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PREFACE

The present work is the revised version of a part of Ph.D. thesis of the autor
written at the Faculty of Mathematics and Computers Science of the Nicolaus
Copernicus University in Toruri, Poland.

The paper, divided into 5 chapters, is devoted to the study of properties of
two special classes of multivalued maps. The first, which we will call weighted
carriers, was discovered by Gabriele Darbo in 1950. The second class was intro-
duced by him in 1957 (and independently by R. Jerrard with a slightly different
formulation) under the name of weighted maps.

The main goal is to give a self-contained presentation of the theory of multi-
valued weighted maps. To be precise, we present the most important results and
methods which concern the fixed point theory of multivalued weighted mappings.

The first chapter is a brief exposition of some basic facts on the theory of
retracts, the Cech homology theory, general properties of multivalued maps,
algebraic limits and the Lefschetz number.

In the second chapter we study general properties of multivalued weighted
maps. In particular, we briefly describe the construction of Darbo homology
theory, which will be frequently used in this work. We also present how the
cross product can be defined in terms of Darbo homology. Next, we apply the
Darbo homology to the theory of Lefschetz number and establish the Lefschetz
fixed point theorem for weighted maps. Moreover, we construct a topological
degree theory for such a class of maps. Additionally, the topological essentiality
is introduced and studied. The last part of this chapter contains a detailed
investigation of the problem of the existence of extensions of weighted maps
with values belonging to the so-called w-LC™-space.

The third chapter is devoted to a detailed description of the basic properties
of weighted carriers.

In the fourth chapter we study sets having various w-UV -properties. We shall
compare w-UV-notions with acyclicity with respect to the Cech homology. In
particular, we give a necessary and sufficient condition for a given compact subset
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6 ROBERT SKIBA

Aof an ANR X to be k-acyclic in the sense of Cech homology with the coefficients
in the field of rational numbers Q. Furthermore, we deal with the existence of
graph-approximations. It should be noted that in general an upper semicontinu-
ous multivalued map has no single-valued continuous approximation and there-
fore we study the finite-valued version of this problem. More precisely, using the
approximation techniques developed in [3], [10] and [28], we show that a weighted
carrier defined on a compact ANR with values having w-UV*“-property can be
approximated in graph by weighted maps. In particular, we prove that any
upper semicontinuous multivalued map with compact and acyclic values (with
respect to the Cech homology with rational coefficients) from a compact ANR
to an ANR admits arbitrarily close weighted graph-approximations. The above
graph-approximation result allows us to define the induced homomorphism (in
the Darbo homology) for weighted carriers. Next, some generalizations of the
Lefschetz fixed point theorem for weighted carriers from a paper of G. Conti and
J. Pejsachowicz [10] are presented. In the last section of this chapter, using the
method developed in the work of R. Bader and W. Kryszewski [4], we construct
the topological degree for compositions of weighted carriers.

In the fifth chapter we show that the Nielsen fixed point theory cannot be
extended to the multivalued weighted case.

The main results of this paper are the following;:

The basic properties of weighted carriers;

The description of w-UV-notions in terms of homology;
The results concerning approximability of weighted carriers;
The Lefschetz fixed point theorems;

The topological degree.

Some applications of the results of this work in the theory of differential
equations and inclusions will be given in a forthcoming paper of the present
author.

The author wishes to express his thanks to Professor L. Gorniewicz for en-
couragement to take up the effort of writing this work. I am greatly indebted
to Professor W. Kryszewski and Professor J. Pejsachowicz for valuable ques-
tions, suggestions and discussions. Many thanks to Doctor B. Klemp-Dyczek
who verified my English and suggested further improvements.

In particular, the author would like to thank M. J. Szelatyniska for preparing
the electronic version of this book.

This research was partially supported by KBN Grant 2/PO3A/015/25 and
Grant UMK 386-M.

Robert Skiba

Torun, June 2007



CHAPTER 1

TOPOLOGICAL BACKGROUND

1.1. Preliminaries

In what follows, by a space we understand a metric space. If (X, dx) is a met-
ric space, € > 0 and A C X, then by the e-neighbourhood of A in X we mean
the set Oz(A) := {z € X | dx(x,A) < e}, where dx(x, A) = infycadx(x,a) is
the distance of a point z € X from the set A. Moreover, D(A,z) := {x € X |
dx(z,A) < e}. In particular, B(z,¢) := O(z) = {y € X | dx(y,z) < €} (resp.
D(z,e) = {y € X | dx(y,x) < €}) is the open ball (closed disk) of radius ¢
centered at z € X.

Given a space X, by a piece of X we shall mean any open and closed subset
of X. Throughout this paper, #X denotes a power of a set X. A pair of spaces
is understood to be a pair (X, A) where X is a space and A is a subset of X.

If A C X, then 4, int A and A denote the closure, the interior and the
boundary of A, respectively. By D"*! we shall understand the unit closed disk
in R"*! and 9D"™! = S". By S7 and S™ we mean the closed northern and
southern hemispheres of S™, respectively, n > 1. Then S"~! = SN ST, Recall
that we can think of S™ as the one point compactyfication of R™, in other words,
S™ =R"™ U {o0}.

By H.(X,G) we denote the Cech homology (graded) of a space X with
coefficients in a group G ([17]). A space X will be called positively acyclic (resp.
k-acyclic, k > 1) if H,(X,Q) = 0 for n > 1 (resp. H;(X,Q) =0 for 1 <i < k).

Given a space X, by dim X we shall denote the covering dimension of X.
For more information on the covering dimension we refer to [18]. If A C X and
U is a collection of sets in X, then st(4,U) := | J{U e U | UNA # 0} is the
star of A with respect to U.

Throughout this paper, on the Cartesian product X x Y of two metric spaces
(X,dx) and (Y, dy) we shall consider the following metric:

dXxY((Il,yl), (xz,yz)) = m&X{dX(fl?l,@), dy(yl,yz)}-

7



8 ROBERT SKIBA

1.2. ARs and ANRs

First, we are going to recall the notion of an n-simplex in a vector space E.

By an n-simplex in F we shall understand a geometrically independent subset
of E having precisely n + 1 points (}). Simplexes will be denoted by Greek
letters, i.e. o, u, 7, etc. (sometimes such a simplex o will be denoted by the
symbol [po, ... ,pn], where p; € E for 0 < i < n). If 0 and 7 are simplexes
and o C 7 then o is called a face of 7. A geometric simplex |o| is the convex
hull of a simplex ¢. The union of all proper faces of o is called the boundary
of o and it is denoted by do. By the geometric boundary of ¢ we understand
a set |0o| := U{|7| | T C 0, 7 # o} and by (o) we mean the following set
(o) := |o| \ |0o|. Here and in what follows, we shall denote by A, the n-
dimensional standard simplex.

An abstract simplicial complex is a collection S of non-empty and finite sets
such that if s € S and ) # s’ C s then s’ € S. The elements of the set S = (J ¢ s
are called the vertices of the abstract simplicial complex. Consider E as the
free real module with basis S. Observe now that any s € S is geometrically
independent in E and, consequently, any element s € S is an n-simplex, where
n := (#s)—1. So, from this moment on, we will denote the elements of S by Greek
letters. Moreover, for every 01,02 € S we have |o1| N |o2| = |o1 N o2]. Denote
by [S| the set [S| := U, lo|. Then the set [S| together with the Whitehead
topology is called a geometric realization of S (see [6]). If v is a vertex of S, then
st(v,|S]) := U{(7) | v € |7|,7 € S} is the star of v. For each vertex v of S every
st(v, [S]) is open in [S].

