solves the following problem

() = %—Ij(m(t),p(m, o(th) = i

P = S (a0),p0)), PT) = ~Viple (D), plth) = ~ I (th, 1),

We extend (z},p}) on the time interval [0,t{] as the solution to the Hamiltonian
system

2(8) = %g-(m(t),p(t)), 2(th) = o

~#) = (e, p(0), p(6) =rh(6))

By (Hg), (2i,pL) converge uniformly to the unique solution (2%, p*) of the Hamil-
tonian system

2'(t) = %‘g(m(t),p(tn, #{ts) = 2o

O0H _
) = Z(e(0).00)), plto) =7,
fori=1,2.
We claim that 2! is optimal. Indeed,

5 . . T . a
V() = oz (T) + f Lz (s), ul(s))ds.

t
Set ui(s) = 0 for all s € [0,#[. Using (Hs) we deduce that the sequence u
is bounded in L?(0,T). Taking a subsequence and keeping the same notations,
we may assume that for ¢ = 1,2, {ul} converge weakly in L%(0,T; R™) to some
ut € L?(0,T;R™). On the other hand, by (Hj;)

T . . P T 4 5 i
limint f (24 (8), wh.(8)dt + (4 (T)) > [ L), Wi (8))dt + 9(#(T)).

k—ro0 £ to
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Since V is locally Lipschitz, (2%, u?) is optimal for (P). Thus, from the uniqueness
of optimal trajectory we deduce that z' = 2? = z. Consequently, p* solves the
Cauchy problem

P =~ (a(0),p)),  BT) = ~Vp(o(T)).

So, by uniqueness, p'(to) = p?(fo). The last statement of our lemma follows
from [13] p. 33.

Proof of Theorem 2.1. Assume first that (i) holds true. Fix 0 < tp < T,
zo € R™ and let T be an optimal solution to problem (P). Then, by Theorem 3.1
there exists p(-) such that (Z,p) solves the system

2'(t) = %(w(t),p(t», 2 =i

~(0) = 2 (@(t) p(0), iplto) = ~ (10, 0).

Since the solution to such system is unique, we deduce (ii).
Conversely, assume that (ii) holds true. Fix (tp,z0) € [0,T] x R™. Then, by
Lemma 3.3 8V (to, xo) is a singleton. We claim that the set

8V (to, o) ;== Limsup {VV(t,z)}

(t,x)—(to,zo)

is a singleton. Indeed let (p:,pz) € 8*V(to,%o) and the sequence (t;,z;) —
(to,=o) be such that VV (t;,z;) = (py,pz). Then {p,} = 95V (to,z0) and it is
classical that V satisfies at (¢;, ;) the Hamilton-Jacobi-Bellman equation

F1% ov
_'B'E“(ti: ) -+ H(-’Eia —a(ti,xi)) =0.

Taking the limit we get
pt = H(zo, —pa).

So p; is uniquely defined. From [13], p. 33, V is differentiable at (to, o). Since
(to,xo) € [0,T] x R™ is arbitrary and 8*V (o, xo) is singleton, we deduce that V'
is continuously differentiable on [0,T] x R".

Assume next that (iii) holds true. Fix ¢t € [0,7] and let z € R™ be such that
V(t, -) is differentiable at z. By Theorem 3.1,

(25) (m %(t,m)) € Graph(m).

Fix (to, o) € [0,T] X R", p; € 95V (to, xo) and let (t;, ;) = (to,Zo) be such that

v
%(ti) :’J‘I‘) — Pz
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Let (z%,p%) denote the solution to

2'(t) = ?ff—(m(t),p(t)), o) =
(1) = ‘Zf (@(@),p(0), p(t) = =2 (t:, ).

From Theorem 3.1 we know that p;(T) = —V(2;(T)). By (Hs), (2%, p') converge
to the unique solution (z,p) of the Hamiltonian system

2(t) = ?%(xu),p(t)), o=y,

(0 = 92 (a(t),p(t), lte) = -

and p(T) = —V(2(T)). We proved that
(ﬁo,a;V(t[),.’Eg)) C Graph(:frtu).

Thus 8*V (to, o) is a singleton. In the same way as before we deduce that V' is
continuously differentiable.

It remains to show that (i) yields (iii). For this aim fix ¢ € [0,T] and define
the continuous mapping ¥ : R™ — R” in the following way:

For all zp € R™ consider the solution (z,p) to the system

2(t) = %—fm(t),p(t)), 2(to) = o,

O0H av
—p'(t) = B - (z(),p(t), plto) = —E(to,mo)
and set ¥(zp) = z(T"). By Theorem 3.1 we know that p(T") = —V(z(T)). Thus
(z(T),p(T)) € Graph(—V¢). In particular this yields that ¥ is injective. By
the Invariance of Domain Theorem ¥(R") is open. Thus also the set

(26)

{(¥(z0), ~V(¥(z0))) | zo € R"} is open in Graph(—Vy).

It is easy to check that the above set is also closed in Graph(—V). So it coin-
cides with Graph(—V). Hence, by uniqueness of solution to the Hamiltonian
system (17), Graph(m,) = Graph((8V /0z)(to, -)). The proof is complete.

Proof of Theorem 2.7. By Theorem 3.1 for all 7 € ]to, T, 04+ V(r,E(7)) £ 0
We claim that

V(pe,po) € 04V (1, E(7)),  —pi+ H(Z(7), —pz) = 0.

Indeed let w € U, (pe,pz) € 8.;.V(T,:L‘(T)) Consider the solution y(-) to the
system
y' =fly) +9(u,  y(r) =%(7).

14 — Differential...
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By the dynamic programming principle

T+ hylr+h) -V(r,zT REh
Oﬁliﬂsotip{v( i +h)) A m(T))+%fT L(y(S),U)dS]

< pi + (Pe, F(Z(7)) + 9(Z(7))u) + L(ZT(7), u).
Because u € U is arbitrary, —p; + H(Z(7), —p:) < 0. On the other hand

1/_ _ T - _ . _ _
H(I(T—h) —5(r), / hL(m(s),u(s))ds) S (=2 (), L(E(7), 5(r)),

when h — 0+. Thus

5 V(r —h,Z(r — h)) = V(7,%(7)) = [[_, L(T(s),U(s))ds
= lim sup E
h—0+

< =pi + (=po, T (7)) — L(E(7),8(r)) < —pt + H(Z(1), —pa),

which proves our claim.

Since H(z, -) is strictly convex, then it follows from the above that for all
t > to, 0+V(¢,Z(t)) is a singleton. Theorem 3.1 implies that for all 7 €]to,T],
the optimal trajectory to (P) with tp, #¢ replaced by 7, F(7) is unique. Hence,
by Lemma 3.3, for all T €&, T, 35V (1,%(7)) is a singleton. Exactly as in the
proof of Theorem 2.1 we deduce that V(-, -) is differentiable at (v, (7).

4. Appendix: Lipschitz continuity of the value function

We assume:
(H1) f and g are locally Lipschitz and either

M >0, Vz e R, ||f(z)|| < M([|z]| + 1), [lg(z)l] < M(llz|| +1). ~
or that for some C >0
Y(z,u) € R® x R™, L(z,u) > c||=||?

and the system

is complete,
(Hz2) lminf),)-e w(z) = +oo,
(H3) L(z, -) is continuous, convex and for some ¢ > 0

Y(z,u) € R® x R™, Lfz,u) > c|lul|*
Furthermore, for all » > 0, there exists k, > 0 such that
Vu € R™, L(-,u) is k.-Lipschitz on B,(0),

(H4) f.g,L(-,u) are differentiable and ¢ € C!,
(Hs) The Hamiltonian H is differentiable, its gradient VH(-, -) is locally
Lipschitz and the Hamiltonian system (16) is complete.
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Proposition 4.1. If (H1)-(Hs) hold true and ¢ is lower semicontinuous,
then for every (to,zo) € [0,T] x R™ the problem (P) has an optimal solution.

Proof. By (H1), (Hs) for every (to,zo) € [0,T] x R"™ we have V (to, %) < co.
Consider solution-control pairs (zy,ux) to (14) where uy € L!(to,T;R™) such
that

T
[t L{wx(6), ui (£))dt + o(@p(T))

converge to infimum in (P). Then, by (#;), (H3) the sequences {xx(T")}1>1 and,
therefore, {||uk||z2}k>1 are bounded. Thus also {||ug||p1}x>1 is bounded.

Hence, by (#1) and Gronwall’s lemma, {||zg||cc}s>1 is bounded. Since
xy is the solution to (14) corresponding to uy, we deduce that the sequence
{z}.}x>1 is bounded in L?(ty,T;R"). Taking a subsequence and keeping the
same notations, we may assume that ug converge weakly in L?(to, T;R™) to
some u € L%(¢p, T;R™) and that z converge weakly in L*(to, T;R™) to some
y € L*(to, T;R™) . Define the absolutely continuous function z(-) by

t
Vt € [to, T, o(t) = 20 + f y(s)ds.

to
Then z'(t) = y(t) almost everywhere in [tp, T]. Furthermore, using that for all
te [t‘): T]:

T (t) = 20 + f 7, (s)ds

to
and that z}, converge to y weakly in L?(to, T; R") we deduce that
(27) Vt € [to, T, klim zk(t) = z(¢).
—00

Fix any tg < #; <t3 <T. From the Hélder inequality,
ta
les(ea) —a(e)ll < [ loi(@llde < sup_[I£(@r(®lita — 1)
iy tuStST
+ sup |lg(ze(@) % [luell2vE2 — t1.
to<t<T

This implies that {zr}>1 is a family of equicontinuous functions and therefore
x, converge uniformly to z. Using that for all ¢ € [to, T,
¢

zx(t) = 2o+ [ [f(zx(s)) + 9(zr(s))ur(s)]ds

to
and taking the limit, we finally obtain that for all ¢ € [to, T1,

t
) =yt [ (x(s)) + g(x(s))u(s)]ds.

Thus z(-) is a solution to (14). On the other hand, by (H3)

T T
limiﬂfft L(xk(t):“k(t))dt+(P(97k(T))E/t L(z(t), u(t))dt + (2(T)).

k—o0

Consequently (z,w) is an optimal solution-control pair.
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Proposition 4.2. If (H1)-(Hs) hold true, then V is locally Lipschitz on
[0,7] x R".

Proof. Fix (to,zo) € [0,T] x R™ and let (2,%) be an optimal solution to (P).
By Theorem 3.1, z is Lipschitz. We claim that for every € > 0 there exists
M > 0 such that for all (t;,21) € [0,7] x R™ with (t; — t9) + ||zo — 21]| < &,
every optimal solution-control pair (21, u;) of problem (P) with (tg,zq) replaced
by (t1,21), satisfies |ju1||zz < M.

Indeed fix € > 0, (¢1,71), (21,u1) as above.

CASE 1. t; > tg. Denote by x4 the solution to

(28) { i(ii)) :: J; (f(t)) + g(z(t))a(t)

Then for some ! > 0 depending only on &

sup |lz2(t) = z(t)|| < Illz1 — z(ta)ll-
tefts,T]

Hence ||z2]|co is bounded by a constant depending only on ¢ and therefore

T T
(21 (T)) '5‘] L(z1(t),u1(t))dt < p(z2(T)) +/ L(z2(t),u(t))dt < M(e)

11 L1

for some M(e) > 0 independent of (¢1,z1). Hence, by assumptions (H2), (H3)
also ||z1(T)|| is bounded by a constant depending only on M(g) and so does
llo(z1 (T))||. Consequently, by (Hs), |Jui]|2: < M(e) for some M (e) independent
of (tl, .’L‘l).

CASE 2. t; < tp. We extend % on [t1, o] by setting T(¢) = 0 for all ¢ € [t;,t0].
Denote by x5 the solution to (28). Then

P i
@(Zi(T))+f L(z1(2), u1(2))dt < p(z2(T)) +/ L(z2(t), u(t))dt.

t1 t1

Reasoning exactly as in Step 1, we end the proof of our claim. The above claim,
(H1) and Gronwall’s inequality imply that for some M () > 0 depending only
on €, supser, 71 121 (£) 1| < Mi(e).

Fix next (t1,21), (t2,22) in [0, T] x R™ such that ||(¢;,2:) — (o, Z0)|| < e&. It is
not restrictive to assume that V (¢, z1) < V{t2,22). Let (T;,%;) be an optimal
solution-control pair of (P) with (ty, o) replaced by (t;, ;).

By Theorem 3.1 there exists p; € C*(¢;,T; R™) such that (Z;,p;) solves the

system -
z'(t) = Eg(w(t),p(t)), z(t) =m

~p(t) = S @(t),p(0), p(T) = ~Vp(@ (D).
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From (Hs) we deduce that p; is bounded in C'(t;, T; R™) by a constant depending

only on |71 (T)|]- Thus ||p1]l is bounded by a constant depending only on e.

But this yields that Z;(-) is Lipschitz with the constant ! depending only on e.
We first assume that ¢5 > #;. Denote by z3 the solution to

{ a'(t) = f(z() + g(x(t))u (¢)

(29) :I:(fg) = Xg.

Then for some I; depending only fti; [T (¢)||dt we have

sup [lz3(t) — Z1(t)l| < hillze — Za(t2)]l.
tE(te,T]

Consequently,

sup |lz3(t) — Z1(t)|| < la(llze — 21| + It — ).
tefte,T

Thus, for some L(g) > 0,l(e) >0 and k>0

T
V(t2,22) < 0(s(T)) + f L(zs(t), () dt

3]

T
<o(E(T)) + f L(E (), m (t))dt

T
+ L(e)l2a(T) — E1(T) || + & [ llea(2) — 7 (6) | de
= V(t]_, .'1:1) + I(E)(H.”L'z - .’L‘}” + tp — tl)

and therefore, 0 < V(ta,x2) — V(t1,21) <I(e)(||lz2 — z1|| + t2 — t1).

It remains to consider the case ty < ¢;. We extend T on [t2,%1] by setting
@1 (t) = 0 for all ¢ € [t2,t1]. Denote by z3 the solution to (29). Then ||z3||c is
bounded by a constant depending only on £ and

T
V (t2,72) < ples(T)) + [ L{w3(t), m (6))dt

t1
<V (tr,m1) + olos(T)) — 9@ (T)) + f L(z3(2), 0)dt

T "
N ] (w3 (), 1 (8)) — L(@: (1), T (1)) dt.

We next observe that
llza(t1) — @2|| < Li(ty —t2)

for some L; depending only on £ and by the Gronwall inequality for some {; > 0,
depending only on |[|T1]|z,,

sup ||lz3(t) — Z1(£)l] < loflzs(ts) — zl.
tet,T)
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Consequently for some M; > 0 depending only on £

Vta,x2) < V{t1,21) + Mi([Jzg — zy]] + t1 — £2).

So we finally conclude that also in this case
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0 < V(ta,x2) = V(t1,21) £ Ma(||z2 — 21| + |t1 — ta]).
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ON SOME SECOND-ORDER NECESSARY CONDITIONS
FOR DIFFERENTIAL INCLUSION PROBLEMS

AURELIAN CERNEA

1. Introduction
In this paper we study the following problem
minimize g(z (7))
over the solutions of the differential inclusion
z' € F(t,z) a.e. ([0,T)), =(0) € Xo, z(T) € X;.

First-order necessary optimality conditions for this problem are well known ([2],
(31, [4], [5], [7], [8], [9], [10], etc.). An approach concerning second-order necessary
optimality conditions has been proposed by Zheng ([11]) by reducing the problem
to a finite-dimensional minimization problem and applying known optimality
conditions ([1]). An important tool here is a study of the Clarke normal cone to
the reachable set using proximal analysis.

The aim of the present paper is to obtain the same result, but under an-
other constraint qualification concerning the optimal solution. The alternative
constraint qualification proposed allows to improve the hypothesis concerning
the multifunction F(-, -). In our approach no convexity of F(-, -) is required,
which is a basic hypothesis in [11]. On the other hand our proof is easier than
the one in [11], which is done first in the case of bounded differential inclusions

1991 Mathematics Subject Classification. 49K24.
Key words and phrases. Differential inclusion, second-order necessary condition, derivative
of a set-valued map, Clarke’s tangent cone.
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and then, using a reduction method ([9]), for bounded differential inclusions. We
directly obtain the result for unbounded differential inclusions.

Our constraint qualification is in terms of the adjoint of the variational in-
clusion associated to our problem

w'(t) € Cory F (¢, - )(2(8), w(t)),
where C 4 F(t, - )(z(t), -) is the Clarke set-valued derivative of F(t, -) at point
(2(t),2'(t)), instead of the hamiltonian inclusion

(-P’,ﬂ?l) € JH(t,LL‘,p), H(t: a:,p) = sup (pa 8)
eeF(i,x)

used in [11]. The price we pay in our approach is the assumption that the Clarke
set-valued derivative of F(¢, -) at (z(¢),2'(¢)) is Lipschitz.

It is well known that no satisfactory relationships between the two inclusion
are known, but in particular cases it is more convenient to use the variational
inclusion than the hamiltonian one ([7]). In general, even for smooth control
systems, H is merely Lipschitz. Hence we are led to differentiate H in one
generalized way or another; it isn’t clear how we can solve the nonsmooth hamil-
tonian inclusion. At the same time in examples ([7]), the hamiltonian necessary
conditions are less powerfull than that concerning the adjoint variational inclu-
sion.

On the other hand it is known the open question raised by Clarke ([4])
concerning the validity of the hamiltonian first-order necessary conditions for
problems involving nonconvex differential inclusions.

Moreover, our constraint qualification it is closely related to the ”surjectivity
conditions” of Frankowska ([5]), under which are obtained first-order (normal)
necessary conditions for optimality.

The paper is organized as follows: in Section 2 we recall some preliminary
results to be used in the next section and in Section 3 we prove our main result.

2. Preliminary results

Let X C R" and z € cl(X) (the closure of X).

Definition 2.1.
(a) the quasitangent cone to X at x is defined by

Q:X ={veR"|Vsp 20+, Iy 2 v: T+ 5mZm € X},

(b) the second-order quasitangent set to X at z relative to v € Q. X is
defined by

Q%m)) = {w € R™ | Vs = 04, Fwpm = w: T+ 80 + 82w, € X},
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(¢} Clarke’s tangent cone to X at z is defined by

G.X = {v € R™ |Y(Zm,8m) = (2,0+), Tm € X, Jym € X : g v}.

Sm

For the basic properties of these sets we refer to [1].
We recall that two cones C,Cy C R™ are said to be separable if there exists
g € R™\{0} such that

(g,v) <0< (g,w) YweCy, weCs.
We denote by C't the positive dual cone of C C R*
Ct={geR"|{g,v) >0, YVveC}
The negative dual cone of C C R™ is C~ = —-C*.

For a mapping g(-) : X C R® — R which is not differentiable, the classical
(Fréchet) derivative is replaced by some generalized directional derivatives. We
use the following notations

oy e g(@+8y) — g(x)
Drolzv) =, Bmit, 9 :

2 e glztoy AL
Dig(z,y,z) (5 DD 0] o

When g( -) is of class C? one has

1
Dig(z,y) =¢'(2)Ty,  Dig(z,y,2) =g'(@)Tz+ §yTg”(w)y-

Theorem 2.2 ([11]). Let g : R™ — R be Lipschitzean in some open set
containing z and let Sy, Sa be nonempty sets of R™ containing z. If z solves the
following minimization problem

minimize g(x) over all z € S1 N S
and also satisfies the constraint qualification
(C:81) N (C:S2)" = {0},
then we have the first-order necessary condition
Dig(z,v) >0 Yv e Q.5 NQ,Ss.

Furthermore, if equality holds for some vy, then we have the second-order neces-
sary condition

DTQ(ZJUU:?’U) > 0 Yw € Q?Z,‘HQ)S]- n Q%z,vo)sz‘
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Corresponding to each type of tangent cone, say 7, X, one may introduce a
set-valued directional derivative of a multifunction G(-) : X C R" — P(R™) (in
particular of a single-valued mapping) at a point (z,y) € graph(G) as follows

7yG(z,v) = {w € R" | (v,w) € 7(4,4) graph(G)}, v E T X.

Let A : R® — P(R") be a set-valued map. A is called closed (respectively,
convez) process if graph(A(-)) is a closed (respectively, convex) cone.

The adjoint process A* : R™ — P(R"™) of the closed convex process A is
defined by

A*(p) ={g € R" | (g,v) < {p,v") ¥ (v,v) € graph A(-)}

If G(-) : R* — P(R™) is a set-valued map, I = [0,T] and z(-) € AC(I,R")
is an absolutely continuous map that satisfies 2'(¢) € G(z(t)) a.e. z(I) then the
directional derivatives Q.:(;)G(2(t); ) is closed process and C:(4)G(2(t); -) is
closed convex process.

The second-order quasitangent derivative of G' at (z,u) relative to (y,v) €
Q(z,u) (graph(G(-)) is a set-valued map QF, ,,G(z,y, -) defined similary by ([1])

graph Q%ujv)G(:c,y; )= Q%(m'u)(y’v))(graph G(-))-
In what follows, we consider the following problem
(2.1) minimize{g(z(T)) | z'(t) € F(¢,z(t)) a.e. (I), z(0) € Xo, z(T) € X1},

where Xg, X3, C R™ are given closed subsets, g(-) : R" — R is a given locally-
Lipschitz map and F(-, ) is a set-valued map from I x R™ into R".

Let z(-) € AC(I, R™) be a solution of (2.1). We assume that F'( -, -} satisfies
the following hypothesis

Hypothesis 2.3,
(i) V(t,z) € I x R™ F(t,z) is closed and nonempty.
(i) Vz € R™ F(-,z) is a measurable set-valued map.
(iii) 3eo > 0, L(-) € L*(I,R) such that for almost t € I, F(t, -) is L(t)-
Lipschitz on z(t) + 0 B.

We shall denote by Sg (T, te, Xo) the set of all absolutely continuous solutions
of the differential inclusion

z' € F(t,z)  ae. ([to,7]) z(to) € Xo
and we shall use the following notation for its reachable set

Rp(7,t0, Xo) = {z(7) | 2(+) € Sr(r,t0, Xo)}.
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A first-order approximation of the reachable set Rp(T,0, X,) at z(T) has been
studied in [7].

Theorem 2.4 ([7]). Assume Hypothesis 2.3 and let RS (T') be the reachable
set of the differential inclusion:

(2.2) v'(t) € Quy(F(L, ) (2(@);v(®)  ae (I), v(0) € Qo) Xo.
Then we have RY(T) C Q.(r)Rr (T, 0, X).

A second-order approximation of the reachable set Rp(T,0, Xo) at z(T) rel-
ative to y(T) € R? (T') has been disscused in [11].

Hypothesis 2.5. Hypothesis 2.3 is satisfied and the integrable function L(-)
in Hypothesis 2.3 can be chosen such that: for every v(-) € AC(I, R") satisfying

(v(t),u'(t)) € Q(z(t),z’(t)) (gra.phF(t, ))
there exists a constant ag > 0 such that

d(z'(t) + av'(t), F(3,2(t) + av(t)) <a®L(t) VO0<a<ag.

Theorem 2.6 ([11]). Assume Hypothesis 2.5, let v(-) satisfy (2.2) and let
Rg’) (T) be the reachable set of the differential inclusion
w'(t) € Qg anFt:2(#), 7@ w®)  ae (1) w(0) € Qfr gz Xo-

Then we have RS(T) C Q?Z(T)ﬁ(T})RF(T, 0, Xo).

3. The main results

Let Q(z) = {p(T) | (-p',2") € 6H(t,z,p), p(0) € LN, )Xo}, where H(t,z,p) =
max{(p,e) | v € F(t,z)} is the Hamiltonian associated with the multifunction
F, 0H(t,z,p) is the Clarke subgradient set of H(t, -, -) with respect to (z,p)
and LN, X is the limiting proximal normal cone to X at = (cf. [9]).

When Hypothesis 2.5 is satisfied, F' has convex images and is integrably sub-
Lipschitz in large at every point (¢, z()) in graph(z(-)) (see [9], [11]) in [11] the
following result is proved.

Theorem 3.1 ([11]). Let z(-) be a solution to (2.1) and satisfy the constraint
qualification

(3.1) @Q(z) N (CymyX1)* = {0}
Then we have the first-order necessary condition

Dyg(2(T),y(T)) 20 Vy(T) € RE(T) N Q () X1
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Furthermore, if equality holds for some §(T') then we have the second-order nec-
essary condition

Dig(2(T),§(T),w(T)) >0,  Yw(T) € RF(T) N Q% (xy g(ry X1-

In what follows we obtain the same result, but under another constraint
qualification. We need first another first-order approximation of the reachable
set Rp(T,0, Xo), similar to the one in Theorem 2.4, but obtained in terms of the
variational inclusion defined by the Clarke directional derivative of the set-valued
map.

The next result is most probably known, but in the absence of references we
give here the proof.

Theorem 3.2. Assume Hypothesis 2.3, let Co C Q.(0)Xo be a closed convex
cone and let RY (T) be the reachable set of the differential inclusion

(3.2) w'(t) € Coy F(t, - )(z(0),w(®))  ae.(I) w(0) € Co.

Then we have RY (T) C CyryRr(T,0, Xo).

Proof. Let w € RE(T), sx = 0+, zx = 2(T), zx € Rr(T,0,Xs). It follows
that zp, = 2z(T) with 2x(-) € Sp(T,0,Xo).
Using the Lipschitzianity of F'(¢, -) one has

(26(8) — 2(8)] < [54(T) — 2(T)| + { [ 2@as(e) - 2(0ids

According to the Bellman-Gronwall inequality we obtain

'y
[L@@)
0

and hence 2;(-) = z(+) in C(I,R™).

Since |z}, (t) — 2'(t)| < L(t)|zx(t) — 2(t)], a.e. (I) we deduce that z;(t) — 2/(f)
a.e. (I).

On the other hand w € RY(T); so w = w(T) with w(-) solution to (3.2).
We apply Theorem 8.4.1 in [1], page 322 (see also Lemma 2.9 in [6]) and we find
that there exists vk (-) € L*(I, R™) such that

|24 (6) — 2] < |26(T) — 2(T)| exp (

w(-) = w'()  in LY(I,R™),
2, (1) + skue(t) € F(t, 2zx(f) + spw(t)).
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We define yi(t) = 2 (t) + 51 fg vi(s)ds and note that we have
d(yp (), F(t,yx(2))) = d(z; () + skve(2), F (2, 26 (2) + 3.‘.—.[) 'Uk(s)ds)
< d(F(t, 2(t) + spw(t)), F(t, 25 (t) + s /t Vg (s)ds)
0

< L(t)sy i

sit) — fo (s}

Therefore, by the Lebesque dominated convergence theorem, one has

1 /7
lim = [ (o), P& ue(0)de = .
b 0
By Filippov’s theorem (e.g. [6]) there exists z4(-) € AC(I, R") solution to ' €
F(t,z) with z5(0) = 2,(0) and

_ T T ;
M < (exp fo L(s)ds)% fo d(y'k(t), F(t,y(2))dt — 0

as k = oo and thus ((zx(T) — 2x(T))/sk) — w(T) and the proof is complete.

Remark 3.3. A related result is stated without proof in [6], namely any
solution of (3.2) with 2z(¢) = 2o Vt € I is contained in C,,S# (T, 0, 2o)-
We are now able to prove our main result.

Theorem 3.4. Let Xy, X1 C R™ be given nonempty closed sets, let g(-) :
R™ — R be a locally-Lipschitz function. Let Co C Q,0)Xo be a closed convez
cone and let z(-) be an optimal solution for problem (2.1) such that: Hypothesis
2.5 is satisfied, there exists k(-) € L*(I, R) such that C,)F(t, -)(2(t), -) is
k(t)-Lipschitz Vt € I and the following constraint qualification is satisfied
(3.3) {—4(T)|q(-) e WH(L,R), ¢'(t) € ~(Copy P, )(2(8), -))"a(®),

4(0) € G} N (Cyry X1)* = {0}.
Then we have the firsi-order necessary condition

Dyg(z(T),y(T)) >0  Vy(T) € RZ(T) N Qury X1

Furthermore, if equality holds for some §(T), then we have the second-order
necessary condition

Dyg(2(T),5(T),w(T)) >0  Yw(T) € RF(T) N Qt. ) ey X1-

Proof. We apply Theorem 2.2 with S; = Rp(T,0,Xo) and S; = X;. Ac-
cording with Theorem 3.2 RY (T) C C(1yRr (T, 0, Xo), hence

(3.4) (ComyBRr(T,0,X0))*" C (R(T))*.
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Since Ci(y)F(t, - )(2(t), -) is k(t)-Lipschitz V¢ € I with k(-) € L>®(I,R) we
apply Lemma 3.5 in [7] to find that

(35) (R{(T)* ={a(T) | q(-) € W"*(1,R")
q'(t) € —(Cuy F(t, -)(2(8), -))"a(t),¢(0) € CF }-
From (3.3), (3.4) and (3.5) we infer that
(ComyRr(T,0, Xo))™ N(ComyX1)* = {0}
Finally, Theorems 2.2, 2.4 and 2.6 yields the required result.

Remark 3.5. It is known (Remark 4.10 in [7]) that if A(-,-): I x R® =
P(R™) is a closed convex process, k(t)-Lipschitz, with k(-) € L*°(I, R), A(t,v) C
QuwF(t, -)(2(t),v), Vv € R" such that Dom A*(t, -) is a subspace of R™ and
A*(t, -) is linear on its domain (in particular, this assumption is satisfied by
smooth control systems) then, if g(-) is a solution of the adjoint differential
inclusion

(3.6) q'(t) € —A*(t,q(t))  q0) eCF
then the map q; (t) = —g(t) satisfies
(3.7) (a1 (1), 2'(8)) € SH(¢, 2(t), a1 (1))

So, in this particular case our constraint qualification (3.3) is stronger than the
constraint qualification (3.1).

It is also known that in more general cases we do not know to compare
solution of (3.6) and (3.7).

Remark 3.6. Obviously, if there exists w(-) € AC(I, R"™) solution of (3.2)
such that w(t) € Int(C;(7)X1), then (3.3) is satisfied. This condition is similar
to the ”surjectivity hypothesis” in [5], which requires the existence of a solution
of the variational inclusion with its value at the final point T to belongs to the
interior of the cone of interior directions to Rg(t,0,Xo) at z(T'); assumption
under which are obtained necessary optimality conditions in a normal form for
problem (2.1).
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A UNIFIED TOPOLOGICAL POINT OF VIEW
FOR INTEGRO-DIFFERENTIAL INCLUSIONS

JEAN FraNco1s COUCHOURON AND MIKHAIL KAMENSKI®

1. Introduction

In this paper we develop a fixed point approach which can be used in the field
of integro-differential multivalued problems. Our point of view is more synthetic
than the previous works in this direction (see for instance [5], [8], [11], [14], or
[13]) and the embedding of these differential problems into the Theory of Index
applied to Multivalued Condensing Operators (see [4]) is complete and new. In
particular we had to build a specific measure of noncompactness ¥ in the space
of continuous functions from the interval [0, d] to the Banach space E.

The fixed point problems Pg(f) considered in this work depend upon a mul-
tivalued operator f from [0,d] x E to E.

Our Theorem 1 ensures that the superposition operator F' defined from f
in the next section is u.s.c. P-condensing with compact acyclic values while
Theorem 2 states a general nonlinear averaging principle when some periodicity
condition on f in its first variable is required.

We do not detail the proofs of Theorem 2 and various applications mentioned
here and we refer the reader to [6] for this task.
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This paper is organized as follows. In Section 2 we give the fundamental
notations and assumptions. The measure of noncompactness ¥ and the super-
position operator F' are constructed and studied in Section 3. The averaging
principle and general examples of fixed point problems Pg(f) taken into account
in this paper can be found in Section 4.

2. Assumptions and notations

Let E be an arbitrary Banach space, d > 0 and f be a multivalued operator
from [0,d] x E to E.

In the following C([0,d], E) is the space of continuous functions from [0, d]
to E endowed with the supremum norm (denoted by || - [|c). For all K C E we
denote by L} ([0,d], K) the set

(1) {g € LN([0,d],E) | 9(t) € K, ae. t € [0,d]},

endowed with the relative weak topology of L ([0,d], E). If J is a subset of [0, d]
the notation 1; stands for the characteristic function of J.

In the sequel we suppose that there exists an operator S from L!([0,d], E)
to C([0,d], E) such that:

(al) There is a constant M > 0 such that for all g,h € L!([0,d], E), the
following inequality holds,

15(a)(@) — SR < Mfo llg(r) = h(r)lldr  with 0 <t <d.

(a2) For every compact convex subset K of E, the operator S is sequentially
continuous from LL ([0, d], K) to C([0,d], E).

(a3) If S is not linear for all go € L([0,d], E) there is a continuous map ,,
from [0,d] x C([0,d], E) to C([0,d], E) satisfying

S(Li0,019 + 1j0,q190) = g, (, Sg)

for every g € L ([0,d], E) and 8 € [0,d].
Qur assumptions, denoted by F, with regard to f are:

(f1) The multivalued operator f maps [0, d] x E into compact convex subsets
of E.

(f2) For all z € E, f(-,) has a strongly measurable selection on [0, d].

(f3) For almost all t € [0, d], the map z — f(¢,z) is u.s.c.

(f4) For every bounded © C E there exists v € L'([0,d],R) such that
1f (@, )|l = sup{llyll | ¥ € f(t,2)} < v(t) for almost all ¢ € [0,d] and
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all z € Q. Also there exists k € .1 ([0, d], R), such that for all bounded
subset A of E, the following relation holds,

2 x(f(#A) < k(@B)x(A)  te[0,d].

Recall that the Hausdorff measure of noncompactness yz of the linear normed
space Z is defined on each bounded subset  of Z by

(3) x(Q) = inf{e > 0|  has a finite e-net in Z}.

In the sequel we will write x instead of xg&.
We denote by Pg(f) the problem of finding fixed points in C([0,d], E) of the
superposition operator from C([0,d], E) into itself

(4) F = Sosely

where sely(x) is for all z € C([0,d], E) the (nonvoid) set of strongly measurable
selections of f(-,z(-)).

A fundamental example of such an abstract problem, is provided by the
following Cauchy problem CPp (20, f) denoted by C'PA (2, f) when the family
A(t) does not depend upon ¢,

i(t) € A(t)=(t) + f(t, 2(2)),

w02t 2 € E, te|[0,d].

In this case the operator S will be the mild solution operator. In other words
for all g € L([0,d], E), S(g) stands for the solution (which must be unique) of
the problem C’PEl ® (2%, g). We will see later in Section 4 that this mild solution

operator S satisfies our assumptions (al), (a2) and (a3) for a wide class of families
(A(t)) and spaces E.

() P 1) = {

3. Measures of noncompactness and condensing operators

3.1. A specific measure of noncompactness. We start with the follow-
ing definition adapted from [1] and [4] where €o6(f2) stands for the closed convex
hull of £2.

Definition 1. A function ® defined on the set of all bounded subsets of
the Banach space X with values in some partially ordered set (Y, <) is called a
measure of noncompactness if ®(c6(Q)) = ®((Q)) for all bounded subsets Q C X.

Now we introduce the announced measure of noncompactness ¥ in C([0, d], E),
which plays a crucial role in this work. We set, for all bounded subsets © of

c((o,d], E),

6 T(0) = max (sup e ¥x(D(t)), lim sup max ||z(t) — z(s)|]).
© U= mex (sup e Ha(D), fim sup max o) - 2(5)])
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The notation D(f) stands for the set of countable subsets of 2, D(t) is the
set of the cross sections z(¢) for # € D and L > 0 is a constant that we shall
appropriatly choose in the theorems. We see that ¥ has its values in the ordered
space R? with respect to the usual partial order.

First we remark that ¥ is well defined, namely, there is a countable subset
Dy C Q satisfying

(7) T(Q) = (sup e “*x(Do(t)), Jim sup iy ilm(t) = z(s)[).
te[0,d] =0 zeDy lt—s

Indeed the sup in R are countably obtained and a countable union of countable
subsets is still countable.

Second we have to check that U is a measure of noncompactness. Let (2
be a bounded subset of C([0,d], E), let Dy € D(f) be such that (7) holds and
D, € D(5(Q)) such that (7) holds with ©o(Q) in place of 3. Then, we have
Dy C @(Ay) for some Ag € D(Q). If we denote by pry(¥) the second coordinate
of U we can check easily pry(¥(26(1))) = pry(¥(2)). Moreover for all ¢ € [0,d]
we have

x(D1(t)) < x((€6(A0))(t)) < x(T0(A0 (1)) = x(Do(2))-
And therefore, it comes ¥(T6(2)) < \P(Q). But clearly, we have ¥(co(2)) >
¥(2), since possibly we can replace D; by D;UDy. Then the equality ¥(25(?)) =
¥(Q2) holds for all bounded subset Q of C([0,d], E).

The additional properties below will allow us to apply the usual Fixed Point
Toplogical Degree Theory (see [1] and [4]).

Proposition 1. For all bounded subsets 0, @, C C([0,d], E) we have:

(i) If Q@ C Qy then ¥(Q) < ¥().
(ii) If K is compact in C([0,d], E) then ¥(QU K) = ¥(02).

(iii) If ¥(2) = 0 then Q is relatively compact in C([0,d], E).