Now, we recall the notion of a retract. A subset A C X is called the retract
of X if there exists a continuous map r: X — A (called a retraction) such that
r(z) = z for all x € A. In addition, we shall say that A is a neighbourhood
retract of X if there exists an open subset U C X such that A C U and A is
a retract of U. Following K. Borsuk we shall introduce the notion of an absolute
retract (AR) and the notion of absolute neighbourhood retract (ANR). We shall
also use the notion of an embedding. Namely, by an embedding of a space X into
Y we shall understand any homeomorphism h: X — Y from X onto its image
such that h(X) is a closed subset of Y.

Definition 1.2.1. We shall say that X € AR (X € ANR) if and only if for
any space Y and for any embedding h: X — Y the set h(X) is a retract of Y
(h(X) is a neighbourhood retract of ).

(1) Let E be a vector space. Then:

(a) the vectors e1,...,en are said to be geometrically independent if for all elements
t1,...,tn € R with Z?:lti = 0 and Z?:lti e, =0€ Ewehave t) =t =... =
tn = 0;

(b) a subset s C E is geometrically independent if and only if every its finite subset is.
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A single-valued continuous map f: X — Y is said to be an r-map if there
exists a single-valued continuous map ¢:Y — X such that f o g = idy, where
idy:Y — Y is the identity map. If there exists an r-map f: X — Y then the
space Y is called an r-image of the space X.

Theorem 1.2.2 ([23]). X € AR if and only if X is an r-image of some
normed space E.

Theorem 1.2.3 ([23]). X € ANR if and only if X is an r-image of some
open subset U of a normed space E.

Theorem 1.2.4 ([7]). Suppose that the space X is the union of two closed
subsets X1 and Xo and let Xo = X1 N Xs. Then:

(a) IfX(),Xl,XQ S AR, then X € AR.
(b) If Xo, X1, X2 € ANR, then X € ANR.
(¢) If X, Xo € AR, then X1, Xa € AR.
(d) If X, Xo € ANR, then X1, X» € ANR.

Lemma 1.2.5. Let Y € ANR, X be an arbitrary space and A C X be
a closed subset. Assume that f,g: X — Y are such that there is a homotopy
h: Ax[0,1] =Y with h(z,0) = f(z),h(z,1) = g(x) for every z € A. Then there
exists a neighbourhood U of A in X and a homotopy H:U x [0,1] — Y such that
H|A x [0,1] = h, H(x,0) = f(x) and H(z,1) = g(x) for every x € U.
Proof. Let B = (A x [0,1]) U (X x {0}) U (X x {1}) and let k: B — Y be
defined by
h(z,t) ifx € A,
k(x,t)=4¢ f(x) ift=0,
g(x) ift=1.
Since Y is an ANR, &k has an extension g: N — Y over a neighbourhood N of B
in X x [0, 1]. Because of the compactness of [0, 1], there is an open neighbourhood

U of A such that U x [0,1] C N. Finally, define H:U x [0,1] — Y by H :=
g|U x [0, 1], which completes the proof. O

Lemma 1.2.6 ([7]). Let Q¥ be the Hilbert cube and let A C Q¥ be a compact
subset. Then there exists a sequence {Z;}32, of compact ANRs such that
A :Qw, Ziy1 Cint Z;, A= ﬂZl
i=1
In the sequel we shall make repeatedly use of the following result due to
Girolo.

Lemma 1.2.7 (Girolo, [21]). If K is a compact subset of an open set U in
a normed space E, then there exists a compact ANR X such that K C X C U.
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From the above lemma we deduce that a family of all compact ANRs con-
tained in U is cofinal in the family of all compact subsets of U.
Finally, let us recall the following important embedding theorem.

Theorem 1.2.8 (Arens—Eells Embedding Theorem). Let X be a metric
sapce. Then there exists a normed space E and an isometry ©: X — E such
that ©(X) is a closed subset of E.

1.3. Multivalued mappings — general properties

By a map we shall mean a single-valued continuous transformation of spaces
and by a multivalued map ¢ of a space X into a space ¥ we mean a corre-
spondence which associates to every z € X a non-empty and compact subset
o(z) C Y, and we write ¢p: X — Y. In the sequel, the symbol f: X — Y is
reserved for single-valued mappings. Moreover, we associate with ¢ the graph
I', of ¢ by putting:

Ly ={(z,y) e X xY |y € p()}.

Definition 1.3.1. A multivalued map ¢: X — Y is upper semicontinuous
(u.s.c.) if for any open subset U of Y the set =1 (U) :={x € X | p(z) C U} is
open in X.

Proposition 1.3.2. If ¢p: X — Y is u.s.c. then the graph I', is a closed
subset of X X Y.

Proposition 1.3.3. Let p: X — Y be a multivalued map. The map ¢ is
upper semicontinuous and has compact values if and only if, given a sequence
(Tn,yn) € Ly, if x, — mo, then there exists a subsequence yn, such that y,, —
Yo € ¢(x0).

Definition 1.3.4. A multivalued map ¢: X — Y is lower semicontinuous

(Ls.c.) if for any open subset U of Y the set ¢ ' (U) :={z € X | p(z) N U # 0}
is open in X.

Proposition 1.3.5. Let p: X — Y be a multivalued map. The map ¢ is
lower semicontinuous at xg € X if and only if, for any yo € ¢(xo) and a sequence
Xn — T, there exists a sequence y, — yo such that y, € o(ay,) for all n € N.

Definition 1.3.6. We say that ¢: X — Y is compact if the closure ¢(X) of
©(X) is compact.

Definition 1.3.7. We say that ¢: X — Y is continuous provided if is both
upper semicontinuous and lower semicontinuous.

Given pairs (X, A), (Y,B), by a map ¢:(X,A) — (Y, B) we shall mean
a multivalued map p: X — Y satisfying the condition ¢(A) C B. If ¢: X —- Y
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and A C X, then the composition of the inclusion i: A — X and ¢: X — Y is
denoted by p|A: A — Y.

If : (X, A) —o (Y, B) is a multivalued map, then ¢ x: X —o Y and p4: A — B
denote the evident multivalued maps determined by .

Remark 1.3.8. The basic terminology concerning multivalued maps used
throughout this work is taken from the book by Gérniewicz [23]. Moreover, for
more information about multivalued maps we refer the reader to [1] and [23].

1.4. Direct and inverse limits

In this section we recall the concepts of direct limit and inverse limit which
will be needed in the sequel.

Definition 1.4.1 ([32]). Let {M;}icr be a family of R-modules indexed
by the directed set I. Assume that for i < j we are given a homomorphism
UPRE Ml — Mj such that

(a) 7Ti,i = id,

(b) i = Tk 0T, for i < k< j.
Then the family S := {M;,7;; | ¢,5 € I} is called a direct system of R-modules.
Given such a direct system S, the direct limit of this system is an R-module M,
together with a family of homomorphisms m;: M; — M, indexed by I such that

(c) mjomj, =m; for i < j
and such that this collection is universal with respect to the following property.
For any R-module N and any family of homomorphisms f;: M, — N satisfying
(d) fijomji=fifori<j
there is a unique homomorphism f: M., — N such that
(e) fi=fom foralliel.

Proposition 1.4.2. The direct limit of S = {M;,m;; | i,j € I} always
exists.

Throughout this book, an R-module M., will be denoted by the symbol
iel
Moreover, the unique homomorphism f will be denoted by the symbol
i€l
Remark 1.4.3. If we reverse the arrows in the above definition, then we get

the notion of an inverse system and limit. Moreover, the analogue of Proposition
1.4.2 for inverse systems is also true.
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1.5. The Cech homology functor

By H.(X,G) we denote the Cech homology (graded) of a space X with
coefficients in a group G ([17]). A space X will be called positively acyclic (resp.
k-acyclic, k > 1) if H,(X,Q) =0 for n > 1 (resp. H;(X,Q) =0 for 1 < i < k).
The following nontrivial theorem will be useful for our present purposes.