Proof. Obvious. In particular (iii) is the Ascoli-Arzela theorem. O

3.2. The solution concept. Let us recall that the superposition operator
F has been defined by (4) in Section 2.

Definition 2. The fixed points of F are what we mean by solutions of
PE (.’BO 5 f)

For 0 < b < d, we can define the solution notion on [0,b] in the following
way. If g € L1([0,d], E), ps(g) will be the restriction of g to [0,b], and if h €
L1([0,8], E) we will extend h on [0,d], by setting ep(h)(t) = A(t) pour ¢ € [0,8],
at ep(h)(t) = 0 pour t €]b,d]. Let f; be the restriction of f to [0,b] x E. Then
the solutions of Pg(fs) are the the fixed points in C([0, ], E) of the operator
pp 0 S oeposely,. The set of solutions of Pr(f;) is denoted in the sequel by 2{: :
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3.3. Properties of the superposition operator. In order to study the
property of the superposition operator F' we will need the following definition.

Definition 3. Let ® be a measure of noncompactness on the Banach space
X. A multivalued operator H from X to X is said to be ®-condensing if, for all
bounded subset 2 C X, the relation ®(H(Q)) > ®(Q) implies that {2 is relatively
compact in X.

Now, under our assumptions (al), (a2), (a3) and (f1)-(f4), we are in position
to state the main results of this section about the superposition operator F' and
the solution set of the abstract problem Pg(f).

Theorem 1. The multivalued operator F is u.s.c. with compact acyclic val-
ues and ¥-condensing.

As a consequence of this theorem we give the following abstract result.

Proposition 2. In addition to assumption F, suppose that Zﬁ s a nonvoid
bounded subset of C([0,d], E) and that for all b € [0,d], we have pb(E";) = 2{,
then ind(Zé,F) =1, where ind denotes the topological index.

Before ending this subsection let us point out an interesting result which is
a fundamental tool in the proof of Theorem 1. This result is an extension of
Lemma 4 in [5].

Proposition 3. Let (gn)n be a sequence of functions in L' ([0,d], E). As-
sume that there exists q, p € L} ([0,d]) satisfying

(8) sup lgn@)ll < p(t) and x({gn(t)}n) < g(2)

a.e. t € [0,d]. Then we have for all t € [0,d]

t
(9) 3 ({5(gn)(O)}n) < 2M /Z g(r)dr.

Remark 1. The factor 2 in the relation (9) can be dropped if E is separable.
3.4. Proofs of the results of the subsection 3.3.

Proof of Proposition 3. Clearly, from the Bochner integrability of the gn there
exist a separable subspace ¥ C E and a subset @9 C [0,d] of Lebesgue measure
zero satisfying {g.(t)}n C Y, for all ¢ € [0,d] \ ©g. Without loss of generality
we may assume that the inequalities (8) hold for ¢ € [0,d] \ ©p. Let ¢ > 0 and
choose § > 0 such that for every measurable subset @ of [0, d] we have

(10) 8] <26 = / u(r)dr <e.
©
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where |©| stands for the Lebesgue measure of ©. Choose also a constant M
satisfying |©;| < d with

01 = {t € [0,d]| u(t) > My},

So we have ||gn(t)|] < My for n € N and £ € [0,d] \ ©p U ©;.
From the second inequality in (8) for ¢ € [0,d] \ ©p. It comes

xy({g.(®)}n) < 2x({gn()}n) < 2q(2).

The formula of the noncompactness measures for separable spaces (see [1]) yields
(11) Xy ({gn(t)}n) = lim sup dist(gn(t), Ys),
k—oo p

where for each integer k the set Y}, is a k-dimensional subspace of ¥ satisfying
Y% € Yiy1 and L_JkEN Y, =Y. It is clear that for ¢t € [0,d]\ ©gU ©; it is possible
to take in the formula (11) the closed balls of ¥} denoted by By = B (0, 2M;)
instead of the whole space Y},.

Let us introduce the measurable functions aX from [0, d] to [0, +oo[ defined
by ak(t) = dist(g,(t),Bx). Then the functions B from [0,d] to [0,+oo[ such
that Bk (t) = sup,, af(t) are measurable too.

Therefore, by virtue of the Egorov’s Theorem there is a set @2 C [0,d]\ ©pU
©; with |©2] < § and an integer ko such that we have §i(t) < 2¢(t) + ¢, for
te[0,d]\ szg ©; and k > ko. Thus it comes
(12) dist(gn (), Br) < 29(t) +¢
forn €N, t€[0,d]\ szg ©; and k > ko. Since the functions g,, are measurable
on [0,d] each of them is a pointwise limit of step functions. Hence there exist a
set @3 C [0,d] with |©3]| = 0 and step functions h,, from [0,d] to E satisfying

(13) “gn(t) - hn(t)” <Eg
forn € N, t € [0,d] \ ©3. Then the inequalities (12) and (13) provide
dist(hn(t), Bx) < 2q(t) + 2¢

forn €N, k > kg and ¢t € [0,d] \ © with © = Ui:g ©;. In other words there
exist step functions gf from [0, d] to By, satisfying for the same n,t, and k,

(14) ll9n(t) = gn(®)ll < 24(t) + 3.

Notice that we have |©} < 24 and that without loss of generality we may assume
gk (t) = 0, whenever ¢ € ©.

Let us fix k¥ > ko. Then (see [7]) the sequence (gF), is relatively compact
in LL([0,d],Bx). Therefore, from the hypothesis (a2) the sequence (S(g%))n
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is relatively compact in C([0,d], E). Hence for every ¢t € [0,d] the sequence
(S(g¥)(t))n is relatively compact in E. Let us estimate ||S(gn)(t) — S(g%)(t)]|.
Thanks to the assumption (al) we have

t
1S(gn) &) = SE) D) < M [0 9 (r) — gk () lldr.

In view of the relations (14) and (10) this inequality gives

15(@n)(®) - (@)@ < M [ lga(r) — gk (7)lldr

+M [ lga()lldr

<M (2¢(7) + 3e)dr + Me
[0,t1\©

t
< 2M/ q(T)dr + Me(3d + 1).
0

Then, for v = 2M f; g(T)dr+ Me(3d+1), the relatively compact set {S(g%)()}n
forms a y-net of the set {S(g,)(t)}. proving the lemma due to the arbitrary
choice of ¢. ) (]

Proof of Theorem 1. Theorem 1 will be a synthesis of the next lemmas 2,5
and 6.

Lemma 1. The operator sely is strongly-weakly closed from C([0,d], E) to
L!([0,d], E).

Proof. This lemma comes from the Masur’s theorem and the assumptions
(f1) and (£3). A complete proof can be found for instance in [10]. O

Lemma 2. The muliivalued operator F' is u.s.c. with compact values.

Proof. It sufficies to show that F' is closed with compact values.

(a) First, let us prove that the multivalued operator F' is closed. Let (zy)n
be a sequence converging towards zo, in C([0,d], E), and let h, € F(z,) such
that (hn), converges towards he, in C([0,d], E). We have h, = S(g,) with g,
measurable and gn(t) € f(t,z,(t)) a.e. t € [0,d]. From the assumption (f4) on
f and since 2,([0,d]) is bounded it comes that g, € L!([0,d], E). Moreover,
using again (f4), we see that the sequence (g,), is uniformly integrable on [0, d]
and that the set {gn(t) | n € N} is relatively compact in E. By the Diestel’s
theorem on the weak convergence in L!([0,d], E) (see [7]) (gn)n is relatively
weakly compact in L'([0,d], E). Let go, a weak cluster value of (g),. From
Lemma 1 it results

(15) oo € self(zoo).

17 — Differential...



130 JEAN FRANCOIS COUCHOURON AND MIKHAIL KAMENSKI*

Now the assumption (a2) gives
(16) hoo = 5(goo)-

The relations (15) and (16) yield hoo € F(Zoo)-

(b) Prove now that the multivalued operator F' has compact values. Let
z € C([0,d], E). We are going to prove that the set F(z) is sequentially compact
in C([0,d], E). In this goal let (z,), be a sequence in F(z). Then we have z,, =
S(gn) with g, strongly measurable and g,(t) € f(¢,z(¢)) a.e. t € [0,d]. Asin the
part (a) of this proof it comes g, € L*([0,d], E) and there is a subsequence (g, )&
such that (g, )r converges weakly in L!([0,d], E) towards some go, € sels(z).
It follows from (a2) that the sequence (z,,); converges towards S(ge). Since
5(geo) belongs to F'(z), we have shown that (z,), has a convergent subsequence
in F(x). The proof is now complete. O

Definition 4. We will say that the sequence (gn), in L*([0,d], E) is semi-
compact if the sequence (g, (t)), is compact in E for almost all ¢ € [0,d] and if
there is a function p € L!([0, d]) satisfying sup,, ||gn|| < & in L*([0, d]).

Remark 2. From the Diestel’s theorem given in [7] it results that a semi-
compact sequence (gn)n i3 weakly precompact in L*([0,d], E).

Lemma 3. Let (g,)n be a semicompact sequence in L' ([0,d], E). Then, for
every € > 0 there are a compact subset K. C E and an e-net in L ([0,d], E) of
{gn}n formed by functions with values in K.

Proof. Exactly as in the proof of Proposition 3 we can build functions g&
with values in compact subsets By, such that the relation (14) holds with this
time ¢(t) = 0 and £/(3d + 1) instead of . Then, we easily verify that we have
S lgn(r) = gi(Dlidr < e. 0

Lemma 4. Let (gn)n be a semicompact sequence in L!([0,d), E). Then, the
sequence (5(gn))n is precompact in C([0,d], E).

Proof. Let € > 0. By virtue of Lemma 3 there is a compact subset K, C F
and a function g such that we have fnd llgn(T) = g5(7)||dT < € for each n €
N. Thanks to the condition (a2) and the Remark 2 the sequence (S(¢5)), is
precompact in C([0,d], E). So using (al) we see that the precompact subset
{S(g5)}n is a Me-net in C([0,d], E) of the set {S(gn)}n. That ends the proof.

Lemma 5. The multivalued operator F is U-condensing.

Proof. Let

t
C(L) = sup e*Ltf k(r)eldr.
t€[0,d] 0
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Since we have limy_, 4o, C(L) = 0, it is possible to choose L such that
(17) 2MC(L) <1
Let © € C([0,d], E) be a bounded subset of C'([0,d], E) satisfying
(18) P(F()) = ¥().

We have to prove that (2 is relatively compact in C'([0,d], E). Remark that F(Q)
is bounded in C([0,d], E) and that for each countable subset D' C F(£) there
is a countable subset D" C {2 satisfying D' = F(D"). Consequently there is a
bounded countable subset Dy C  such that F(D{) achieves the maximum in
the definition of ¥(F(f2)). For all countable subset I' of C([0,d], E) denote by
cont(T") the following expression

contT" = lim sup max [|m(t) —z(s)||-
0—=0 per |t—s|<8

Then the relation (18) becomes

sup e Fix(D(t)) < sup e~ Vix(F(Dg (1))
(19) te[0,d] tef0,d)
cont(D) < cont(F(Dy(t)))

for all D € D(Q). From assumption (f4) it follows

x(sels (Dg)(r)) < k(1)x(Dy (7))
(20) < k()" sup T x(DY(r).
T€[0,d]

Now according to (20) Proposition 3 applies and yields for ¢t € [0,d],

i
e~ Hix(F(DY(#)) < 2MeH [ k(r)erdr sup e~ x(DL(r)
0 T€[0,d]

<2MC(L) sup e *"x(Dg(r)).
T€[0,d]

This last inequality combined with (17) and the first relation of (19) with D"

instead of D gives

(21) x(Dy(r)) =

for all 7 € [0,d]. From (f4) and the relation (21) it results x(f(r, D§(7))) = 0
a.e. T € [0,d]. Hence sely Dy is semicompact. Therefore, by Lemma 4, F(D})) is
precompact in C([0,d], E). Then, we deduce ¥(F(2)) = 0 and in view of (18)
¥ (Q) = 0, that is  is relatively compact in C([0,d], E). O
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Lemma 6. The values taken by the multivalued operator F' are contractile
and thus acyclic.

Proof. Let z € C([0,d], E) and yo € F(z). Then we have yo = S(go) for
some gp € sely(z). The assumption (a3) shows that the map H
(A ) = g (1 = X)d, y) = H(A,y)
from [0,1] x F(z) to C([0,d], E) is continuous and satisfies
H(O,y)=y and H(1,y)= .
But writing y = S(g) for g € sely(z), and using again (a3) we see that we have
H(Ay) = S(lo,1-3a19 + Lja-rya,q190)

and that & = 1jg (1-xq19 + 1[(1—r)a,a190 belongs to sely (z). Therefore, H(A,y) €
F(z). In other words H is a retraction from F'(zx) to {yo}. Consequently, F'(z)
is contractile and thus acyclic. O

Proof of Proposition 2. Let
W = {(t,v) € [0,d] x E | v = z(t) with z € T} }.

For n > 0 let V; = [0,d] x (pry W + nl8), where B = B(0,1) is the open ball of
center 0 and radius 1 in E and pr, is the second projection. Let € > 0 and

1 i) eVe
“(t’?)“{o if (£,v) ¢ Vo

With the help of the Dugundgi’s Theorem extend g to a continuous function
from [0,d] x E to [0,1]. We can easily verify that the operator f from [0,d] x E
to E defined by

f(t, U) = M(t: U)f(t"u)
satisfies the assumptions (f1)-(f4). Then by setting

F=8o sel 7
we get from Theorem 1 that F is u.s.c. U-condensing with compact acyclic values

in C([0,d], E). Since Va. is bounded from (f4) and (al) there is a constant C' > 0
such that

d
(22) 15(0)]| + fo I5)ldr < C

for all § € selz(z) and all z € C([0,d], E). From (al) it is clear that the relation

(22) insures 1F(z)|loo < C for all z € C([0,d],E). Let C; > C such that the
compact set Zﬁ is included in the open ball B; = B(0,C;) of center 0 and radius
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C; in C([0,d], E). This choice insures that F maps B; into itself and has no
fixed point on the boundary of By. So one has

(23) Indg, F' = 1.

This last equality comes from fundamental properties of the topological index.
Thanks to (23) it remains to prove Indp, F' = Indg, F.

In this goal it suffices to prove Fix F' = Fix F(= £f), where the symbol Fix
stands for the set of fixed points. Of course we have Fix F' C Fix F. We are
going to prove the converse. Let = € Fix F. Then applying (al) and taking into
account the relations (22), (23) and the definition of f we can find some b €]0, d]
such that the restriction py(z) belongs to E{ . So by hypothesis there is z;, € Eﬁ

satisfying py(z) = pp(zp). Define

© ={be[0,d]| pa(z) = pa(zp) for all B € [0,b]}.

Clearly, © is a nonempty open set of [0,d]. Thanks to the compactness of Eﬁ
in C([0,d], E) the set © is closed in [0,d]. Then we can conclude @ = [0, d] and
T = x4 for some x4 € Ef;. That ends the proof. O

4. Examples

This paragraph does not contains any proof. In particular the proof of The-
orem 2 is too much long to be given in this short paper. The reader is refered
to [6] for the proofs.

4.1. The Cauchy problems CP#(z° f). Let A be a multivalued un-
bounded operator from E to E. We consider the mild solution operator S pre-
viously defined. In this subsection we give general examples of operators A and
spaces E such that the mild solution operator S satisfies the assumptions (al),
(a2) and (a3). These examples include with some improvements the cases set
out in [5], [8], or [14]. We notice that the assumption (al) appears as a weak
form of the classical Benilan’s integral inequalities (see [3] or [2]) and it is always
satisfied whenever A —wl is dissipative. We emphasize that in our presentation,
the assumption (al) is invariant under a change of the norm into an equivalent
norm. The assumption (a3) is also always satisfied when A —wr is m-dissipative,
since in this event we have 1,,(8,S(g)) = S(g) on [0, 6] (really this is a general
fact from (al)) and since 1,4, (8, S(g)) restricted to [6,d] is the mild solution of
the following Cauchy problem

i(t) € Az(t) + go(t),
z(0) = S(g)(®), te[d,d].
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We can check easily that the continuity with respect to the initial data for such
a problem insures the required continuity of ¢,,. Thus, we must concentrate our
attention on the condition (a2).

The following proposition provides general classes of couples (A4, E) such that
the mild solution operator S satisfies (al), (a2) and (a3).

Proposition 4. Suppose that the unbounded operator A—wl is m-dissipative
in the Banach space E. Then the mild solution operator S satisfies (al), (a2)
and (a3) in each of the following cases.

(i) We have a decomposition A = A; + B, where A1 generates o sirongly
continuous semigroup of bounded linear operators and B is a single val-
ued locally Lipschitz operator.

(ii) The space E is smooth and A generates a compact semigroup.

(iii) The space E is uniformly smooth and A generates a strongly equicon-
tinuous semigroup.

(iv) The space E is smooth reflexive and such that the (normalized) duality
mapping is sequentially weak-weak® continuous. In addition, A gener-
ates a weakly egquicontinuous semigroup of bounded (nonlinear) opera-

tors.

Remark 3. The previous proposition contains some improvements of known
results about the Cauchy problem. For instance in [5] the existence of solutions
for the problem CP#(z°, f) when A generates a compact semigroup was proved
in the case where the space E is strictly convex.

4.2 Non autonomous semilinear proeblems. This subsection deals with
the general semilinear problems CPéi(t) (2°, f) where the family of linear un-
bounded operators (A(t))se(o,q) generates an evolution operator U in the follow-
ing sense (with A = {(¢,s) € [0,d]? | s < t}):

(Ul) For each (t,s) € A the operator U(t, s) is linear and bounded from E

to E.
(U2) For all z € E the function (¢,s) — U(, s)z is continuous in A.
(U3) For all (t,s),(s,r) € A, the relations U(t,s) o U(s,r) = U(t,r) and
U(t,¢) = I hold.
The operator S defined for all ¢ € [0,d] and g € L!([0,d], E) by the formula

S(o)(t) = U(t, 0)2° + fo U(t, r)g(r)dr

enjoys the properties (al), (a2) and (a3) of the Section 2.
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Remark 4. By applying Theorem 1 we obtain a straightforward extension
of Theorem 3 in [13] and of a lot of classical results on semilinear evolution
problems (see [11])

4.3. Multivalued Volterra problems. The previous subsection is a par-
ticular case of the more general problems existence of solutions of the following
inclusion

z(t) € L(t) + ft k(t, 7, f(r,z(7)))dr, t €[0,d],
0

where L is a continuous function from [0,d] to E and the kernel k is a single-
valued function from A x F to E, where A = {(¢,s) € [0,d]? | s < t}.

For instance suppose that the following conditions hold.

(V1) The operator k is continuous in its first variable;

(V2) The function 7 — k(t, 7, g(7)) is integrable on [0, ] for each ¢ € [0,d]
and each g € L1([0,d], E);

(V3) [|k(t, 7, y) — &(t, 7, 2)|| < M|y — || for (¢,7) € A, y € E;

(V4) For every compact subset K of E there is a positive function p €
L ([0, d]) such that for all ¢ € [0,d], and all z € K, we have ||k(¢, T, 2)|| <

u(r) a.e. T € [0,d].
By taking

S(a)(t) = L(t) + [0 Kt rog())dr

for t € [0,d] and g € L'([0,d], E) we see easily that the assumption (al) holds.
We can prove that the assumption (a2) is satisfied if and only if S is sequentially
closed from L ([0, d], K) to C([0,d], E) for every compact subset KX C E. Lastly,
an abstract version of (a3) (see [6]) is suitable for particular classes of kernels.

4.4. Time dependent subdifferentials. In this subsection we deal with
nonlinear evolution equations of the form CP; ®) (2°, f) in a real Hilbert space E,
where A(t) = —9¢(t, - ) is for almost all ¢t € [0, d] and for ¢ = 0, the subdifferential
of a proper lower semicontinuous convex function from X into | — oo, +00]. We
assume that z° belongs to the closure in E of the domain Dy of 9¢(0,z0).
We suppose that the Yotsutani conditions hold (see [15]). Then it was shown
in [15] that for all g € L'([0,d], E), the problem CPA ¥ (20, f) has a unique
(strong) solution §°(g). It is obvious that S°° satisfies (al) and (a3). Since
for all compact subset K of E, estimations in [15] or [12] show that the set
5=° (L ([0, d], K)) is equicontinuous in C([0,d], E) if z° € Dy. It is now easy to
see that (a2) holds.
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Remark 5. Contrary to [12], we do not assume ¢ of compact type. However
by using Theorem 1 we obtain immediately that the solution set of CPg(t) )
is non empty and compact.

4.5. Statement of a general nonlinear averaging principle. In The-
orem 2 we need stronger assumptions about f denoted by F', namely:

(f1’) The multivalued operator f from R* x E to F is T-periodic with respect
to its first variable for some T > 0.

(f2') The restriction of f to [0,7] x E satisfies (f1) and (f2) with T in place
of d.

(f3") For all zo € E and all € > 0, there exists 7 > 0 such that ||z — zo|| <7
implies, f(t,z) C f(¢,xz0) + eBg for almost all t > 0, where Bg is the
unit ball of E.

(f4”) There is k¥ € R such that for all bounded subsets A of I we have,
x(£([0,T] x A)) < kx(4).

We define for ¢ > 0 and z € E,

fea) =1 (Le) and folo) = {%fDTg(T)dT g € sel o).

Then, we obtain the following principle.

Theorem 2. Suppose that F' holds. Assume that Eg“ is a nonvoid bounded
subset of C([0,d], E) and that for all b € [0,d], we have pg,(Eﬁ”} = Z{“. Then,
for all § > 0 there is g > 0 such that for every € € [0, 0] the solution set Ej:s is
non empty and included in Eﬁ" + 6B, where B is the unit ball in C([0,d], E).

Remark 6. The conditions about Eg;” in Theorem 2 as well as in Propo-
sition 2 (with f in place of fp) are fullfilled for instance if there exists some
p € L1([0,d], R) satisfying: || fo(t, z)|| < p(t)(1+||z|]) ae. t € [0,d], Vz € E. We
underline that in Theorem 2 these assumptions are only related to fy and not
to f. fore > 0.

This last statement is an abstract extension of the N. N. Bogulubov analogous
result on classical ordinary differential equations. The classical methods do not
apply in our framework since we do not assume the uniqueness of the solutions
and the validity of the Duhamel’s formula. Other applications of the Topological
Degree Theory to the periodic solution problem were given in [9] and [10]. In
those papers A were a linear operator.
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THE BORSUK — ULAM THEOREM
FOR APPROXIMABLE MAPS

ZDZISEAW DzEDZEJ AND MAREK IZYDOREK

1. Introduction

Let S™ denote the unit sphere in the Euclidean space R™"t!. The famous
Borsuk-Ulam theorem states that for every continuous map f : §® — R™ there
exists a point z € S™ such that f(z) = f(—z). It has been proved by Borsuk
over sixty years ago. In 1985 H. Steinlein noted in his survey [S] 457 papers
dealing with various generalizations and applications of that theorem. After
that many new papers have appeared in the literature. In particular, there are
generalizations of the Borsuk’s result to various classes of multivalued maps and
more general group actions than the antipodal one (see e.g. [GG], [I]). They
applied mainly some algebraic topology tools like homology.

One of the most natural and easy techniques of extending theorems from
single-valued maps to multivalued maps is the graph approximation approach.

. It has been initiated by J. von Neumann in the thirties and then studied by
many authors (see [G] and the references therein). Let us say that at least
convex-valued u.s.c. maps and their compositions admit arbitrary close graph
approximations.

In this note we prove a modest version of Munkholm’s result [M]. He gave a
lower estimate for a covering dimension of the coincidence set for f : 5271 —+ pm
with respect to a free action of a cyclic group Z,« (see Theorem 3.1). We were

1991 Mathematics Subject Classification. Primary: 58E05, 55M20; Secondary: 34C25,
34C35.
Key words and phrases. Multivalued map, group action.
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able to prove that for an approximable multivalued map the coincidence set is
at least nonempty, or infinite, if » is sufficiently large with respect to m (see
Theorem 3.2 and Corollary 3.3).

Let us notice that using different methods and the result of [V] we have
obtained another generalization of Borsuk-Ulam theorem, more in the spirit
of [B].

2. Multivalued maps

Let X and Y be two topological spaces and assume that for every point
z € X a non-empty closed subset ¢(z) of ¥ is given. In this case we say that
w: X =Y is a multivalued map from X to V.

We associate with ¢ the graph T'; by putting:

Ty ={(z,9) e X xY |y € p(x)}.

If A C X is a subset, then the image of A is the set p(A) = [J,c 4 v(a).
For a subset B C Y we can define two types of a counter-image:

¢™1(B) ={z € X | (z) C B},
¢y (B) ={z € X | p(z) N B #0}.

If p = f is single-valued, then ¢ ~!(B) and p;'(B) coincide.

A multivalued map ¢ : X = Y is upper semicontinuous (u.s.c.) provided for
each open subset B C Y the small counter-image ¢~1(B) is an open subset of
X; v is lower semicontinuous (I.s.c.) provided for any open subset B C Y the
big counter-image go;l(B) is open in X.

We shall concentrate here on u.s.c. maps. They have many properties anal-
ogous to continuous maps.

Proposition 2.1. Let ¢ : X = Y be an w.s.c. map. Then the graph T'y, of
@ is a closed subset of X x Y. Moreover, if the values of @ are compact sets,
then the image @(A) of a compact set A is compact.

For other general properties of multivalued maps see e.g. in [AC].

One of the most useful techniques in the theory of multivalued maps is the
idea of single-valued approximations.

Let A be a subset of a metric space (X, dx) and let € > 0. By e-neighbourhood
of A in X we denote the set

O:(A)={z e X |IyeXdx(z,y) <e}
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If (X,dx) and (Y,dy) are two metric spaces, then in the Cartesian product
X x Y we consider the max-metric, i.e.

dx xy ((#,9), (u,v)) = max{dx (z,w), dy (y,v)}
forz,ue X and y,v €Y.

Definition 3.1. Let ¢ : X — V be a multivalued map and let € > 0. A
continuous map f : X — Y is called an £-approzimation (on the graph) of ¢ if

Tyic 6.8

The following is an easy excercise.

Proposition 2.2. A continuous map [ : X — Y is an e-approzimation of a
multivalued map @ : X =Y if and only if f(z) € O:(0(Oc(x))) for each z € X.

Definition 3.2. An us.c. map ¢ : X — Y is approzimable (on the groph)
provided it has compact values and for every € > 0 there exists a continuous
map f: X — Y which is an s-approximation of .

We denote the class of all approximable maps from z to ¥ by A(X,Y).

3. Main result

Let G be a cyclic group of a prime power order d = p%, p > 3. Let C be the
standard linear representation of G, i.e. C is a space of complex numbers and G
acts on C by the formula

gz = exp(2wid™t),
where g € G is a fixed generator and z € C.

We denote by C'™ the Cartesian product of n copies of the representation C
and by S(C™) the unit sphere in C". Ciea.urly, G acts freely on S(C™). For a
continuous map f : S(C™) - R™ into the m-dimensional Euclidean space we
define the coincidence set

A= {2z € SCM | f(@) = flg'a), i=1,...,d—1}.

By definition Ay is an invariant subset of S(C™). The following significant result
has been proved by Munkholm in [M].

Theorem 3.1. Let G be a cyclic group of an odd prime power order p*. For
every continuous map f : S(C™) — R™ the covering dimension of Ay is greater
than or equal to

(n—1) = (p* = I)m — [m{a — 1)p* — (ma + 2)p*~* + m + 3].

OIn particular, the set Ay is nonempty if n is large comparatively to m.
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Our aim is to prove a version of the above result for multivalued maps which
are approximable on graphs. Our theorem states as folows.

Theorem 3.2. Let G be a cyclic group of an odd prime power order d = p®.
Let ¢ : S5(C™) — R™ be a multivalued map such that ¢ € A(S(C™),R™). Then
the set

Ay ={z € S(C™) | p(z) Np(gz) N--- Np(g?tz) # 0}

is nonempty whenever

(1) n—12>(@%—1)m+[m(a—1)p* - (ma + 2)p*~! +m + 3].

Proof. For each k € N there exists a (1/k)-approximation of ¢ by a single-
valued map f; : S(C™) — R™. It is a consequence of Theorem 3.1 that all
sets Ay, are nonempty provided condition (1) is satisfied. Therefore we can
choose z; € Ay, for every natural number k. With no loss of generality we
may suppose that the sequence of points (zj) converges to a point zy € S(C™).
Since ©(S(C™)) € R™ is compact and the sequence of maps (f) consists of
approximations of ¢ we claim that all sets f;(S(C™)), &k € N are included in
a bounded neighbourhood of ¢(S(C™)). Thus we can also suppose that the
sequence of points (cg) = (fi(zx)) converges to some point ¢ € R™.

Now, for each k € N there are points T € S(C™) and ¥, € R™, (T, V) € Ty
such that

= =

dist(zp, Tr) < %:- and  dist(cg,T) <

Therefore (zo,¢) € Iy, since I'y, C S(C™) x R™ is closed.
Let {zx,z} = g2k, .. ,ngl = g% 1z;} be the whole orbit of z;. By conti-
nuity of the action of G on S(C™) we obtain

zp = lim 2} = lim g'zp = ¢ lim z; = ¢z
k—oco k—00 k—ro0

for i =1,...,d — 1. Using the same arguments as above one easily proves that
(zi,c) € T, which means that

¢ € p(xo) N(gzo) N ... Np(g* 1 zo)
and thus 2z, is an element of 4. O
As a consequence of Theorem 3.2 we obtain the following

Corollary 3.3. Let G be a cyclic group of an odd prime power order p™.
Let @ : S(C™) — R™ be a multivalued map approzimable on the graph. If

(2) n—3>(@*—Lm+[m(a—1)p* — (ma+ 2)p*~ +m + 3]
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then the set A, consists of infinitely many points.

Proof. Suppose on a contrary that there is a map ¢ : S(C™) - R™ such
that A, is finite. Let 9 : S(C™) \ A, — R™ be a restriction od . It follows
from the definition of A, that S(C™)\ A, is an invariant subset of S(C™) and
the set A, is empty. On the other hand one can easily define a G-equivariant
embedding (not necessarily an inclusion) ¢ : S(C™"1) — S(C™) \ A,. Consider
a composition £ = @ ot : S(C"1) - R™ which is obviously a multivalued
mapping approximable on the graph. From inequality (2) it follows that n — 1
satisfies (1). Thus by Theorem 3.2 A, # § which is a contradiction. O
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SEMICONTINUOUS SOLUTIONS
OF HAMILTON-JACOBI-BELLMAN
EQUATIONS WITH STATE CONSTRAINTS

HELENE FRANKOWSKA AND SLAWOMIR PLASKACZ*

1. Introduction

This paper is devoted to Hamilton-Jacobi-Bellman equation under state con-
straints arising in optimal control of Bolza problem:

i
minimize/ L(s,z(s),u(s))ds + g(z(T))

to

over solutions of the control system
z' = f(s,z,u(s)), u(s) € U, z(to) = =0, z(t) € Q.

It is well known that the value function of the above problem may be discontin-
uous even if all data are smooth. Still it satisfies a Hamilton-Jacobi equation in
a generalized sense. In Capuzzo-Dolcetta and Lions [6] it was shown that if a
”controllability” assumption of Soner’s type [15] holds true on the boundary of
(2, then the value function is continuous and is a unique viscosity solution to the
Hamilton-Jacobi equation:

(1) —Vt—i—H(t,I,—Vﬂ):O, V(T1 ')=Q(‘)
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(see [7] for the corresponding definitions of viscosity solutions). The controlla-
bility condition in the case of bounded {} with smooth boundary means that for
some p > 0:

Yz € 09, igg(nm,f(t,x,u)) < —p,

where n, denotes the outer normal to £2. This condition was introduced in Soner
[15] to treat an infinite horizon problem. When the boundary of €} is nonsmooth,
Ishii and Koike [13], still in the contexte of the infinite horizon problem, proposed
an extension of this condition in terms of properties of solutions to the control
system. Rewritten in the language of tangents, their condition is

Vzed, 3uel, f(z,u) € Int(Cqx(z)),

where Cy(z) is the Clarke tangent cone to ) at z. This condition also yields
continuity of the value function and uniqueness of solution to a corresponding
Hamilton-Jacobi equation.

The natural question do arise, what happens if such condition is violated.
When we wish the domain of the value function to be the whole £, then an easy
argument implies that a necessary condition for it is

Yz € 69, (ng, f(t,z,u)) <0.

inf
uelU
If we do not have the strict inequality, then the value may be discontinuous,
as we show in Example 1. Still it is possible to get uniqueness of generalized
solutions to Hamilton-Jacobi equation by adding the assumption

Yz € 08, sup(ng, f{t,z,u)) >0.
wel

Note that it means that from every boundary point of @ starts a trajectory
leaving immediately (1, while Soner’s assumption means that a trajectory enters
immediately into 2. In this sense our condition in the smooth case looks like
a complementary to Soner’s: one can easily get examples where only Soner’s or
only our condition hold true. It would be interesting to study the case, where
at each point of the boundary one or another conditions are satisfied. When O
is nonsmooth, our assumption becomes

Vzed, Juel,-f(r,u) € Int(Cqx(x)),

which is again complementary to the one of Ishii-Koike.
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Under the above assumption we show that the value function of the con-
strained Bolza problem is the unique solution to (1) in the following sense:

b4 (t,.’L') € (OaT} X Qs V (pt)p:v) S B“W(tsm)s —Dt +H(t:$7ﬁpm} = 05
Y (t,z)€ (O1T) x o6, v (p-‘fﬂpfﬂ) € 0_-W(t,z),—p: + H(t,z,—p:) > 0,

V(o) € (0,T]xT,  lminf W(sy) =W(,q),
(s,y)—(t—,z), yeQ

Vzeq, (s;ig(igiiz) W(s,y) = Wt x).
The proofs of the above result are based on viability theory. The dynamic pro-
gramming principle implies in the usual way that the value function satisfies the
above properties. To prove the opposite statement, using results of Rockafellar
[14] and Guseinov, Subbotin, Ushakov [12] we rewrite the above Hamilton-Jacobi
equation in terms of viability and invariance properties of the epigraph of its so-
lution (restricted to a corresponding set) similarly to [9].

2. Viability and invariance

Let i C R™ be a nonempty subset and z € K. The contingent cone Tx ()
to K at z is defined by

dist(z + hv,K)

- 0.

Tk (z) <= liminf

Ve Ti(e) <= imin

The polar cone T~ to a subset ' C R™ is given by
T-={veR"|YweT, (v,w) <0}

A locally compact subset K of R™ is a viability domain of a set-valued map
G:R"— R"ifforevery z € K

G(II:) N TK(:L') # 0.

The following formulation summarize several versions of the viability theorem
(comp. [1]).

Theorem 1. Suppose that G : R™ ~+ R™ is an upper semicontinuous map
with compact conves values. Let H(z,p) = supyeq(y)(9,p). For alocally compact
subset K C R™ the following conditions are equivalent:

(i) K is a viability domain of G;
(ii) H(z,—n) >0 for every x € K and every n € [Tk (x)]~;
(iil) for every zo € K there is T > 0 and a solution z : [0,T) = K to the
Cauchy problem
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z'(t) € G(z(t)),
I(O) = Tg-

A locally compact subset K C R™ is called a backward invariance domain of
a set-valued map G : R™ — R™ if for every z € K

—-G(z) C Tg(z).

(2)

Theorem 2. Assume that G : R™ ~» R"™ is a locally lipschitz continuous
map with nonempty compact values and K is a locally compact subset of R™.
Then the following conditions are equivalent:

(i) K is a backward invariance domain of G,
(ii) H(z,—n) <0 for every z € K, n € [Tx(z)]",

(iif) for every xg € K there exists T > 0 such that for every solution z(-)

to (2) we have z(t) € K fort € [-T,0].

3. Main result

We assume that ) C R™ is open, U is a metric space and

f:[0,T|xR*xU —=R", L:[0,T]x R*xU -+ [0,00)
®) { are bounded continuous maps,
@ { f(t,z,u), L(t,z,u) are ¢, z-locally lipschitz continuous
uniformly in wu,
for every (t,z) € [0,T] x {) there is v € U such that
) { (t,,u) € T(a),
© {{(f(t,m,u),L(t,a:,u)+r)ER”XR|uEU, 1"_20}
is closed and convex for every t € [0,T], z € Q,
(7 g:0— RU {+o0} is a lower semicontinuous function.

Let u : [a,b] = U be a measurable control, ¢y € [a,b]. We denote by z( - ; £y, zo, u)
the unique solution to the Cauchy problem

{ ' (t) = f(t,2(t), u(t)
z(to) = z0,

defined on the interval [a,b]. Let us denote by A(tg,z0) = {u : [to,T] = U |
x(t; to, o, u) € Q for every ¢ € [to,T]} the set of admissible controls from the
initial condition (¢o,70) € [0,T] x ©. The value function V : [0,T] x § -
R U {400} for the Bolza problem is given by

T
Vitpaza) = [ Elasatontoymoiyulslids + el s tasal
uc A(to,zo) to
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Having the dynamics f and the integral cost function L of the control system
we define set-valued maps F*, F~ :[0,T]x R" x R~ R x R" x R by

FHt,z,v) = {1, f(t,z,u), Lit,z,u) +7) |u € T,

r € [0,M — L(¢,z,u)]},
F~(t,z,v) = {1, f(t,z,uv), - L{t,z,u) —r) ju € T,

r €0, M — L(t,z,u)]},

(8)

where M is a bound on L.