Lemma 1.5.1 ([31]). Let X be a compact space and let X1 D Xo D ... be
a descending sequence of compact spaces with X = ﬂ;ﬁl X;. Then

H.(X,Q) = lim H,(X;,Q).

Lemma 1.5.2 ([31]). Let (X1,A41) D (X2,42) D ... be a descending se-
quence of compact pairs with (X, A) = ;2 (X, A;). In addition, fix n and let
{#z1,...,2s} be a linearly independent set in ﬁn(X, A;Q). Then there exists an
index k,, such that:

(a) {jr(21),... ,dr(2s)} is linearly independent in H, (X}, Ag) for all k >
k,, where jk:ﬁn(X,A;Q) — I-V[n(Xk,Ak;Q) are induced by the inclu-
sion (X, A) — (Xi, Ak),

(b) in particular, for all k > k,, jkiﬁn(X,A;Q)*)Iv{n(Xk,Ak;Q) is a mo-
nomorphism on the space Es:=(z1,... ,zs) generated by {z1,... ,2s}.

Theorem 1.5.3 ([57]). There exists a transformation T from the arbitrary
homology theory with compact supports over a coefficient group G to the Cech
homology over the same coefficient group G such that

(a) to each metric space X it assigns a homomorphism
T(X):H(X,G)— HX,G),
(b) for any single-valued map f: X —'Y the following diagram

H(X, Q)L H(Y,G)
T(X)j{ j{T(Y)
H(X,G) —— H(Y,G)
commutes. Moreover, if X is a metric absolute neighbourhood retract, then

T(X): HX,G) — H(X,G) is an isomorphism.

1.6. The Lefschetz number

In this section all the vector spaces are taken over Q and all maps between
such spaces are linear. First we shall recall the notion of an ordinary trace. Let
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L: E — E be an endomorphism of a finite-dimensional vector space E and let
e1,...,en be a basis for E. Then for every e; we can write

L(Bi) = Z aij€j.
Jj=1

Hence we have the matrix A = [a;;]}';_; of L. The trace of A is given by the

formula: .
tr A = Z [
i=1

By a trace of an endomorphism of a finite-dimensional vector space L: £ —
E, written tr(L), we shall understand the trace of the matrix of f with respect
to some basis for E. The above definition is correct, i.e. it does not depend on
the choice of the basis for E. Now we shall collect the important and well-known
properties of the defined trace tr(L).

Proposition 1.6.1. Assume that in the category of finite-dimensional vector
spaces the following diagram commutes

B —2 s g
L/J/ / J/L//
El/ >EH
Then tr(L') = tr(L"), or equivalently, tr(vu) = tr(uv).

Proposition 1.6.2. Given a commutative diagram of finite-dimensional ve-
ctor spaces with exact rows

0— B/ BE—— B 0
L/J lL lL//
0—s E' E— B 0

we have tr(L) = tr(L') + tr(L").

Definition 1.6.3. A graded vector space E = {E,,} is of finite type provided
FE, =0 for almost all n € N and dim F,, < oo for all n € N.

Definition 1.6.4. Let E = {E, },>0 be a graded vector space of finite type
and let L = {L,}n>0 be an endomorphism of degree zero (i.e. L,: E,, — Ey)
of E. Then the Lefschetz number A\(L) of L is defined by

oo

AL) =Y (=1)"tr(Ln).

n=0

It is well-known that one can generalize the Lefschetz number. To begin with,
we have to generalize the notion of the trace. Let L: E — E be an endomorphism
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of an arbitrary vector space E. By L(™: E — E we denote the n-th iterate of L.
Let us note that the kernels

KerL c Ker L® c ... c Ker L™ ...

form an increasing sequence of subspaces of E. Next, let us define the set N (L)
by the formula:

N(L)={z € E | L™ (z) = 0 for some n}.

It is clear that
N(L) = | J KerL™.
n>1
Let us observe that L maps A (L) into itself and, consequently, we get the
induced endomorphism L: E — E, where E = E/N(L) is the factor space. It is
easy to see that L:E—> Fisa monomorphism. Now we are able to define the
Leray trace.

Definition 1.6.5. Let L: E — FE be an endomorghism of a vector space E.
Assume that dim F < co. Then we put Tr(L) = tr(L) and Tr(L) is called the
generalized trace of L.

Note that Propositions 1.6.1 and 1.6.2 also hold for the generalized trace.
Moreover, one can show the following;:

Proposition 1.6.6. Let L: E — E be an endomorphism. If dimE < oo,
then Tr(L) = tr(L).

We are now ready to define the generalized Lefschetz number. Let L =
{Ln}n>0 be an endomorphism of degree zero of a graded vector space E =

{En}n>o.-

Definition 1.6.7. We shall say that L is a Leray endomorphism provided
that the graded vector space E = {En}nZO is of finite type. If L is the Leray
endomorphism, then we can define the generalized Lefschetz number A(L) of L
by putting:

oo

AL) =D (=1)"Tx(Ly).

n=0
Now from Proposition 1.6.6 we have the following:

Proposition 1.6.8. Let L: E — E be an endomorphism of degree zero. If
FE is a graded vector space of finite type then

A(L) = ML).

The next two statements follow immediately from Propositions 1.6.1 and
1.6.2, respectively.



CHAPTER 1. TOPOLOGICAL BACKROUND 15

Proposition 1.6.9. Assume that in the category of graded vector spaces the
following diagram commutes:

E “ )0l

1%

E/ N EI/

Then if one of the maps L', L is a Leray endomorphism, then so is the other
and in that case

Awou)=A(L")=AL") = Aluow).

Proposition 1.6.10. Let

E7/1 En E;{ Eéfl
E;z En E':zl E':z—l

be a commutative diagram of vector spaces in which the rows are exact. If two
of the following endomorphisms

L={Lutnzo, L' ={Lp}tnz0, L"={Ly}nz0
are Leray endomorphisms, then so is the third, and in that case we have:
AL")+ A(L") = A(L).

Finally, we recall the notion of a weakly nilpotent endomorphism.

Definition 1.6.11. A linear map L: £ — FE of a vector space E into itself is
called weakly nilpotent provided for every x € X there exists a natural number
n = n, such that L™ (x) = 0.

From the above definition we deduce that L: E — FE is weakly nilpotent if
and only if V(L) = E.

Proposition 1.6.12. If L: E — FE is weakly nilpotent then Tr(L) is well-
defined and Tr(L) = 0.

We say that an endomorphism L = {L,},>0: E — E is weakly nilpotent if
and only if L,: E,, — E, is weakly nilpotent for every n, where E = {E, },,>0 is
a graded vector space. From Proposition 1.6.12 we obtain the following propo-
sition.
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Proposition 1.6.13. Any weakly nilpotent endomorphism L:E — E of
a graded vector space is a Leray endomorphism and A(L) = 0.

Remark 1.6.14. Notice that all the proofs of the results presented in this
section can be found in [23] or [31].



CHAPTER 2

w-MAPS

2.1. Definition and examples

The aim of this short preliminary section is to recall the notion of weighted
maps. Next we present several examples of such maps.

Definition 2.1.1. A weighted map from X to Y with coefficients in Q (or
simply a w-map) is a pair ¢ = (oy, wy) satisfying the following conditions:

(a) oy: X — Y is a multivalued upper semicontinuous map such that oy (z)

is a finite subset of Y for all z € X;
(b) wy: X XY — Q is a function with the following properties:

(b1) wy(x,y) =0 for any y & oy (x);

(b2) for any open subset U of Y and € X such that oy (z) NOU =0

there exists an open neighbourhood V' of the point x such that:

Z ww(w’y) = Z wl/J(Zvy)’

yeU yeU

for every z € V.