If (3)-(6) hold true then F'*', F'~ are lipschitz continuous bounded maps and
they have convex compact values.

We denote by S(fp, zo) the set of solutions to the Cauchy problem

2'(t) € F*(2(2)),

Z(t[l) = (tO,EO:O)
defined on the interval [to, T]. Let S,(to,%0) = {z € S(to,z0) | 2(t) € [to,T] X
Q x R for every t € [to,T]}. It is easy to check that z € S, (¢, o) if and only

if there exist u € A(to,zo) and a measurable 5 : [ty,T] — [0,+00) such that
L(s, z(s; 10, %0, 1), u(s)) +n(s) < M and

T
it} = (t,I(t;to,ﬂ‘:osU)aJ{ (L(s,a:(s;tg,:ro,u),u(s))+n(s))d3>.

Proposition 3. Assume that (3)-(7) hold true. Then for every (o, zo) €
[0,7] x Q there is G € A(to, o) such that

T
if T j: L(s,7(s), T(s))ds + g(=(T)),

where Z(s) = z(s; to, Zo, T).

Proof. Since S, (tg,z0) C C([to,T], ") is a compact nonempty set and the
function ¢ : Sy, (to,z0) = R U {+o0}, w(z) = g(z(T)) + v(T), where z(t) =
(t,z(t),v(¢)), is lower semicontinuous, there is an optimal solution z € S, (to, zo)
such that ¢(Z) = inf{p(z) | z € Sy(to,z0)}. If T € A(to, z0), 1 : [to, T] = [0, M]
corespond to Z, then 7 = 0 and

T
Vitsyzs) = f L(s,%(s), T(s))ds + 9(2(T)),

to

where Z(s) = z(s; to, Zo, ) (i.e., W is an optimal control). |
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Proposition 4. Assume that (3)-(7) hold true. Then the value function V :
[0, T]xQ — R is lower semicontinuous and V' is left conlinuous along trajectories
of control system, i.e. if u € A(to,zo) then the funciion t — V(t,z(¢; to, Zo, u))
is left continuous. Moreover,

liminf  V{tn,yn) = V(0,y)

tn =0T Y =y, yn €Q
for every y € {1,

Proof. Let t, — to and ©, — xo. We choose Z, € S,(tn,z,) such that
w(Zn) = V(in, z,). Passing to a subsequence we obtain Z,, tending to a solution
7 € Sy(to, %o). Obviousily Tp, (T") = T(T') and Uy, (T') — O(T"). Thus V(tp,z0) <
0(z) < liminfgeo @(Zn,) = lminfy_ oo V{tn,,zn,), which implies that V is
lower semicontinuous.

Fix 7 € (to,T) and a sequence t, — 7~. We denote by z,(-) = z(-;to, To, )
the solution corresponding to the control w. Let @ € A(7, z,(7)) be an optimal
control. Setting

wnlt) = { u(t) fort € [tn,T),
u(t) forie€[r,T]
we obtain z(8;tn, Zu(tn), Un) = 2(8;tm, Lu(tm), m) for 8 € [ta, T1N [ty,T] and
x(8; tn, Tu(tn), Un) = 2(8; T, 4(7),T) for s € [r,T]. Hence

T
limsup V (tn, Tu(in)) < lim L(s,z(8;tn, Tu(tn), un), un(s))ds

n—+co fsRed tn

+ g(x(T; tn, Zu(tn), un))

T
=f Lis,z(s; 7, 24(7), W), T(s))ds
+9(z(T5 7, 2u(7), 7)) = V (7, 2u(7)).
Combining it with the lower semicontinuity we obtain that V is left continuous
along trajectories.

Fix y € O and let @ : [0,T] — U be an optimal control for initial conditions
(0,y). Then

V(s,z(s;0,9,3) = V(0,y) — ’ L{r,z(7;0,y,%), w)dr.
0

Clearly lim,_,o+ V(s,z(s;0,y,%)) = V(0,y). This and lower semicontinuity of V'
end the proof. O
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Proposition 5. Assume that (3)-(7)) hold true. Then the epigraph of the
value function over [0,T) x ), i.e. the set Ko = {(t,z,v) |t €[0,T), z€Q, v >
V(t,z)} is e viability domain for the set-valued map F'~.

Proof. Fix (to,zo) € [0,T) x Q. By Proposition 3 there is an optimal control
u e A(tg,iio), i.e.

T
V%wd=£‘ﬂaﬂ$ﬂﬂwwwﬁﬂm

where (- ) = &( - ;to,20,T). If vo > V(to,z0) then the function

2(t) = (t,'f(t),vo + ﬁ ; —L(s,f(s),ﬂ(s))ds)

is a solution to 2’ € F~(z). Observe that

t T
vo + f ~L(s,%(s),u(s))ds > j: L{s,Z(s),u(s))ds + g(T(T)) = V(t,Z(t))-

to

Thus, z(t) € Ko for ¢ € [to,T). By Viability Theorem (Theorem 1), we obtain
the desired conclusion. O

Proposition 6. Assume that (3)-(7) hold true. Then the epigraph
Dy ={(@,%v) |t (0,T],z€Qandv > V(i,z)}
of the function V restricted to (0,T]x ) is a backward invariance domain for F~.

Proof. Let tg € (0,T), zo € € and vo > V(to,%0). There is € > 0 such that
for every measurable u : [tg —&,%9] — U the solution z,, : [to — €, o] = R™ of the
Cauchy problem

' (t) = f(t,2(t), u(t)),
27(15[}) =Xy

satisfies x,,(t) € Q for ¢ € [to — £,10]. Let

¢
w(®) =+ [ ~Lis,a(s), u(s))ds
to

and @ € A(ty, zo) be an optimal control. Fix t; € [to — &, 0] and let z1 = 24 (t1).
Define

u(t) fort € [t1,t0),

ui(s) =9 _
a(t) for ¢ > tp.
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We have uy € A(t;,z1) and

T
V(tlﬂ ZL‘]) < / L(SJ :D(S; t1,%1, ’Ll.]_), TLl(S})dS + g(ﬂ?(T, 1, 21, ul))
(9) .

tg
=/ L(s,z(s5t1, 21,u1),u1(8))ds + V(to, zo) < vult1).
i1

If 2(t) is a solution to the differential inclusion 2'(t) € F~(z(¢)) defined on the
interval [to — &, to] and z(to) = (to, o, vo), then there is a control u : [tg —&,to] —
U and a measurable function 5 : [ty — &,te] — [0, M] such that

i
20 = (taut), ) - [ o)),
to
By (9), we obtain z(z) € Epi(V). From Theorem 2, we get the conclusion. O
Proposition 7. Suppose that (3)-(7) hold true and W : [0,T) x Q@ — RU

{+o0} is a lower semicontinuous function. If W(T,z) > g(z) for x € Q and
K ={(t,z,v) |t€[0,T),z € Qv > W(t,z)} is a viability domain of F~ then

W (to, z0) 2 V(to, o)
for every (to,xo) € [0,T] x Q.

Proof. By Theorem 1, there is a K-viable solution z : [tg,t;) = R™"2 of
the Cauchy problem 2’ € F~(z), z(t) = (to, o, W (t0,20)). There is a control
u € A(to, zo) such that z(t) = (£, 2y (t), vu(t)), where z,(t) = z(¢; 1o, o, u) and

¢

0ult) = Wltora0) = | (L(s,24(), () +(s))ds
to

for a nonnegative measurable function 5. Setting n = 0 we get another K-viable

solution denoted again by z. We have

v = lim v, (t) > liminf W(t, z,(t)) > W(t1, zu(t1)).

t—=t] t—iy
The solution z(-) can be extended onto the interval [tp, T’ and
b
Witoy0) = [ L(s,u(s),u(e))ds 2 W(T, (1)) 2 g(ou(T))
to
Hence

T
V(to, o) < f L(s,24(s),u(s))ds + g(z4(T)) < W (to, 7o),

o

which completes the proof. 0
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The following assumption plays the crucial role in the remainder of the paper
vt € (0,T], Vz € 092, Ju € U, —f(t,,u) € Int(Cq(z)),
where Cq(z) denotes the Clarke tangent cone to  at z. Using Proposition 13
(page 425) in [3] we obtain
Proposition 8. If w € Int(Cq(z)), then there is R > 0 such that for every
y € QN B(x, R) we have

v+ (0, R)B(w, R) C Q.

Corollary 9. Assume that (3)-(7) and (10) hold true. Then for every
(to,y0) € (0,T] x Q there is a sequence (t,) tending to ty from the left and
a sequence (yn) C Q convergent to yo such that limy_yoo V(tn, ¥n) = V{to, 30).

Proof. By (10), there is @ € U such that — f(to,0,%) € Int(Cg(y)). There is
g > 0 such that T(t) € Q for ¢ € (to — €, ¢o), where T is a solution to the Cauchy
problem
#'(t) = £, 2(t), @),
{ .I‘(tg) = yo-
Setting yn = Z(tn), tn — ty, by Proposition 4, we obtain limy_e0 V(tn,yn) =
V(to, yo)- o

Proposition 10. Assume that (3)-(7) and (10) hold true. Let W : [0,T] x
) — RU {+o0} be a lower semicontinuous function such that

lim inf W (tn,yn) = Wto,u0)  for (to,0) € (0,T] x 0.

ta—+ty . Yn—Y0,Yn XL

If the set D = {(t,z,v) |t € (0,T), z € R aendv > W(t,z)} is a backward
invariance domain of F~ and W(T,z) < g(z) for x € Q, then

W (to, m0) < V (fo, o)
for every (to, o) € [0,T] x Q.

Proof. Fix T € (0,T), T € Q, u € AL, T). Let z,(s) = (s;1,%,u) and
Uy : [to,T] = R solves the Cauchy problem

{ v'(t) = —L{t, 2u(t), u(t)),
v(T) = g(zu(T)).
We show that

(11) W(fj Iu(z)) < Uu(z)-

20 — Diflferential...
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Let

to = inf{t € [£,T] | :E%"](W(S’M(S}) — vu(s)) < 0}.

There is a sequence (5,) C [to, T], sn — to such that W (sn, zu(sn)) < vu(sn).
Since W is lower semicontinuous we have

W(tﬂafﬂu(tﬂ)) < linniioréfW(sn,mu(sn)) < nlggovu(sn) EE 'Uu(tﬂ)-

We claim that o = . Indeed suppose for a moment that to > &.

We denote 1o = zy(fo). Let T € U be such that (10) holds true and set w =
—f(to, 40, T). By Proposition 8, there is R € (0, 1) such that 5+ (0, R)B(w, R) C
Q for every y € 0N B(yo, R)- It follows that if y € @ N B(yo, R), r < R and

(12) |z — (y +rw)} <rR

then z € Q. There are sequences (t,) C (f,%0), (¥n) C Q such that £, — {o,
Yn — o and W (tn,yn) = W(to,%0). Let M be an upper bound of |f(t,z,u)|.
We set £ = (3/R)(|yn — Yo| + (to — ta)) Moreover, we choose € € (0, — ) such
that

(13) (M +2)(e 1) < %,

where [ is a lipschitz constant to f(-,-,u) and L(-, -,u). Define u, : [to —
€,tn] =+ U by

(s) T for 5 € [tn — &n,tnl,
un(s) =
" u(s +&n + (to —tn)) for s € [to —&,tn —&n].

Define z,(s) = 2(8;tn, Yn, un) for s € [to — €,t,]. We show that for sufficiently
large n, z,(s) € Q for s € [to — &,ty]. For s € [ty — &n,tn] we have

in
f(T: -Tn(T)iﬁ) - f(t[)a yo,ﬁ}d‘l'

5

tn
g/ I(tg — 1) + (M (tn — 7) + |yn — yo|)dr

|za(s) = (yn + (tn — s)w)| =

< (G0 + Ven +1(¢ = 1)+ Iy = 0D ) = 5.
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For n sufficiently large we have (1/2)I(M + 1)e, +I((t — tn) + |yn — vo| < R. By
(12), we obtain z,(s) € 0. Now, we take s € [ty — &, %, — &,]. Then

[2n(8) = (@5 + En + (to — tn)) + Ent)] = yn + f R

n

s /s F(T20(7),u(T + €5 + (fo — ta)))dr
tn~—tn

- (yo + [Hsﬂﬂto_tn) Fr,zu (1), u(r))dr + Enw) ‘

to

tn
<lon=vol+ [ 1f(r,2alr),W) +uldr

tn—En

+ [ G (o = tn) + ey + (o — t) + £2),
w(T + (to — tn) + &n)) — f(7,20(7), u(T + (to — tn) + €4))|dT

tn
<figi, —g0] f K(to = ) + [yn — Yo| + M(tn — 7))dr

tn—En
tn—En
+ / Koo~ t) R =56, = il
8
£
<l = ol + [0 = )+ I = w0l + SO + 1)
tn—En
+[ U(to — tn) + &n + Yo — Yn| + enM)elEn=en~T)gr
s

< {02l it = ) + b0 =3 + 100 + )

- n
4 [(to —tn) + |0 — Ynl
En

+ (M + 1)] (e’® — 1)}3,1.
Hence, for sufficently large n
|Zn(8) = (Tu(s + €n) + eqw)| < Rep.

By (12), we obtain z,(s) € Q for s € [top — &,t, — &,]. Since D is a backward
invariance domain of F~ and z,(t) €  for ¢ € [top — &,ty], then z,(t) € D for
t € [to — &,tn], Where z,(t) = (t,2n(t), W (tn,yn) + ftt,, ~L(s,%n(8), un(s))ds).
Hence

W (t, 2n() < W (tnyym) + ] " L(8, n(5), un(s))ds.
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We have

in to
[L(s,a:n{s),un(s))ds—] L, 2uls), ule))ds
i t

<

/ " Bl el A f ’ s, ,00) )} i
t

t+ent(to—ta)

tn iten+(to—1tn)
[ 1), un(olds + f IL(s, Zu(s), u(s))|ds

tn—=En

< [ en (o = 1)+ llon(9) = (s + 0+ (o — s
t
+ M(2en + (to ~ tn))

tn—€n
<elen + (to — tn)) + f (en|w| + Ren)ds + M (2e, + (to — tn)).
i
The expression in the last line tends to zerc as n —+ co. Thus
W(t, 2, () <Uminf W (2, z,(2))
n—+co
tn
< lim W(tn,un) + L(s,zn(8),un(s))ds
n—+co t

— W0y 10) + f " Lis, zu(s), u(s))ds < v (0

t

which completes the proof of (11). Since u was arbitrary,

_ T
WED) < int [ L(s, zu(s), u(5))ds + g(@u(T)).

It remains to consider the case # = 0. Consider a sequence t, — 0%, yn = ¥,
€ 0 such that V(0,y) = limp—yoo V(tn,yn). Then W(tn,yn) < V(tn,yn).
Since W is lower semicontinuous, we get

W(0,y) <V(0,y).
O

Let W : [0,T] x Q0 — R U {+co} be a lower semicontinuous function. We
extend W to W onto [0, T] x R" setting Wi, z) = +oo for ¢ 0. If W (to,z0) <
oo then the subdifferential 8_W (to, zo) of W at (to, o) is defined by

{p e Rt | liminf W (t,x) — W (to, zo) — {p, (t — to, T — Zo)) > 0}_
(t,z)—+(to,z0) |(t = to,z — To)|
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The subdifferential 8_W (to,zo) of W at (to,z) € (0,T) x Q relative to € is
given by

{P c Rn-l—l } lisrinie 3 W(ta :E) — W(to,l’o) - ((p: (t,m‘) - (t(),fL'[))) > 0}
(t,@)—+(to.o),c €L |(t = to, = — z0)|

Obviousily BW(tg, zo) = W (tg,9). It is well known that p € 8%(&3, zg) if and
only if there exists a function ¢ € C*(R™*1) such that p = Vi (to, zo) and W—¢
has a local minimum at (fg, o) relative to (0, T) x (. Moreover, p € E?.W(to3 Zp)
if and only if (p, —1) € [Tgpi(w)(to, 20, W (o, 20)]”. To characterize the value
function as a generalized solution to the Hamilton-Jacobi equation we shall use
the following version of Rockafellar’s result (see Lemma 4.2 in [9]).

Lemma 11. Let (p,0) € [Trpiw)(to, Zo, W (to,%0))] ™ de such that p # 0.
Then for every € > 0, there exist t. € [0,T), 2. € Q, p. € R"*! and g. < 0 such
that g. — 0 as € — 0% and
lts _tﬂl <eg, Ims _mﬂl <g |p5 _pl <g, (pEvQE) € [TEpi(W)(tsames W(tsams))]—'

We define H : (0,T) x 2 x R* — R by

H(ts E,p) = sup (f(t,.:r:,u),p) - L(ta T, U)
uels

We summarise obtained results in

Theorem 12. Assume that (3)-(7) and (10) hold true. Then for a function
W :[0,T] x Q = RU {+o0} the following conditions are equivalent:
(8) W=V;
(b) W is a lower semicontinuous function such that W(T, -) = g(-),

liminf W(tn;yﬂ.) = W(ta y)

tn =", Yn =Y, Yn €

for every (t,y) € (0,T] x Q and:

{(t,z,v) |t € [0,T), €, v>Wi(tz)}
(14) { is a viability domain of F~ |

{¢#,z,v) | t€(0,T], z€Q, v>W(,z)}
U5) { is a backward invariance domain of F~;

(c) W is a lower semicontinuous function such that W(T, -) = g(+),

lim inf meﬁg=wmm

tn—t7, Yn—tY, Un€
for every (t,y) € (0,T] x &,

liminf _W(tn,yn) = W(0,y)
tn—0F, yn—y, yn€Q
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for y € Q and:
16 { ¥(t,z) € (0,T) x 8Q, Y(ny,ng) € _W (L, z)
—n + H(t,z,—ng) > 0;
an { V(t,z) € (0,T) x 2, V(ng,n,) € O_W(t, z)
—n¢+ H(t, z,—ng) = 0.

Proof. By Propositions 4, 5, 6, we obtain the implication (a) = (b).
Assume (b). By Propositions 7 and 10, we get

W(t,z) =V(t,z) for (t,z)e€[0,T]x 0.

We prove next that (a) = (c).

From Proposition 4 we obtain the desired regularity of W. The remaining
properties of W follow from (b) (which holds true by the previous part of the
proof). Fix t € (0,T) and z € Q. If (ng,ne) € O_W(¢,z) then (n¢,ng, 1) €
[Tpiqw) (2, W (2, z))] ~. Observe that

(18) Sup((]-) f(t,.’f},u), _L(tu T, U))a (—ﬂ.t, —TNg, 1)) =—ny + H(t,x, _nm)-
uell
Viability Theorem 1 ((i)==-(ii)) and (14) yield
sup ((l?f(ta €Ty ’U.), _L(iuwau))! (Wnia Mg, 1)) 2 0.
uely
According to (18)
(19)  V(,2) € (0,T) x Q, Y(ngyny) € O_W(t,z) | —ng + H(t, z, —ng) > 0.
From Invariance Theorem 2 and (15) we obtain
(20) V(t,.’ﬂ) € (Os T) X ‘Q! V(nt:n’fﬂ) € 8_W(t,x) l —nNg + H(t,.’lf, _nm) <0

Combining it with (19) we get (16), (17).
Now, we prove that (¢) == (a).
STEP 1. We show that (c) implies

(1) { K={(tzv)|te(0,T), z€l, v>W(tz)}
is a viability domain of F'~,

22) { D={(tz,v)|te(0,T), ze, v>W(z)}
is a backward invariance domain of F—;

First observe that (19), (20) hold true. To prove (21) it sufficies to verify the
condition (ii) in Viability Theorem 1 for K and F, i.c.

(23) :gg((la _f(t,.i,",’f.b), —L(t,m,u)), (_pi: —Da, _pv)) 2 0
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for (ptupw:pv) € [TEpi(W)(tnmaw{tzm))]_a (t: ZE) € (O:T) X ﬁ If Py < 0 then
((pe/ —pv)s (pz/—pv)) € O-W (¢, ). By (19), we obtain

e < +H(t,$,;%) > 0,

—Dy —Dv

which implies (23). If p, = 0 then by Lemma 11, there are £, — ¢, z, = =z,
Up —> U, Pt,n — Pty Po,n —F Doy Dun — 0, pu,n < 0 such that

(Pt,mpm,napv,n) € [TEpi{W)(tmem'Un)]

By (19), we have

sug((l, f(tns Ly u)) _'L(tm Tn, ’U,)), (_Pt,n: —Dz,n» _pv,n.)) > 0.
uc

This and assumptions (3), (4), (6) imply (23).
To obtain (22) we have to verify the statment (ii) in Invariance Theorem 2
for the domain D and the right hand side F'~, i.e.

(24) S]ég((l’ f(ta &y U): —L(t,m,u)), (—pf: —Pz, _pv}) S 0

for {Pt,pm,pu) € [TEpi{W)(tamsW(t:-T))]_: (t1$) € (O:T) x . If py < 0 then
((pe/=p0), (p2/—pw)) € O-W (¢, z). By (20), we obtain

m—m+H(t,m,—_&> <0,

—Dv —Pu
which yields (24). If p, = 0, then by Lemma 11, there are £, — ¢, 2, — =,

Up = U, Pt.n = Pty Pan —* Py Pon — 0, Py < 0 such that
(pt,napz,mp'u,n) € [TEpi(W)(tnawmvn)]_'

By (20), we have

sug((l, f(t'm Ty “): _L(tna T, u)), (““pt,m —Pz,ns _pv,n)> <0
ue

We fix v and pass to the limit with n. Using (3), (4), (6) we obtain (24).
STEP 2. Applying Propositions 7, 10 with the time interval [0, T| replaced
by [t,T] with ¢t > 0 we get
W(t,z) = V(t,z) for (t,x) € (0,T] x Q.
For t = 0 and y € ) we have

W(0,y)= lminf _W(,z)= liminf _V(z) =V(0,y),

t—=0tz—y,zEQ t—0+ ,c—y,2e0

which completes the proof. |
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Example 1. Weset T =1, Q@ = {(z,y) | z < Oory < 0}, U = [0,1],
7@ zy,u) = (u,1 —u), L{t,z,y,u) = u and g = 0. We can easily see that (3,
f(t,z,y,u) satisfy (10). The value function V : {1 — R is given by

l—t4+y ifz>0andt—1<y <0,

Vit,2,y) = e
( ) 0 elsewhere in [0, 1] x €.

The function V is a unique discontinuous solution of the Hamilton-Jacobi equa-

tion

_Vt + H(t’ (:E: y), —(VI‘: Vy) = 07

where

P2 ifps—p1+1>0,

H(t: (ﬂ:!y)ﬂ (p13p2)) =
m—-1 ifp—pr+1<0

satisfying the terminal condition V' (1,z) = 0.

[6]

(8]
]
(10]
{11

(12]

(13]

(14]
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ON TOPOLOGICAL DIMENSION OF A SET OF
SOLUTIONS OF FUNCTIONAL INCLUSIONS

Boris D. GEL'MAN

The first work devoted to evaluation of topological dimension of a set of fixed
points of multi-valued maps was a paper [13]. Some other results in this direction
were proved in [5], [10], [14], [15].

An evaluation on a global dimension of a set of solutions of the Cauchy
problem for differential inclusions was obtained for the first time in the paper
[10]. However, in this work restrictions on the differential inclusion were imposed
too strong.

In the present paper some common theorems of topological dimension of a
set of fixed points of multivalued maps are proved and we give applications of
these theorems to an evaluation of local and global dimension of a set of solutions
of the Cauchy problem for the Carateddory differential inclusions and for some
functional equation. The obtained theorems are new and specify results of the
paper [10].

1. Main facts of the theory of multivalued maps

Let ¥ be a subset of a Banach space E, we shall denote
by K (Y) the set of all nonempty compact subsets in Y’;
by Kuv(Y) the set of all nonempty compact convex subsets in ¥.
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Key words and phrases. multivalued mapping, differential inclusion, topological dimen-
tion, rotation of a complety multivalued vector filed.
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The multivalued map (m-map) metric space X in metric space Z is a corre-
spondence associating to each point € X a nonempty subset F'(z) C Z which
is called an image of the point z.

Hereinafter, if images of m-map F' are compact sets, we shall denote it as
follows, F': X — K(Z). Similarly, the denotation F' : X — Kv(Z) means that
images F'(z) are convex compact sets.

Everywhere hereinafter the m-maps are denoted by capital letters, and single-
valued by lower case ones.

Definition 1.1, M-map F : X — K(Z) is called upper semicontinuous in
o point zo € X, if for any open set V C Z, V D F(zo), there exists an open
neighbourhood U of a point g such that F(U) C V. If F is semicontinuous
above in each point z € X then it is called upper semicontinuous.

Definition 1.2. M-map F : X = K(Z) is called lower semicontinuous in
a point 9 € X if for any open set V C Z such that F(zo) NV # ¢ there
exists an open neighbourhood U of the point x, such that F(z)NV # ¢ for any
z € U. I F is semicontinuous below in each point z € X then it is called lower
semicontinuous.

Definition 1.3. M-map F : X — K(Z) is called continuous if it is simulta-
neously semicontinuous above and below.

Definition 1.4. The continuous map f : X — Z is called a continuous
selection of m-map F' if for any point € X the inclusion f(z) € F(z) is
fulfilled.

Definition 1.5. M-map F': X — K(Z) is called completely continuous, if:

(1) F is semicontinuous above;

(2) the set F'(B) is compact in Z for any bounded set B C X.

Definition 1.6. M-map F : X — K(Z) is called strong completely continu-
ous, if:
(1) F is continuous m-map;

(2) the set F(B) is compact in Z for any bounded set B C X.

Let E be a Banach space, X C E, F: X — K(F) is a some m-map. A point z
will be called a fized point of the m-map F if 29 € F(xzo).

We shall explain some results about rotation of completely continuous multi-
valued vector fields with convex compact images in a Banach space.

Let U be a bounded open set in E and F : U — Kv(E) be a completely
continuous m-map. By a completely continuous multivalued vector field (as a
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mv-field) generated F, we call m-map & =i — F : U — Kv(E) defined by a
condition: &(z) =z — F(x).

A mv-field @ will be called non-singular on 8U if 0 g ®(z) for any z € 8U.

The set of all completely continuous nondegenerate on U of mv-fields will
be denoted by R(U, aU).

Definition 1.7. The mv-fields &y, ®; € R(U,dU) are called homotopic
(®o ~ ®,) if there exists a completely continuous map ¥ : U x [0,1] = Kv(E)
such that:

(a) ®o(z) =z — ¥(z,0), P1(z) =z — ¥(z,1) for any = € U,;
(b) = & ¥(z,A) for any xz € U, A € [0,1].
Let Z be a group of integers. There exists the map v : R(U,0U) = Z,
satisfying the following conditions:
(1) if v(®,T) # 0 then there exists a point xp € U such that ®(zg) 3 0;
(2) if ®(z) 3 7 — xo for any z € U then

1 ifxge U,

0 ifxo ¢ U,;

(3) if &g ~ ®; then ¥(Po,U) = v(®1,T);

(4) if ®o(z) C ®1(z) for any z € U then y(®o,U) = v(®,,0);

(5) let {U;j}jes be a set of open nonintersected subsets of U such that

U =U,es Ui if @ € R(T;,8U;) for any j € J then v(®,T;) # 0 only

for a finite number j € J and y(®,U) = Yies v(®,T;).

The number (@, TU) is called rotation of a completely continuous mv-field ® on

’Y(q)?ﬁ) — {

the boundary of the domain U.

Proof of the existence of such a map v and the study of its properties is
contained, for example, in papers [3], [4].

The proof of these and other properties of multivalued maps can be found in
the bibliographies [4], [8], [9]-

2. Topological dimension of a set of fixed points of multivalued map

Let E be a Banach space, U be a bounded open set in E and F : U — Kv(E)
be a completely continuous m-map, ® =i — F € R(U,U). We shall denote by
N(®,T) the set of fixed points F, i.e.

N@,U)={zeU|zeF(z)}={zeU|0¢c &)}.

It is obvious that N(®,T) is a compact set in E. We shall study dimension dim
of this set. The basic properties of dimension dim are explained, for example, in

[1], [6].
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The following statement playing important role in further constructions can
be put forward.

Lemma 2.1. Let X be a metric compact space, dim{X) <n-—1. If E is a
Banach space and T : X — Kv(E) is a lower semicontinuous m-map, satisfying
conditions:

(1) T(z) >0 for eny z € X;

(2) dim(T(z)) >n foranyz € X,
then there exists a single-valued continuous map f : X — E such that f(z) #
0, f(z) € F{z) for any z € X.

The proof of this lemma is contained in [13].
Basing on this lemma we shall prove the following statement.

Theorem 2.2. Let F : U — Kv(E) be a completely continuous m-map,
& =i—FeR(U,0U). Let the following conditions be fulfilled:
(a) 7(8,0) £0; B
(b) there ezists an open neighbourhood V, N(2,U) C V C U, and lower
semicontinuous m-map G : V = Kv(E), dim(G(z)) > n, G(z) C F(x),
foranyz € V.
Iz € G(z) for any z € N(®,U) then dim(N(®,T) > n.

Proof. We assume then to the contrary that dim(N(®,U)) < n — 1. Let
us consider the m-map G; = i — G : V — Kv(E). Contraction of this map
Gy = G1| N(@.T) satisfies the conditions of Lemma 2.1, therefore, there exists the
selection $ =i~ f : N(®,U) — E that 0 # @(z) € G1(z) for any z € N(&,T).
By the Michal theorem about a continuous selection (see, for example, [11]),
there exists a continuous selection ¢ : V — E, o(z) € Gi(z), for any z € V
thate| y(e,7) = @- It is obvious, that w(z) # 0, for any z € V, since 0 & G1(z),
if z ¢ N(®,T).

For any z € V we have the following inclusions: ¢(z) € G1(z) C @(x).

We shall consider a new mv-field &, : U — Kv(E), defined by a condition:

| ela) ifzeV,
@1@)“{@(9;) o gV,

It is obvious, that 0 € ®;(z) C ®(z) for any z € U and ®; is a completely
continuous mv-field. Then, v(®;,T) = v(®(x), U) # 0, therefore, there exists a
point xo such, that ®;(ze) 3 0. However, it contradicts the construction of the
m-map ®;. The obtained contradiction proves the theorem. O
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Corollary 2.3. Let F : U — Kv(E) be a strongly, completely continuous
m-map. If ® = i—F € R(U,0U), v(®,U) # 0 and dim(F(z)) > n for any
x € U then dim(N(®,U)) > n.

The proof implies from Theorem 2.2.

3. Topological dimension of a set of solutions of the Cauchy problem
Let G be an open area in R! x R" such that [to, o + ] x B[zo,r] C G. Let
F:G - Kv(R") be a m-map satisfying the following conditions:
(1) F(¢, -) : Blze,r] = Kv(R™) is continuous m-map for almost all ¢ €
{tg, iy + h];
(2) F(-,): [to,to + h] = Kv(R™) is measurable for all z € B[z, 7];
(3) there exist integrable in the Lebesgue sense non-negative functions

a,b: [to,to +h] — R!
such that for any @ € Blzo,r] the following inequality is fulfilled:

(o [lyll < ot) +0(®) =l

for almost all T € [to, to + h].
We shall consider the following problem:
&€ F(t,z),
.’E(to) = Ig.

By solution of this problem on the interval [to, o +d], 0 < d < h, we shall call an
absolutely continuous function z : [tg,%p + d] — R™ such that #(t) € F(¢,z(t))
almost everywhere and z(tg) = zo.

We denote by X([to,to + d], zo) the set of solutions of this problem on the
interval [to,fo + d]. It is known (see, for example, [4]) that X([to,to + d],zo) is a

nonempty subset for rather small d.
Let U C C[4,t5+4) be an open ball, defined by the condition:

U={z=2() € Co o4 | llzo — 2| <7}
We consider the following m-maps (integral operators)
Sr(z)={y=y(-)€ L[lto,tn+d] | y(t) € F(t,z(t)) for a.a. t € [to, o + d]},

8@)0) = {s0 + [ @ [y(-) € %) .

to
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Proposition 3.1. M-map ® on U satisfies the following conditions:
(a) ®(x) # ¢ for any z;
(b) ®(z) C Ko(Chopora)i
(c) the function x = xz(-) € U is a fizred point of m-map ® if and only if it
is a solution of the Cauchy problem and ||xg — z(-)|| < r.

Proof of this statement is well known and is explained, for example, in [4].
We shall study a continuity of m-map ®, and for this purpose we need the
following lemma.

Lemma 3.2. Let m-map F : G — Kuv(R"™) satisfy the mentioned suppo-
sitions, then for any § > 0, there exists such compact set As C [a,b], that
u([a, b]\ As) < & and the contraction F on As x Blzg, 7] is a continuous m-map.

The proof of this lemma will be carried out similarly to the proof of the
appropriate theorem in [12] (see also [4]).

Theorem 3.3. The operator @ is strongly completely continuous m-map.

Proof. As F is a continuous m-map on second variable, in particular, it
is upper semicontinuous on this variable. It is well known that in this case
the integral operator ® is upper semicontinuous. We need to prove only lower
semicontinuity of this operator.

Let V be an arbitrary open set in space Cl, 4}, = Z(t) € U and § € VN&(Z).
Then there exists £g > 0 such that the open neighbourhood U, (7)) C V. By the
definition of map ®, §(t) = zo + f; u(s)ds, where u(s) € F(s,%(s)), for almost
all s € [a,b].

We shall prove that there exists positive number #n such that as soon as
llz — Z|| < n then V N &(z) # ¢.

We shall denote: ag = f: a(s)ds, by = f; b(s)ds, N = aq + bo(r + ||zo]|). We
select now compact set A, satisfying Lemma 2.5 so that p([a,b] \ A) < g¢/6N.

Let us denote by F a contraction of m-map F on set A x B[z, r]. If the
map F has compact images then from a continuity of this m-map follows its
continuity as a map in the metric space (K (R™), h), where h is the Hausdorff
metric (see, for example, [4]). If any continuous map of a compact set in metric
space is uniformly continuous map then there exists such a number 5 > 0 that
as soon as

[ty —ta] <m, ||z1 — 22| <9, (ti, x:) € A x Blzo, 7], i = 1,2,

then
=)
W(F(t1,21), F(’?Jz)) < 30b—a)
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We consider the map z = z(t) € U such that ||z — Z|| < 5. Then the set

M () = F(t,2(£)) N Uteo(ao—ay) (u(®)) # ¢

for almost all + € A. It is easy to see that the m-map M : A —+ R" is a
measurable one. Then M has the measurable selector vg = vo(t), i.e. v is a
measurable map and vg(t) € M (¢) for almost all £ € A.

Let v; = v; (¢) be an arbitrary measurable selection of m-map

P: ([a,b] \ A) —» R", P(t) = F(t,z(t))-
We consider measurable map

= vp(t) whent € A,
| w (t) whent € [a,b] \ A.

It is obvious, that v(t) € F(f,2(t)) at almost all ¢ € [a,b]. Let y(t) = zo +
f;’v(s)ds. It is obvious, that y € ®(x). We will show now, that y € U, (¥).
Really,

b
ly -3l < f luls) = v(s) lds
< fA lu(s) ~ w(s)llds + [[u’bm lhu(s) — v(s) |ds
< p(A)g({%zj + p([a, b] \ A)2N < .

Therefore, ¥ € (®(z) NV) and that proves the theorem. O

Lemma 3.4. Let F : [a,b] = Kv(R"™) by a measurable m-map, there exists
a measurable set A C [a,b] such that for any ¢t € A, dim(F(t)) > 1. If u(A) > 0,
for any whole positive number m, there exist the measurable selections {z;(- )},
m-maps F linearly independent on [a, b]. |

Proof of this lemma is contained in [10].
Theorem 3.5. Let F satisfy the conditions (1), (2), (3). Let the set
A= {t € [to,to + h] | dim((F(¢,z)) > 1, for any z € Blxo, ]}

be measurable and

h—0 h

Then there exists such a number By that for any 3, 0 < 8 < fo, the set

T = X([to, to + O], zo) # ¢,

> 0.

22 — Differential...
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and the dimension dim(%¥) = oo.

Proof. Let us consider @(t) = f:o a(s)ds and b(t) = ffo b(s)ds. T}ley are
continuous, non-negative, monotonically growing functions, and @(ty) = b(lg) =
0. We choose 8, > 0 so small, that @(8)/(1 —E(ﬁl)) < 1. Let U C Clig,t9+0]1
0 < B < 31, be a set defined by a condition:

U={z==(")

llzo —2z(-)Il <7}

We consider an integral operator ® : U = Kv(Clsy 4044))- If 2(-) € @(z) and
z(t) = o+ f:) y(s)ds, where y(s) € F(s,z(s)) at almost all s € [to, ¢+ 3]. Then

B B
< f a(s)ds +r b(s)ds < 7.
to

to

=l = | [:y(s>ds

Therefore, ® : U — Kv(U) and it has not fixed points on 8U.

Since
}E_Iﬂ] (AN [t‘;; to + h])
then there exists a number 8> > 0 such that for any f > 0 and 8 < 8o, u(AnN
[to, to + B]) > 0.
Let o = min{p1,52},0 < B8 < Bo. Then & : U C Clto to+p) = Kv(U) is

strongly, completely continuous m-map.

>0,

We show that for any natural number m and for any € U the topolog-
ical dimension dim(®(z)) > m. For this purpose, due to convexity of the set
®(z), it is enough to prove existence m + 1 of the linearly independent point
z0(+), +  2m(-) € B(x).

As due to Lemma 3.4 m-maps F,(-) = F(-,z(-)) : [to,to + 8] = Kv(R")
has m+1 linearly independent selection {y;( - )}, then z;(t) = zo+ fti yi(s)ds,
i=0,1,---,m, lay in an image ®(z) and are linearly independent.

Then, due to Corollary 2.3, we have:

dim(N (i — 8,7)) = dim(Z) > m

for any m. Therefore, dim(X) = oo, as was to be proved. o

4. Local properties of dimension of the
. set of fixed points of multivalued maps

We shall consider local properties of dimension of the set N(®,U). Let U be
a bounded open area in E and ® =i — F € ®(U, 8U).
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Lemma 4.1. Let X be a metric space and F : X = Kv(E) be a lower semi-
continuous m-map. Then for any point o € X and any integer n < dim(F(xg))
there exists € > 0 such that for any point € U (zg) an inequality is carried out:
dim(F(z)) > n.

The proof follows from the Michael Theorem.

Theorem 4.2. Let F : U — Kuv(E) be a strongly, completely continuous
m-map and xg € U be a fized point of m-map F. If there exists an open neigh-
bourhood W C U of the point zo and completely, continuous selection f : W — E
m-maps F such, that:

(1) the point zo is a unique singular point of o completely, continuous field
@ =d=f;
(2) ind(p, zo) # 0,

then for any € > 0, the dimension
dim(N, (i — F,U)) > dim(F(zp)),
where Ny, (i — F,U) = {z € N(i — F,U) | ||z — =] < €}

Proof. Since the dimension dim is monotone (see, for example, [1]), it is
enough to prove this inequality only for rather small € > 0.

Note, that due to lower semicontinuity of m-map F, for any number n <
dim(F(zg)), there exists & > 0 and neighbourhood U, (o) C Us,(xp) C W
such that for any = € U, () the dimension dim(F(z)) > n.

We shall consider &, 0 < ¢ < g5. Let V = U, (zo), F : V = Ku(E) be
defined by the condition:

_ (F@ i |lo - aoll <,
F(x) =94 ||z —zo|| — ¢ -

€0 — ||z — zol| :
x)+ —————F(2) ife<|lz—x0]| < eo.
2 (w) + 2 EEPUR) e < o —aoll < oo

It is obvious, that F (x) C F(z) for any z € V, F is completely continuous
m-map, and the following inclusion is fulfilled:

NG —F,V)C N(i—FV) C Nggeoli — F,T).

Note also, that dim(?(m)) =dim(F(z)) forany z € V. As ﬁ(w) = f(z) # = for
any x € 3V then all conditions of Corollary 2.3 are carried out, hence,

dim(Nyq e, (i — F,T)) > dim(N (i — F,V)) > n,

it proves the theorem since number n was taken arbitrary. O



172 Bonis D. GEL’MAN

Corollary 4.3. Let F be a strongly completely continuous m-map, let there
exist such an open neighbourhood W of the point zo € N(i — F,U), W C U, that
for any x € W the point zo € F(x). Then

dim(Ny, (i — F,U)) > dim(F(z9)) -
for any e > 0.

Proof. As a selection f we take the map f : W — E such that f(z) = .
It is obvious, that z¢ is a unique fixed point f and ind(i — f,2¢) = 1. Now the
validity of this statement follows from Theorem 4.2

Let ® =i — F : U = Kvu(E) be a strongly completely, continuous mv-field,
zo € N(®,U) C U. We shall consider function 8(z) = p(zo, F(z)).

Theorem 4.4. If there exists eg > 0 such that for anyz € U, ||z —z0|| < €0,
the following inequolity is fulfilled
Blz) < kllz —zoll,  k€0,1),
then dim(N,, .(®,B) > dim(F(zo)) for any e > 0.
For the proof of this theorem we need the following lemma.

Lemma 4.5. Let conditions of the Theorem 4.4 be fulfilled, then for any
number ki, k < ki < 1, there ezists a continuous map f : U (o) = E satisfying
conditions:

(a) f is a continuous selection F,
(b) llzo = f(@)Il < kallz — @ol| for any z € Ue, (o).

Proof. Let the number k; satisfy an inequality k < k; < 1. We consider the
number A € (0, (k; — k)/k] and the function a(x) = (1 + A)3(z).
Then the m-map F; : U, (z0) = Kv(E) is defined as follows

F(z) ={y € F(2) | lly — 0|l < e(z)}.

It is obvious, that Fy(x) # ¢ for any x and is a convex closed set. It is easy to
prove also that m-map F; is lower semicontinuous. Therefore, it has a continuous
selection f.

Then for any = € U, (zo) an inequality is fair:

llzo — f(@)I| < elz) = (1+ N)B(z) < kullz — zo.
The lemma is proved.

Proof of Theorem 4.4. It is enough to check fulfillness of conditions of The-
orem 4.2, where f satisfies two conditions of Lemma 4.5.
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It is obvious, that ¢(z) = z — f(z) # 0 for any z # zq, and p(zy) = 0. And,
()] = (1 — E1)||z — zol| for any z. Note, that ind(p,zg) = 1, i.e. f maps a
ball Blzg,¢] into itself. Therefore, all conditions of Theorem 4.2 are fulfilled, so
it proves the theorem. O

Corollary 4.6. Let the completely continuous mu-field ® =i - F . U —
Ku(E) be nonsingular on 8U and satisfy conditions:

(a) N(2,0) # ¢,

(b) F is contracting, i.e. for any =,y € U an inequality is carried out:

R(F(z), F(y)) <kllz-yl, 0<k<l.

Then for any point zo € N(®,U) and any number ¢ > 0 we have:

dim(Ny, (8, T)) > dim(F(zo)).

Proof. Let 79 € N(®,U), i.e. zg is a fixed point of m-map F. The following
inequality takes place:

p(zo, F(z)) < h(F(zo), F()) < k| — 20|

for any x € U. If the field ® is continuous and completely continuous, then
validity of this statement follows from Theorem 4.4. O

5. Local dimension of the set of solutions of
the Cauchy problem for differential inclusions

We apply the theorems, proved in the previous paragraph, to study local
dimension of a solutions set of the Cauchy problem for one class of differential
inclusions.

Let G be an open area in R! x R™ such that [to, %y + h] x B[zg,7] C G. Let
F: G = Kv(R™) be a m-map satisfying the following conditions:

(1) F(t, ) : Blzo,7] = Kv(R™) is Lipschitzian with a constant « for almost
all ¢ € [to,to + h],

(2) F(-,z): [to,to + h] = Kv(R™) is measurable for all z € B[z, 7],

(3) there exist integrable functions a,b : [to,to + h] — R! in the Lebesgue
sense such that for any = € B[xp,r] the following inequality is carried
out:

< a(t) + b(t
,Sax iyl < a(t) + (&)l

for almost all T' € [to, o + A
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We consider the following problem:
i € F(t,z),
z(to) = To.

Let us denote by X([to, to+d], Zo) a set of solutions of this problem on the interval

[to,to +d].
Let U C Cly,t0+4) be an open ball defined by the condition

U={z=2(-) € Clipto+a) | llzo —x|| <7}.
As well as in Section 3, we consider the following integral operators: S and @.
Proposition 5.1. The m-map ® is Lipschitzian on U.
The proof of this statement is explained in [10].
Theorem 5.2. Let F' satisfy the conditions (1), (2), (3). Let the set
A= {telto,to+h]| dim(F(t,z) > 1, for any z € Blwzo,r]}

s measurable and

i P(AD 0,10+ B])
h—0 h

Then, there exists such a number By that for any B, 0 < B < By, the set

Y =Z([to,to + B8], m0) # ¢

> 0.

and for any € > 0 and any solution y € I dimensionality dim(Z, ;) = co, where

Tye={z€Z||lz-yll <e}.

Proof. We consider a(t) = fti: a(s)ds and b(t) = j:o b(s)ds. They are con-
tinuous, non-negative, monotonically increasing function and @(ty) = g(to) =0.
We choose 3; > 0 so small, that

a(By)

1-5(81)
Let U C Clip,t0+8), 0 < B < B1 be a set defined by the condition:

U=A{z=2z()]|llzo—a(-)l| <r}.

We consider an integral operator @ : U — Kv(Cly 4o+4))- If 2(+) € ®(z) and

z(t) = zg +f y(s)ds,

to



ON TOPOLOGICAL DIMENSION OF A SET OF SOLUTIONS OF FUNCTIONAL INCLUSIONS 175

where y(s) € F(s,2(s)) at almost all s € [to, o + (] then

/ﬁ:y(sws

Therefore, ® : U — Kv(U) and has not fixed points on 6U.
We select By so small that afs < 1, where « by a constant of the Lipschitz
of m-map F. Since

B1 £1
< f a(s)ds+r b(s)ds < r.
t(} t0

||Z—$0||ﬁ‘

lim ulAn [tg,f.‘o + k]
h—0 h
then there exists such a number f3 > 0, that for any 3, 0 < 8 < 5 we get
w(A N [te,to + B]) > 0. Let By = min{B1, 82,0}, 0 < B8 < Bo. Then @ : U C
Clto,to+-8] = Kv(U) is completely continuous contracting m-map.

>0,

We show now that for any natural number m and for any z € U topo-
logical dimension dim(@(z) > m. For this purpose, due to convexity of a set
&(x), it is enough to prove existence m + 1 of a linearly independent point
ZU(')':"' ,Zm(') € q)(x)

As due to Lemma 3.4 the m-maps F(-) = F(-,z(-)) : [to, to+6] — Kv(R™)
has linearly independent selections {y;( -)}i%,, then

t
zi(t) = zo +f yi(s)ds, i=0,1,---,m,
to

lay in an image ®(z) and they are linearly independent.
Then, due to Corollary 4.6 we have:

dim(Ny,« (i — @,7)) = dim(Z,,¢) > dim(@(y)) > m

for any m. Therefore, dim(X, ) = oo, as was to be proved. 0O

6. Of dimension of a set of solutions of some operator equation

Let By, Es be two Banach spaces a : By — FEs be a continuous linear sur-
jective operator and f : By — E2 be a completely continuous operator. We
consider the following equation:

a(z) = f(=).
We denote by N(a, f) the set of solutions of this equation i.e.
N(a,f) = {z € E1 | a(z) = f(2)}.

In the [15] the following theorem is proved.
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Theorem 6.1. If the set f(E;) is rather compact, then the set N(a, f) is
not empty and dim(N(a, f)) > dim(a=1(0)).

We will be interested in local dimension of the set N(a, f) in the neighbour-
hood of some fixed solution of the given equation.

Let zp € N(a, f) be some fixed solution of our equation and yo = f(zo) =
a(zo) € Es. We consider multivalued map a™* : Fy — E;. It is known that this
map is lower semicontinuous therefore it has the continuous selector g : By — By
such that g(yo) = zo. The following theorem takes place.

Theorem 6.2. Let the multivalued map a™! have a continuous selection g

satisfying conditions:

(1) g(yo) = =0,

(2) the point yo is an isolated fized point of the completely continuous map

p=fog:Ey — Ey,

(3) index ind(i — p;yo) # 0.

Then
dim(Nz, e (a, £)) > dim(a™(0)),

where Nwo,E(a7f) = {z € N(a, f) I ”E —zo|| < e}

Proof. Let number n be such that 0 < n < dim(a~'(0)). Then in the
subspace Ker(a) = {z € E; | a(z) = 0} there exist n linearly independent, unit
vectors ey, es,... ,e,. We shall consider the space F3 = E3 x R™ and multivalued
map F : B3 — Kv(Es3) defined by a condition:

P) = {(e0) 1= 1 (0 +;ee) ver, bl <7,

where u = (£1,82,..-,&). It is easy to note that this multivalued map is
strongly, completely continuous.

Easily to check also that the point (y,u) is a fixed point of map F, in the
only case, when the following two conditions are carried out:

(1) u€ R, |lufl <m,

(2) a(g(y) + 21, &ied) = fa(y) + iy &ies) = w.
Remark that map g : Es — E1, §(y,u) = g(y) + > 1, &ei, is a bijection. Really,
if (y1,u1) # (y2,uz) then §(y1,u1) # §(y2, uz). Thus, different fixed points of the
map F due to the map g different solutions of our initial equation correspond. It
allows, for studying the dimension of a set of solutions of our equation, to apply
the theorems of dimension of a set of fixed points of multivalued maps. We shall
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consider the selection of the multivalued map F' defined by a condition:

by, u) = (f (g(y> ; §§)0>

It is obvious that b : B3 — E3 x 0 C E3. Fixed points of this map are pairs
(y,0), where the point y is a fixed point of the map p = fog: Ex — Es.
Due to conditions of the theorem, the point (yg,0) is an isolated singular point
of a completely continuous field of vectors ¢ — b, and, due to the theorem of a
contraction, ind(i — b, (y0,0)) = ind{i — p,yo) # 0.

Let U be an arbitrary limited open neighbourhood in space Es, 1o € U. We
shall consider an open set W = U x U, (0) C Es, where U,(0) by an open ball
in space R". It is obvious that the map F is defined on W and satisfies the
conditions of Theorem 4.2 Therefore, dim(N(y, 0),6(i — F, W)) > n for any é > 0.

We shall fix arbitrary positive number £ and we shall show that the set
Ny, e (@, f) contains a compact set of dimension greater or equal to nn. As the map
g is continuous in a point yo, then there exists such § > 0 that ||g(vo) — g(v)|| <
€/2 as |ly — yo|| < 6. Without loss of generality it is possible to consider that
§<ef2.

It is obvious that the set Ny, 0)s(i — F,W) is compact, and as map § :
Niyo,0),6( — F,W) — E; is a bijection, then g is a homeomorphism on a range
of values. Due to mentioned constructions, §(N(y, 0),6(i — F, W)) C N(a, f), and
if (y,u) € Niyo,0),6(i — F, W),

n ™
o = 3w, w)ll = ||z = () — D &ies|| < llgwo) — o)l + Y& <&,
i=1 =1
ie.
G(N(yo,0),5(i — F,W)) C Neg (g, f).
This inclusion proves the theorem. O
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ACCESSIBLE POINTS AND SUBMANIFOLDS OF
MECHANICAL SYSTEMS WITH SET-VALUED
FORCES ON RIEMANNIAN MANIFOLDS

YURI GLIKLIKH

In this paper we put together the results, published in [5]-[13], on qualitative
behaviour of solutions of the second order differential inclusions on Riemannian
manifolds given in terms of covariant derivatives. We study the question of
whether or not two points me and m, in the configuration space can be connected
by a solution. Those inclusions appear naturally, e.g., in non-linear mechanics
through the approach to investigation of differential equations with discontinuous
right-hand sides, suggested by A. F. Filippov (here we modify the approach in
such a way that we cover the case of mechanical systems with discontinuous forces
on Riemannian manifolds). Note that the equation of motion of a mechanical
system with control may also be presented in terms of differential inclusions of
the same type, and for such systems the problem under consideration means
whether they have property of global controllability.

For mechanical systems with non-holonomic constraints the natural question
is to achieve a certain submanifold in the configuration space. We consider this
problem at the end of the paper.

It is a well-known fact that for a second order differential equation on the
Euclidean space there exists a trajectory joining two given points provided that
the right-hand side of the differential equation is bounded and continuous. More
precisely, for any two points o and m, and any interval [a, b], there exists a
solution m(t) such that m(a) = mo and m(b) = m;. When the right-hand side
is linearly bounded with respect to velocities, some similar results are known for

1991 Mathematics Subject Classification. 58C06, 58C30, 58Z05.
Key words and phroses. Differential inclusions, Reimannian manifolds, geometric mecha-
nics.
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small intervals of time. The situation becomes much more complex for a non-
linear configuration space. In Section 2 below we illustrate this by three examples
of mechanical systems on two-dimensional sphere. In the first example, the force
field is smooth and independent of time and velocity (and so it is bounded).
However, none of the trajectories beginning at the North Pole reaches the Scuth
Pole. In the second example, the force field is still bounded, autonomous, and
smooth but now depends on the velocity. In this case there is no trajectory
connecting any two antipodal points on the sphere. In the third example, we
consider a gyroscopic force on S2. (Hence, the force field is linear in velocity.)
The behavior of trajectories in this system turns out to be quite similar to the
second example.

The difference in the behavior of trajectories on flat and “curved” config-
uration spaces has a deep geometric reason. Notice that antipodal points on
two-dimensional sphere are conjugate along all geodesic curves joining them.
Below we show that if the (set-valued upper semicontinuous and having convex
closed images) force field is bounded or has linear growth in velocity, then for
any two points mg and m;, there exists a trajectory joining mg and wm; provided
that the points are not conjugate along some geodesic. The fact that conjugate
points are absent on flat manifolds (e.g. in Euclidean spaces) leads to the classi-
cal result mentioned above (cbviously continuous single-valued force satisfies the
above conditions). Analogues of these statements for systems with constraints
are also considered.

For studying the qualitative behaviour of solutions we use some analogue of
integral operators on manifolds, based on Riemannian parallel translation (see
[11]-[13] for details). Alternative idea, to use the theory of set-valued dynamical
systems, leads to various set-valued maps with complicated structure of images'
and cannot be applied here.

1. Mechanical systems with discontinuous forces and
systems with control. Differential inclusions on manifolds

Consider a mechanical system with a discontinuous force field. Such fields
appear, for example, in systems with dry friction, switching, or with motion in
several media having different resistance forces, etc. When the configuration
space is linear, the following method (suggested by A. F. Filippov) is often used
to study systems with a discontinuous force: first, one extends the discontinuous
force field to a set-valued vector field with convex images, and then passes from
a differential equation of motion to a corresponding differential inclusion. In this
section, we generalise this method to non-linear configuration spaces.

Note that the equation of motion of a mechanical system with control may
also be reduced to a differential inclusion. In this case, the set-valued force, a

INote the class of aspherical set-valued maps appeared in dynamical systems. This class
was discovered in [15], in [2] the topological degree and Lefschetz number were constructed
for it. Recently this class together with the degree was rediscovered and named uv-maps (see

e.g. [14]).
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subset in every tangent space, is formed by all values of the force for all possible
values of the controlling parameter.

Consider a locally bounded vector field f on a finite-dimensional manifold M.
The vector field f is not assumed continuous, nor even measurable. For any point
my, let us define a subset R(mg) C Ty M as follows. The set R(myp) is formed
by the limits of all sequences f(my) as my — mg with my #£ mg. It is easy to

o  R(mo) = ﬂ{el[( U 7om) \mo)| |,

e>0 meU,
where U; is the e-neighborhood of the point mg and ¢l means the closure.

Definition 1.1. The set F(mg) = GR(mo) C Ty, M, where &5 denotes the
convex hull, is called the essential extension of the field f at myg.

The essential extension I’ is a set-valued mapping which assigns a subset in
TmeM to mg € M. It is natural to call this mapping a set-valued vector field.
Note that F' = f if f is continuous.

Theorem 1.2. The set-valued vector field F' is upper semicontinuous.

Proof. Let § > 0 be a real number. Fix a metric p on T'M which gives rise to
a topology equivalent to that on the tangent bundle. Denote the d-neighborhoods
of R(my) and F(mg) by R%(me) and F®(myg), respectively. We prove that for
any ¢ and any m € M, there exists a neighborhood U(m) C M of m such that
R(m') C R®(m) for every m’ € U(m) and, therefore, F(m') C F4(m).

By the definition of set R(m), there exists a neighborhood U{m) of m such
that for all m’ € U(m) we have p(f(m’), R(m)) < §. Then there exists an
open neighborhood V(m') C U(m) of the point m’ such that the inequality
p(f(m"),R(m')) < 4 is satisfied for every m" € V(m'). Pick a sequence m", —
m' in V(m'). We have

lim p(f (mg), R(m)) = plim(f(m}), R(m)) < é.
Hence, R(m') C R%(m) and F(m') C F°(m). m]

Now consider a mechanical system with the configuration space M and the
kinetic energy K(X) = (X, X)/2, where {,} is the Riemannian metric on M.
Let a(t,m,X) be a force field that we require to only be locally bounded in
all variables. (Note that, as above, we do not assume that « is continuous or
even measurable.) Consider the vector field Z(m, X) + a(t, m, X)! (i.e., a second
order differential equation on M; see [13]), where Z is the geodesic spray of the
Levi-Civitd connection of (,) and a(t,m,X)! is the vertical lift of a(t,m, X)
to the point (m, X) € TM. It is easy to see that the essential extension (with
respect to all variables) of Z(m, X) + aft,m, X) may be written in the form

(1.1) Z(m, X) + A(t,m, X},

where A(t,m,X)! is the vertical lift of the essential extension A(t,m,X) of
a(t,m,X) to the point (m,X). Note that A(t,m,X) = €@Q(t,m,X), where
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@(t,m, X) is the set of limit points of all sequences a(tz,my, X;) such that
(te, g, Xp) — (t,m,X), Xy € T, M, and (ty, my, Xi) # (&, m, X).

From now on, we focus on the differential inclusion in TM given by the
formula

(1.2) () € Z(v(1) + Al (8))"-

Definition 1.3. A solution of (1.2) is an absolutely continuous curve v(t) in
T M which almost everywhere satisfies (1.2).

Alternatively, making use of covariant derivatives, we consider the following
differential inclusion on M:

(1.3) %m(t) € A(t,m(2), m(2)).

Definition 1.4. A solution of (1.3) is a C*-curve m(t) in M such that m(¢)
is absolutely continuous and (1.3) is almost everywhere satisfied.

Taking into account (1.1) and the definition of covariant derivative D/dt, it
is easy to check that (1.2) and (1.3) are equivalent. More precisely, this means
that m(t) is a solution of (1.3) if and only if 7(t), regarded as a curve in TM,
is a solution of (1.2).

Definition 1.5. A solution of (1.3) is called a trajectory of the mechanical
system with a discontinuous force field A.

It is easy to see that Definition 1.5 is justified from the physical point of
view. As we have mentioned above, for a flat configuration space the reasons
supporting the definition are discussed, for example, in [4].

The right hand side of (1.2) is an upper semicontinuous set-valued vector
field with convex images. This implies that locally there exists a solution of the
Cauchy problem for (1.2) (e.g., [1], [4]). Thus, for any initial conditions m € M
and X € T,, M, inclusion (1.3) has a solution on a sufficiently small interval.

Note that an interesting question for applications in physics is whether or
not the local solution of (1.3) is unique. Certain uniqueness conditions are found
in [4].

Another class of mechanical systems involving inclusions like (1.3) are me-
chanical systems with control. Let the force field a(t,m,X,u) depend on the
parameter u € U. We define the set-valued vector field A(¢,m, X) on TM as

Alt,m, X) = U a(t,m, X,u).
ucl

Now we have to assume that this field is upper semicontinuous and has closed
convex images. The solution of (1.3) is a trajectory of the control system for a
time-dependent control u(%).
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2. Examples

Example 1. Consider the mechanical system on the unit sphere §? in R?
with the force field a(r) = (-y,z,0), where r = (z,y,2) € 5%. The motion of
the system is given by the following equations in R*:

F=al)—-2K- r
or, equivalently,
(2.1) f=-y—-2K-z, j=x-2K.y, i=-2K =z

where
M _ ,i'z + gz + 2':2
2 2

is the kinetic energy. To obtain these equations, one applies the d’Alembert

principle (see, e.g., [16]) to the holonomic constraint F(r) = z? + y? + 22,
Denote the North and South Pole of the sphere by N = (0,0,1) and § =

(0,0, —1), respectively. Let r(t) = (z(¢),y(t), 2(¢)) be the trajectory of the system

such that r(tp) = S for some ¢y and £(fg) = V # 0. Note that if V' = 0, then

r(t) = 8. It is clear that V € TsS? must have the form (X,Y,0). We claim that

the kinetic energy increases along r(t) until r hits the North or South Pole. By

(2.1) we have

H =

K@x@)=2y+gz and K(r(t)) =z +92

Note also that K (r(to)) = 0. This means that K(r(¢)) > 0, unless r(t) = S
or r(t) = N. In fact, the derivative K(r()) is also increasing. Since K(N) =
K(8) =0, we have K(r(t)) # N for any t > to.

To clarify the geometric picture, consider the function z(¢) = z(r(¢)). Let
t; > to be such that 2(t1) = 0 and z(t) is increasing on [tp, t1]. The last equation
in (2.1) implies that z(¢1) > 0 and, as a consequence, 2(t1) < 0, i.e.,, z(t;) is a
local maximum of z(t). Since K is increasing along r(t), we see that z(¢;) < 1.
In the same way, one may show that

signz(t:) = (=)™ and  |2(t:)] > |2(tisn)]

for all points t; < t3 < ... such that £(¢;) = 0.
Therefore, the trajectory r(t) goes to the equator of S? and oscillates near
it. In particular, the trajectory never reaches the point N = (0,0,1).

Example 2. Let us replace the field « in the system of Example 1 by the
force field

. [5]
A0 = T

where [, ] is the vector product in R®. The equation of motion of the mechanical
system is as follows:

(2.2) r=r,t) - 2K -r.
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A straightforward calculation shows that
K = (Q(r,1),f) — 2K - (r,f) =0

along the solution of (2.2) (i.e., the force is always orthogonal to the velocity)
and b = 0, where

[l£]|? - x
1+ (]

Therefore, the kinetic energy K = ||£||?/2 is constant along the trajectory r(t)
and r(t) lies in the plane orthogonal to the constant vector b. In other words,
the trajectory is the circle (r(t),b) = const on S2. Let us assume that there is a
trajectory passing through two antipodal points. Then it must be a great circle
on % and, therefore, (r(t),b) = 0.

Let ¢ be the angle between r(t) and b. A straightforward calculation (based
on the explicit formulas for ||3|| and (r(t),b) and on the equality ||r(t)]] = 1)
shows that

b=[f{] = - = [I£l1* - [, ).

cos¢ =

where 1 : [0,00) = R is a bounded function. Hence, (r(t),b) goes to zero as
K — co assuming non-zero values only. This means that there is no trajectory in
the system passing through two antipodal points. Note also that any two points
which are not antipodal can be connected by a trajectory with sufficiently high
kinetic energy.

Example 3. Replace the force {i(r,r) of the preceding example by the gy-
roscopic force A(r,t) = [f,r]. The equation of motion of the new system is

f=[f,r] - 2K r.

The analysis of this example is quite similar to that of Example 2. First, we
prove that K = 0 and b = 0, where b = [r,]. This implies that the trajectory
lies in the plane orthogonal to b. If the trajectory were a great circle, so that
(r,b) = 0, then this would give us the equality [r,] = 0, which is impossible.

3. The main result on accessible points

In the examples of Section 2, the points which could not be connected by
a trajectory were conjugate along all geodesics. In this section, we prove that
if two points are not conjugate along a geodesic and the force field is bounded
(or has linear growth in velocities), then there exists a trajectory joining the
points. We consider the general case with the set-valued force field A(¢,m, X)
which is upper semicontinuous and has convex images. Thus the trajectories
are solutions of the differential inclusion (1.3). This general result yields, as a
simple corollary, the existence of such a trajectory for a mechanical system with
continuous « (see [6]).

Let M be a manifold, let {,) be a complete Riemannian metric on M, and
let mg and m; be points that are not conjugate along a geodesic a(z).
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Theorem 3.1. Assume that A(t,m, X) is upper semicontinuous, uniformly
(in t, m and X) bounded by a constant C' > 0, and A has conver images. Then
there erists a constant L = L(mg,m1,C,a) > 0 such that for any to, 0 < to < L
the points mo and my can be connected by a solution of (1.3) with m(0) = myg
and m(t[)} =mi.

Proof. In order to study the global behavior of solutions of (1.3), first we
construct a certain analog of integral operator, acting on curves in the mani-
fold M.

Let mog € M, I =[0,1] and let v : I — T}, M be a continuous curve.

Lemma 3.2. There ezists a unique C'-curve v : I = M such that v(0) =
mg and the tangent vector (d/dt)y(t) = ¥(t) is parallel to the vector v(t) € Ty, M
for every t € I.

The above curve in M, constructed from v(t), will be denoted by Su(t). So,
a certain operator &, sending continuous curves v(t) in Ty, M to C'-curves in
M, taking the value mg at ¢ = 0, is well-posed. Obviously § is continuous as a
map from the Banach space C°(I, T, M) of continuous curves in Ty, M with
CY topology into the Banach manifold C'(I, M) of C'-curves in M with C?
topology.

Lemma 3.3. Assume that the point my € M is not conjugate to my along
some geodesic of the Levi-Civitd connection on M. Then for any geodesic a(-),
a(0) = mo, a(l) = m1 elong which mg and m, are not conjugate and for any
number K > 0, there exists a constant L(mg,my, K,a) > 0 with the following
property: for any t1, 0 < t; < L(mg,mq, K,a), and for any curve u(-) € Ux C
CO([0,t1], Trno M), there exzists a unique vector Cy, € Ty M, such that S(u +
Cu)(t1) = my, and C, belongs to a bounded neighborhood of t7* - 4(0) € Trng M
and depends continuously on wu.

Proofs of Lemmas 3.2 and 3.3 are based on constructions of Riemannian
geometry which are far from the topic of present paper. That is why we refer
the reader to [11]-[13] where the proofs are given in details.

For any curve v(:) € C°(I, T, M), consider A(t,Su(t),(d/dt)Sv(t)), the
restriction of the set-valued vector field A to the curve Sv(t). Fixing v, let us
introduce the set-valued map T4 08v : I = T}, M such that the set ' 4 o Sw(t) is
obtained by parallel translation of A(¢, Sv(t), (d/dt)Sv(t)) to the point mg along
Sv(-). Using the properties of parallel translation and the fact that A is upper
semicontinuous, one can show that the map T4 08 : C°(I, Ty, M) x I = Typo M
is upper semicontinuous too. Consider the set PI'4 oS formed by all measurable
selections of I 4 o Sv. Note that such selections do exist (see [1]). Since the field
A is bounded, all elements of PI' 4 oS are integrable. Let us define the set-valued
map [ P4 08 with convex images in C%(I, T, M) by the formula

/PI‘AQS('U) = {/Otu('r)drlue’PI‘AoS}.

24 — Dilferential...
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Lemma 3.4. The set-valued map IPFA o & sends bounded subsets of the
space C°(I, T, M) to compact ones.

Proof. Since the metric (, ) is complete, for any ball Uk in C°(I, T, M) with
radius K, the union of curves {(Sv, (d/dt)Sv) | v € Uk} lies in a compact subset
of TM. Indeed, since v € Ux and the parallel translation preserves the norms,
the curves form {(Sv | v € Uk)} have derivatives, bounded by K, and so the
curves are equicontinuous and lie in a compact set of M. Then all sets A(Z, v, ),
where v € SUk, are uniformly bounded because the field A is bounded. As a
consequence, since parallel translations preserve the norm, the sets (I'4 o Sv)(%)
for v € Uk are also uniformly bounded, and so are all their measurable selections
P40 Sv.

Thus, continuous curves

u € U (/PI‘AoS)v

veEUg

are uniformly bounded and equicontinuous. O
Lemma 3.5. The map [PT4 08 is upper semicontinuous.

Proof. It suffices to prove that the set-valued map [PIT'4 o S has a closed
graph. In other words, that vy — v and ur — ug, where ug € ([ PT'4 o S)ui,
implies that ug € (f PT4 0 S)vg, i.e., tg € (T4 0 Swg)(t) for almost all £. Since
the map [PIL4 oS sends bounded sets to compact ones, the map is upper
semicontinuous, provided that it has a closed graph (see [1]).

Recall that the sets (I'sa o Svp)(t) are convex and the map (['4 o Sv)(t) is
upper semicontinuous in v and ¢. As a result, we have up € (I'4 o Sv)(). A
detailed proof of a similar (and simpler) inclusion may be found in [1]. a

Let the constant L(mg, m1,Ct,a) be defined as in Lemma 3.3. If A(t,m, X)
is bounded by a constant C, the inequality ¢; < L(mg,my,Ct1,a) holds for a suf-
ficiently small ¢;. Let us denote the supremum of all such ¢; by L{mg, m1, Ct1,a)
and pick ty < L(mg,m1,Ct1,a). Without loss of generality, we may assume that
the operator [PT 408 acts on the space C([0, o], Tin, M). Consider the upper
semicontinuous set-valued compact map

Hps (/‘PI‘AoS)(u+Cu)

on the ball Ugs, C C%([0, t0], Trmo M), where C,, is defined in Lemma 3.3.
Since parallel translation preserves the norm, B(Uct,) C Uct,. Thus, B has
a fixed point ug € Bug (see [1]). Let us show that
m(t) = S(uo(t) + Cup)

is the desired solution. By definition, we have
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m(0) = mo and m(tp) = my;
m(t) is a Cl-curve;
m(t) is absolutely continuous.

Note that g is a selection of I'4 o S(up + Cy,) because ug is a fixed point of B.
In other words, the inclusion g(t) € T4 o S(ug + Cy, ) () holds for all points ¢
at which the derivative exists. Using the properties of the covariant derivative
and the definition of up, one can show that g (¢) is parallel to Dr(t)/d¢ along
m(-) and T'4 0 S(ug + Cy, )(¢) is parallel to A(¢, m(t),m(t)). Therefore,

%m(t) € A(t,m(t),m(2)).

This completes the proof of Theorem 3.1. O

It is worth noticing that if my and m; are not conjugate along several
geodesics, then any of them can be used in the proof. Naturally, different
geodesics can give rise to different solutions and constants L.

Assume that the configuration space M is compact and the metric (,) has
a non-negative sectional curvature. Then there are no conjugate points on M.
As follows from Theorem 3.1, there exists a constant L > 0 such that any two
points can be connected by a trajectory m(t) with ¢ € [0, 4] for any ¢, > L.

In particular, one evidenily may take L = co when M is flat. This means
that the corresponding two-point boundary-value problem has a solution on any
time interval.

Remark 3.6. By definition, (D/di)m(t) is a measurable vector field along
the solution. Thus, in the case where A(t, m, X) is the set of possible values of the
control force, Theorem 3.1 gives a condition which guarantees the existence of a
control sending mg to m;. For example, Theorem 3.1 can be applied to systems
with a delayed control force studied in [7]. Consider a mechanical system with a
bounded continuous force a(t,m, X) and with a delayed control force. Assume
that the possible values of the control force form the set I € T,,, M, where
myg is the beginning of the trajectory, and the control starts in time h > 0 (to
take into account the delay present in many realistic models). We also assume
that B. C F, where B, is the ball of & small enough radius € > 0. Taking into
account the mechanical meaning of parallel translation discovered by J. Radon
and described by W. Blaschke in [13], the motion of the system can be described
by the differential inclusion

D . & —_
27 € alt,m(®),m (1)) +|IE(2),

where E(t) = 0 for ¢t € [0,h), E(t) = B for t > h, and || means the parallel
translation along the trajectory. It is shown that there exists a measurable
control sending mg to m1, provided that mg and m; are subject to the hypothesis
of Theorem 3.1. The problem of existence of the optimal control satisfying this
condition is also studied in [7]. O
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Theorem 3.7. Assume that the points mg and mi are not conjugate along
a geodesic a such that a(0) = mo and a(l) = mq1. Let the upper semicontinuous
set-valued vector field A(t,m,X) hove conver images for all t, m and X and
satisfy the inequalities :

AG,m, X)|| < C + KlIX]],
where C' and k are positive constants, and

A, m, X)|[= sup |ly]l-
YEA(t,m, X)

Then there exists a constant L(mgo,my,C,k,a) > 0 such that for any 0 < tp <
L{mg,m1,C, k,2), there exisls a solution m(t) of (1.3) with m(0) = mo and
m(to) = mq.

We omit the proof of this result since it is quite similar to that of Theorem
3.1. (See [10].)

Remark 3.8. It should be noticed that, in contrast to Theorem 3.1, the
assertion of Theorem 3.7 is local in time even on a flat configuration space. O

4. The case of systems with constraints

In this section we show how to generalize Theorems 3.1 and 3.7 to systems
with constraints. In the framework of mechanics with constraints it is more
natural to consider the question of whether or not a submanifold transverse to
the union of least constrained geodesics, leaving a specified point, is accessible
from the point. The author is grateful to Boris D. Gel’'man for pointing out this
problem. '

Following L. Faddeev and Vershik (see e.g. [3] and [17]) we consider a con-
straint as a distribution (subbundle of tangent bundle) # on the configuration
space (manifold) M. The constraint is called non-holonomic if 4 is non-integrable
(non-involutive). Let M be a Riemannian manifold. Denote by P : TM —
the fiber-wise orthogonal projection. (D/dt) = P(D/dt) is called the covariant
derivative of reduced connection on M. A curve m(t) in M is called admissible
if m(t) € B for all . An admissible curve m(¢) is called least constraint geodesic
if (D/dt)m(t) = 0 (see details in [11] and [13]).

Let M be a complete Riemannian manifold equipped with a constraint f.
Fix a point mg € M. The non-hcolonomic exponential map expﬁm tBme =& M
can be defined in the same manner as for a manifold without constraint. Namely,
for X € B, we set e:»cpff10 (X) = vx(1), where vx(t) is the least constrained
geodesic with yx (0) = mp and x (0) = X. It is clear that expf,  is a C°°-smooth
map. .