For simplicity of notation, we denote a multivalued weighted mapping from
X to Y by ¥: X — Y. Thus, by ¢(z) we shall mean oy(z) for all z € X.
The map oy from the above definition will be called the support of 1 and wy
the weight of ¥. The class of weighted maps was introduced in 1957 by G.
Darbo and independently by R. Jerrard. Let us notice that our definition of
weighted map is a slight modification of the one introduced by G. Darbo (and
R. Jerrard), but all the results of [36], [39], [63]-[55] are also true for weighted

maps defined above. Moreover, the above definition seems to be more convenient
in our considerations.

Remark 2.1.2. Notice that in Definition 2.1.1 one can also consider any
commutative ring R with identity instead of Q. To simplify our exposition, we
restrict ourselves to the case when R = Q.

17
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Now, we give some examples of weighted maps.

Example 2.1.3. Each continuous map f: X — Y can be considered as
a weighted one by assigning the coefficient 1 to each f(z).

Example 2.1.4. Let ¢: X — Y be a continuous map such that for all
x € X, ¢(z) consists of 1 or exactly n points (with n > 2 fixed). A weight
wy: X XY — Q can be defined by

0 ify¢Zy(x),
wy(z,y) = ¢ n if {y} = ¢(),
1 otherwise.

It is not difficult to verify that ¢ = (¢, wy) is a weighted map.

Example 2.1.5. Let f: X — SP™Y be a continuous single-valued map and
let II: SP™Y — Y be a multivalued map which is defined by

(. ahe) = {z, ..., 2.},

where SP™Y denotes the n-th symmetric product of ¥ and z* ... 2% denotes
an equivalence class in SP"Y" (?). Then f induces a w-map ¢ = (0,,w, ), where
0,: X — Y and wy,: X XY — Q are defined by
op(x) = 1lo f(x)

and

ki ifyeo,(z),

wnp (Iv y) = .

0 ifydoy(z).
Thus if f: X — SP™X is a single-valued map, then ITo f: X — X is a weighted
map and the fixed point theorems for maps into symmetric products ([51])
are direct consequences of the corresponding fixed point theorems obtained for
weighted maps.

Example 2.1.6. Further examples can be found in [53].
Example 2.1.7. Let ¢:[0,1] — [0, 1] be defined by
{1} ifo<a<1/2
o(x) =14 {0,1} ifz=1/2,
{0} if1/2<z<L
Of course, ¢ is upper semicontinuous without fixed points. One can show that

if we:[0,1] x [0,1] — Q is an arbitrary weight of ¢, then w,(z,y) = 0 for all
x,y € [0,1]. For such a map ¢ there exists only trivial weight.

(?) Let X be a metric space and let n > 2 be an integer. The n-th symmetric group Sp,
acts on the n-th cartesian product X by the formula (s, (z1,...,2n)) = (Tg(1)s--- > Ts(n))
where s € Sy,. The n-th symmetric product SP™X of X is the orbit space X" /S,. One can
prove that SP™ X is also a metric space. For more details concerning the definition of the
metric in SP™ X, we refer for example to [51].
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2.2. Elementary properties

In this section, some basic properties of multivalued weighted maps are pre-
sented.

Proposition 2.2.1. Ify,p: X — Y are two w-maps, then

YU = (0ypup, Wpuy)

is also a w-map, where oyuy: X — Y and wyue: X XY — Q are defined by

opup(T) = oy(z) Uoy (),
Wyup(2,y) = wy(z,y) + we(z,y),
forallz e X andy €Y.

Proposition 2.2.2. If : X — Y is a w-map and o € Q, then a - =
(Camp, W) @5 also a w-map, where 0q.: X — Y and wa.: X XY — Q are
defined as follows: 0q.y(x) = oy(x) and Wa.y(x,y) = - wy(z,y) for allz € X
andy €Y.

The proofs of Propositions 2.2.1 and 2.2.2 are straightforward.

Proposition 2.2.3. If p: X — Y and ¥:Y — Z are w-maps, then i o
p: X —o Z is a w-map, where its support 0,0y 5 the composition of o, and oy
and a weight Wyop: X X Z — Q is defined by the formula:

wwow(w’ z) = Z wtﬂ(x?y) : wl/J(y’ Z)’
yey
for everyx € X and z € Z.
Proof. 1t is easy to see that the first condition of Definition 2.1.1 and the
condition (b1) hold true for ¥ o ¢. Now, we shall prove that the condition (b2)
of Definition 2.1.1 is also satisfied for ¥ o . For this purpose, let us fix zg € X

and let U be an open subset of Z such that ¥ o p(z9) N OU = ). We have to
show that there exists an open neighbourhood W, of 29 in X such that

(2.1) Y Wyop(@0,2) = D wyop (@', 2),
zeU zeU
for all ' € Wy,. We have

5 wie(a2) = X (35 wplanes) (o))

zeU zeU yey
- <;ww($o,y)'ww(yﬂ)> = 3 wstenn) (;w¢<y,z>)-
Let

e(z0) = {y0--»ub} and ay =Y wy(y,2).
zeU
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Next, we obtain

5 wplinn) (L ws(0:9)) = X wilans) o,

yey zeU yey
k

_ — ) )

= E Wy (To,Y) - ay = E :w@(xo,yo) "Gy
yEp(zo) i=1

Hence, we get

k

(22) Z w¢°90(x07 Z) = Z w@(x()v yZ)) C Oy

zeU i=1

Now it is enough to show that the right hand sides of (2.1) and (2.2) are equal
for some open neighbourhood of zg in X. Since v is a w-map, it follows that
there exist open subsets Vi of Y, 1 <1<k, such that

yéeVyé fori=1,... k;
V0V, =0 for i # J;
(2.3) ay = Zu@(yé,z) = Zu@(y,z) =ay foryeV,,i=1,... k.
zeU zeU

Moreover, since ¢ is also a w-map, we deduce that there exist an open neigh-
bourhoods W;O of xg in X, 1 < i < k, such that

(2.4) we(zo,yp) = Y we(@,y) = Y we(a,y),

yGVyé yenp(z’)ﬂVy[i)
for o’ € W;O. From the upper semicontinuity of ¢ we infer that there exists an
open neighbourhood W, of zp in X such that

V .

Yo©
1

(2:5) o Wey) |

k
i=

Finally, we let
Wo =Wy, "W, N...NWE .

Then for any 2’ € W, we obtain

> winele's) = 3 (3 wele' ) vty )

zeU zeU “yeY
2D 3D MHCRIIHUISES DT ERIN O SEe)
yeY zelU yey zeU

:Zw@(x’,y)-ay: Z (@, y) - ay.

yey yep(z’)
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Consequently, in view of (2.5), we deduce that

k

Z we (@', y) - ay = Z we (7', y) :Z Z we (7', y) - ay.

yep(a’) yep@)NUi1 Vye) =lyep(x)nV,;

Let us observe that, by (2.3), we have a, = ay, for y € Vyi- Therefore, we obtain

k
Z Z w@(zlvy)ay = Z Z wﬁp(zlvy)ayé

i=1 yeso(w/)m/yg) i=1 yega(m/)ﬁvy[i)
k .
= Zayg( > m(xﬁy)) =3 aywe o, b),
i=1 yecp(ac’)ﬂ\/yé i=1
where the last equality follows from (2.4). The proof is complete. O

Proposition 2.2.4. Let ¢; = (0,,,wy,): X; — Y;, 1 < @ < 2, be two
weighted maps. Then ©1 X 2 = (p, x@y, W, xpy) 15 a weighted map, where

UQpIX(pQ:Xl X X2 —° }/1 X }/27
wtﬂlxvzz(Xl X X2) X (Yl X Y2) - Q
are defined as follows
0%1Xv2<$17$2) =0y, (wl) X Op, ($2)7
Wey x o (71, 22), (Y1, Y2)) = Wy (21, 41) - We, (22, Y2),
for every x1 € X1, x2 € Xo, y1 € Y1, y2 € Y.
Proof. The proof can be found in [39] or [23]. O

Now we shall give the definition of homotopy in the category of weighted
maps.