Definition 4.1. A point m; € exp%0 (Bim,) is not conjugate to mg along the
least constraint geodesic yx (where yx (1) =m;) if the differential dexp?, has
the maximum rank at X € Bn,.
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In particular, this means that the image of expﬁ10 is a smooth submanifold
in a neighborhood of m; that is not conjugate to mg. Moreover, e::cpfnU is a
diffeomorphism of a neighborhood of X € 8, onto the neighborhood of m; in
the submanifold.

Assume that myp is not conjugate to m; along a least constrained geodesic
vx. Let us specify a submanifold N C M, my € N, which is transversal to the
image of expZ, . (In other words, the sum of spaces Ty, N and T, exph, (Bm,)
coincides with Ty, M.)

Lemma 4.2. Under the above hypothesis, for any K > 0, there exists a
constant L(mo, N,K,vx) > 0 such that for 0 < t; < L(mo,N,K,vx) and
for any continuous curve u(t) € Ux C C%(0,t1], Bm,), there ezists a vector
Cu € Bm, satisfying the condition S?(u + Cy)(t1) € N. Furthermore, C, is
unique in a neighborhood of t; X € Bm, and continuous in u.

The Lemma is a natural generalization of Lemma 3.3. The only extra ar-
gument needed in proof is that the manifold N stays transversal to a C'-small
perturbation of the image of exp2, = SP(-)(1) (see [9], [11] and [13] for details).

Let A be a set-valued vector field on M. As in Theorem 3.1, we assume that
A is upper semicontinuous, bounded, and has convex images. The constraint
motion with the force field A is described by the differential inclusion

(4.1) %m(t) € PA(t,m(t), m()).

It is easy to see that the sets PA(#,m,X) are convex and the set-valued vector
field PA is upper semicontinuous and bounded. Such a field can arise, for ex-
ample, as a discontinuous force acting on the system, or the image of PA can be
formed by all possible values of the control force.

Theorem 4.3. Let PA be upper semicontinuous, bounded and have convex
images. Then there exists a constant L(mg, N, C,yx) > 0 such that for any to,
0 <ty < L(mo, N, C,vx), there exists an admissible solution m(t) of (4.1) which
connects mo and N, i.e., m(0) = mq and m(tp) € N.

The Theorem can be proved in the same way as Theorem 3.1. One only has
to replace & and T’ by non-holonomic integral operators S” and I'? (based on
non-holonomic parallel translation, cf. construction of & and I' above) and apply
Lemma 4.2 instead of Lemma 3.3 (see [9], [11] and [13] for details).

Theorem 4.4. Let the field A(t,m, X} be as in Theorem 3.7. There exists a
constant L(mo, N, C, k,vx) > 0 such that for any to, 0 < to < L(mo, N,C, k,¥x),
equation (4.1) has an admissible solution m(t) satisfying the conditions m(0) =
mo and m(ty) € N.

The proof of the theorem is analogous to that of Theorem 3.7.
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LERAY-SCHAUDER TYPE THEOREMS AND
EQUILIBRIUM EXISTENCE THEOREMS

Apam IDZIK AND SEHIE PARK

1. Introduction and preliminaries

In this paper, we study two main applications of a fixed point theorem due to
the first author [I] related to convexly totally bounded sets. We first extend the
Leray-Schauder theorem to topological vector spaces which are not necessarily
locally convex. This new result can be used to derive some new or well-known
fixed point theorems. Secondly, we deduce a variation of social equilibrium
existence theorem of Debreu [D]. This is applied to results on saddle points,
minimax theorems, and the Nash equilibria.

All topological vector spaces in this paper are assumed to be real Hausdorff
spaces. Given a set X, P(X) denotes the family of all nonempty subsets of X.
In what follows, X and Y are two subsets of two topological vector spaces E and
F, respectively. The boundary, the closure, the interior, and the convex hull of a
subset X of E are denoted by 8X, X, Int X, and co X, respectively. For brevity,
locally convex topological vector spaces are called locally convex spaces.

Definition 1.1. Let T: X — P(Y) be a map.
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(1.1.1) T is said to be upper semicontinuous (u.s.c.) on X if the set {z € X |
T(x) C V} is open in X whenever V is an open subset of Y.
(1.1.2) T is said to be compact if T(X) is relatively compact in V.
(1.1.3) A set K C E is convezly totally bounded (c.t.b. for short), if for every
neighborhood V of 0 € E there exist a finite subset {z; | i € I} C K (]I] < +00)
and a finite family of convex sets {C; | i € I} such that C; C V foreach i € I
and K C U (wi + C;).

Weber [W] gave another definition of the c.t.b. set:
(1.1.4) A set K C E is converly totally bounded (c.t.b. for short), if for every
neighborhood V of 0 € E there exist a finite subset {z; |i € I} C E (|I| < +o0)
and a finite family of convex sets {C; | ¢ € I'} such that C; C V for each i € I
and K C U (zi + Ci).

Observe that
Proposition 1.2. The definitions (1.1.3) and (1.1.4) are equivalent.

Proof. Let U,V be symmetric neighborhoods of 0 in F such that U+ U C V.
We can find {z;}icr and {C;}icr (|I| < +o0) such that K C {J; (i + Ci),
z; € E, and C; C U is convex for s € I. Let y; € K N (z; + C;). Then K C
Uie[(yi+($i—yi+0i)) and the convex set z; —y; +C; C —C;+C; CcU+U CV
foralli e 1. O

Proposition 1.3. If a compact set K is c.t.b., then the compact set [0, 1)K
is also c.t.b.

Proof. Let V be a closed and circled neighborhood of 0 € E. By definition
K CJ;jer (@i +C;) for some z; € Eand C; C V, i € I (|I| < +o0). Without loss
of generality we may assume that C is closed. Observe that for each r € [0,1]
andiel,r(z; +C;)NK Cr(z;+C;) Cr(z; +V) C rz; + V. Furthermore,
we have [0, 11K = [J;¢r Ci, where C; = Usepo,) 7 (i + C3) N K is a compact set.
Thus C; is covered by a finite number of sets of the form rz; + V, and hence
Ci € Ujes(rjmi + V) where rj € [0,1], |J] < +o0, i € I. 0

Proposition 1.4. Every compact subset of a c.t.b. set is c.t.b.
The following theorem is a special case of Theorem 4.3 in [I]:

Theorem 1.5. Let X be a nonempty convex subset of a t.v.s. E and T :

X — P(X) be an u.s.c. map with closed convex values. If T(X) is a compact
c.t.b. subset of X, then T' has o fived point zo € X, that is o € T(xzg).

2. The Leray-Schauder type theorems

From Theorem 1.5 we deduce the following Leray-Schauder type theorem:
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Theorem 2.1. Let X be a closed subset of a t.v.s. E such that 0 € Int X
and T : X — P(E) be a compact u.s.c. map with closed convez values. If T(X)
is a c.t.b. subset of E, then either

(1) T has o fized point; or
(2) Az € T(z) for some A >1 and z € 0X.

Proof. Let Y C X be defined by Y = {z € X | z € tT(z) for some t € [0,1]}.
Y is nonempty since 0 € Y. Moreover, it is closed since T is u.s.c. and has
closed values. Therefore, Y is compact since T' is compact. Suppose that the
Leray-Schauder condition is satisfied:

(LS) Ty)Nn{dy:A>1} =0 forallyedX.

Then Y N8X = 0. Since X is completely regular, there exists a continuous
function r : X — [0, 1] such that r(z) = 1for x € ¥ and r(z) =0 for z € 0X.
Let S : E — P(E) be defined by

S(z) = { r(z)T(z) ifzelX,
{0} ifr ¢ X.

Then S is convex-valued. Since T is compact and closed, so is S. Moreover, S(E)
is a c.t.b. subset of E as a subset of [0,1]T(X). Therefore, by Theorem 1.5, S
has a fixed point. Now z € S(z) implies z € ¥ and r(z) = 1. Therefore, z € X
and z € T'(z). This completes our proof. O

We recall a few definitions:

Definitions 2.2. Let N be the fundamental system of neighborhoods of 0
in E:
(2.2.1) a set K C E is said to be locally convez if for every z € K and every
V € N, there exists a U € N such that co((z + U)NK) Cz+V, and
(2.2.2) a set K C E is said to be of Z type (see [H]) if for every V € N there
exists a U € N such that colUN(K - K))CV.

The following are well-known:

Proposition 2.3. In a locally convex space E every subset K C E is of Z
type and is a locally conver set.

Proposition 2.4. If K C E is a compact set which is locally convex or of
Z type, then it is c.t.b.

25 — Differential...
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Corollary 2.5. Let X be a closed subset of a t.v.s. E such that 0 € Int X
and T : X — P(E) be a compact u.s.c. map with closed convex values. Suppose
that one of the following holds:

(i) E is locally conves,

(ii) the set T(X) is locally conver,
(iii) the set T{_X—) is of Z lype,
(iv) the set T(X) is c.t.b.

Then the conclusion of Theorem 2 holds.

The case (i) includes many well-known results. Related theorems have been
considered recently by Ben-El-Mechaiekh and Idzik [BI], S. Park [P1], [P2], and
S. Park and J. A. Park [PP].

From Theorem 2.1 we can obtain a Schaefer type theorem, Birkhoff-Kellog
type theorems and a fixed point theorem for non-gelfmaps, as in our previous
works (see [P1], [P2]).

We give only two results as follows:

Corollary 2.6. Let E be 6 t.vs. and T : E — P(E) be a compact u.s.c.

map with closed convex values. If T(E) iz a c.t.b. subset of E, then T has a fized
point.

Proof. Observe that 8E = . This also follows immediately from Theo-
rem 1.5. |

Theorem 2.7. Let X be a closed convex subset of a tv.s. E and T : X —

P(E) is an u.s.c. map with closed conver values such that T(8X) C X. If T(X)
is a compact c.t.b. subset of E, then T has a fized point.

Proof. If 8X = X the theorem follows from Theorem 1.5. If Int X # @,
then without loss of generality we may assume that 0 € Int X. The condition
T(8X) C X implies that the Leray-Schauder condition (LS) is satisfied for the
convex set X. Thus by Theorem 2.1 T has a fixed point. m]

3. Equilibrium existence theorems

Let {X;}ier be a family of sets, and let 7 € I be fixed. Let
x=J[X; and X'= J] X;.
jel je\{i}
If ¥ € X* and j € I\{i}, let z} denote the j-th coordinate of z*. If z* € X*
and z; € X;, let [z%,z;] € X be defined as follows: Its i-th coordinate is z; and,
for j # i, its j-th coordinate is wf1 Therefore, any @ € X can be expressed as
x = [z%,x;] for any i € I, where z* denotes the projection of z onto X*.
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For Ac X,z' € X% and =; € X3, let
Alz) = {yi € Xi | [z',15] € A} and A(z;) = {y* € X*| [v%,z:] € A}.
The following is a collectively fixed point theorem equivalent to Theorem 1.5:

Theorem 3.1. Let {X;}ier be a family of convez sets, each in a t.v.s. Ey,
K; a nonempty compact subset of X;, and T; : X = U;e1X; — P(K;) an u.s.c.
map with closed convex values. If K = Il K; is a ¢.t.b. subset of X, then there
erists an T € K such that T; € T;(Z) for each i € I.

Proof. Define T : X — P(K) by T'(z) = I;e;Ti(x) for each z € X. Then T
is a compact u.s.c. map with closed convex values. Since T(X) C K is a compact
c.t.b. subset of X, by Theorem 1.5, T" has a fixed point T € K; that is, T € T'(Z)

and 7; € T; (5) O

From Theorem 3.1, we have the following variation of the social equilibrium
existence theorem of Debreu [D]:

Theorem 3.2, Let {X;}ier, Fi, K; be the same as in Theorem 3.1. Let
A+ Xt = P(K;) be u.s.c. maps with closed values, and fi,g; : Gr(4;) - R
u.s.c. extended real-valued functions for each i € I, where Gr(A;) denotes the
graph of A;. Suppose that

(1) gi(2) < fi(z) for all x € Gr(4y);
(2) pi(2?) = maxyea, (i) 9i(2*,y) is a Ls.c. function of z* € X*; and
(3) for each i€ I and z* € X, the set

M(z') = {z; € Ai(2") | filz*,2:) > @i(z')} s conven,

If K = M1 K; is a c.t.b. subset of X, then there exists an equilibrium point
@ € Gr(A4;) for all i € I; that is,

G; € A;(@) and fi(@) = max g¢i(@,a;) foralliel.
a; EA(at)

Proof. For each i € I, define a map T : X — P(X;) by

Ti(z) = {y € Ai(2") | filz",9) > wi(a?)}

for z € X. Then T;(z) # 0 by (1) since A;(z?) is compact and g;(z?, -) is u.s.c.
on A;(z*). We show that Gr(T;) is closed in X x X;. In fact, let (z4,ys) € Gr(T;)
and (24, ¥s) = (z,y). Then

fila',y) 2 m fi(a5,, yo) 2 Tim () 2 limpi(al) 2 @i(a?)
and, since Gr(4;) is closed in X* x X, y, € A;(z}) implies y € A;(x?). Hence
(z,y) € Gr(T;). Therefore, T; is u.s.c. with convex values Tj(z) = M(z?) by (3).
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Now we apply Theorem 3.1. Then there exists an ¥ € X such that Z; € T;(Z) for
all i € I; that is, Z; € A;(Z%) and f;(Z;,7;) > @;(z¢). This completes our proof.
a

From Theorem 3.2, we obtain a saddle point theorem and a minimax theorem.

Theorem 3.3. Let X,Y be two compact conver c.t.b. subsets, each in a
tu.s., and f: X xY = R a continuous function. Suppose that for each xo € X
and yo € Y, the sets

{z € X | f(z,y0) =max f((,y0)} and {y €Y | f(zo,y) = min f(zo,n)}
(eXx ney
are convez. Then f has a saddle point (zg,y0) € X x Y'; that is

11711€i§,1f(270,?7) = f(zo, %) = Tcl}gfgi((f(Csyo)-

Proof. Note that a saddle point is a particular case of an equilibrium point
for two agents (n = 2) in Theorem 3.2 for a = (a1,a2), X1 = X, X =Y,
Ai(a') = X, A2(a®) = Y, fi(a) = g1(a) = f(z,9), fola) = g2(a) = —f(z,y).
Note that condition (2) holds by Berge’s theorem (see: [B], Theorem VI.3.2). O

Theorem 3.4. Under the hypothesis of Theorem 3.3, we have the minimaz
inequality

maxmin f(z = mi ax .
mEXyEYf( »Y) {Jlgljr}gvnexf(z,y)

Proof. By Theorem 3.3, we have a saddle point (zo,y0) € X x Y such that
max f(%,%0) = f(2o,%0) = min f(zo,).
Therefore,

i < = = mi & i ’
min max (x,y)_gleagf(m,yo) f(zo,y0) ryrél;lf(wo,y)ﬂglea}}cglelg}f(x,y}

On the other hand, we clearly have

minmax f(z > maxmin f(z,y).
yeY zeX f( ,?j) T zeX yeYy f( ’y)

Therefore, we have the conclusion. m|

From Theorem 3.2, we have the following generalization of the Nash equilib-

rium theorem:
‘Theorem 3.5. Let {X;}icr be a family of compact convex sets, each in a
tu.s. E; and for each i, fi : X — R a continuous function such that
(0) for each z* € X* and each a € R, the set {z; € X; | fi(z',z:) > a} is
empty or convez.
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If X =11 X; is o c.t.b. subset of E = I, E;, then there exists a point @ € X
such that
fi(@) = mat fi@,y:)  foralliel
Proof. We apply Theorem 3.2 with f; = g; and 4; : X i —o X; defined by
A;(x%) = X, for z* € X*. Then condition (2) of Theorem 3.2 follows from Berge’s
theorem, and the set in condition (3) is nonempty and convex by (0). Therefore,
we have the conclusion. O

Finally, note that Theorems 3.2-3.4 generalize corresponding results of von
Neumann, Kakutani, Nash, and von Neumann and Morgenstern; for the litera-
ture, see Debreu [D].
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STABILITY AND INSTABILITY OF
PERIODIC SOLUTIONS OF A DAMPED WAVE
EQUATION IN A THIN DOMAIN

RUSSELL JOHNSON, MIKHAIL KAMENSKI AND PAOLO NISTRI

1. Introduction

In the previous papers [5] and [6] the authors showed the existence of periodic
solutions

with respect to the time ¢ of 2 damped wave system in the non-autonomous and
autonomous cases respectively.
The considered system in the non-autonomous case is of the form

ou _
ot
(1) v %u
5 Axu+ EE —Bv—au+g(t,X,Y, u)
with Neumann boundary condition:
du
(2) 61/6 = 0 on 8@5‘:

1991 Mathematics Subject Classification. 35B10, 35B35, 4TH17.

Key words and phrases. Periodic solutions, wave equation, thin domains, stability.

Research partially supported by the M.U.R.S5.T., the C.N.R. and the R.F.F.I. grant 96-
01-00360



200 RUSSELL JOHNSON, MIKHAIL KAMENSKI AND PAOLO NISTRI

where o and 3 are positive constants, ¢ is an appropriate smooth function T'-
periodic with respect to time ¢, and (X, Y") is a generic point of the “thin domain”
Q. = Q2 x (0,e) C RNFL,

The method employed in [5] and [6] consists in assuming that the “reduced”
problem at € = 0 in the domain Q admits an isolated Tp-periodic solution

0
o_[Uu
w" = L

v

Ty = T in the non-autonomous case, and then in searching for conditions under
which this solution extends to one for the problem (1)-(2) in .. The main tool
is the topological degree for nonlinear compact operators.

It must be observed that in the autonomous case, i.e. when g is independent
of t in (1), the assumed Tp-periodic solution of the reduced problem is not iso-
lated. To overcome this difficulty we normalize the unknown period T' > 0, in
general different from Ty, of the sought-after periodic solution of (1)-(2) by intro-
ducing T as a parameter in system (1) by means of the substitution ¢ — (To/T')t.

Furthermore, in this case additional assumptions are required on the lin-
earized reduced system. Under these assumptions it is possible to prove the ex-

istence of a continuous functional T' = T'(w), w = (:j , such that T(w®) = T

and such that w® is an isolated fixed point with topological index different from
zero of the T'( - )-parametrized reduced problem.

The aim of this paper is to derive the stability properties of the periodic
solution w® defined in Q., for small £ > 0, from those of the Ty-periodic solution
w® in Q.

Specifically in the non-autonomous case, we will prove that if the latter is
stable or unstable then for £ > 0 sufficiently small the former is also stable or
unstable. This result will be obtained by considering the first order approxima-
tion L° of the Poincaré map V¢ associated to (1)-(2) at w®. It is well known
(see for instance [2] and [3]) that if all the A € o(L®), the spectrum of L¢, satisfy
the inequality |A| € ¢ < 1 then w® is stable. On the contrary, if there exists
X € o(LFf) such that |A| > 1 then w® is unstable. In our case these situations
can be treated by using the fact that L¢ is a condensing operator with constant
k < 1 (see [7] and [8]) and the properties of its spectrum. In fact, it turns out
(see [1]) that if A € o(L*) satisfies |A| > k + d, whenever d > 0, then it is an
eigenvalue of finite multiplicity.

The same will be done for the autonomous case to obtain orbital (in)stability
of the T-periodic solution w® defined in Q. from that of the T&periodic solution
w® defined in . The additional problem in this case is that we must prove the
simplicity of the eigenvalue 1 of the linearization of (1) around w® for ¢ > 0
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sufficiently small, from that at ¢ = 0. Obviously, the assumptions for orbital
(in)stability will concern all the other eigenvalues of the spectrum of the lin-
earization.

The paper is organized as follows. In Section 2 we provide assumptions,
definitions and preliminary results to be used in the sequel. In Section 3 we
treat the non-autonomous case and in Section 4 the autonomous one.

2. Assumptions, definitions and preliminary results

We first consider the case when g depends on ¢ and we assume the following
conditions on g : [0,T] x £ x [0,g0) x R — R:
— g is of class C? jointly in the variables ¢, X,Y and v and it is T-periodic
int:gt+T,X,Y,u) =g(t,X,Y,u). Moreover, g satisfies the following
estimates:

lgx (t, X, Y,u)| < a(l+ |ul?t1),
gy (¢, X, Y, u)| < a(l + |ul**h),
|9 (t, X, Y, u)| < a(l+ |ul?),

for all values of its arguments ¢, X, Y, w. Here a > 0 is a suitable constant
and 6 € [0,c0)if N=1,0€[0,2/(N-1))if N> 1.
Observe that the growth rate € is strictly less than the critical value 2/(N — 1).
This is because the validity of the Sobolev compact embedding result is crucial
in our approach.
Following [4], for fixed € > 0 we introduce new variables X =z, ¥ = ey.
System (1) becomes

3) at
Er))—E'—ﬁku+l62—u—‘Bﬂu—au+ (t,z,ey,u)
at = T ° g2 Oy? 9\ %, &Y,
and boundary condition (2) takes the form
du
T 0 on JQ,

where @ = Q x (0,1) and v denotes the outward unit normal vector to ). We
suppose that 0 is a C%-smooth domain.

For the reader convenience, we now give the most relevant definitions which
permit to rewrite (1)-(2) as a fixed point problem in a suitable space. More
details can be found in [5].

26 — Differential...
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Foliowing [5] (which in turn follows Hale-Raugel [4]), we introduce the fol-
lowing Banach spaces when & > 0. Let X} be the space H*(Q) with the norm

2 9\ 1/2°
(n Mo+ 5 OQ) .

Here and below, || - ||og denotes the norm in L?(Q) and || - ||1g that in H*(Q).
Let U (%) be the semigroup generated by the system of linear equations

du

3 )

%% =Axu+§2g?1;~ﬂvmau,
with boundary condition (2). It is known (see [5]) that U.(¢) is a Cy-semigroup
in the space

Ju
2|| 8y

V! = X! x L3(Q) 3 (u,v) = w.
One has the exponential estimate
10 @)llvaova Sce™,  (£20),

where ¢, > 0. By introducing for € > 0 the linear operator

A ( g I)
Am+€—2@—ﬂ_’ —ﬁ

with Neumann boundary condition, we can write
Ue@) = e, t>0.

In the sequel by a solution of any differential equation we mean a solution of the
corresponding integral equation obtained by the variation-of-constants formula.
Now let C7(Y}) be the space of all continuous, T-periodic functions w =

(u) from R into ¥! with the usual norm
\v

llwll = L lw(@)lya.

Define the following maps on Cr(Y1):

0
fe(w)(®)(z,y) = (g(t,a:,ay,U(t,iﬂ;y)))

and

T t
Lw(t) = Ua(&)(I — UL (T)) 1/ ; ds—l—fUE(t—s)w(s)ds
0 s 0
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Then define

F.(w) = J. f: (w).
Using the Sobolev embedding theorem together with the theory of nonlinear
Nemytskii operators, it is easy to show that F. maps Crp(Y]) into itself and
is completely continuous, i.e. it is continuous and it maps bounded sets into
relatively compact sets. We give now the following

Definition 1. A fixed point of the completely continuous operator #; :
Cr(Y}) = Cr(Y]}) is a T-periodic solution of (1)-(2).

It is known that a fixed point of F; is always a T-periodic distributional
solution of (1)-(2).

Next we pose the limit problem at e = 0. Let Up(t) (¢ > 0) be the semigroup
generated by the linear system

{ at
v
= Agu — Gv - au,
with the Neumann boundary condition
du
5; =0 on If).

Observe that Up(t) = e, t > 0, where

0 i
= (Ax_a’ _:3>

with Neumann boundary condition.

Let wp = (zo) be an element of H'(2) x L2(f}). Then Uo(t)<:o) is in
0 0
H'(Q) x L*(?) and one has the estimate
NUo(®)ll e (@) x22(@) = () xL2(52) < ce™ 7,

where ¢,7 > 0. Defining ¢ : @ — @ by i(z) = (2,0), we obtain an inclusion
J : HY(Q) x L2(Q) = Y} with J(u,v)(z,y) = (u(z),v(z)). The map J is

an isometry for all 0 < £ < &g, and we identify Up(?) :u with the element
0
JUD(i)(:O) of V1.
o
Define an operator Fy on Cp(H'(Q) x L*(Q)) as follows:

Fo(w) = Jofo(w),
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where Jp has the same form as J. with U, (t) replaced by Up(t) and
0
t = .

Then Fy : Cr(HY(Q) x L3(R)) = Cr(HY(QY) x L*(f)) and it is completely
continuous.
We identify the T-periodic solutions of the system

ou v
at
(4) { o
ke Azu— Bv — au+ g(t,z,0,u)
together with the Neumann boundary condition
du
(5) = 0 ond

with the fixed points of the operator Fy. The main result proved in [5] is the
following existence result, here ind ( -, - ) indicates the topological index.

Theorem A. If the problem (4)-(5) admits an isolated T-periodic solution
0

w® = (u0> € Cr(HY(Q) x L*(R)) with ind (Fp,wP) # 0, then for sufficiently
v

small € > O the problem (4)-(5) admits a T-periodic solution w® = (u ) €

UE
CT(Ygl) and
|[rr® — J’IUU”OT(YSi) - 0 as € — 0.

The proof of Theorem A is mainly based on the following result, which we
repeat here for the reader’s convenience since it will be used in the next sections.

Lemma A. Suppose that there exist r >0, £, — 0 and
(:}‘) € Cr(HY Q) x LX)

such that the problem (1), (2) admits T -periodic solutions

(u"> € Cr(Ylh)

Un

= r. Then there exist e T-periodic solution

it [ (37) =7 (o,
Y) of (4)-(5) and a subsequence { [ “** ) % of 4 (U™ ) b such that

(5 {on )} A

2)-+(c) '
Uk, v

-+ 0 asn— o
Cr(Y)
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|:)- ()

Finally, for the autonomous case

with
=
Cr(HL(R)xL2(Q))

(6) at
v 1 8%
5 = Bt + 2o Bv — au + g(z, ey, u)
together with Neumann boundary conditions
Su
(7) e 0 ondQ,

the substitution t — (Tp/T')t produces the dependence on T' of all the operators
introduced before. Specifically, as it can be easily verified we have

EF(T,w) = J.(T)f.(T,w),

where
0
fE(Taw)(t)(w" y) = ((T/To)g(iﬂ,ey,u(tjw:y))) ’

T
J(T)w(t) = Uo(T, O[T - Us(T, To)] / U (T, To — s)w(s) ds
0

¢
+ | UA(T,t — s)w(s) ds,
/

and U, (T,t) is the semigroup genarated by

u_T,
((%FTO ’

v T 1 &%u

-BE—ITO Amu+-§a—y2—ﬁv—au]

Similar formulas hold for & = 0. Obviously, a fixed point of F.(T, -) : Cr, (Y}) =
Cr, (Y2}) for some T' > 0 is a T-periodic solution of (6)-(7).

The following existence result was proved in [6].
Theorem B. Suppose that the system

ou y
{ ot

v

7 = Agu— Bv —au— g(z,0,u)

together with
ou

a—V—O on 60
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0
has a Ty-periodic solution w® = (vo) in the classical sense such that the lin-

earized system

Jp

at ¥

0

a—f = Aatp — b — a0 + gu(z,0,u0(t, 2))p

has no Ty-periodic solutions which are linearly independent of (dw®/Ot). Fur-
thermore, we suppose that it does not possess any solution of the form W(¢,z) +

(t/To)uw®(t,x), where @ = (:%) is To-periodic with respect to t. Then for suf-

E
ficiently small ¢ > 0 problem (6)-(7) admits a T.-periodic solution w® = (UED
v
with T, — Ty and

|| — jTUUHCTO{Y;) - 0 as £ — 0,
where W () = w® (T /To)t)-

In the next two sectioms, for € > 0 sufficiently small, we investigate the
stability of the periodic solution w® of (1)-(2) (resp. (6)-(7)).

3. The non-autonomous case

For ¢ > 0 define the Poincaré map V® : Y! — ¥! associated to (1)-(2) as

follows:
T

Ve = UDp+ [ UT - 5)1.w)(s) ds,
0
where w(t) € Y2, ¢ € [0,7T), is a solution of (1)-(2) with w(0) = p and T is the
fixed period of the nonlinearity g.

Asg a direct consequence of Theorem A we have that for € > 0 sufficiently
small the Poincaré map has a fixed point w®(0) € ¥ which represents the initial
conditions of the T-periodic solution w® of (1)-(2).

Consider the linearization L° : ¥} — V! of V* around w*:

T
Loq = Us(T)g + f Ue(T — 8) fL(w* (5))(s) ds,
1]

where 1(t) € Y1, t € [0,7, is the solution of the linearization of (1) around w®
such that 1(0) = g.
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For ¢ = 0 we also define V® : H*(Q)) x L2(Q) — H(?) x L%(Q) and the
corresponding linearization L® around w®. The linear map L® : ¥ — V! is k-
condensing with respect to the measure of noncompactness of Kuratovskii gener-
ated by a suitable equivalent norm in the space ¥ (see [8]). Moreover, in [7] this
condensivity property was proved for some special measures of noncompactness
defined by means of the Hausdorff measure of noncompactness.

It follows that (see [1]) for any d > 0 the points A € ¢(L°) for which |A| > k+d
are eigenvalues of finite multiplicity.

In the sequel we will study the stability of w® by means of the properties of
the spectrum of L9 : HY(02) x L1(R) — HY(Q) x L2(N) and the corresponding
stability results [1]. In this section we assume the conditions of Theorem A.

We will first prove the following result.

Theorem 1. Assume that for any A € o(L®) we have that |A| < 1. Then
for sufficiently small € > 0 the T-periodic solution w® of (1)-(2) is stable.

Proof. Assume the contrary, then by [1] there exist two sequences €, — 0

and A, € o(L%) such that |A,| > 1. For any n € N let ¢, € Y, |lgnllyz =1
and Lf g, = Antn-

Put e#T = \,, n € N, and let p,(t) = e F=teh,(t), where 1, (t) is the
solution of the linearization of (1) around w® which we denote by

’j) = Asﬂ,qp + B, (t)")b

with 1,(0) = gn. It turns out that o, is a T-periodic solution of the linear
equation

(8) @ = (A, — pa)p + Be, ()p.

In fact, we have po(T) = e #* Ty (T) = e #TA g, = gu. Thus o, (T) =
©n(0) = g, moreover

t
on(t) = ethen=sig, 1 [ ehmmidt=0 B, (2)p(s) ds,
1]
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and

T
en(t+T) el i —.U-n)(t-i—T}qn i [e(Asrun)(tJrT—s)BE“ (8)n(s) ds
0

+T
5 f eAen =) (AT=5) B ()5, (5) ds
T

T
= g(Aen—pn)t [e(Aen*un)an + /e(““n_”“)(T‘s)Bsﬂ (5)¢n(s) ds
0

i
+ [ eltenmIO-0B, (pn (€ +T) dg
0

t
— elAen—tnlty 4 f eUen=)E-O B (€)on (€ + T) de.
0

By the uniqueness of solutions of the Cauchy problem for the linearized equation
we obtain that ¢, is a T-periodic solution of (8).

By Lemma A and Theorem A we get that ¢, () = @o(t) as n — oo, where
wo(t) € HY(Q) x L%(Q), t € [0, T, is a continuous T-periodic solution of

¢ = (Ao — o) + Bo(t)ep,

the linearized system of (1) around w®, with A = ]i_>m Any |lo(0)]| = 1 and
n—rco
e #oT = )y. This contradicts the fact that |A| < 1 for any X € o(LP).

We state now the instability result. We first give the following lemma.
Lemma 1. Let go € H*(Q) x L*(Q). Then
ML) Tg - ITM-L%1gp asec—=0
uniformly with respect to A € C, where C is a circle such that CNa(L%) = 0.

Proof. Note that as it is proved in Theorem 2 below, for sufficiently small
e >0, CNao(Lf) =0 and so (A — L)~! is well defined.

We argue by contradiction, then there exist 6y > 0, e, = 0 and A, — Ao € C,
An € C, such that

9) |(An = L) T g0 — T(And — L°) " qollyz, > do.

Let p, = (Al = L")~ 1 Jgo. We claim that the sequence {p,} is bounded, i.e.
there exists M > 0 such that [|pn||y=1n < M for any n € N.
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In fact, assume ||pn|ly: — oo as n — co and recall that
AnDn = LE”Pn + Jqo.

Let
t
En(t) = elentp, + [eAﬁﬂ(t_s)Bsn (5)€n(s) ds,
0

hence Lepy, = &u(T). Put zn(t) = (§a(t)/||pally; ), thus

2n(t) = efentz, (0) + [ eAn =9 B, (5)z,(5) ds

o .

and

J

An2n(0) = 2, (T) + :
n( ) n( ) ||Pn“Y€1"

Let A, = e*»T and define
() = e #ntz, (£).

Then
t
1) mn(t) = Aen i 0) + [ Ber 0B, (s)n(s) s
0
where

T_J%

|El'9n”Y;‘,L ’
Therefore, calculating 1,(0) from the previous two relations and substituting in
(10) we obtain

M (0) = mn(T) + e limn (O)lya, = 1.

T
(t) = eAen =i )E([ — o(Acn —n)Ty~1 / e(Aen=un)T=5) B, (5)na(s) ds
0

+ E(AE“ —pin )i (I s e(AEﬂ, _ﬂ'n)f)—le—ﬂnT Jq()
Toallvs

¢
+fe(A‘"_"‘“)(tf‘g)BE“(s)nn(s) ds.
0

Letting n — 00, since ||pallyz — co, Lemma A and Theorem A yield 7, (2) —
n(t) where 7 is a T-periodic solution of

® = (Ao ~ po)p + Bo(t)y

with pg € €, which contradicts the fact that C na(L%) = 0.

27 — Dilferential...
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Finally, by using the boundedness of {p,} and the same arguments as before
we can prove that

Anpn = L"pn+ Tgo = dopo = L°po + g0, A €C,
which is a contradiction with (9).
We are now in the position to proving the following result.

Theorem 2. Assume that there exists Ao € o(L°) such that |Xo| > 1, then
for sufficiently small € > 0 the T-periodic solution w® of (1)-(2) is unstable.

Proof. Since Ap is an eigenvalue of finite multiplicity (see [1]) there is a closed
disc D centered at Ap which does not contain points of ¢(L?) different from Ay
and dist (6D,0) > 1.

Furthermore, for € > 0 sufficiently small there are no points of ¢(L¢) lying
on C = 8D. In fact, assume there exist sequences €,, — 0 and A, € o(L*") with
A € C. Then

Angn = L°"gq,  for some g, € Y}

and passing to the limit as n — oo by Theorem A we obtain
Aogo = Lo

with o € C, go € H() x L*() which is a contradiction.
Therefore for € > 0 sufficiently small the Riesz’s projector

- 1 ey—1
Pg= 2m_f(AI—L) gd)
C

is well defined.
Let go € H(2) x L*(Q) such that Aogo = L%, [lgo)] = 1. By Lemma A we
get
F.go = Pogo#0 ase—0,
and from this a contradiction if we assume the existence of a sequence £, — 0
with the property that from A, € o(L**) it follows A, ¢ D. Indeed in this case
P, =0foranyneN.

4. The autonomous case
Following the lines of the previous section we first define fore > 0and 7" > 0
the Poincaré map Vi : Y — Y! associated to (6)-(7) as follows
To

VE(p) = Ue(T, To)p + f UL(T, Ty - 8) (T, w)(s) ds,
0
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where w(t) € Y2, t € [0,7Tp], is a solution of (6)-(7) with w(0) = p and the
operators are those defined in Section 2.

We then consider the linearization L% : Y} — ¥ of V& around @°(t) =
wé (T /Tp)t), where w® is a T,.-periodic solution of (6)-(7), whose existence for
sufficiently small € > 0 is guaranteed by Theorem B, namely

T

¢q = Us(T, To)q + f UL(T, To — 5)F1(T, & (s))(s) ds,
1]

where 9(t) € Y.}, t € [0,T¢], is the solution of the linearization of (6) around @°,
such that %(0) = g.

For ¢ = 0 we also define V : H}(Q) x L?(Q) - H*(?) x L?(Q) and the
corresponding linearization L% around w®. Consider the linear operator L.
for T close to Tg. One can show that it has the condensivity properties of the
operator L® of Section 3. Also its spectrum has the properties indicated for the
spectrum of LF.

In the sequel we assume the conditions of Theorem B. Therefore, in partic-
ular, we assume the eigenvalue 1 € o(Lf,) is simple. In order to investigate
orbital (in)stability of w® we need the following

Lemma 2. Ife > 0 is sufficiently small the eigenvalue 1 € o(L%. ) is simple.

Proof. We argue by contradiction, thus we assume that there exist sequences
€n — 0 and ¢n,q}, € Y such that ¢,,q], are linearly independent eigenvectors
of L5 with {lgnllyz = llgnllyz, =1 corresponding to 1 € o(LF ).

For any n € N we define a projection in Y} as

Pog = q — (¢,qn)nln,

where (-, ), denotes the scalar product in Y2 = X! x L%(Q) which generates
the norm as it is defined in Section 2. Consider now

Pn‘l;; = Q:z — OnGn,
where a,, = (gl,,gn). That is

@n = @ndn + Pagy,
From this we obtain

L;I;n q;" = anLg—-';n dn + Pnd,,

or equivalently

Pagn = L7 Pngp.
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Clearly P,q!, # 0, otherwise gy, g;, are linearly dependent. Therefore the previous
equation can be rewritten as

P'nq;'z En Pﬂq;o,

Pagillvy e TPnghllva,

Observe that P,q), is orthogonal to g,. Now, passing to the limit as n — oo, by
Lemma A (which still holds in the autonomous case) and Theorem B we obtain

B =L%%, |Blla@xza@ =1
Furthermore,
G = Foqo

~ [Pogoll (@) xz2(0)
where go € H1(f2) x L2(Q) is the normalized eigenvector of L%O corresponding
to the eigenvalue 1 and
Pog = q— (¢, 9)0 %

i the projection in H'(Q) x L?(f) defined by the usual norm ({-, - )o)'/? in this
space which is the limit of the considered norm in ¥} as n — oo.

Since ¢y is orthogonal to gg we have a contradiction. Moreover by a similar
procedure we can show that there is no adjoint vectors to g, and so 1 € o(L3 )
is simple. This completes the proof. "

To conclude it is sufficient to observe that we can repeat the same arguments
employed in the non-autonomous case to establish the analogous of Theorems 1
and 2 for the orbital stability and instability respectively.
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POTENTIAL TYPE INCLUSIONS

ZOLTAN KANNAI AND PETER TALLOS

1. Imtroduction

In [3], Bressan, Cellina and Colombo (see also Ancona and Colombo [1])
proved the existence of solutions to upper semicontinuous differential inclusions

(1) 2(t) € F(z(t)),  2(0) =m0

without convexity assumptions on the right-hand side. They replaced convexity
with cyclical monotonocity, i.e. they assumed the existence of a proper convex
potential function V' with F(z) C 8V (z) at every point. This condition assures
the L?-norm convergence of the derivatives of approximate solutions thus, no
convexity is needed to guarantee that the limit is in fact a solution.

Rossi [5] extended this result to problems with phase constraints (viable
solutions), and Staicu [6] considered added perturbations on the right-hand side.
Ultimately, both papers followed the method of [3].

In the present paper we relax the convexity assumption on the potential
function V, namely we suppose that V is lower regular. That means a locally
Lipschitz continuous function whose upper Dini directional derivatives coincide
with the Clarke directional derivatives. Convex analysis subdifferentials are re-
placed by Clarke subdifferentials. We prove the existence of viable solutions with
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the presence of phase constraint. The proof retains the basic idea of the original
paper [3]. A counterexample shows that lower regularity cannot be omitted.

2. Lower regular functions

Let X be a real Hilbert space and consider a locally Lipschitz continuous
real valued function V defined on X. For every direction v € X the upper Dini
derivative of V at # € X in the direction v is given by

D*V(z;v) = limsup Vis + )~ Viz)
£—04 i

H

and its generalized (Clarke) directional derivative at = in the direction v is de-
fined by
Ve(z;v) = limsup Viy+t) - Viy) ;
y—x,t—0+4 t
The directional derivative of V' at z in the direction v (if it exists) will be denoted
by DV (z;v).

Definition 1. The locally Lipschitz continuous function V is said to be
lower regular at = if for every direction v in X we have D¥V (z;v) = V°(z;v).
We say that V' is lower regular if it is lower regular at every point.

Let us note here that lower regular functions are not necessarily regular in the
sense of Clarke [4]. Take for instance the function f(z) = log(1l + z) on the real
positive half line, Now think of a piecewise linear function V' with alternating
slopes +1 and —1, whose graph lies between f and —f. Whenever V reaches
the graph of f or —f, it bounces back. Since for every z > 0, |f'(z)| < 1, it
is obvious that V zigzags infinitely many times in every neighborhood of the
origin. Finally, eliminate all corners of V lying on the graph of f by making
the derivative turn from 1 into —1 smoothly. Keep the corners on the graph
of —f. Clearly, such a V is Lipschitz continuous and it can easily be seen that
DtV (0,1) = V°(0,1) = 1 and hence, V is lower regular at the origin. However,
DV (0,1) does not exist and therefore, V' cannot be regular.

The intermediate (or adjacent) cone to the subset K at z € K is

Ix(z) = {v € X | DYdk/(z;v) = 0},
where d denotes the distance function, moreover
Ck(z) = {v e X |di(z;v) =0}

is the Clarke tangent cone to X at x. The following characterization of lower
regular functions can be verified by a staightforward adaptation of the proof of
Theorem 2.4.9 in [4].
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Theorem 2. The following two statements are valid for every x in X.

(a) Iein(m7 f(z)) = epiD+V(w; sy
(b) V is lower regular at z if and only if Ipiv (2, f(z)) = Cepiv(z, f(z)).

For further characterizations we refer to Aubin and Frankowska [2], pp. 239.
Consider a lower regular function V and let = be a point in X. Suppose
A > 0 is a Lipschitz constant for V' in a neighborhood of z. Let B stand for the
closed unit ball in X. By 8V (z) we denote the Clarke subdifferential of V' at .

Lemma 1. For every 0 <& < X and v € 8V (z) + B the inequality
lol|> < DTV (z;v) + 2ex
holds true.

Proof. Take u € 8V (x) with ||ju —v|| < . Since for each w € X we have
(u,w) < D¥V(z;w), by setting w = v it follows

DtV (z;v) > (u,v) > |J||® + {u — v,v)
> [wl? = ellvll > [lv]l* — el + ) 2 [Jol]® ~ 2A
that is the desired inequality. 0

Lemma 2. Suppose the function f(t) = V(z + tv) is differentiable at t =0
for some z € X and v € 8V (z). Then f'(0) = ||v||.

Proof. Lower regularity of V' at 2 implies that
{v,u) < D*V(z;u)

for each u in X. Applying this inequality with 4 = v and u = —v the lemma

ensues. 0

Lemma 3. Ifz : [0,T] = X is absolutely continuous on the interval [0, T
with z'(t) € 8V (z(t)) a.e., then

(Voz)'(t) =l ()
for a.e. t € [0,T].

Proof. Let S be a set of measure zero such that both x and V o z are differ-
entiable on [0, 7]\ S moreover z'(t) € 8V (z(t)) at every ¢t € [0,T]\ S. Thus, if
t € [0,T]\ S is given, there is a § > 0 such that z(t + h) — z(t) — hz'(t) = r(h)
for every |h| < 8, where limp,o ||[r(R)]|/h = 0. Since a locally Lipschitz function
on a compact set is globally Lipschitz cuntinﬁous, we can assume that

[V(z(t +h)) = V(x(t) + ha'(t))] < Allr(Bl,

28 — Differential...
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whenever |h| < §. Consequently, the function h — V(z(t) + hz'(2)) is differen-
tiable at i = 0, and its derivative is the same as the derivative of h — V (z(t+h))
at h = 0. Making use of Lemma 2, we obtain

Vi) + ha'(t)) - V(z(t) _

! = 13 i 2
(Vo) (t) = Jim : 2’ o)
at each point t € [0,T]\ S. 7 0

3. The main result

Let K be a convex and locally compact subset of X and consider an upper
semicontinuous set valued map F defined on K with nonempty closed images in
X. Let us suppose that there exists a lower regular potential function ¥V on X
such that the tangential condition

) Tx(z) N F(z) N0V (z) # 0

holds true for every « € K, where T (z) denotes the tangent cone to K at z.
Let the point 2y be given in K and consider the Cauchy problem

z'(t) € F(z(t)) ae.

3

& z(0) = zo

with the phase constraint

(4) ()€ K, t>0.

Theorem 2. Assume that the tangential condition (2) is valid. Then under
the above conditions there exists a T > 0 such that the problem (3), (4) admits
a solution on [0,T].

Choose g > 0 such that Ky = K N (xg + 2¢B) is compact and V is Lipschitz
continuous on zg + 2¢B with Lipschitz constant A > 0. Then 8V (z) C AB for
every £ € Ky. Set T = g/A and K; = K N (zg + ¢B). Then no solution z
starting from zy with

(5) z'(t) € F(z(t)) N8V (z(t)) a.e.

can leave the compact set K; on the interval [0,T]. Therefore, without loss of
generality, we may assume that K is compact. Below we construct a solution to
the problem (3), (4) that also solves (5).

We denote by St the solution set to the problem (3), (4) on the interval
[0,T]. St will be regarded as a subset of the Banach space W2(0,T, X) of
absolutely continuous functions equipped with the norm

T 1/2
lell = ool + ([ l@iPar)



POTENTIAL TYPE INCLUSIONS 219

Theorem 3. Under the additional assumption
F(z) c 8V (x) for each z € K

there exists a T > 0 such that St is a nonempty compact subset in W12(0,T, X).

4. Approximate solutions

Let 0 < € < g/ be given. Select a vector
v € Tr(xo) N F(xzo) NIV (z0).
Then we can find an 0 < h < ¢ such that dg(zo + hv) < eh. This implies the
existence of a point ¥ in K with ||zg + hv — y|| < €h. Set

Y — o
h

Then |lv — w|| < € and by Lemma 1,

w = € 8V (xp) +eB.

|lw|> < DTV (zo;w) + 2eX.

Consequently, we can pick a 0 < § < h such that
(w0 + dw) — V(zo)
d

In view of the convexity of K we immediately get zo + tw € K whenever ( <
t < 4. Now set 7 = ¢ and define z. on [0,7] by

4+ 3eh.

of? < Z

z.(t) = 3o + tw, te[0,7].

Our construction proceeds as follows. Let us suppose that for some 7 > 0 we
have defined z. with the following three properties:

0 [ IaLOIP de < Veuo) - Vi) + 363
and for a.e. t € [0,7]

(7) zL(t) € F(z:(t) + 2XeB) + B,

and finally, for each ¢ € [0, 7]

(8) z.(t) € K.

Qur construction starting from zy obviously fulfills these criteria. Keeping the
previous notations take a vector

v € Tg(z (1)) N F(z: (1)) N OV (2:(T)),
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then there exists an 0 < h < & with dx (z.(7) + hv) < eh. Hence, we can find a
point y € K such that ||z.(7) + hv — y|| < gh. Put

w= y%s{ﬂ € OV (z.(7)) + ¢B.

Then clearly ||v — w|] < & and by exploiting Lemma 1 we have
llw]|? € DTV {(z.(1); w) + 2eA.

This implies that a 0 < & < h can be chosen with
Vi#e(r) + dw) — V(ze(7))
&

The convexity of K assures that z.(r) + tw € K whenever 7 < ¢t < 7+ 4. Define
ze on [1,T + &] by

+ 3.

llwl* <

Te(t) = ze(r) +tw,  te€[r,7+0).

It is easy to verify that z. satisfies conditions (6), (7) and (8) with 7 replaced
by 7+ 6.

A straightforward application of Zorn’s lemma shows that x. can be extended
to [0,7] with retaining the properties (6), (7) and (8) on the interval [0, T'.

5. Proof of the theorems

Proof of Theorem 2. Let € = 1/n and consider the sequence of approximate
solutions x, given in the preceding section. Assume that A > 0 is a Lipschitz
constant for ¥V on the compact set K. Then by the construction

lzn (Ol < A+1

for a.e. t € [0,T] and graph, is contained in K for each n. Therefore, we can
select a subsequence, again denoted by z, which uniformly converges to an abso-
lutely continuous function z on [0, T], moreover =/, — 2’ weakly in L2(0,T, X).

By passing to the limit, standard arguments show that 2'(t) € 9V (z(t)) a.e.
Thus, in view of Lemma 3, we obtain

T T
[ Ie@ird= [ oay ) =va@) - V).
0 0
Hence, taking the limit in (6), we get
T T
tmsup [ @l < [ o0l ds
n—co 0 1]

or in other words

limsup ||z} |22 < [|z']|z2.
n—+00
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This latter relation combined with the weak convergence implies the L2-norm
convergence of the derivative sequence. Consequently, we may assume that z!,
converges to ' almost everywhere. On the other hand (7) can be rewritten as

(@n(t), 2 (f)) € graph F' + an(B x B),

where a, — 0 if n — oo, This relation together with (8) tell us that z is a
solution to the problem (3), (4) on the interval [0, T]. O

Proof of Theorem 3. Consider a sequence z, in Sr. Since the derivatives
are uniformly bounded, without loss of generality we may assume that z,, — =’
weakly in L?(0,T, X) and z, — « uniformly on [0,T]. By Lemma 3 we have

T
£|mmWﬁ=w%aw—w%>

Since the right hand side of the above equality converges to V(z(T)) — V(z0),
and by standard arguments z'(t) € V' (z(t)), a repeated application of Lemma 3
gives us

o T
mn/um@Wﬁ=/|meﬁ
n—oo 0 0

and hence, z!, — ' with respect to the L*(0, T, X)-norm. From this point we
can follow the patterns of the proof to Theorem 2 to get that x lies in Sp. This
proves that St is a compact subset of W1:2(0, T, X). O

Examples. It is worth mentioning here that our Theorem 2 generalizes the
result of [3]. Indeed, take the lower regular function V' on the real line described
in the example next to Definition 1. Consider the differential inclusion problem

(9) #'(t) € Fz(),  =(0)=0,

where the set valued map F is given by

{V'(z)} if the derivative exists,
Fl@)={ [-L,1] ifz=0,
{-1,1} otherwise.

It is easy to verify that F' is upper semicontinuous, admits nonconvex values in
every neighborhood of the origin and F(z) C 8V (z) at every point. However, it
is obvious that there is no proper convex continuous function W with F(z) C
oW (x).
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Finally, let us note that the lower regularity of the potential function V
cannot be omitted. Consider for instance the Cauchy problem (9) with

{1} itz <O,
F(z)=< {-1,1} ifz=0,
{-1} ifz >0,
that is the common example of an uppersemicontinuous map with no solutions.

Although we have F(z) C 8V (z) at every point for V(z) = —|z|, the potential
function V" is apparently not lower regular at the origin.
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GRAPH-APPROXIMATION OF
SET-VALUED MAPS. A SURVEY

WoJCIECH KRYSZEWSKI

Since the early paper of von Neumann [34], approximation methods proved
to be useful in many applications involving set-valued maps: mathematical eco-
nomics, game theory [6], differential equations and inclusions [5], control theory
and others. These methods, together with homological ones (see [22], [26]), play
also an important role in the fixed point theory of set-valued maps. The so-called
graph-approzimations of upper semicontinuous multivalued mappings with non-
convex values are the main object of our interest. The existence of selections or
uniform approximations for such maps is a rare phenonemenon.

In what follows a space is a (Hausdor[f) topological space; a map is a contin-
uous transformation of spaces. By a set-valued map ¢ of a space X into a space
Y (denoted ¢ : X — Y) we understand an upper semicontinuous multivalued
transformation with compact nonempty values (see [14] or [22] for more details
on set-valued maps) (). I f : X = Y (resp. ¢ : X — Y) is a map (resp.
set-valued map), then Gr(f) (resp. Gr(y)) stands for the graph of f (resp. of ¢),
ie. Gr(p) = {(z,5) € X x ¥ | y € p(x)}.

Let ¢ : X — Y be a set-valued map from a space X into a space ¥ and let
AcCX.

1991 Mathematics Subject Classification. 54C60, 58C06, 4THO04.

Key words and phrases. Set-valued maps, graph-approximation.

I Many results of this paper are valid for maps with closed values; we assume compactness
of values in order to avoid tedious distinctions between results valid for compact-valued maps
but not true for maps with merely closed ones. It seems that the reader will be able to see
instances for which compactness of values is superfluous.
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Definition 1. Given a neighborhood I{ of the graph Gr(yp) in X x Y (?),
we say that amap f: A — Y is a U-approxzimation of ¢ provided

Gr(f) C U

In case of metrizable spaces X and ¥ one may use epsilons instead of neig-
borhoods in Definition 1. Given a continuous function £ : X — (0, +o0) we say
that a map f: A = Y is an e-approzimation of ¢ if (%)

(1) Vz e A f(z) € B(p(B(z,e(x))), e()).

If A is compact, then one may replace e-functions by positive constants and thus
arrive the traditional notion of an e-graph-approximation.

Proposition 1. Let X, Y be metric spaces.

(i) For each neighborhood U of Gr{yp), there is a continuous function ¢ :
X — (0,400) such that any e-approximation f : A - Y of ¢ is @
U-approzimation of .

(ii) Conversely, given a function £ : X — (0, +00), there is a neighborhood
U of Gr(ip) such thet any U-approzimation [ : A = Y of ¢ is an &-
approximation of ©.

Let a be an open covering of Gr(p). We say that f : A —+ Y is an a-
approzimation of @ if for all p € Gr(f), there is ¢ € Gr(yp) such that both p
and g lie in the same member of o (see [35]). It is clear that, for a covering
a of Gr(p), any U-approximation f : A = Y of ¢, where U = {Jy,V, is
an a-approximation; conversely, for a neighborhood U of Gr(yp), there exists its
covering « such that any a-approximation f : A =+ ¥ of ¢ is a l{-approximation.

In case X, Y are subsets of topological vector spaces F and F, respectively,
and given neighborhoods U and V' of the origins in £ and ¥, we say that f: A —
Yisa (U,V)-approzimation of ¢ if, for any z € A, f(z) € [p((z+U)NX)+V]INY
(see [11]). This is a direct generalization of the concept of an e-approximation to
the non-metrizable context (moreover, it may be easily generalized for uniform
spaces X,Y). As in Proposition 1, we easily see that, for any U, V (as above),
any U-approximation f : A - Y of ¢, where i = U x V + Gr(p), is a (U,V)
approximation of . Conversely, given a neighborhood i/ of Gr(y), there are
neighborhoods U and V of the origins such that a (U, V)-approximation f : A —
Y of ¢ is a U-approximation provided 4 is compact.

2In the sequel, we always speak of open neighborhoods of Gr(p) in X x V.
31f (Z, d) is a metric space, § > 0 and C C Z, then B(C,§) := {z € Z | infeec d(z,c) < 6},
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It seems, therefore, that the notion of I{-approximation is the simplest, the

most general and perhaps the best.

Let again ¢ : X — ¥ be a set-valued map between spaces and let A, B be
closed subsets of X such that 4 C int B.

Definition 2. We say that ¢ is:

@

approzimable if, for each neighborhood I of Gr{y), there exists a U-
approximation f: X —= Y of p;

e-approzimable if X, Y are metrizable and, for each £ > 0, there is an
g-approximation f: X — ¥ of ¢;

(U, V)-approzimable if X, ¥ are subsets of topological vector spaces
and, for all neighborhoods U and V' of the origins, there is a (U, V)-
approximation f: X = Y of ¢;

weakly relatively approxzimable over A, i.e. for every neighborhood &/ of
Gr(yp), there is a neighborhood V of Gr(y) with the following property:
if a V-approximation f : 4 -+ YV of g extends toamap f/ : N = ¥,
where IV is a neighborhood of A in X, then there is a I{/-approximation
F:X =Y of p such that F|4 = f;

relatively approzimable over A, ie. for any neighborhood I of Gr(yp),
there is a neighborhood V of Gr(y) such that any V-approximation
f: A=Y of p extends to a U-approximation F : X — ¥ of » (%),
relatively approzimable over (A, B) if, for every neighborhood I/ of
Gr (), there is a neighborhood V of Gr(y) with the following property:
if f : B — Y is a V-approximation of y, then there is a I{-approximation
F:X =Y of ¢ such that F|4 = f|a.

Clearly if X, Y are metrizable and ¢ is approximable, then it is e-approxi-

mable; the converse holds provided X is compact. Similar statement relates
approximability to (U, V)-approximability.

In general, if  is relatively approximable over A, then it is weakly relatively

approximable over A. If ¥ is a neighborhood extensor with respect to the pair
(X, A), then clearly the weak relative approximability of ¢ over A implies relative
approximability. This holds, for instance, when A is a neighborhood retract in X.

Obviously if y is weakly relatively approximable over A, then it is relatively

approximable over (4, B) for any closed neighborhood B of A.

4This notion has its counterpart in the metrizable case and the language of e-approximabi-
lity: one says that ¢ is relatively e-approzimable over A provided, for each € > 0, thereis § > 0
such that any d-approximation f : A — Y extends to an e-approximation F : X — ¥ of ¢.
Similarly one may define the notion of the relative (U, V')-approximability over A.

2Y — Differential...
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Sometimes approximability implies the existence of uniform approximations.
For example we have the following result (comp. [25]).

Proposition 2. Assume that p: X — Y, where X is paracompact end Y is
o metric space, is approzimable. If @ is additionally lower semicontinuous (i.e.
the set {zx € X | p(z) C F} is closed for a closed F CY) then for any € > 0,
there is a map f: X — Y such that d(f(z), p(z)) = infyc, (o) d(f(z),y) <& for
allz e X.

It is clear that if no conditions are imposed on the values of a map ¢, then
the problem of the existence of sufficiently close approximations has hardly an
answer. Here we shall deal with set-valued maps whose values satisfy some of the
so-called UV -properties. Sets satisfying these properties have been intensively
studied for many years by geometric topologists (see e.g. [7], [30]).

Definition 3. Let A be a closed subset of ¥. We say that the inclusion
A<= Y has:

e UV ™-property (n > 0 is an integer) if each open neighborhood U of 4
in ¥ contains a neighborhood V of A such that any singular k-sphere,
0 <k <n,in V is null-homotopic in U;

e UVY“-property if it has UV ™-property for each n > 0;

e UV >-property if each neighborhood U of A (in Y'), contains a neigh-
borhood V' of A such that V is contractible in U (5).

It is clear that properties defined above are rather properties of the embed-
ding of a given compactum in the ambient space. For instance, a point has
properties UV, 0 < n < 0o, (resp. UVY,UV ) if and only if the ambient space
Y is locally n-connected (resp. locally co-connected, locally contractible).

Clearly if A — Y has UV™-property, 0 < n < co, then it has UV™-property
for 0 <m < n; if A— Y has UV®-property, then it has UV“-property.

The following proposition collects important examples of sets satisfying some
UV -properties

Proposition 3. For a compact subset A of an ANR set Y the following
conditions are egquivalent:

o A is an Rj-set (i.e. it can be represented as the intersection of a de-
creasing sequence of compact AR-spaces) (8);
o A< Y has UV -property (is a cell-like set);

5In a less popular terminology, due to Dugundji, a set A C Y such that the inclusion A —
Y satisfies UV ™- (resp. UV¥-) property is called n-proximally conected (resp. co-proximally
connected).

%In particular, any contractible subset of ¥ has UV *-property.
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e A may be represented a3 the intersection of a decreasing sequence of

compact contractible sets;

o A is coniractible in each of its neighborhoods (i.e. A is approvimatively

contractible);

e A has the shape of a point.

Let ¢ : X — Y be a set-valued map.

Definition 4. Let 0 < n < o0 or n = w. We say that ¢ is a UV"-valued
map if for each x € X, the inclusion ¢(z) < Y has UV™-property.

Suppose now that X,Y are metrizable. After Myshkis — [33] (see also [15]
and [21]) we shall say that amap ¢ : X — Y is aspheric in dimension k > 0 if for
each z € X and all € > 0, there is § = d(g) > 0 such that any singular k-sphere
in B(p(z),d) is null-homotopic in B(p(z),¢) and weakly aspheric in dimension
% if this holds for each = € X and some e > 0. Finally, a map ¢ : X = Y, where
X is a finite polyhedron, dim X = n is aespheric if it is apsheric in dimension

0 < k € n —1 and weakly aspheric in dimesnion n. It is clear that any aspheric

map (defined on an n-dimesional finite polyhedron) is a UV"~!-valued map.

Theorem 1. Let p: X — Y be a set-valued map of spaces.

1.

(Cellina 1969 — [18]) If X is metrizable, Y is a metrizable locally convex
space and the values of @ are convez, then v is e-approzimable (7) (8).
(Myshkis 1954 — [33]) If X is an n-dimensional polyhedron, Y is metriz-
able and @ is an aspheric map, then ¢ is e-approzimable.

(Mas-Collel 1974 — [32]) If X is a finite polyhedron, @ compact contrac-
tible-valued and Y = R", then @ is e-approzimable.

(Anichini, Conti, Zecca 1985 — [3]) The same result holds for any normed
space Y.

(Cannon 1975 — [17]) If X is metrizable locally compact separable, ¥
is an ENR (Euclidean Neighborhood Retract) and ¢ is a UV ™ -valued
map, then it is relotively approximable over any closed subset A C X.
(Ancel 1985 — [1]) If X is metrizable is countable dimensional or dim(X'\
A) < oo and p is a UV -valued map then v is weakly relatively ap-

~ prozimable over A.

"The paper [19] provides an extensive discussion of various approximation results for con-
vex valued maps satisfying less restrictive continuity assumptions.
8Beer 1988 — [L3] shows that a similar results holds for a starshaped-valued .
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7. (Gérniewicz, Granas, Kryszewski 1989 — [23]) If (X, A) is a finite polyhe-
dral pair, ¥ is metrizable and ¢ is a UVY -valued map then g is relatively
e-approzimable over A (9).

8. (1989 - [23]) If X is a compact ANR, Y metrizable and ¢ is o UV¥-
valued map then ¢ is e-approzimable (1°).

9. (Bader, Gabor, Kryszewski 1993 — [9]) If X and A are compact ANRs,
Y is metrizable and ¢ is ¢ UV¥-valued map then ¢ is relatively e-
approzimable over A.

A result due to Ancel - [1] is by all means the most general one concerning
UV*®-valued maps. It appeared while the author investigated general properties
of the so-called cell-like maps from the strictly topological viewpoint (extend-
ing earlier ideas of Lacher, Haver and others). Some later, mentioned above,
results for UV *°-valued maps are implied by Ancel’s. However they were ob-
tained independently, the starting point to these investigations was different and
they were addressed to analysts rather. In (23], [27], [11] and [24] the authors
were interested in the fixed-point theory implications of the existence of graph-
approximations rather, assumptions concerning maps in these papers are, gener-
ally speaking, weaker then those of Ancel (note that U'V*°-property is stronger
than UV*); however it seems that the authors have not been fully aware of An-
cel’s (or Cannon’s) results. It should also be remarked that older approximation
results obtained, for instance, by Myshkis or Mas-Collel has not been noticed for
a long time and, as it seems, Ancel did not know about them.

Remark 1.

(i) It is no wonder that all above results concern maps with values satisfying
some UV-properties: the approximability of a set-valued map is in a
sense a sufficient condition for the map to have UV-values. Namely,
one shows easily that if ¢ : X — ¥ is a set-valued map of metric
spaces having the following property: for every compact ANR T with
dimT < n + 1, for every sub-ANR A of T', every map j : T — X and
every € > 0, there is § > 0 such that any J-approximation f: A - V
of ¢ o j extends to an e-approximation of o 7, then ¢ is a UV™-valued
map.

®This result has been repeated by Ben-El-Mechaiekh and Deguire — [11] in the context of
(UV)-approximability

19McLennan 1989 — [31] shows this result for contractible valued maps; Anichini, Conti,
Zecca — [4] have shown it in case X is compact convex in a normed space, Y is a normed
space and ¢ is UV°-valued while in [11] this result has been established in the context of
(U, V)-approximability; Gérniewicz, Lassonde [24] extended this result for a compact AANR.
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(ii) The most important among stated above are results concerning approx-
imability of maps defined on finite polyhedra. The finitness assumption
was crucial in their proofs: it made a sort of finite constructions on
skeleta possible. These constructions can not be done on infinite poly-
hedra.

(ili) It is important to note that Gérniewicz, Lassonde [24] and Bader [§]
(and also Ben-El-Mechaiekh, Deguire [11]), independently, observed
that the e-approximability result of Granas, Gérniewicz and Kryszewski
[23] (stated in Theorem 1 part (8) may be generalized to a metric
space X (or a subset X of a topological vector space in [11]) being
a-dominated by a finite (i.e. compact) polyhedron for any covering o of
X (11). This observation led also to a remarkable simplification of the
original proof from [23].

(iv) Let us note the following fact due to Gérniewicz, Lassonde [24] (see also
[11]):
ifo, 1 X - Y,i=1,2,.., is ¢ decreasing sequence of set-valued
approzimable maps, X is compact, then ¢ = Ufil p; 18 approzimable.

It is clear that this observation enables to get further generalizations of results
stated in Theorem 1.

Some of the above mentioned results concerning e-approximability were gen-
eralized for maps being finite compositions of maps from above classes (Cannon
1975 — [17); Gérniewicz, Lassonde 1994 - [24]; Miklaszewski, Kryszewski 1989
~ [27]) defined on compact domains. However, many facts concerning approx-
imability extend to compositions (without assumptions involving compactness)
— see [28]. Here is a sample result:

Proposition 4. Let ¢ : X — Y be approzimable and let ¢ : Y — Z. If
(i) o is single-valued; or
(i) Y is paracompact, v is approzimable and ¢ is proper (12),
then i o @ is approzimable. In both cases approzimations of 1 o are of the form
gof, where f : X =Y and g:Y — Z are sufficiently close approrimations of
@ and ¥ (or g = ¢ in case (1)), respectively.

These facts hold for e-approximability only if X is compact (then g is auto-
matically proper).

11 Recall that, given a covering o of X, we say that X is a-dominaied by a space P if there
are maps s : X ~ P, r: P — X such that r o s and the identity idx are c-close (that is, for
each ¢ € X, both x and r(s(z)) belong to the same member of o). Any compact ANR satisfies
this property

121e. o~ 1(K) :={z € X | p(z) N K # 0} is compact for any comapct K C Y; any ¢ is
proper if X is compact.
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Approximation results for set-valued maps have been mainly applied in the
fixed-point theory. Results of Myshkis [33] were used by Borisovich, Gliklikh
[15] and Gliklikh [21] to define the Lefschetz number and topological degree of
aspheric maps on subsets of R™. The fixed point index theory on compact ANRs
was constructed in [23], [27] and [9] and on arbitrary ones in [10] (see also a
survey [25]).

Finally observe that, save results of Cellina, Cannon and Ancel, the compact-
ness of a domain was an essential and unavoidable component of assumptions.
In what follows we shall deal with maps defined on noncompact domains and we
shall establish far going generalizations of results collected in Theorem 1. All
below results are taken from Kryszewski 1994 — [28].

The first one shows that in a finite-dimensional setting approximations always
exist (no structural assumptions on the domain are necessary).

Theorem 2. Let 0 < n < oo and let p : X — Y be a UV™-valued map
between spaces.

1. If X is paracompact, dim X < n + 1, then @ is approzimable.
2. If X, Y are metrizeble, Y is locally n-connected, A is closed in X and
dim(X \ A) < n -+ 1 then @ is is relotively approrimable over A.

In 1994 Repovs, Semenov and Séepin [35] proved a result similar to Theo-
rem 2.1. They do not assume that ¥ is paracompact; instead the map ¢ has to
be *-paracompact (this means hat it behaves well with respect to open coverings
of X and Y"). Unfortunately, not every set-valued map is such. #-paracompact
are open set-valued maps (i.e. transforming open sets onto open ones) or set-
valued maps between compact metric spaces). Under these assumptions, they
prove that, for any coverings o of X and 8 of Y, there is an o X 3-approximation
of .

Moreover, there are some results (due to Scepin, Repovs and Brodski) similar
to Theorem 1, where Y is the Banach space but the assumption concerning ¢ is
relaxed. Namely, they suppose that ¢ has the so-called UV™-filtration (comp.
Remark 1 (iv)).

Admitting infinite-dimensional domains we have to pose some structural as-
sumptions. Recall that a simplicial complex K is locally finite dimensional if, for
each vertex v € K, there is an upper bound for dimensions of simplices having
v as a vertex, i.e. sup{dimo | v is a vertex of a simplex ¢ in K} < o0.

Theorem 3. Let ¢ : X —o Y be a UV¥-valued map from a locally finite
dimensional polyhedron X (with the Whitehead topology) to a space Y. Then
w is approzimable. If A is a closed subpolyhedron in X then o is relatively
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approzimable over A. Moreover, if A is an arbitrary closed subset of X then
is weakly relatively approzimable over A.

In the situation of Theorems 2 and 3 the relative approximability over A
is equivalent to weak relative approximability of ¢ over A. This is because
the hypotheses of these theorems guarantee that every map f: A — Y has a
neighborhood extension f' : N — Y. In particular, the assumption of Theorem 2
(part 2) that Y is locally n-connected combined with the results of Eilenberg,
Wilder [20] and Kuratowski [29] provides such an extension. In Theorem 3 a
closed subpolyhedron A is neighborhood retract of X and such an extension
exists for trivial reasons.

Using different methods of proof and applying one of the main results from
[36] we have the following result concerning weak approximability.

Theorem 4. Let p: X —o Y be a UVY-valued map from an ANR X to a
metric space Y. If A is a closed subset of X and N is a neighborhood of A, then
for every neighborhood U of Gr(p) and any selection f: N =Y of ¢ (1) there
is a U-approzimation F : X =Y of ¢ such F|4 = f|a.

Setting A = N = {) in Theorem 4 the next approximation result follows.

Theorem 5. A UV¥-valued map @ : X — Y from an ANR X to a metric
space Y is approximable.

Unfortunately the author was unable to get a general result concerning rel-
ative approximability over the closed subset A C X of ¢ in the setting of The-
orem 5. However it is true for a separable or a locally compact ANR X and its
sub-ANR A. To explain it we need the following notion.

Definition 5. Let o be an open cover of a space X and let A C X be closed.
We say that the pair (X, A) is a-dominated by a pair (Z,C) if there are maps

(X, 4) 5(Z,C) (X, 4)

such that r o p and the identity idx are a-close (i.e. for all z € X, r(p(z)) and
z belong to the same member of a).

We say that (X, A) is homotopy a-dominated by (Z,C) if it is a-dominated
and there is a a-homotopy h : X x [0,1] = X (i.e. {h({z} x[0,1])}zex refines )
such that hg =1x and by =rop.

We say that (X, A) is properly (resp. homotopy) a-dominated if the map r is
proper.

Finally, we say that (X, A) is (resp. properly) (resp. homotopy) dominated

Bie., f(z) Ep(z) forallz € N
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if, for each covering a of X, (X, A) is (resp. properly) (resp. homotopy) a-
dominated by a locally finite dimensional polyhedral pair.

In case A = 0 (and C = §) we have the respective notions of X being (resp.
properly) (resp. homotopy) dominated.

If (X, A) is an ANR-pair, then the (proper) a-domination, for each covering
a of X implies the the (proper) homotopy a-domination for all . In the early
1980’s, Ancel [2] and Toruriczyk independently asked which ANRs are properly
homotopy dominated. For instance, the standard construction of dominating
polyhedra of ANR’s yields that every separable or locally compact ANR, being
strongly paracompact, is properly homotopy a-dominated by a locally finite,
hence locally finite dimensional polyhedron for any open cover o; therefore sep-
arable or locally compact ANR are properly homotopy dominated. The same
holds for an arbitary Hilbert manifold. The question whether every ANR. satisfies
this property remains open.

Theorem 6. Suppose that X is a paracompact space, A C X is closed and
let p: X — Y be UV -valued map into a space Y.

1. If X is dominated then @ is approzimable.

2. If X is properly homotopy dominated, B C X 1is closed and A C int B
then @ is relatively approzimable over (A, B).

3. If (X, A) is a properly homotopy dominated ANR-pair, then ¢ is rela-
tively approximable over A.

Unfortunately the author is not sure whether the version of Theorem 5 part 3
holds for any (paracompact) pair (X, A).

Regarding graph-approximations as tools for studying properties of set-valu-
ed maps (in particular, the existence of their fixed points via homotopy invariants
such as e.g. the fixed point index) the following concept and problem seem to be
of importance.

Definition 6. Let ¢ : X — Y be a set-valued map between spaces We
say that ¢ is homotopy approzimable if for each neighborhood U of Gr(y), there
exists a neighbourhood V of Gr(y) such that any V-approximations f,g : X = Y
of o are joined by a homotopy h : X x [0,1] =+ Y such that h; = h(-,t) is a
{4-approximation of ¢ for every ¢ € [0, 1].

Clearly, the notion of homotopy approximability may be generalized in way
approximability was generalized.

It is natural to ask what are the sufficient conditions implying the homotopy
approximability of a map . Such a homotopy approximable map ¢ may be ade-
quately studied by means of (single-valued) approximations and their homotopy
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invariants like topological degree, fixed-point index and/or the Lefschetz number
and, moreover, these invariants can be easily defined for . Without homotopy
approximability of ¢, for instance, the fixed-point indices of sufficiently close
approximations of ¢ would not stabilize.

Theorem 1 part 9 implies that if X is a compact ANR, then a UV*-valued
map ¢ : X = Y is homotopy approximable (this was actually proved in [23], but
[9] 1996 provides a simpler direct proof). Also Theorems 2, 3 and 6 are designed
in the way allowing to obtain homotopy approximability.

Theorem 7. Let o : X —o Y be a UV™-valued map between spaces, 0 <n <
w and let A C X be closed. If

e n < oo, X is metrizable, dim(X \ A) < n, Y is metrizable locally n-
connected; or

e X is locally finite dimensional polyhedron with the Whitehead topology,
A is a closed subpolyhedron of X,

then, given a neighborhood U of Gr(p), there is a neighborhood V of Gr(p) such
that, for any V-approzimations f,g : A = Y and a (partial) homotopy h :
A x [0,1] = Y joining f|a to g|la and such that h; is a V-approzimation of @
for all t € [0,1], there is a homotopy H : X x [0,1] = Y joining f to g such that
H|gxjo1) = h and H; is a U-approzimation of @ for all t € {0,1]. In particular
if
e n < oo, X is metrizable and dim X < n, Y is metrizable locally n-
connected, or
e If X is a locally finite dimensional polyhedron with the Whitehead toi-
pology, n = w,

then o is homotopy approximable.
This result has a counterpart for spaces being properly dominated.