Definition 2.2.5. Given two w-maps ¥ and ¢ from X to Y, we say that 1
is w-homotopic to ¢ (¢ ~y, @) if there exists a w-map 6: X x [0,1] — Y such
that

wg((x,O),y) :will(xvy) and wf’((xvl)?y) :ww(zvy)v
oo(x,0) = oy(x) and oo(x,1) = o,(z),

foranyrx e X,yeY.
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Definition 2.2.6. Let ¢: X — Y be a w-map and let X be a connected
space. Then the sum
Z w@ (.’,E, y)

yey
is called the weighted index of ¢, where x € X. We shall denote it by I, ().

The above definition is correct because the sum 3, wy,(z,y) does not depend
on the choice of € X provided the space X is connected (see [36] or Lemma
3.1.14 below).

In the following proposition we shall list some important properties of the
weighted index.

Proposition 2.2.7. The above index has the following properties:
(a) If p,10: X — Y are w-homotopic, then L,(p) = L, ().
(b) If p: X —Y and ¢¥:Y — Z are two w-maps, then
Ly(p o) = Lu(¢) - Lu(p).
(¢) If f: X =Y is a continuous map, then I,(f) = 1.

Proof. The proof can be found in [23]. O
Proposition 2.2.8 ([36]). Let ¢: X — Y be a weighted map such that
o(X) CcUi_, Vi, where Vi, i =1,... s, are open subsets of Y with V;NV; =0
for i # j. Assume also that the following condition is satisfied: o(x) N'V; # 0

for all x € X and i = 1,...,s. Then there exist w-maps @;: X —o Y with
0i(X) C Vi, 1 <i<s, such that o = JI_; ¢i.

Lemma 2.2.9. Let 1, p: X —o Y be two w-maps such that

wy (7,y) = wy (2, y),

for each x € X,y € Y. Then there exists a weighted map 0: X x [0,1] — Y such
that

0(x,0)
0(z,1)

@(x)v wg((x,O),y) :wnp(xvy)v
(:B), w9((w’1)7y) :ww<$vy)a

|
<

forxe X, yeY.

Proof. Tt is enough to define a w-map 6: X x [0,1] — Y as follows:

o(x) ift €10,1/3),
O(z,t) =< pl@)Uy(z) ifte[l/3,2/3],
() if t € (2/3,1],

and
wo((z,t),y) =wy(z,y), forallze X, yeV, te[0,1]. O
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Lemma 2.2.10. Let Y be a path-connected space. Then, for any w-map

¢:{0,1} — Y satisfying the condition 3 v w,(0,y) = > oy wy(1,y), there
exists a weighted map @:[0,1] — Y such that

g=UNfi and F{0,1} =,
i=1
where f;:[0,1] — Y is single-valued continuous function and \; € Q for i =

1,...,s.

Proof. The standard proof may be found in [10]. However, let us provide
a simple direct proof. Let ¢(0) = {z1,...,z,} and ©(1) = {y1,... ,ym}. The
proof will be divided into two steps.

Step 1. We assume that n > m. Let
a; = wy(0,2;) for
B =wy(1,y;) for

First, we shall consider the case m = 1. Then by the connectedness of Y there
exist continuous functions h;:[0,1] — Y such that

hi(O):,’Bi and hi(l):yl,

for i =1,...,n. Consequently, it is enough to define @: [0,1] — Y as follows

n
{5 = U O[th
i=1

Let m > 1. We put

Yoy = O1,

Vyi = Bi = Vair  Vwigr = Qg1 — Yy, fori=1,...,m—1,
if n > m, then we put
Vemsr = Omy1, forl=1,...,n—m.
Since Y is path-connected, there exist continuous functions

hgyseow s hg, [0,1] =Y and hy,...,h~ :[0,1] =Y

y " Ym—1-°
such that
hs; (0) = x4, hae; (1) =i, fori=1,...,m—1,
hyl(o) =Yi, hyl(l) = Ti+1, fori:lv"' 7m717

hap i (0) = Tongt, ha (1) =Ym, forl=0,...,n—m.
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Now it is enough to define ¢:[0,1] — Y as follows

n m—1
Q= (U'szhwz> U < U 'ijhyjl)»
i=1 j=1

where h;jl(t) = hy;(1—=t) foralltc[0,1] and j =1,... ,m — 1.

Step 2. We assume that m > n. Let us define a w-map v¢:{0,1} — Y by
¥(t) = (1—t) for t € {0,1}. Then, by Step 1, there exists a w-map ¢: [0,1] - Y
such that

v=JNfi and Y{0,1} =,

i=1
where \; € Q and f;:[0,1] — Y are continuous functions for ¢ = 1,...,s.
Consequently, a w-map @: [0,1] — Y defined by the formula

g=NA!
i=1
is the desired extension of ¢:{0,1} — Y, where f; *(t) := f;(1 —t) for t € [0,1]
and ¢ =1,...,s. This completes the proof of the lemma. O

Lemma 2.2.11 (Gluing Lemma). Assume that a space X is a union of two
closed subsets X = Ay U Ay and Ay N Az # 0. If there are two weighted maps
p1: A1 — Y, pa: Ay — Y such that

Op, (X)) = 04, (2) for allx € Ay N A,
Wy, (2,y) = wy,(z,y) foralz e AiNAy, yevy,

then a pair ¢ = (0,,w,) given by
op (x) ifz € Ay,
op(z) = .
Op,(2) if € Ao,

and
w@l(xvy) foEAlv yEK

wtﬂz(way) iwaA27 yEK

o) = {
18 a weighted map.
The proof of Lemma 2.2.11 is straightforward.

Now, we shall consider some algebraic properties of w-maps. They will play
a crucial role in the topological essentiality.

Definition 2.2.12. Let E be a normed space and let ¢, p: X — E be two
w-maps. By ¥ 4+ ¢: X — E we shall understand a pair ¢ + ¢ = (0ytp, Wyty)s
where

Optp: X = E and wyipo: X X E—Q
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are defined as follows:

Tprp(@) = {u+v | € () and v € plo));
Wyt (T, 0) = Z wy(z,u —e) - wy(z,e).
ecE

Proposition 2.2.13 (see [61]). The above pair ¥ + ¢ = (Typtp, Wyte) S
a weighted map.

Definition 2.2.14. Let E be a normed space and let ¢, p: X — E be two
w-maps. By ¢ — ¢: X — E we shall understand a pair ¢ — ¢ = (0y—y, Wy—o),
where

Op—p: X — F and wy_o: X X E— €
are defined as follows:
gp—o() ={u—v|ue(z)and v € p(x)};
Wy (e u) = Y wyla,u+ o) - w,a,0).
ecE

Proposition 2.2.15 ([61]). A pair ¢ — ¢ = (Oyp—y, Wy—y) IS a weighted
map.

Definition 2.2.16. Let E be a normed space and ¢: X — F and let s: X —

R be a continuous function. By s¢: X — E we shall understand a pair s¢ =
(Osps Wsy), Where

Osp: X = E and we: X X E—Q

are defined as follows:

Osp(x) = {s(x)u | u e p(x)}
and

w, (w ﬁ) if s(x) £ 0,

Wy (T, u) = Zw@(x,e) if s(z) =0, u=0,
eckE
0 if s(z) =0, u#0.

Proposition 2.2.17 (see [61]). A pair s¢ = (0sp,Ws,) defined above is
a weighted map.