Theorem 8. Suppose that a paracomapct space X is properly homotopy
dominated and let ¢ : X — Y be a UVY-valued map inlo a space Y. Let
A,B C X be closed and A C int B. For any neighborhood U of Gr(yp), there
is a neighborhood V of Gr(p) such that, given V-approzimations f,g: X = Y
of ¢ and a homotopy h : B x [0,1] = Y joining f|p to gl such that h: is o
V-approzimation of ¢ for all t € [0,1], there is @ homotopy H : X x [0,1] = ¥V
joining f to g such that H|x[o,1] = hlaxjo,1) end H; is a U-approzimation of ¢
for all t € [0,1]. In particular, @ is homotopy approzimable.

The same type of a reslt may be derived from Theorem 6 part 3.
Finally, let us recall a result which shows perhaps a future possible develop-
ment of the theory.

30 — Differential...



234 WoiciecH KRYSZEWSKI

Theorem 9 (Ben-El-Mechaiekh, Kryszewski 1997 - [12]). Let X be a metric
space and Y a normed one. Let w : X — Y be a set-valued map with convez
closed values and @ : X — YV a lower semicontinuous map also with closed and
convez values. For any € > 0, there exists an e-opprozimation f : X — Y of ¢
such that f is a selection of @ (i.e. f(z) € ®(z) for all z € X).

It is, perhaps, easy to generalize this result for the case X is paracomapct
and Y is a metrizable locally convex space (or merely locally convex space and
¢ has compact values); then, for any neighborhood U of Gr(yp), there should
exist a selection of @ being a i/-approximation of ¢. This type of a "controlled”
approximation of set-valued maps is of importance in applications and could be
probably carried over to larger classes of set-valued maps with nonconvex values.
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APPLICATIONS OF MARCZEWSKI
FUNCTION TO MULTIFUNCTIONS

ANnNA KUclA AND ANDRZEJ NOWAK

1. Preliminaries

The Marczewski function (i.e. the characteristic function of a sequence of
sets) allows us to derive some results on measurable and Carathéodory type
functions from cbrresponding theorems for continuous functions. In this paper we
survey our results on selections and approximations of multifunctions obtained
by this method. By the use of the Marczewski function we get new proofs of
well known theorems as well as some new results.

Throughout this paper (T, 7) is a measurable space, and X, Y metric spaces.
By B(X) we denote the Borel o-field on X, and by 7 ® B(X) the product o-field
on T x X. P(Y) stands for the family of all nonempty subsets of Y.

We say that a multifunction ¢ : X — P(Y) is lower (upper) semicontinuous
if for each open V C Y the set o= (V) = {z | ¢(z) NV # 0} (respectively,
et (V) = {z | p(z) C V}) is open in X. A multifunction is continuous if it is
lower and upper semicontinuous. A multifunction ¢ : T — P(Y’) is measurable,
if = (V) € T for each open V C Y. Note that such a multifunction is called
weakly measurable by Himmelberg [4]. We say that a function or a multifunction
defined on T x X is Carathéodory if it is measurable in ¢ and continuous in z.

1991 Mathematics Subject Classification. 26E25, 54C60, 54C65.
Key words and phrases. Marczewski function, measurable selection, Carathéodory selec-
tion, approximation of multifunctions.
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Let A = (An)nen be a sequence of subsets of 7. By the Marczewski function
of A we mean the mapping x : T —+ {0, 1}, where {0,1}" is the space of zero-
one sequences, defined by x(t) = (xn(#))nen; Xn is the characteristic function of
Ap. This function was introduced by Marczewski [11] in 1938, under the name
of the characteristic function of a sequence of sets.

The space {0,1}F is considered with the product topology, and the image
x(T) c {0,1} with the induced topology. It is not difficult to see that for each
n € N the set x(A4,) is closed-open in x(T), and x is measurable with respect to
the o-field o(A) generated by the family 4.

2. Measurable selections

The most known result on measurable selections is the following theorem of
Kuratowski and Ryll-Nardzewski:

Theorem 2.1 ([10]; see also [4], Theorem 5.1). Let (T, T) be a measurable
space, Y a separable metric space, and v : T — P(Y') a measurable multifunction
with complete values. Then ¥ has a measurable selection.

The first author [5] showed, that this result is a consequence of the zero-
dimensional theorem of Michael:

Theorem 2.2 ([12], Theorem 2). Let X be a zero-dimensional (in the sense
of the covering dimension dim) paracompact space, Y a metric space, and ¢ :
X = P(Y) a multifunction. If  is lower semicontinuous and complete-valued,
then it has a continuous selection.

Note that Michael assumed that Y is complete and ¢ has closed values. By
the completion of ¥ we obtain such a version of his result. _

Now we give the proof of Theorem 2.1 based on the use of the Marczewski
function (cf. [5]).

Proof of Theorem 2.1. Let (V;,)nen be a base of Y, and define 4, = ¢~ (V,,).
Since ¢ is measurable, A, € 7. Let x be the Marczewski function of (A, )nen.
Now we define the new multifunction ¥ : x(T') — P(Y) by the formula v (t) =
T(x(t)), t € T. We have to show that ¥ is well defined. If ¢(t) # ¥(¢)
for some t,t' € T, then there is z € ¥(¢) \ ¥(t') (or z € (') \ ¥(t)). It
suffices to consider the first case. Since 9(#) is closed, there is n € N such
that x € V, and ¢(t') NV, = 0. It means that ¢ € ¢~ (V,,) and ¢ ¢ ¢~ (V,,).
Consequently, x(t) # x(t'), which shows that ¥ is well defined. Moreover, ¥ is
lower semicontinuous. Indeed, for each n € N

T~ (Vo) = x(¥™ (Va)) = x(An)
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is an open subset of x(T'). Being a separable and metrizable space with a closed-
open base, x(T") is zero-dimensional and paracompact. Hence, by Theorem 2.2,
T has a continuous selection g : x(T) — ¥. The function f(t) = g(x(t)) is a
required measurable selection of 1. It completes the proof.

In some applications we need measurable selections satisfying additional con-
ditions. The following result of Schil ([14], Theorem 2; [15], Proposition 9.4 and
Theorem 12.1) is very useful in the stochastic optimization:

Theorem 2.3. Let X be o separable metric space, p : T — P(X) a measur-
able multifunction with compact velues and u a real-valued function on the graph
of ¢, Gro = {(t,z) | z € ¢(t)}. Suppose u is the pointwise limit of a decreasing
sequence (u,) of real-valued functions on Gr ¢ such that u, is (T ® B(X)|aryp)-
measurable, and u,(t, -) is continuous on (t) for every t € T. Then there is a
measurable selection f: T — X of ¢ such that

u(t, f(t)) = sup{u(t,z) | z € p(t)}
for everyt € T.

In [9] we give a new proof of this result, based on the use of the Marczewski
function.

3. Carathéodory selections

In this section we give a general result on Carathéodory selections obtained
by the application of the Marczewski function.

We say that a multifunction ¢ : T' x X — P(Y) is lower R-Carathéodory if
for each open V C Y

¢~ (V) = J{4n(V) x Un(V) | n € N},

where A,(V) € T and U,(V) C X are open. It means that preimages of open
sets can be represented as countable unions of measurable rectangles with open
vertical sides. The notion of R-Carathéodory maps was introduced by the first
author [5]. The letter "R” in this definition comes from these rectangles.

If a multifunction ¢ is lower R-Carathéodory, then it is 7 ® B(X)-measurable
and lower semicontinuous in the second variable. In some cases we can inverse
this implication.

Theorem 3.1 ([5], Main Lemma; [8], Theorem 3(i)). Let X be a Polish
space, and ¢ : T x X = P(Y) a multifunction. Suppose either T is complete
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with respect to a o-finite measure or T' is Polish and T = B(T). If ¢ is lower
semicontinuous in & and product-measurable, then it is lower R-Carathéodory.

In order to state the result on Carathéodory selections we need another no-
tion. Let JF be a family of nonempty subsets of Y. We say that Y is F-selective if
for each metrizable X, each lower semicontinuous multifunction ¢ : X — F has
a continuous selection (cf. [5]). Different continuous selection theorems provide
examples of pairs (¥, F) such that YV is F-selective.

The following theorem holds:

Theorem 3.2 ([5], Theorem 1). Suppose X and Y are metric spaces, Y is
separable, and F is a family of closed subsets of Y such that YV is F-selective.
Then each lower R-Carathéodory multifunction ¢ : T x X — F has a Carathé-
odory selection.

Sketch of the proof. Let (Vi)ren be a base of Y. Since ¢ is lower R-Carathé-

odory,
0~ (Vi) = [ J{4n (Vi) x Ua(Vi) | n € N},

where A,(Vz) € T and U,(Vi) C X are open. Let A = {A,(Vk) | k,n € N},
and let x be the Marczewski function of A (an enumeration of 4 is inessential).
We define the new multifunction @ : x(T) x X — P(Y) by ®(x(t),z) = ¢(t, z).
It can be shown that @ is well defined and lower semicontinuous. Since Y is
F-selective, ® has a continuous selection F : x(T) x X — Y. The function
f:TxX =Y given by f(t,z) = F(x(t),z) is a Carathéodory selection of .
It completes the proof.

Most of known results on Carathéodory selections are consequences of The-
orem 3.2.

Corollary 3.3. Let X be a Polish space, Y a separable Banach space, and
0 : T xX — P(Y) a multifunction. Suppose either T is complete with respect
to a o-finite measure or T is Polish and T = B(T). If ¢ is product-measurable,
lower semicontinuous in & and closed convex-valued, then it has a Carathéodory
selection.

Proof. By the well known result of Michael ([12], Theorem 1) a Banach space
is selective with respect to the family of all nonempty, closed and convex subsets.
It follows from Theorem 3.1 that ¢ is lower R-Carathéodory. Now an application
of Theorem 3.2 completes the proof.

Remark 1. For 7 complete this corollary is the result of Rybinski ([13],
Theorem 2). For the Borel case cf. our Theorem 3 in [7], obtained by other
methods.
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Let (S,S,u) be a probability space, E a Banach space, and L!(S; E) the
Banach space of all py-integrable functions f : S — E. A subset Z C L}(S; E) is
called decomposable if for each f, g € Z and each A € § the function h: S = E
given by h(s) = f(s) for s € A and h(s) = g(s) for s € S\ A, also belongs to Z.

The next corollary is a generalization of an unpublished result of A. Frysz-
kowski:

Corollary 3.4. Let X be a separable metric space and ¢ : T x X —
P(L'(S; E)) a multifunction. Suppose (S,8,u) is nonatomic and L'(S;E) is
separable. If ¢ is lower R-Carathéodory and has closed and decomposable val-
ues, then it has a Carathéodory selection.

Proof. By the result of Bressan and Colombo ([1], Theorem 3), for each
separable metric space Y, each lower semicontinuous multifunction ¢ : ¥ —
P(L'(S; E)) with closed and decomposable values has a continuous selection.
Now it suffices to apply Theorem 3.2.

Remark 2. In general, the product measurability together with the lower
semicontinuity with respect to the second variable do not suffice for the existence
of Carathéodory selections. The first author [6] gave an example of a Borel
multifunction ¢ : T x [0,1] = P([0,1]) with compact convex values, which is
lower semicontinuous in z € [0,1] and has no Carathéodory selection. The space
T in this example is a coanalytic subset of the plane.

4. Approximation of Carathéodory type multifunctions

In this section, following [8], we give two results on approximation of mul-
tifunctions measurable in one and semicontinuous in the second variable. We
start with the following theorem:

Theorem 4.1 ([8], Theorem 5). Let X be a separable metric space, Y a
separable Banach space, and ¢ : T x X — P(Y) a closed convez-valued multi-
function. Then the following conditions are equivalent:

(1) @ is lower R-Carathéodory,
(ii) there exists an increasing sequence (p,,) of Carathéodory multifunctions
Yp T x X = P(Y) with conver and compact values, such that

o(t,z) =d| J{e.(t,z) IneN}), teT, zeX.

The proof of the implication (i)=-(ii) is based on the use of the Marczewski
function, and on the corresponding result for lower semicontinuous multifunc-
tions.

31 — Differential..,
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We say that a multifunction ¢ : T'x X — P(Y) is upper R-Carathéodory if
for each open V C Y there exist A,(V) € T and open U, (V) C X such that

et (V) = {4n(V) x Un(V) | n € N}.

Note that an upper R-Carathéodory multifunction is product measurable and
upper semicontinuous in . We have the following analogue of Theorem 3.1:

Theorem 4.2 ([8], Theorem 3 (ii)). Suppose X is a Polish space and either
T is complete with respect to a o-finite measure, or T is Polish and T = B(T).
Ifp:Tx X = P(Y) is upper semicontinuous in x, and for each open V C Y,
ot (V) € T ® B(X), then ¢ is upper R-Carathéodory.

The next theorem deals with the approximation by a decreasing sequence of
multifunctions, which are measurable in the first variable and Lipschitzian in the
second one.

Theorem 4.3 ([8], Theorem 6). Let (X, p) be a separable metric space, Y a
separable normed space, and ¢ : T x X — P(Y) a multifunction. Suppose ¢ is
compact convez-valued and bounded, i.e. there is M > 0 such that sup{||y|| |y €
w(t,z)} < M forallt € T, z € X. If p is upper R-Carathéodory then there exist
constants L, > 0 and multifunctions ¢, : T x X — P(Y) with closed, convex
and bounded values, which are measurable in t and for each t € T, z,y € X
satisfy the following conditions:

(i) (,O(t,.’a‘}) & QanJ[—l(t:w) C (Pn,(ta .7:),
(i) H{p,(t,z),o(t,z)) =0 asn — oo,

(iif) H(en(t,2),0n(tv)) < Lap(=,y),
where H is the Hausdorff metric defined by the norm of Y. If Y is finite-
dimensional, then the existence of such approzimations (yp,) implies, that @ is

upper R-Carathéodory.

The proof of the existence of such (ip,) is based on the use of the Mar-
czewski function, and on the Gavioli result ([3], Theorem 2.1) on Lipschitzian
approximations of upper semicontinuous multifunctions.

Remark 3. In the upper semicontinuous case the Marczewski function me-
thod works for multifunctions with compact values. Therefore in Theorem 4.3
we have to assume that @ is compact-valued. It would be interesting to obtain
such parametrized Lipschitzian approximations for multifunctions with closed,
convex and bounded values, as it was in the result of Gavioli.

Remark 4. Related results to our Theorem 4.3 were obtained by Moussaoui
and El Arni (see [2], Theorems 4.1 and 4.2). Approximation of Carathéodory
type multifunctions was also studied by Zygmunt [17] and Srivastava [16].
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CHARACTERIZATION OF APPROXIMATE SOLUTIONS TO
CONVEX PROBLEMS OF CALCULUS OF VARIATIONS

MoHAMMED MOUSSAOUI AND ALBERTO SEEGER

1. Introduction

The generalized Bolza problem of calculus of variations consists in minimizing
the cost
1

(1.1) By = H(ﬂ:(U),m(l))-l—fo L(t,z(t), £(t)) dt

over the space
X =A7:= Ay([0, 1); R™) 1<p<+o0

of absolutely continuous functions z : [0,1] — R™ whose derivatives & belong
to L% := L,([0,1];R*). The aim of this short note is to derive a necessary and
sufficient condition for a trajectory # € X to be an approximate minimum of F.

To proceed further with our presentation, we need to fix some mathematical
technicalities. It will be helpful if the reader is already familiar with the analysis
of convex integral functionals, and with the duality theory for convex programs
in abstract spaces (cf. Rockafellar [3]). In what follows, the space X = A7 is
paired with ¥ = A} by means of the bilinear form

(v, 2) = 2(0) - y(0) + fo B0 g0 dt  Voy) € X xY,

1991 Mathematics Subject Classification. 49K99.
Key words and phrases. Approximate minimum, Euler-Lagrange inclusion, transversality
condition, approximate subdifferential.
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where ¢ is the conjugate number of p (i.e., p™! + ¢~! = 1), and the dot “”
stands for the usual Euclidean product. L} and L} are paired in the usual way.
The data functions H and L are assumed to satisfy the following measurability,
convexity, and constraint qualification hypotheses :

(1.2) H:R* x R* = RU {+00c} is proper convex lower-semicontinuous,

(1.3) the Lagrangian L : [0,1] x R™ x R® —+ RU {4oc} is measurable, and
L(t, -, -) is proper convex lower-semicontinuousi for almost every a.e.
t €[0,1], _

(1.4) for all (w,u) € L} x L7, the negative part of the integrand ¢ —
L(t,w(t),u(t)) is summable over [0,1],

(1.5) here is some z € X such that H is finite at (z(0), z(1)) and the integral
functional (w,u) € L} x Ly — I (w,u) = fol L(t,w(t),u(t)) dt is
continuous at (z,4).

Under these assumptions, the cost function F : X — R U {+oco} is proper
and convex. According to Rockafellar’s work [2], a trajectory z € X is a mini-
mum of F' if and only if, there is an “adjoint” trajectory ¢ € X satisfying the
transversality condition

(1.6) ((0), —(1)) € 8H(=(0), (1)),
and the FEuler-Lagrange inclusion
(1.7) (@(2), (t)) € OL{t, z(1), &(1)) for a.e. t € [0,1].

Here the symbol “8” stands for the subdifferential mapping in the sense of convex
analysis. A point that we would like to stress is that the cost function F may fail
to have a minimum. This occurs when the system (1.6)-(1.7) is not solvable with
respect to the pair (z,¢) € X x X. In this unfavourable context, it is natural
to look for trajectories that minimize F' only in an approximate sense. If the
infimal-value
IﬁfF = Inf{F(z) |z € X}
is finite, then it is possible to find a trajectory x € X that minimizes F' within
a tolerance level € > 0, i.e.
Flzx)<e+ I&fF,

Without computing explicitly the infimal-value Infx F', how can we recognize
such a trajectory? This question will be answered in a clear-cut manner.
2. Characterization of approximate solutions to the Bolza problem

The minimization of F' : X — R U {+oo} requires to examine only the
trajectories in dom F' := {z € X | F(2) < 4o0}. The first-order behavior of F
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at a given z € dom F is reflected by the set
OF(z) :=={yeY | F*(y) + F(z) — {y,z) = 0},

known as the subdifferential of F' at z. Here F* : ¥ — RU {+oo} is the
Legendre-Fenchel conjugate of F' ([3]). The next lemma shows how to compute
the conjugate of the cost function (1.1).

Lemma 1. Under the assumptions (1.2)-(1.5), the conjugate of the cost
function (1.1) is given by

1
@1) F) =M {HGO) + 00 ~p0)+ [ L5050+ p(0) it
Yy € dom F*.
Proof. Observe that ' = Ho M + I o K, where M : A7 — R" x R™ and
K : A} — Ly x L} are the continuous linear operator defined by
Mz = (2(0),z(1)) and Kz =(z,%).

The constraint qualification condition (1.5) implies that Iy, o K is continuous at
some point in dom(H o M). This fact allows us to write (cf. [1], p. 178)

F'y)= Min {(HoM)'()+ oK) @)} VyedomF".

By applying general calculus rules for computing conjugates (cf. [3], Theorem 19,
(1], p. 179], and [3], Theorem 21), one obtains

(H o M)*(y1) = Min{H*(c,d) | M*(c,d) =y},

and

(I o K)*(y2) = Min{I1-(s,7) | K*(s,7) = y2}.
Here M* : R* x R* = A} and K™ : L} x Ly — Ay are the adjoint operators of
M and K, respectively. In other words, the equality M*(c,d) = y1 says that

n@ =c+d, ;.(t) =d for a.e. t € [0,1],

while the equality K*(s,r) = y2 takes the form

1 1
y2(0) = / s(t)dr, g2(t) =7(t) +/ s(rydr  for ae. te€[0,1].
0 t
By putting all these pieces together, one gets the expression

F*(y) = Min{H"(¢,d) + Ir-(s,7)},
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where the minimum is taken with respect to all (c,d,s,7) € R* x R® x Lp x L}
such that

1
y(0) =c+ d!+f0 s(T) dr,
i
y(t) = d +r(t) +[ s(r)dr  for ae. t€0,1].
t

By introducing the “adjoint” trajectory

tE[0,1]!—}(,0(1&):—[d+/:s(7')dr],

one transforms the above minimization problem into the one appearing in (2.1).
This completes the proof of the lemma. P

With the help of Lemma 1 it is fairly simple to obtain a characterization of
the set 3F(x). In fact, it is possible to characterize the more general set

O:F(z)={yeY: F*(y) + F(z) — (y,z) < e},

known as the e-subdifferential of F' at z. The (exact) subdifferential OF(x)
corresponds to the limiting case ¢ = 0. In the next proposition one uses the
notation

Z(a) = {G‘ € L1[0,1] | /:1 o(t)dt =a, o(t) >0 forae. t€]0, 1]}

Proposition 2. Let x € dom F and £ > 0. Under the assumptions (1.2)-
(1.5), the element y € Y belongs to 0. F'(z) if and only if, there exist ¢ € X,
a € [0,e], and o € X(a), such that

(¥(0) + ¢(0), —¢(1)) € 8e—oH(2(0),z(1)),

B2 50,30 + o) € O Lt 20),2@)  for ace. te 1]

Proof. According to Lemma 1, the condition F*(y) + F{z) - (y,z) < ¢ is
equivalent to the existence of some ¢ € X such that

1
H*(y(0) + ©(0), —p(1)) + /0 L*(t, (1), 9(t) + (1)) dt + H(z(0), z(1))

1 1
+/0 L(t,x(t),m'(t))dt—mm)-y(o)-fo B(E) - gt dt < e

But, the last inequality can be written in the form



CHARACTERIZATION OF APPROXIMATE SOLUTIONS 249

[H*((0) + ©(0), —p(1)) + H(x(0), z(1)) — z(0) - (y(0) + »(0))
1
+2(1) - (1)) + [0 [L* (6, 6(8), 5(8) + 0(t)) + L(t, 2(6), £(2))

—(t) - () — 2(8) - (§(8) + (2))] dt <.

Due to the Young-Fenchel inequality [1], p. 172, the expressions between square
brackets are nonnegative. This means that the above equality holds if and only if

H*(y(0) + ©(0), —¢(1)) + H(2(0), z(1)) — z(0) - (y(0) + »(0))
~a(l) (1) K&~
and
L*(t,0(t), 9(t) + o(8)) + L(t, z(2), 2(£)) — z(t) - $(¢)
—&(t) - (g(t) + () < o(t) for a.e. t € [0,1],
for some a € [0,1] and o € (). This completes the proof.

By setting € = 0 in the statement of Proposition 2 one obtains straightfor-
wardly a characterization of the subdifferential F(z).

Corollary 3. Let x € domF. Suppose the hypotheses (1.2)-(1.5) hold.
Then, y € OF(z) if and only if, there is an adjoint trajectory ¢ € X such
that

(%(0) + ¢(0), —¢(1)) € 0H (2(0), x(1)),
(@(1), 5(t) + @(t)) € OL(t, x(t),&(t))  for a.e. t€[0,1].

In the context of the present note, the main merit of Proposition 2 is yielding
a characterization of the set

crargmin F:={z € X : F(z) <e+ I}l}fF}
of e-minima of F.

Theorem 4. Let z € dom F and € > 0. Under the assumptions (1.2)-(1.5),
the trajectory = € X is an e-minitnum of the cost function F if and only if, there
erist p € X, a € [0,¢], and ¢ € X(a), such that

(i) (approzimate transversality condition)

(0(0), =p(1)) € Be—aH(2(0),z(1))

(ii) (approzimate Euler-Lagrange inclusion)

(@(t), @(t)) € Bo(ry L(t, 2(t), £(t)) for a.e. t € [0,1].

32 — Differential...
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Proof. Since Infx F = —F*(0), the e-minima of F are obtained by writing
the condition 0 € 9. F(x).
As way of illustration of Theorem 4, consider the problem
®) { Minimize [ ¢2[sin?(2n2) + (2(2))2]M/2 d¢
subject to z € A}, z(0) =0, z(1) = 1.

In this case
0 if (a,b) = (0,1
o if (a,5) = (0,1)
oo if (a,b) # (0,1),
L(t,a, B) = t*[sin®(2nt) + #%]/2.
As a matter of calculus, one gets :
R?  if (a,b) = (0,1)
Vn >0, 0,H(a,b) = _ ;
b if (a,b) # (0,1),
~ =0, and there is some 8; € R such that
(7,0) € By L(t, a, B) <=4 [67 + 87]/2 < #2,
2[sin®(27t) + B%)*/2 < 6, sin(2nt) + B8 + o (t).

By applying Theorem 4, one arrives (after a short simplification) at the following
conclusion: z € Al solves (P) within a tolerance level ¢ > 0 if and only if,
2(0) = 0, z(1) = 1, and there exist o € L(e), and a function 4 : [0,1] — R such
that

18(®)| < 2, t*[sin’(27t) + (si:(if))2]1/2 < 6(%) sin(27t) + o () for a.e. t€]0,1].
The last condition, yields the inequality
t2[sin® (27t) + (&(8))%]"/2 < £?|sin(2nt)| + o (t) for a.e. t € [0,1],

from where one deduces that the infimal-value of the problem (P) must be

3 _ 1 _o,20848....

1
?|sin(2wt)| dt = — —
j£ t°| sin(2mt)| T

This infimal-value is not attained.

3. Conclusions.

The underlying ideas behind the proofs of Lemma 1 and Proposition 2 are
somehow hidden in a previous work by Seeger [4]. The paper [4] is concerned with
the sensitivity analysis of the infimal-value function associated to a perturbed
convex problem of calculus of variations. Modified forms of the Euler-Lagrange
inclusion and the transversality condition are instrumental in the writing of
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the sensitivity results established in [4]. The issue discussed in this note is,
however, different. We provide here a simple and independent discussion on the
characterization of approximate solutions.
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CONTINUOUS SELECTIONS OF NON-LOWER
SEMICONTINUOUS NONCONVEX-VALUED MAPPINGS

DuSAN REPOVS* AND PAVEL V. SEMENOQV**

1. Introduction

While lower semicontinuity of mappings with closed convex values is suffi-
cient for the existence of continuous singlevalued selections, it is of course, not
necessary. For example, one can start by an arbitrary continuous singleval-
ued mapping f : X — Y and then define F(z) to be a subset of ¥ such that
f(z) € F(z). Then F' admits the selection f, but there are no continuity type
restrictions for F. A very natural problem immediately arises. Namely, to find
a weaker version of lower semicontinuity which preserves the existence of singl-
evalued selections. If we can find a lower semicontinuous selection G of a given
convex-valued mapping F', then Michael’s techniques can be used to find a con-
tinuous selection f of a lower semicontinuous mapping C!(conv(G)) (see [7] or
[14]). Moreover, any selection of Cl{conv(G)) will automatically be a selection of
F'. The situation is more complicated for the case of nonconvex-valued mappings
F.

The notion of the function of nonconvexity of a closed subset of a Banach
space was first introduced in [11]. In this paper we consider mappings F whose
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values F'(z) have some common non-decreasing majorant « : (0,00) — [0,1)
for their functions of nonconvexity. In this situation, we have in general, no
information about ”nonconvexity” of the values G(z) for a lower semicontinuous
selection G of F'. So we replace the property ” F' admits a lower semicontinuous
selection” by the property " F' admits a sufficiently large family of lower semicon-
tinuous selections”. The formalisation of the last property leads us to introduce
some new classes of non-lower semicontinuous mappings.

We denote by D(y,r) the open ball of radius r, centered at an arbitrary point
y of a metric space Y. For any subset A C Y, we put D(A,r) = J{D(y,r) |y €
A} and D(A,00) =Y. For two multivalued mappings ¥y and F5 from X into ¥
we dencte by Fy NF, the mapping = — Fi{z)NFy(z). For a multivalued mapping
F :X — Y into a metric space ¥ and for a real-valued mapping d : X — (0, c0)
we denote by D(F, d) the multivalued mapping x — D{F(z),d(z)). For a closed-
valued mapping F' : X — ¥ into a metric space ¥ and for a real-valued mapping
g : X — (0,00) we say that a continuous singlevalued mapping f : X = ¥V
is an e-selection of F, whenever £(-) is a strong majorant of dist{(f(-), F(-)),
ie. g(z) > dist(f(z), F(z)), for every x € X. We use the term function for
singlevalued mappings with values from R.

Definition 1.1. Let X : (0,00) — [1,00) be any function. Then a closed-
valued mapping F' : X — Y to a metric space Y is said to be an LS -mapping if
for every continuous function £ : X ~ (0,c0) and every continuous e-selection f
of F, the multivalued mapping clos(F N D(f, A(€) - €)) admits a lower semicon-
tinuous selection.

Each lower semicontinuous mapping F is an LS;-mapping because the in-
tersection F'ND(f,¢) is lower semicontinuous. Clearly, each LS)-mapping is an
LS,-mapping, whenever A < u. Next, LS.-mappings are exactly those which
admit lower semicontinuous selections. We chose the notation LS)-mapping
as an abbreviation for "mappings, having lower semicontinuous selections with
respect to the A-enlargement of open balls”.

Theorem 1.2. Let a : (0,00) = [0,1) and A : (0,00) = [1,00) be any
functions such that A is locally bounded at the origin and ¢ — a(A(Z) - ) - A(t)
has a nondecreasing strong majorant M : (0,00) — [0,1). Then every LSy-
mapping from a paracompact space X into a Banach space Y admits a single-
valued continuous selection, whenever a(-) is a majorant of the set of functions
of nonconvexzity of values F(x), for every z € X.

For constants a and A, the hypotheses of Theorem 1.2 are guaranteed by the
inequality e - A < 1. For the constant ) it suffices to assume that the set of all
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functions of nonconvexity of values F'(z), 2 € X, has a nondecreasing majorant
a: (0,00) = [0,1). Various weakenings of lower semicontinuity of convex-valued
mappings for which a continuous singlevalued selections exist (as in the classical
situation) have been intensively studied in the series of papers [1], {2], [5], [6],
[9] (see also [10] and [14], § I1.3). Most of them are related to the behaviour
of a different kind of derived mappings (F’, Fy, F) of a given mapping. For
the class of so-called quasi-lower semicontinuous mappings (see Definition 2.2
below), the derived mapping F” in the sense of Brown [3] is the largest possible
lower semicontionuous selection of F. For convez-valued quasi l.s.c. mappings
and for a constant )\, a property somewhat similar to our Definition 1.1 was
obtained in [9]. We state the following fact related to Definition 1.1:

Theorem 1.3. Fvery quasi-lower semicontinuous mapping of a paracompact
space into a complete metric space is an LSy-mapping, for each continuous real-
valued function A : (0,00) — (1, 00).

We derive the following theorem from Theorems 1.2 and 1.3.

Theorem 1.4. Let o : (0,00) — [0,1) be a nondecrasing function. Then
every quasi-lower semicontinuous mapping F' from e paracompact space X into
o Banach space admits a singlevalued continuous selection, whenever o(-) is a
magjorant of the set of functions of nonconvezity of values F(z), for everyz € X.

We list some special cases of Theorem 1.4. For a(-) =0 and any Ls.c. map-
ping F it yields the Michael convex-valued selection theorem [7]. Fora(-) = ¢ <
1 and any Ls.c. mapping F' we get the Michael paraconvex-valued selection theo-
rem [8]. For a(-) = 0 and weakly Hausdorff L.s.c. F' (respectively, weakly l.s.c. or
quasi Ls.c. F) it gives the DeBlasi-Myjak’s (respectively, Przeslawski-Rybinski’s
or Gutev’s) selection theorem [2], [5], [6], [9]. For any nondecreasing function «
and for any Ls.c. F it yields a theorem proved earlier by these authors [11], [17].
As an application to the theory of fixed-points of multivalued contractions we
can also obtain the following generalization of Ricceri’s result [15], in the spirit
of the Rybinski paper [16].

Theorem 1.5. Let X be a paracompact space, Y a Banach space and X XY
a paracompact space. Suppose that for a multivalued mapping F': X x¥Y =Y
and some constants o and v from [0,1) the following properties hold:

(a) Functions of nonconvezity of oll values F(x,y) are less than or equal
to o,

(b) Each mapping F(z, -) is a y-contraction,

(¢) Each mapping F(-,y) is quasi-lower semicontinuous, and

(d) a+y< L
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Then there erists a singlevalued continuous mapping f : X XY — Y such that
for every x € X, the restriction f(z, -) is a retraction onto the fired-point set of
the contraction F(xz, ).

2. Preliminaries

We begin by a construction of a function of nonconvexity. For any nonempty
closed subset P C Y of a Banach space Y and for any open r-ball D,, C Y, we
define the relative precision of an approximation of P by elements of D, as
follows:

dist{q, P
J(P,D,) = sup {i—(g—’—) | ¢ € conv(P N D,.)}.

Clearly, for a convex set P with nonempty intersection P D,, the equality
§(P, D;) = 0 means that this intersection is a convex subset of P.

Definition 2.1. For a nonempty closed subset P C ¥ of a Banach space Y,
the function ap(-) of nonconvezity of P associates to each positive number r
the following nonnegative number:

ap(r) =sup{é(P, D;) | D, runs over all open r-balls}.

Clearly, the identical equality ap(-) = 0 is equivalent to convezity of the
closed set P. Following Michael [8], the set P is said to be g-paraconvez, whenever
the number ¢ is a majorant of the function ap(-). A selection theorem for g¢-
paraconvex valued L.s.c. maps, g < 1, was proved in [8]. For a possible substitute
of a suitable function g(-) instead of the constant see [11]. For examples of
classes of closed sets with nice functions of nonconvexity see [12], [13], [19].

The notion of quasi lower semicontinuity (respectively, weak lower semicon-
tinuity) of a multivalued mapping was introduced in [5], [6] (respectively, in [9]).
Recall, that for a multivalued mapping F' : X — Y, the preimage F~!(4),
A CY,is defined as {z € X | F(z) N A # 0} and for topological spaces X and
Y, a mapping F is said to be lower semicontinuous if preimages of open sets are
open sets.

Definition 2.2. A multivalued mapping F : X — Y of a topological space
X into a metric space (Y, p) is said to be quasi lower semicontinuous if for every
triple (z,U(z),e), where z € X, U(z) is a neighborhood of z and £ > 0, there
exists a point g(z) € U(z) such that for every y € F(g(z)), the point = belongs
to the interior of the set F~1(D(y,¢)).

Clearly, each l.s.c. map is quasi L.s.c.: it suffices to put ¢(x) = &. For examples
of quasi l.s.c., non lLs.c. mappings see [6], [10]. Possibly, one of the simplest
examples is given by the mapping F' : X — [0,00), F(z) = [0,l(z)], where
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[ : X — [0,00) is an arbitrary singlevalued locally positive function. We need
two Gutev’s theorems [6]. Recall that for a multivalued mapping FF : X = YV
between topological spaces its derived mapping F' : X — Y is defined by setting
F'(z) to be equal to the set of all y € F(z), for which = belongs to the interior
of the preimage (with respect to F') of every neighborhood of y (see [3]).

Theorem 2.3. Let F': X =+ Y be a closed valued quasi lower semicontinu-
ous mapping of a topological space X into a complete metric space (Y, p). Then
the derived mapping F' : X = Y is a lower semicontinuous selection of F' with
nonempty closed values. Moreover, if G : X = Y is a lower semicontinuous
selection of F, then G is also a selection of F'.

Theorem 2.4. A mapping F : X = Y of @ topological space X into a
complete metric space (Y, p) is quasi lower semicontinuous if and only if for
every triple (z,U(z),e), where x € X, U(z) is o neighborhood of x and € > 0,
there exists a point g(z) € U(z) such that F(g(z)) C D(F'(z),¢).

Finally, for each function M : (0, 00) — [0, 1) we define the following sequence
of functions:

Mo() =1, My(t) = M(8), ..., Mup1(t) = M(Mn(t) - £) - Mo(t),. ..

Lemma 2.5. Let M : (0,00) —+ [0,1) be a nondecreasing function. Then

for every positive T, the series ZZ":O M, (t) uniformly converges on the inter-
val (0, 7).

3. Proof of Theorem 1.2

Under assumptions of the theorem, let F': X — ¥ be a given LS)-mapping.
Then F' is an LS.-mapping and, hence, has a lower semicontinuous closed-
valued selection, say G. Let fo : X — Y be an arbitrary singlevalued continuous
mapping. Then the distance d(z) = dist{fo(x), G(z)) is an upper semicontinuous
real-valued function on the paracompact space X. By the Dowker theorem, the
function d( - ) has a strong continuous singlevalued majorant, say € : X — (0, 00).
Clearly, fo is an e-selection of F'. Now, for every natural number n we put:

Rn(z) = Mn(e(2)) -e(z),  rn(z) = A(Ra(2)) - Balz),
where M : (0,00) — [0,1) is a fixed nondecreasing majorant of the function
t = a(A(t) - t) - Mt)

and functions M, ( - ) are defined above, before Lemma 2.5. Due to the continuity
of the mapping € : X — (0,00) and due to Lemma 2.5, for every & € X, there
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exists its neighborhood U(z) such that the series > oo Bn(+) uniformly con-
verges on U(z). Similarly, the series >
because of local boundedness of the function )\( R

o n( ) uniformly converges on U(z),

Let us construct a sequence of singlevalued continuous mappings f, : X = Y
with the properties that for each natural n and for each z € X:

(an) dn(z) = dist(fr(z), F(z)) < Ru(z); and

(br) dist(fr+1(2), fa(z)) < ralz).