Proposition 2.2.18 ([61]). Let ¢,1: X — E be two w-maps and let s: X —
R be a continuous map, where X is a connected space. Then

(@) Luw(p+ 1) = Lu(p) - Lu(¥);
(b) Luw(p =) = Lu(p) - Ln(¥);
(¢) Lu(s-p) = Lu(p)-
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Remark 2.2.19. Let ¢,9: X — E be two w-maps. It is easy to see that
the equation:

w90+1/1(x7u) = w@(xvu) + ww(xvu)

is not true in general.
2.3. Darbo homology functor

2.3.1. Basic constructions. By W we shall denote the category of metric
spaces and weighted maps with coefficients in Q. In particular, by W(X,Y)
we shall understand the class of all w-maps from X to Y. Let us define an
equivalence relation ~ on W(X,Y') as follows: ¢ ~ ¢ if and only if wy = w,,.
The class of equivalence classes will be denoted by (X,Y) := W(X,Y)/ ~.

Darbo constructed a homology theory for weighted maps by adapting the
usual construction of the singular homology functor. In what follows we briefly
describe his construction. Let Ay be the geometrical k-simplex. For any 0 < i <
k consider the map d?& Ag_1 — Ay given by the inclusion of Ag_; as the face
opposite to the i-th vertex of Ag. Given a space X we shall consider the graded
vector space C(X, Q) = {Cx(X, Q) }x>0, where Cx(X, Q) := (Ag, X). So, we can
define a boundary operator 0 in C(X,Q) as follows:

k
aks = U(—l)ZS [¢] d7ll€ S (Ck—l(Xa Q)a

=0

for any s € C(X,Q) and k > 0; if k£ = 0, define 9ys = 0. One can easily prove
that OpOrs+1 = 0, for all & > 0.
The graded vector space

H. (X, Q) = {Hx(X,Q)}rxo0

of the complex (C(X,Q),d) will be called the Darbo homology of the space X
over Q. Any weighted map ¢: X — Y induces in a functorial way a linear map
ox: Ho (X, Q) — HL (Y, Q) (of degree zero). It is well-known how to define

H*<X7A7Q) and SD*H*<X7A7Q)_)H*<Y737Q)

for a pair (X, A) and a w-map ¢: (X, A) — (Y, B).

Let us note that two w-homotopic w-maps induce the same linear map in
Darbo homology. With this H, becomes additive functor from W to the category
of graded vector spaces which is invariant under the w-homotopy. Darbo (and
Jerrard) showed that the functor H, satisfies the Eilenberg—Steenrod axioms for
a homology theory with compact carriers. For more details concerning the notion
of Darbo homology [12], [36] are recomended.
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Theorem 2.3.1 ([64]). On the category of all pairs of absolute neighbour-
hood retracts and single-valued continuous maps the singular homology functor
and the Darbo homology functor are naturally isomorphic.

Let X7, X2 be two subspaces of a space X with X = X;UX5. We denote this
situation by (X; X1, X2) and call it a triad. Now we want to relate H., (X1, Q),
H*<X2, Q), H*(Xl N Xo, Q) and H*(Xl U Xo, Q)

Definition 2.3.2. A triad (X; X1, X2) is called excisive if the inclusion
J: (X1, X1 N X)) — (X1 U Xy, Xo) = (X, X3) induces isomorphisms

j*ZHn(Xl,Xl n XQ;Q) — HH(X, XQ;Q) for all n.

Proposition 2.3.3. Let Y and Z be two subspaces of a space X. If X =
intY Uint Z, then the triad (X;Y, Z) is excisive.

Proof. The proof follows exactly the same lines as it was done in the case of
singular homology in [66] (see also [15]), therefore we leave it to the reader as an
exercise. g

Proposition 2.3.4. (5™, 5%,5™) () is an excisive triad.

Proof. This fact was proved in terms of singular homology, for example,
in [32]. In view of Theorem 2.3.1, Proposition 2.3.4 follows from the correspond-
ing statement in [32]. O

Proposition 2.3.5. Let A be a closed subset of S™ C S"t! and let 0 < € <
V2. In addition, let OF (A) := O-(A)NSTH and OZ (A) := O (A)NS™ !, where
O (A) = {x € S | dist(z, A) < &}. Then

(0-(A)\ 4,0 (A)\ 4,02 (A)\ 4)
is an excisive triad.

Proof. Let us observe that if A = S™, then the assertion follows immediately
from Proposition 2.3.3. So we can assume that A # S™. Let

L1yew-

. ) :En-',-l)

Ap,
st gl
. 7In+1) ¢ A}
s T ||
Then, by Proposition 2.3.3, (O:(A) \ 4; 62‘, 6;) is an excisive triad. Now the
assertion of our proposition follows from the fact that OF (A)\ A (resp. O7 (A)\A)
is a deformation retract of OF (resp. O7 ), which completes the proof. O

L1y -

07 = O\ A {1 o) €07 |
@ |

|| L1y

6; = (O;(A)\A) U {(Il,... ,In+2) S O;L

In a similar way, one can also prove the following result.

() Definition of S” and S” is given in Preliminaries
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Proposition 2.3.6. Let A, OF(A) and O7 (A) be as above. In addition, let
RY == {(z1,...,2p) € R" |2, 20}, R :={(x1,...,2,) € R" | 2, <O}

Then
(a) (0:(A);0F(A),07(4)),
(b) (5™ \ A4 S"\A ST\ A),
(c) (R™;R%Y,R”),
(d) R™\{0}RE N\ {0}, R2\ {0})

are the excisive triads.

Theorem 2.3.7 (Mayer—Vietories exact sequence). Let (4; A1, As) C (X;
X1, X5) be the pair of excisive triads. Then there exists an exact sequence

g Hn+1(X1 U XQ,Al U A27Q) i) Hn(Xl N XQ,Al N AQ,Q) M

— H, (X1, A3 Q) & Hy, (Xa, A2; Q) 125
— Ho (X1 U X2, 41U A2;,Q) L, H,—1 (X1 N X2, 41 N Ay;Q) —
where i1y, ios, j1x and jo. are induced by inclusions.

For the proof and more details we refer the reader to [15]. The above exact
sequence is called the Mayer—Vietoris sequence of the pair of excisive triads and
0, is called the Mayer—Vietoris homomorphism. If A = (3, then Theorem 2.3.7
reduces to the following theorem:

Theorem 2.3.8 (Mayer—Vietories exact sequence). Let (X; X1, X2) be an
excisive triad. Then there exists an exact sequence
6* (j1*7_j2*)
= Hpp 1 (X7 U X2, Q) — Hip (X1 N X, Q) ———
- Hn(Xh Q) S Hn(X27 Q) UERER
O
— Hy(X1U X2,Q) — Hp—1(X1 N X2,Q) —
where 11x, t2x, j1+ and joi are induced by inclusions.
Moreover, Mayer—Vietoris sequences are functorial, namely:

Theorem 2.3.9 (cf. [15]). A weighted map p: (X; X1, X2) — (Y;Y1,Y2) of
excisive triads, i.e. a weighted map ¢: X — Y with ¢(X;) CY;, induces a homo-
morphism of the corresponding (absolute or relative) Mayer—Vietoris sequences.

Definition 2.3.10. A non-empty space X is called acyclic (with respect to
the Darboo homology) provided
(a) H,(X,Q) =0 for all n > 1, and
(b) Ho(X,Q) = Q.
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Definition 2.3.11. A weighted map ¢: X — X is called a Lefschetz map
provided that ¢,.:H, (X, Q) — H,(X,Q) is a Leray endomorphism; for such a ¢
we define the Lefschetz number A(p) of ¢ by A(p) = A(p.).

Proposition 2.3.12. Let p: X — Y and ¢:Y — X be two weighted maps.
If one of 1, ¢ is a Lefschetz map, then so is the other, and A(po1) = A(pop).

In what follows, we shall also make use of the following lemma.

Lemma 2.3.13. Let p: X — Y be a weighted map and let Y be a path-
connected space. If X CY, then p.o([o]) = Lw(9)[jx o o] for all [o] € Ho(X,Q),
where jx: X — Y is the inclusion.

Proof. This follows directly from the construction of the Darbo homology
functor and, therefore, we leave the details to the reader. O

The following corollary follows from Definition 2.3.11 and Lemma 2.3.13.

Corollary 2.3.14. Let X be an acyclic ANR and let p: X —o X be a compact
weighted map. Then A(p) = L,(p).

2.3.2. The homology cross products. The purpose of this section is to
describe the notion of the cross product in Darbo homology. The construction
of the cross product follows the same lines as in the case of a singular homology
(cf. [15], [32]).

Given (X, A) and (Y, B), we write

(X,A)x (V,B)=(XxY,AxYUX x B).
Define 7t : A,, — A,,_1 as follows
ihier) = {

for 0 <i<n-—1. Let I = {i1,...,0p : ik < ik+1, 1 < k < p} be a subset of
{0,...,n—1}. In addition, let n;: A,, — A,,_, be given by

ek if0<k<i,
er—1 ifi<k<n,

0 %
771*77n7p+1o~'~o77np'

If, in particular, I = () then we let n; = id.

Let 0 be the collection of all subsets consisting of p elements of {0, ..., n—1}.
For I € § we write J = {0,... ,n—1}\TI and for I € € denote by ¢(I) the cardinal
number of the set {(¢,5):i€ I, j€J, i >j}.

Definition 2.3.15. Let p+ ¢ =mn, n > 0. Then
V,i (C(X,Q) ® C(Y,Q))n — Co(X x Y,Q)

is defined by

Vn(0®7') = Z(_l)a(l)(aonJaTonI)a
Ico
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where 0 € C,(X,Q), 7 € Cy(Y,Q). The family
V={Vi}n20:C(X,Q) ® C(Y,Q) — C(X x Y,Q)
is called the Eilenberg-MacLane map (*).

Remark 2.3.16. Recall that the above definition applies for singular com-
plexes as well.

Lemma 2.3.17. The Eilenberg-Maclane map V is natural with respect to
weighted maps, i.e. the following diagram commutes

C(X,Q) ® C(Y,Q) —L— C(X x Y,Q)

¢#®w#l l(vxw)#

C(X',Q) @ C(Y',Q) ——— C(X' x V', Q)

where p: X —o X' and :Y — Y’ are w-maps.

Proof. This lemma follows immediately form the definitions. |

Remark 2.3.18. Recall that if (C,0) and (C’,9") are algebraic chain com-
plexes and

CeCl.=PCe0,.,
p=0
then D,:[C ® C'],, — [C ® C"],—1 is defined by
D,(2@2)=0:®2 + (-1)P2®0'%
for z € Cp, 2" € C;,_, nad extended by linearity.

Theorem 2.3.19 ([16]). Let V,:[S(Ap) ® S(Ag)ln — Sn(Ap X Ay) be the
FEilenberg-MacLane map. Then the diagram

On
Sn(Ap x A, Q) —— 5 5, 1 (A, x Ay, Q)

VTLT [+

[S<AP’Q) ® S(Aqu)]n Tﬂ> [S(AINQ) & S<AQ’Q)]H—1

15 commutative.

Remark 2.3.20. If ¢: X — Y is a weighted map and ¢ € C,(X,Q),
then p o 0 € C,(Y,Q). Extending by linearity gives a chain homomorphism
vx:Ch(X,Q) — C,(Y,Q), for every n > 0.

(%) Tt should be noted that V is sometimes called a shuffle homomorphism (cf. [32]).
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Theorem 2.3.21. Let V:C(X,Q) ® C(Y,Q) — C(X x Y, Q) be the Filen-
berg—MacLane map. Then the following diagram

Ca(X X Y,Q) — " 4 Ci(X x Y, Q)

vn]\ Tvnl

[C(X,Q) ® C(Y;Q)]n —5— [C(X, Q) © C(Y, Q)1

18 commutative.
Proof. Let 0 @ T € Cp(X, Q) ® Cy(Y, Q). Let us observe that
c®T=(0®T)0 (A ® Ag),
where A\p: Ay, — Ay and A Ay — A, are the identity maps. Then we have

Va1Dp(0 @7) = Vao1Du((0®@7) 0 (A ® Ag))
Vn—an((U# ® T#)(/\p ® )‘q))
Vi-1(og ® T#)(DnO‘p ® )‘q))
2'3517(0 X T)#Vi—1(Dn(Ap @ Ag))
22 (5 % 1) 400 (Vi (A ® Ay))
= On(0 X T)Va(Xp @ Ag)
0, V(o4 @ ) (M © Ag))
= O Va((c®T)o(Ap @A) =0, Vyp(c®@7),

which completes the proof.
From the above considerations we conclude the following corollary.

Corollary 2.3.22. The following diagram commutes

H,(C(X,Q) ® C(Y,Q)) —=— H,(C(X x Y,Q))

(W@w)*nJ/ l(tpxw)*n

H,(C(X', Q) 8 €Y', Q)) = — Hu(C(X' x Y, 1))

where p: X —o X' and Y — Y’ are weighted maps.

Definition 2.3.23 (cf. [15]). Let [0] € H, (X, A; Q) and [7] € H,(Y, B; Q).
Then the cross product x: H, (X, A; Q)@H,(Y, B; Q) — H,1,((X, A)x (Y, B); Q)
is defined by

x([o] @ [r]) == [V(e @ 7)] € Hpio((X; A) x (Y, B); Q).
The image under x of [o] ® [7] will be denoted by [o] X [7].
From Corollary 2.3.22 we get the following proposition.
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Proposition 2.3.24 (Naturality). Let ¢: (X, A)— (X', A") and ¢: (Y, B) —
) e two weighted maps. Then
Y',B') b ighted Th

(¢ X ¥)s(a x b) = p.(a) X 1 (b)
for any a € H, (X, A;Q) and b € H, (Y, B; Q).

Remark 2.3.25. It is also important to notice that if £ € H,(X, 4;Q),
n € H,(Y, B;Q) and v € H,(Z, C;Q), then

(Exn) xy=Ex(nx7y).

The proof of the above equality proceeds exactly the same lines as the proof of
it in the case of the singular homology. For the detailed treatment of the fact
that the cross product is associative we refer the reader to [15], [32] and [62].

2.4. The w-homotopy functor

A w-map ¢: (X, ) — (Y, yo) between pointed spaces will be called a pointed
w-map if o(zg) = yo. Let Wy be the category of pointed spaces and pointed
w-maps with the weighted index equal to 0. Given two weighted maps ¢g and
¢1 from (X, z0) to (Y,yo), we say that g is w-homotopic to ¢ relative to xg
(written g ~, @1 rel xg) if there exists a weighted map 6: X x [0,1] — YV
satisfying two conditions of Definition 2.2.5 and 6(z,t) = yo for any ¢ € [0, 1].
This 6 is called the pointed w-homotopy between g and ¢;. It is easy to see
that the pointed w-homotopy is an equivalence relation on Wy. For a space X
with a basepoint zg € X, define 7% (X, x¢) to be the set of the pointed classes
of w-maps ¢: (S™,s9) — (X, ) having the weighted index I,(¢) = 0, where
S is a base point of the n-sphere S™. Notice that 7% (X, z0) admits a natural
structure of Q-module under the following operations:

[Pl + W] :=lpudl,  Ale] = [Ael,

where [¢], [¢)] € 2(X, zp), A € Q. For any pointed space X, and n > 0, the Q-
module 7% (X, xg) is called the n-th w-homotopy Q-module of X. It is easy to see
that in the definition of (X, x9) we can replace the unit sphere S™ by 0A,41.
Notice that the concept of w-homotopy was systematically studied in [40], [53]
and [55].