We then see from (by,) that there exists a pointwise limit f = lim,_.oo fn and
that f is a locally (and, hence globally) continuous mapping, due to the local
uniform convergence of the series 3 "\ R,(-) and Y>> r»(+). The closedness
of F(z) and inequalities (a,) imply that f is a selection of F.

So, the mapping fo was constructed so that the inequality (ag) holds. Sup-
pose that for some n > 0, we have mappings fo, f1,... , fn for which the inequal-
ities (ap), (@1),-.. , (ar) and (bo), (1), ... , (ba—1) hold. By (a,), the mapping f,
is an Rp-selection of F. Moreover, each nondecreasing mapping M : (0,00) —
[0,1) has a continuous majorant M, : (0, 00) — [0, 1), i.e. without loss of general-
ity one can assume that M ( - ) from the hypotheses of the theorem is a continuous
function. Hence, the functions R,(z) = M, (e(z)) - e(z) are also continuous and
it is possible to use Definition 1.1 of LS;\—mappmgs, which directly shows that
the mapping

z — Cl(F(z) N D(fa(x), MBr(z)) - Rn(x))) = CUF (z) N D{fn(z),rn(z)))

admits a lower semicontinuous selection, say G,,. By the classical Michael selec-
tion thecrem [7], the mapping Cl(conv(G,)) admits a singlevalued continuous
selection, say fn+1. Then

For1(z) € Clconv(Gr(2))) C CUD(fa(z),rn(2)))

i.e. the inequality (b,) holds. Now, using Definition 2.1 of the function of non-
convexity for open balls D(f,(z), rn(z)) and remembering that a(A(2)-2)-A(t) <
M (t) for all positive ¢, we see that:

dist(fn+1(2), F(2)) < apE)(talz)) - ra(z)
< a(A(Bn(2)) - Ba(z)) - M(Bn(2)) - Ba(z)
< M(Rn(z)) - Ra(z)
= M(Mn(e(2)) - e(%)) - Mu(e(z)) - e(2))
= Mpy(e(z)) - e(z) = Rnia(2),

i.e. the inequality (@,+1) holds. Theorem 1.2 is thus proved.
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Remark. Clearly,

dist(fo(e), /(2)) < 3 ra(2)-

n=0
4. Proofs of Theorems 1.3-1.5

The initial step of the proofs represents the following lemma, which resulted
from our discussions with Gutev.

Lemma 4.1. Let F': X = Y be a quasi lower semicontinuous mapping of
a topological space X into a complete metric space (Y,p), f: X = Y a singl-
evalued continuous mapping and ¢(-) a strong majorant for the distance func-
tion d = dist(f, F'). Suppose that the interval-valued mapping x — (d(z), c(z)),
z € X, admits a singlevalued continuous selection. Then for every x € X, the
intersection F'(z) N D(f(z),c(z)) is nonempty.

Proof. Let s : X — (0,00) be a continuous mapping such that d(z) < s(z) <
¢(x), for every € X. Pick a point 2z € X and put € = (¢c(z) — s(x))/2. Let
V = V(z) be a neighborhood of & such that the restriction of s(-) onto V' is less
than (c(z) + s(z))/2. Due to the continuity of f, find a neighborhood U = U(z)
such that f(z) € D(f(2),€), for every z € U. We can apply Theorem 2.4 to the
triple (z,V NU,¢) , i.e. we can find a point g(z) € V NU such that

F(g(z)) C D(F'(z),¢).
By invoking the inequality d < s, we see that

f(a(z)) € D(F(q(=)), s(a())) C D(F'(z), s(g(z)) +¢).
Hence the inequality s(g(z)) < (¢(z) + s(x))/2, implies that
f(z) € D(f(q(z)), &) C D(F'(z),s(q(2)) + 2¢) C D(F' (), c(z)),
i.e. the distance between f(z) and F'(z) is less than ¢(z).

Proof of Theorem 1.3. Let F : X — Y be a quasi lower semicontinuous
mapping of a topological space X into a complete metric space (Y,p), f: X —
Y a singlevalued continuous e-selection of F, for some continuous function ¢ :
X = (0,00), and X : (0,00) — (1,00) a singlevalued continuous function. Then
for the (continuous!) strong majorant ¢(z) = Ae(z)) - e(z) of the distance
function d(z) = dist(f(z), F(z)), there exists an obvious continuous function
s(-) which separates d(-) and ¢(-). Namely, s(z) = £(z). Lemma 4.1 shows
that the mapping G = F' N D(f,c) has nonempty values. But the derived
mapping F' is a selection of F. Hence, G is a selection of the mapping F N

»
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D(f,c). Lower semicontinuity of G follows from the lower semicontinuity of F'
(see Theorem 2.3), from continuity of f, and from continuity of ¢(-). Thus we
conclude that the mapping « — F(z) N D(f(x), AMe(z)) - e(z)) admits a lower
semicontinuous selection. Theorem 1.3 is thus proved.

Proof of Theorem 1.4. Because of Theorems 1.2 and 1.3 it suffices to check
the following simple fact:

Lemma 4.2. For every nondecreasing function a : {0,00) — [0,1), there
exists a continuous function X : (0,00) = (1,00) such that the function a(A(t) -
t) - AM(t) has a nondecreasing strong magjorant M : (0, co) — [0,1).

Proof. Tt is easy to find a continuous nondecreasing majorant 3 : (0,c0) —
[0,1) of the function a(-) such that lim, ..o 8(t) = 1. Let 8(:) < ¥(-) <
M(-) < 1 and the functions v(-) and M(-) be both continuous and nonde-
creasing. We claim that A(-) can then be defined as follows:

) = % (1+min{ﬂ—féf)1,mw.

Clearly, A(+) is continuous and greater than 1. Moreover,

At) - < B7H(v(1))s
(A1) - ) < BOME) - 8) < ()

and
a(A(t) - ) - Q) <y(8) - A®) < M(E)
due to the choice of A(t). Lemma 4.2 (and hence Theorem 1.4) are thus proved.

Sketch of the proof of Theorem 1.5. First, we refer to [16] for the proof that
the hypotheses (b) and (c) together imply the quasi lower semicontinuity of the
mapping F in two variables and, moreover, of the composition F(z, h(z,y)), for
each continuous i : X x ¥ — Y. Second, (d) implies that v/(1 — «a) < 1 and
hence for some numbers M € (a,1) and A > 1, we have that v/(1 — M) < 1 and
v A(1-M) <1

Now the special case of the selection Theorem 1.2, when a, A and M are
constants, works for the a-paraconvex valued mapping Fy = F and we can find
a selection of £y, say f1. Moreover, starting by fo(z,y) = y, we have (see Remark
after proof of Theorem 1.2),

diSt(fo(fE,y),fl(ﬂT,y)) S Z%(m,y) = /\ * Z M™ 'E(ﬂ?,y) = 1 __AM ' E(Ql',y),

n=0 n=0

for some continuous singlevalued € : X x Y — (0, 00).
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Put Fi(z,y) = Fo(z, fi(z,y)) and let us estimate the distance between fy
and Fi:

dist(f1(z,y), F1(z,¥)) < Haist(Fo(z,y), Fo(z, fi(z,y)))
S v diSt(fO(mw y): fl (33731‘))
Ry elm,y); A<p

7
1-M

Hence f; is an e;-selection of F; with

51(93,3‘}) =Y 'E(Z‘,y)-

H
1-M
Reapplying Theorem 1.2, we find a selection of F}, say fs, with

diSt{fl(ﬂ:,y)jfg(.’L‘,?)} = it _/\M °€1($,y) < ’}’2 . (__—m‘a‘ 'E(LE,y).

1

Continuation of this procedure yields the estimate

diSt(.fﬂ(xay)a fn+1(m:y)) < qn+1 . E(‘r}y)ﬂ g= I’Y_ NM

Having v- A/(1 — M) < 1, it is clear that we can assume that g > A and ¢ < 1.

Remark. For the functions a and « of nonconvexity and contractivity one
can replace the hypotheses (d), i.e. the numerical inequality o + -y < 1 by some
functional expression.
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ON MAXIMALITY PROPERTY

STEFAN ROLEWICZ

In the classical convex analysis an essential role is played by the following
characterization of a subdifferential as a multifunction.

Theorem A (Minty [1]). A subdifferential of o conver function f(z) is a
mazimal cyclic monotone multifunction.

Theorem B (Rockafellar [4]). Every mazimal cyclic monotone multifunc-
tion is a subdifferential of a certain conves function. Moreover this function is
uniquely determined up to the constant.

Since applications in optimization in the last years the theory of so called
$-convexity was strongly developed (see for example [2], [5]).
It is not difficult to show repeating the classical considerations that

Theorem A-® ([2], Prop. 1.1.9). A ®-subdifferential of a ®-convez function
f{z) is a cyclic monotone mullifunction.

Theorem B-® ([2], Prop. 1.1.11). Ewery mazimal cyclic monotone multi-
function is a ®-subdifferentiol of a certain ®-convez funcition.

Unfortunately Theorem A-@ is weaker than Theorem A since in general &-
subdifferential of a ®-convex function f(z) is a cyclic monotone multifunction
but not necessary maximal ([2], Example 1.1.10). Similarly Theorem B-& is
weaker than Theorem B since we are not able to prove the second part.

The aim of this note is to give sufficient conditions on the class & such that
every @-subdifferential of a ®-convex function f(z) is a maximal cyclic monotone
multifunction. If it holds we say that the class ® has mazximality property. The

1991 Mathematics Subject Classification. 52A01.
Key words and phrases. Maximal cyclic monotone multifunctions.
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classical result of Minty [1] says that the class & = X* of all continuous linear
functionals over a Banach space X has maximality property.

Now we shall recall fundamental notions of ®-convex analysis.

Let an arbitrary set X, called later the space, be given. Let ® ba class of
real valued functions. Let f(z) be a function defined on X with values in the
extended real line R = RU {+o0} U {—o00}.

A function ¢ € & will be called a ®-subgradient of the function f(z) at a
point xg if

(1) f2) = Fmo) 2 ¢(z) — p(0)

for all z € X. The set of all ®-subgradients of the function f at a point zy we
shall call ®-subdifferential of the function f at a point zy and we shall denote it
by O fluo-

Observe that the order of real numbers induces the order on real-valued
functions. Namely, we shall write ¢ < f without the argument if g(z) < f(z)
for all z € X. For a given function f(z) we shall denote by

(2) f2(z) =sup{¢(z) +c|p €@, c€R, d+c< [}

The function f%(z) is called ®-converification of the function f. If f®(z) = f(),
i.e.

(3) f(x) =sup{d(z) +c|pe® ceR, ¢p+c< [},

we say that the function f is ®-conver.

Let X,Y be two spaces. Let I' : X — 2Y be a multifunction, i.e. the mapping
of the set X into subsets of ¥. By the domain of I', dom(T"), we shall call the
set of those z, that I'(z) # 0,

dom(T') = {z € X | I'(z) # 0}.

By the graph of I, G(T"), we shall call the set of those (z,y) € X x Y, that
y € I'(z).

We say that a multifunction I' mapping X into ® is monotone if for ¢, € I'(z),
¢y € T'(y) we have

(4) ¢z (2) + 6y (y) — 62(y) — ¢y(2) 2 0.

In particular, when X is a linear space, and ® is a linear space consisting of
linear functionals ¢(z) = (¢, z), then we can rewrite (4) in the classical form

(5) (¢z — ¢y, ~y) 2 0.
A multifunction I' mapping X into ® is called n-cyclic monotone, if for arbitrary
T0,T1,... ,Tn = Tp € X and ¢, € ['(z;), i =0,1,2,... ,n, we have

(6) Z[q&wi—l(mi—l) - ¢fﬂi—1 (mt)] > 0.
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A multifunction T’ mapping X into @ is called cyclic monotone if it is n-cyclic
monotone for n = 2,3,... . Of course, just from the definition a multifunction
T is monotone if and only if it is 2-cyclic monotone.

It is easy to give example of monotone multifunction which is not cyclic
monotone. Such example a reader can find in the book of Phelps [3].

A monotone (cyclic monotone) multifunction I'(z) is called mazimal mono-
tone (resp. mazimal cyclic monotone) if for each monotone (resp. cyclic mono-
tone) multifunction I'; (x) such that ['(z) C I'1(z) for all = (in other words such
that the graph of I', G(T"), is contained in the graph of I'y, G(T';)), we have
() = I'y(z) for all z € X. It is easy to see that a monotone multifunction
I'(z) is maximal monotone if and only if for arbitrary z,y € X and for arbitrary
¢z € T'(z) if

(7) bo(z) +9(y) — duly) —1b(z) 2 0

implies that % € I'(y). Observe that a maximal monotone multifunction which
is simultanecously cyclic monotone is a maximal cyclic monotone.

Ordering multifunctions by inclusions of graphs and using Kuratowski-Zorn
Lemma we obtain that there are always maximal monotone (resp. maximal
cyclic monotone) multifunctions and, even more, each monotone (resp. cyclic
monotone) multifunction T' can be embedded in a maximal monotone (resp.
maximal cyclic monotone) multifunction I'pax. Of course in general, I'ax is not
uniquely determined.

Different as in the classical case there are ®-convex functions such that their
$-subdifferential 8% f|; is not a mazimal cyclic monotone multifunction.

It is a natural question to find a condition on the class ®, which warrants that
a ®-subdifferential of a ®-convex function as a multifunction of z is a maezimal
cyclic monotone multifunction. If a class @ has this property we say that the
class @ has maximality property.

Proposition 1. Suppose that for each ®-convez function f(z) and for ar-
bitrary =,y € X there is ¢(-) € ®, which is simultaneously a ®-subgradient of
the function f(-) at the point z and a ®-subgradient of the function f(-) at the
point y. Then the class ® has mazimality property.

Proof. By Theorem A-® the ®-subdifferential of the function f(-), 8% f|.
is cyclic monotone multifunction as a multifunction of z. We need to show
maximality. Let I'(z) be a monotone multifunction such that 8% f|, C I'(z) for
all z € X. Fix z € X and suppose that there is ¢ € ['(z) such that ¢ ¢ 0% f|..
It means that there is y € X such that

(8) Y(y) —¥(=) > fly) — f(=).

By our assumption there is ¢(-) € @, which is simultaneously a ®-subgradient
of the function f(-) at the point z and a ®-subgradient of the function f(-) at
the point y. Since monotonicity of I' we obtain that

@) P(z) —P() + ¢(y) - ¢(z) 2 0.

34 — Dilferential...
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By (9) and (8) it follows that

(10) d(y) - ¢(z) 2 ¥(y) — ¥(=) > f(y) - f(o),

i.e. ¢ is not a ®-subgradient of the function f(-) at the point z, which contradicts
our assumption.

As a consequence we obtain

Corollary 2. Let X be an arbitrary set. Let ® denote the set of all real-
valued functions defined on X. Then the class ® has mazimality property.

Corollary 3. Let X be an arbitrary set. Let @ be a class of real-valued
functions defined on X such that for arbitrary ¢, € ®, ¢ € R, max[p,y] € &
and ¢ + ¢ € ®. Suppose that for all x € X the ®-subdifferential of the function
(), 82 f|, is not empty. Then the the class & has mazimality property.

Proof. Take arbitrary z,y € X. Let ¢.(-) € ® be a ®-subgradient of the
function f(-) at the point = and a let ¢,(-) € ® be a ®-subgradient of the
function f(-) at the point y. It is easy to see that ¢(-) = max[¢.(-) — ¢ () +
f(z),¢y(+) — dy(y) + f(y)] is simultaneously a ®-subgradient of the function
f(+) at the point z and a ®-subgradient of the function f(-) at the point y.

Corollary 4. Let X be a metric space. Let @ denote the set of all continuous -
real-valued functions defined on X. Then the class ® has maezimality property.

Corollary 5. Let X be a metric space. Let @ denote the set of all Lipschitz
real-valued functions defined on X. Then the class ® has mazimality property.

Corollary 6. Let X be a metric space. Let ® denote the set of Lipschiiz
functions defined on X, such that the Lipschitz constant is non-greater (or
smaller) than given ¢ > 0. Then the class ® has maximality property.

Proposition 1 have also some approximative version

Proposition 7. Suppose that for each ® conver function f(z) and for ar-
bitrary z,y € X, € > 0, there is ¢(-) € @, which is simultaneously an £-®-
subgradient of the function f(-) at the point x, i.e.

(11) fly) = fz) 2 ¢(y) — d(z) —¢

for all z € X and o ®-subgradient of the function f(-) at the point y. Then the
class @ has maximolity property.

Proof. By Theorem A-® the ®-subdifferential of the function f(-), 8% fl.
is cyclic monotone multifunction as a multifunction of z. We need to show
maximality. Let ['(z) be a monotone multifunction such that 8% f|, C I'(z) for
all z € X. Fix z € X and suppose that there is ¢ € I'(z) such that ¥ & 8% ..
It means that there is y € X such that

(8) P(y) —lz) > fy) - f(2).
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Let £ be chosen in such way that

(12) 0<e <) —v=)] - [f) - fl=)]

By our assumption there is ¢(-) € ®, which is simultaneously a e-®-subgradient
of the function f(-) at the point z and a ®-subgradient of the function f(-) at
the point y. Since monotonicity of I' we obtain that

(9) P(z) — 9(y) + é(y) — ¢(z) 2 0.

By (12) and (14) it follows that

(13) B(y) — ¢(z) > () — (@) > fy) — f(z) +e,

ie. ¢ is not an e-®-subgradient of the function f(-) at the point z, which
contradicts our assumption. i

As a consequence we get

Corollary 8. Let X be a compact (locally compact) space. Let ®y denote
the space of all continuous real-valued functions defined on X. Let & denote the
subset of & dense in uniform (resp. uniform on compact set) topology. Then
the class ® has mazimality property.

Corollary 9. Let X be a closed set in R®. Let ® denote the set of all
polynomials restricted to X. Then the class ® has mazimality property.

Problem 10. Does every finite class & has mazimality property?

Problem 11. Does every linear class ® has mazimality property?
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CONSTRUCTION OF SOLUTIONS IN DIFFERENTIAL
GAMES OF PURSUIT-EVASION

VLADIMIR USHAKOV

The paper concerns differential games of pursuit-evasion with geometrical
constraints on players’ controls. The problem of constructing solutions in these
games is investigated. The theory of differential games was formed and advanced,
to a considerable extent, by works of R. Isaacs, W. Fleming, L. S. Pontryagin,
N. N. Krasovskii, A. I. Subbotin. The monograph of R. Isaacs ”Differential
(Games” published in 60’s played important role in the development of the theo-
ry of differential games. In the series of works by W. Fleming, the existence
of equilibrium situation in differential games was proved. For the linear dif-
ferential games of pursuit, L. S. Pontryagin developed special construction of
the alternated integral. In the well-known monograph of N. N. Krasovskii and
A. 1. Subbotin ”Positional Differential Games”, differential games are consider-
ed in general setting. The feature of this approach is that solving strategies for
players can be found as positional ones.

The paper is devoted to the solutions of differential games in the framework
of the approach presented in monograph N. N. Krasovskii and A. I. Subbotin.

1991 Mathematics Subject Classification. 90D25, 49B22.

Key words and phrases. Differential equations, differential games, feedback control, stable
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1. Setting pursuit-evasion problem
We consider a conflict controlled system whose dynamics over a time segment
[to, 9] is described by

(1.1) i—j = Flt,mou, 0] z(to) = xo,

where z € R™ is the phase vector of the system; u, v are control vectors of the
first and second players restricted by constraints

(1.2) weP, veQq,

where P,  are compacts in Euclidean spaces RP and RY.
It is supposed that the following conditions are satisfied:

I. The game takes place in a bounded closed region D of variables (¢,z) €
[to,¥] x B™. (Fig. 1)

‘“‘X
D (x
/‘—\
0 tg 3 t-..

Figure 1

II. Vector-function f(¢,z,u,v) is continuous at D x P x @ and satisfies the
Lipschitz condition on variable x:

(1.3) £, 2@, u,0) = ft,59,u,0)|| < L]|lz® — £

for all (t,z®P,u,v) e DxPxQ,i=1,2.
ITI. For all (to,z0) € D and Lebesque measurable functions u(:) : [tg,?] —
P,y(-): [te,Y] = @, solution z(t) of the equation

&= f(t,z(t),u(®),v(®)),  z(to) = o

satisfies the inclusion (¢,z(¢)) € D for t € [to, ).
IV. For any (t,z) € [to,¥] x R™ and s € R™ the equality is valid

. ; _ .
ggggleag(s,f(,m,u,v)) gleagggg(s,f(t,m,u,vn
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Let’s introduce positional strategies of the first and second players. Players
assume to know the position (¢,z) = (f,2(t)) of the game at each moment
t € [to,¥]. A function U = U(t,z), (t,z) € D, (U(t,2) C P,¥(t,z) € D) is called
the positional strategy of the first player. A function V' = V(t,z), (t,z) € D,
(V(t,z) C Q, V(t,z) € D) is called the positional strategy of the second player.
The concept of motion z(t) = z(t,te,z0,U,V), t € [to,V] generated by pair
(U, V) of positional strategies of the first and second player can be accurately
defined (see [7]).

Let’s formulate the problem of pursuit-evasion. Let a closed target set M be
selected in the phase space ™.

The aim of the first player is to find such positional strategy U = U(t, z)
that ensures, for every strategy V' = V (¢, ) of the second player, the attainment
of the target set M at the time ¥, namely, z(J) € M. (Fig. 2)

4

Figure 2

The setting of the pursuit problem is illustrated in figure 3.

A m
(9,M)
(t5%, )
0 ity 9t
Figure 3

The aim of the second player is to find such positional strategy V = V (¢, z),
that ensures, for every strategy U = U(¢,z) of first player, the evasion from all
e-neighborhood of the target set M (¢ > 0) at the time ¢, namely, z(9) ¢ M,.
(Fig. 4)
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Figure 4

We shall mainly consider the pursuit problem. For solving problems of this
kind, the principle of extremal aiming onto stable bridges was developed by
N. N. Krasovskii and A. I. Subbotin in 70’s. The heart of the principle can be
described in the following way.

A set W in the space of positions (t,z) of the game is given such that it
is embedded into the target set M at the time ¥ and possesses such property
that for all positions (t.,z.) belonging to W and for the whole sufficiently small
segment [.,t*], the first player can parry any control v. € @ of second player
which is constant on [£.,$*]. "Parry” means the choice by the first player of such
programmed control u(f) on the segment [¢,,¢*] that, together with v,, generates
the motion =(t) of the system

(1.4) Z—i = Fltm;ult)ive; z(ts) = z«

getting to W at the moment t*. (Fig. 5)
A

R

(t.x(t))

A A

Figure &
Such set W is called the u-stable bridge.
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The principle of extremal aiming states that if the initial position (o, zq) of
the game belongs to u-stable bridge W, then there exists the positional strategy
of the first player, solving the pursuit problem. The positional strategy extremal
to the u-stable bridge W can be taken as the solving strategy.

Note that u-stable bridge W, as it is determined above, can be not unigue.

According to the definition of stability, the set W0 = | JW (where W are all-
possible u-stable bridges) is also u-stable bridge and the maximal one. (Fig. 6)

e

Figure 6

The well-known theorem on an alternative states: if initial position (tg,z0) €
WO, then the pursuit problem is solvable for it, and if (tg,zo) & W?, then the
evasion problem is solvable for it. Thus, if, by some way, we succeed to allocate
the maximal u-stable bridge W? in the space of positions (¢, z) of the game, then
we can answer the question whether the pursuit or evasion problem is solvable.
Therefore, constructing maximal u-stable bridge W© is a very important prob-
lem. This is the main difficulty for solving the pursuit problem. Let us look how
to overcome the difficulty, namely, how to construct u-stable bridge W°.

Note, that it is possible to allocate exactly the bridge W?° only for simple
pursuit-evasion problems. For example, for controlled system with dynamics and
constraints

%f. = A()z + B(t)u — B(t)v,

x[to] = xg, te [ng,’l?],
P={ueR ||l <u,
Q={veR"||v| v} (v<p<oo)

35 — Differential...
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and the target set M be a circle with radius r € R, the set W is determined by
analytical formulae

= {(t,2) |t € [to, 0], = € WD),
W) = {x € R™ | max et,a,)) <0},

9
] =l e B i) f I'BX (9, 7)dr| ~,
t

where the symbol ||A|| means Euclidean norm of the vector h in the corresponding
Euclidean space; X (¥,7) is a fundamental matrix of solutions of the system
dz/dt = A(t)z.

In more complicated pursuit-evasion problems we don’t know similar simple
description. In this connection, the problem of approximate construction of
maximal u-stable bridge W arises.

Let us consider one method of approximate constructing of the bridge W°.
This method has its origin in the works of R. Bellman, W. Fleming, L. S. Pon-
tryagin, N. N. Krasovskii. The idea is in substitution of segment [to,d] with
continuum power by finite partition I’ = {fo,%1,... %, i+1,... ,tnv = ¥} and
recurrent backward construction

W)« W(tiy) (GE=N-1,N-2,...,0)

of the system {W(t,) | t; € T'} of sets W(t,;) C R™ which approximate the bridge
WO, (Fig. 7)

n Wit )
W(t m |+1) jij
Vit ] :

1
i
1
1
1

I-F

Figure 7
Let us regard in more details constructing approximating system of sets {W(tz) |
t; € I'}. In this connection, it would be noted that there exist several definitions

of u-stable bridge. Even if all of them differ by the form, they are equivalent
because of allocating the same stable bridges.
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Let us formulate one definition, namely, unificational definition of u-stable
bridge W ([8], [17], [18]). First, we introduce some auxiliary notions and desig-
nations:

Ht,=,l) = mga},clgleig(l,f(t,m,u,v)), (I € R™),
F(t,z) =co{f | f = f(t,z,u,v), u € P, v€ Q},
S={l|te R™ |l}=1}

where co{f} is a convex hull of the set f, (I, f) is a scalar product of vectors !

and £, ||{|| is a Euclidean norm of the vector I. (Fig. 8)
m

R

F(t,x) '

Figure 8

Now let us consider differential inclusions
(1.5) z € F(t, z), z(ty) = x4

on the segment [t.,t*], where [ are vectors of unit sphere S.
The attainability set of differential inclusion (1.5) calculated at time ¢* is
denoted by symbol X;(t*, ., z«).

Definition 1. Let a set W in the space of positions (¢, z) be given. We shall
name the set W as u-stable if

W@W)={zeR™|(%,z) e W}C M

and for any pair t.,t*, (fo < t. < t* < 9), any point z, € W(t) and any vector
I € S the following expression takes place

(1.6) W) [ Xt b, 3.) # 0.

Here and further, W(t) = {x € R™ | (¢,z) € W}. It is the cutset of the
u-stable bridge.

Note, that in presented definition of u-stable bridge W, vectors I of unit
sphere play a role of controls v, € @, which must be parried by the first player.
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Vectors [ of S are interpreted as controlling vectors of the second player in the
small game, which takes place on the segment [t.,t*] with initial position (¢, 2. ).
In the small game the second player assumes to select its control I € S the first,
but the first player selects the point z* from the attainability set X;(¢*, ., Z«).

The cutset W(t*) of the stable bridge W, corresponding to the last time ¢*
of the segment [t.,t*] is a target set in the small game.

The position (t.,z.) is regarded as "good” for the first player in the small
game, if for any choice ! € S by the second player, the first player is able to
select the point z* € Xj(t*, t4, z4) belonging to the target set W (¢*).

From Definition 1 we can see, that any position (to,z0) € W(t), (¢ < ) is
"good” for the first player in the sense of handling of the small game. Therefore,
the bridge W consists of positions which are "good” for the first player. (Fig. 9)

JkRm P X| (i 95

0 15 &

Figure 9

Now, we shall construct the approximating system of sets for maximal u-stable
bridge.

2. Approximating system of sets

Let the segment [ty, 9] be substituted by its discreet approximation, namely,
by partition I' = {to,t1,... s, tiy1,... ,tn = ¥}, and the set M is substi-
tuted by its neighborhood M. (¢ > 0), and the sets from the Definition 1
are substituted by their linear approximations, which are sets X’;(t*,t*,x*) =
T + (t* — )Tty ), (P S e <t* < 9).

Definition 2. The system of sets {W(ti) | t; € T'} is called the approximat-
ing system of sets, corresponding to the pair (T, ¢), if it satisfies relations:

W(tN) = M,,
W(t:) = {z[t:] € B™ | W (tig1) ) Xiltisa, ti,2lti]) # 0, VI € S}



CONSTRUCTION OF SOLUTIONS IN DIFFERENTIAL GAMES ... 277

According to the Definition 2, the approximating system of sets represents
a collection of sets which are contained in B™ and correspond to times ¢; of
partition T'. The collection results from the substitution of [¢9,?¥] by partition T,
the extension of M and replacement in formula (1.6) of ¢.,t* by t;,%i41, the set
W (t*) by W (tig1), sets Xi(t*, tu, 2.) by Xi(tip1, ts, 2[ts]), I € 5.

It is known ([17]) that limaryo, Ew{W(ti) | t; € T} = WP, In other words,
approximating sequence {W(ti) | t; € I'} converges to the maximal u-stable
bridge W° (at that, it converges by above) at A(T') | 0 and € | 0. Here A(T) is
the diameter of the partition T.

Tt would be noted that for convergence of the system {W () | ¢ € T'} to
W% , it is necessary that values A(I') and € be connected in some way.

The question is, how to construct the system {W () | t; € T}, corresponding
to the pair (T,€)7

The constructing must be realized through the backward procedure which
can be illustrated by the scheme:

M, = W(ty) — W(Eno) — ... — W(tig1) — W(ts) — ... — W(to).

At this stage, corresponding to segment [t;,1;41], the set W(ti) is constructed as
issue from the set W (t;41) which was obtained at the previous stage:

W(tir1) — W(t;).

Note, that there is a difficulty to construct the set W (¢;) using directly the
definition.

The difficulty is that for verification whether the point z[t;] belongs to the
set W (t;) or not, it is necessary to test the realizability of relation

W(t:j+1) m-}?i(ti+11 ti, x[t:]) # 0

foralll e S.

For constructing of the set ﬁ/"(ti) one can make localization procedure by
putting, for every point z[t;] € R™, a correspondence with a set (Fig. 10)

My (7)) = W (ti1) () X (Biras tis altal),
X(tisr, ti zlti]) = ofts] + DaF (i, 2[ts]),  Ai=tipr —
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x[ti]

o

Figure 10

The set My, ., (z[t;]) can be treated as local target set in the local pursuit game
on the segment [t;,%;+1] with a target set W(¢;+1) and the origin at the point
.’E[ti].

Let’s introduce the function

(2.1) e(t, xfts], 1) = —( zlta]) — AiH (s, 2[t:], 1) + pags, i) (),

where
min Lw), if My, (z[t; 0
) = WEM‘¢+1{35[¢='])( ) *+1( [ D #
PMy,, (2[8:]) |
+o0 if Mt;+1 (T’[tz]) :/: 0
Theorem 1. W(ti) = {z[t;] € R™ | maxies ea, (ti, z[t:], 1) = 0}.

Theorem 1 gives us a functional description of the set W(ti). It states that
the point z[t;] belongs to the set W if and only if (Fig. 11)

w(tg', ar[t,;]) = IPEESXQEA{ (ti,.’l’:[ti], [)<O0.

Y

Wit )={xt, I ot Xt 1< 0)}

Figure 11

Note, that in a number of cases, the set W(ti) can be easily built if its bound
AW (t;) is known. For example, in the case, when the set W (t;) is convex. That
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is why the problem of allocation of the bound AW (t;) in the space R™ is very
interesting.
The question arises: what can we say about the functional description of the
bound 8W (t;) of the set W (¢;)?
Let us consider the case, when W (%;) is a convex set and intW (t;) # 0, and
the following condition (E) is also satisfied:
(E) For all t,z,l ((t,z,l) € D x S) the inequality is valid:
i I, flt,z,u,v)) < H{t,z,l) < max (I, f(t,z,u,v)).
(u’gggxg( f@tz,u,v)) < H(t,,1) (u,v)EPxQ( ft,z,u,0))
The set Ag(z[t:]) = OMy,,, (z[ti]) ﬂint}f (ti41, 8, 2[t;]) is put into correspon-
dence with the point z[t;] € R™. (Fig. 12)
x[t.] ~
o~ X(t,, ot X[t ])

Figure 12

Also denote LO(z[t:]) = cl{l € § | Jw € Ao(z[ts]), {L,w) = pus,,, (afts)) (1)} (see
Fig. 13)
x[t, ]

. tot It D)

Figure 13

The statement on reduction holds:
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Theorem 2. Let W (ti11) be a convez set, int W(ti+1) # 0 and the condition

(E) is satisfied. Then z[t;] € BW(QH) if and only if
I}leagEAE (s, z[t:], 1) = zerl}’l&x[m)sm(ti’m[ti]’ ) =0.

Accordingly the Theorem 2, while verification whether the point z[t;] belongs
to the bound 8W(ti) or not, one would consider only vectors [ € L%(z[t;]) and
calculate max;e ro(q[t,]) €r; (£s, T[t:], 1)

Note that the Theorem 2 was efficiently used while computation of approxi-
mating system {W(t;) | ¢; € T'} in various examples on the plain and in 3-
dimensional space was implemented.

Moreover, the ideology of the Theorem 2 was transferred to cases, when
the set W(ti) is not convex, but possesses the structure of supergraph of some
function.
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G. Villari: A continuation lemma with applications to periodicaly forced Lienard
equations in presence of a separatriz,

D. Repovs: Milyutin mappings and their applications,

S. Walczak: Variational and boundary value problems with controls,

B. Gelman: Surjectivity of multivalued maping and differential inclusions,

A. Kucia and A. Nowak: Applications of Marczewski function to multifunction,
Y. Glicklich: Achievement points and submanifolds of mechanical systems wilh
multivalued forces on Riemannian manifolds,

7. Kubacek: Aronszajn-type results for some differential equations on unbounded
intervals,

Thursday, September 25

H. Frankowska: Relazation of conirol systems under state constraints,

R. Johnson: The topelogical degree applied to thin domain problems,

M. Kamenski: Averaging principle for semilinear inclusions with noncompact
semigroups,

P. Semenov: Controlled relazation of convezity. Fized-points theorems,

J. Ombach: Continuous and inverse shadowing for discrete dynamical systems,
A. Rogowski: On some generalization of the Krasnosielskii theorem and its ap-
plications,

A. Prykarpatsky: Adiabatic chaos: problems and paradozes,

Friday, September 26

V. Obukhowskii: On some problems of theory of funciional cdifferential inclu-
sions in Banach spaces,

J. Gwinner: A class of nonlinear evolution differential inclusions and their dis-
cretization,

J. Myjak: Iterated function systems; fractals and semifractals,

7. Kucharski: On the Nielsen number,

Monday, September 29

S. Rolewicz: ®-subdifferentials as set-valued mappings,

M. Quincampoix: Viability under uncertain initial state,

A. D. Myshkis: Differential equations with multi-dimensional time without con-
dition of total integrability,

S. Bogatyi: Ljusternik-Schnirelmann theorem, Hausdorff-Banach-Tarski para-
dox, invariant measure,

A. Cernea: Optimal control of differential inclusions using derived cones,
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Tuesday, September 30

P. Zabreiko: On differentiability of some classes of multifunctions,

R. Bader: Periodic solutions of semilinear differential inclusions in Banach
spaces,

A. Idzik: Leray-Schauder type theorems,

A. Wieczorek: Reducing the search for a fized point to nonlinear optimization
problems: an economic case study,

M. Muresan: Several properties of the solutions to quasi-linear set-valued func-
tions,

Wednesday, October 1

T. Rzezuchowski: Boundary solutions of differential inclusions,

V. N. Ushakov: Construction of solutions in differential games of pursuit-eva-
sion,

P. Talos and Z. Kannai: Potential-type inclusions,

V. Gorokhovik: Frechet differentiability of multifunctions,

S. Seeger: Sensitivity analysis in conver dynamical optimization,

Thursday, October 2

P. Saint-Pierre: FEstimation of convergence and approzimation of optimel syn-
thesis for dynamical sysiems,

V. Veliov: Discretization methods for differential inclusions,

A. Nowakowski: Generalized field theory, synthesis and dynamical programming
approach to optimality conditions,

V. Plotnikov: Differential inclusions and numerical asymptotic methods in the
control problems,

J. Motyl: Stochastic inclusions — some existence problems,

Friday, October 3

B. Przeradzki: Travelling waves solutions to reaction-diffusion equations,

J. Olko: Selections of an iteration semigroup of linear set-valued functions,

J. Szczawinska: On Nemytski operator,

D. Bugajewski: Nonlinear equations in abstract spaces and aziomatic measures
of noncompaciness,

M. Mrozek: Multivalued mappings in time series analysis,