The Hurewicz map hy: (X, zo) — Hy(X,Q) is defined in the usual way.
Namely, A, (a) = a,(1,), where H denotes the reduced (Darbo) homology and
1,, is a generator of H,, (5", Q). In the sequel we shall use the following result:

Theorem 2.4.1 ([55]). If X is an absolute neighbourhood retract, then the
Hurewicz map hy: 7% (X, 20) — Hy(X,Q) is an isomorphism for every n > 0
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and any xg € X. Moreover, we have the following commutative diagram:

(X, o) == 7 (Y, o)

N |-

H.(X,Q) 5 Ha(Y, Q)
for any weighted map p: X —Y and n > 0.

Lemma 2.4.2. Let ¢:S™ — Y be a weighted map. In addition, let us
assume that there exists a point xg € S™ such that (xo) consists of one point.
If ¢ can be extended over D™V then ¢ is w-homotopic to L,(p)k relative to xo,
where k: S™ — 'Y s the constant map at p(xg) ().

Proof. Let ¢: D"*! — Y be an extension of ¢ and let c¢: S® — D"+l be
defined by c(x) = xo for all z € S™. Since the inclusion i: S™ — D"*! and
c: 8" — D" are w-homotopic relative to zg, it follows that @ oi and G o c
are also w-homotopic relative to xg. Let k:S™ — Y be defined to be ¢ o c.
Consequently, ¢ ~,, I,(©)k, because g oi = ¢ and @ o ¢ = I,(¢)k, which
completes the proof. O

Proposition 2.4.3. Let X be an ANR, let A be a closed ANR subspace
of X and let Y be an arbitrary metric space. If o: A x [0,1] — Y is a weighted
map such that po: A — Y is extendable to a w-map po: X — Y, then there is
a w-map @: X x [0,1] —= Y such that

(a) DX x {0} = o,
(b) @t|A = 4, for every t € [0,1],
where () 1= p(t,z) and Br(x) := P(t,x) for all t € [0,1] and x € A.

The above proposition is in fact a special case of more general fact, which is
proved in Chapter 3 (see Proposition 3.2.11).
2.5. The Lefschetz fixed point theory for w-maps

To begin with, we shall recall a few notions and their properties. Let ¥: X —o
X be a w-map. If the induced homomorphism ,: H,(X,Q) — H.(X,Q) is
a Leray endomorphism, then 1 is called a Lefschetz map and for such a w-map
1 we can define the Lefschetz number A(y) of ¢ by putting:

A(Y) = A

Clearly, if ¢ and ¢ are w-homotopic then A(¢¥) = A(p). Let us note that if
¢ has a trivial weight then ¢ is a Lefschetz w-map and A(p) = 0.

(®) By the constant map at yo € Y we shall understand the function k: X — Y with
k(z) =yo for all x € X.
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In 1961 G. Darbo extended the Lefschetz fixed point theorem to w-maps
from a compact ANR to itself ([14]). We refer also to [56] for more information
about his proof. Moreover, this theorem has been also obtained independently by
R. Jerrard ([36]), but only for polyhedra. In 1967 A. Granas gave a generalization
of the Lefschetz fixed point theorem for single-valued maps to the case of absolute
neighbourhood retracts. Using the method due to A. Granas one can show the
following theorem.

Theorem 2.5.1 (Lefschetz Fixed Point Theorem, [60]). Let X be an ANR
and let : X — X be a compact w-map (¢ € Kyw(X)). Then

(a) @ is a Lefschetz map;
(b) A(p) # 0 implies that ¢ has a fized point.

Let us notice that if X is an ANR, then H, (X, Q) = {H, (X, Q)},>0 does
not need to be a graded vector space of finite type. Therefore, for a given ¢ the
ordinary Lefschetz number cannot be well-defined. So, in the proof of the above
theorem we have to consider a concept of the generalized Lefschetz number.

Now, following G. Fournier and L. Gérniewicz ([22], [19], [23]) we show how
the above theorem can be extended to a class of non-compact mappings. For
this purpose, we recall the necessary notions and facts. Let (X, A) be a pair of
spaces. Given a weighted map ¢: (X, A) — (X, A) we denote by ¢x: X —o X and
wa: A —o A the respective contractions of ¢. Let us consider the graded vector
space H. (X, 4;Q) = {H,(X, 4;Q)}n>0. A weighted map ¢: (X, A4) — (X, A)
is called a Lefschetz map provided ¢.:H, (X, 4;Q) — H.(X, A4;Q) is a Leray
endomorphism. For a weighted map ¢ we can define the Lefschetz number A(p)
of ¢ by putting A(p) = A(p«). The following proposition expresses a basic
property of the generalized Lefschetz number:

Proposition 2.5.2 ([60]). Let ¢: (X, A) — (X, A) be a weighted map. If
two of the following weighted maps ¢, pa, @x are the Lefschetz maps, then so is
the third one, and in this case we have:

Ap) = AMex) — A(pa).

Definition 2.5.3. A weighted map ¢: X — X is said to be a compact
absorbing contraction if there exists an open subset U of X such that
(a) o(U) C U and the map ¢:U — U, ¢(x) = ¢(x), is compact,

(b) for every x € X there exists a natural number n, such that ¢"=(z) C U.

The set of all compact absorbing contractions will be denoted by CAC,, (X).
Evidently, any compact weighted map ¢: X — X is a compact absorbing con-
traction (it is enough to take U = X). The main property of the compact
absorbing contraction is given in the following:
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Proposition 2.5.4 ([60]). If ¢: (X,U) — (X,U) is a weighted map such
that U satisfies two conditions of Definition 2.5.3, then ¢ is a Lefschetz map and
A(p) =0.

After these preliminaries we are able to formulate the following theorem
(see [23]).

Theorem 2.5.5 (Lefschetz Fixed Point Theorem, [60]). Let X € ANR and
¢ € CAC(X). Then

(a) ¢ is a Lefschetz map;
(b) A(p) # 0 implies that ¢ has a fized point.

Proof. We choose an open subset U C X according to Definition 2.5.3. Let
@:U —o U be defined by $(x) = ¢(z), for all x € U. In addition, we consider the
map ¢: (X,U) — (X,U), p(z) = p(z), for all z € X. From Proposition 2.5.4 we
deduce that ¢ is a Lefschetz map and A(p) = 0. Since P is a compact weighted
map and U € ANR, we conclude from Theorem 2.5.1 that @ is a Lefschetz map.
Consequently, by applying Proposition 2.5.2, we deduce that ¢ is a Lefschetz
map and A(®) = A(e). Now, if we assume that A(p) # 0, then A(P) # 0
and, consequently, Theorem 2.5.1 implies that % has a fixed point. Hence ¢ has
a fixed point, which completes the proof. O

As an immediate consequence of the above theorem we obtain the following
corollary.

Corollary 2.5.6. Let X be an acyclic ANR (i.e. Ho(X,Q)~Q and H, (X, Q)
= 0 for every n > 1) or, in particular, a convexr subset of a normed space and
let p: X — X be a w-map with I,(¢) # 0. Then

(a) if ¢ € Ky(X), then ¢ has a fized point;
(b) if ¢ € CAC,(X), then ¢ has a fized point.

2.6. Topological degree for w-maps

2.6.1. Topological degree in R". The aim of this section is to define the
topological degree for w-maps. Topological degree for weighted maps was studied
in various forms (see [11], [41], [50]). Our presentation here follows the lines
of Ph.D. thesis of S. Jodko-Narkiewicz, but some properties of the topological
degree for weighted maps presented in this work, as far as the author knows,
are proved for the first time. We first recall the definition and properties of the
topological degree. It will be defined by means of the Darbo homology functor.
Let U be a bounded open subset of R™. Furthermore, we set

A(U,R™) = {p:U — R™ | ¢ is a weighted map and 0 ¢ ©(0U)}

where U denotes the closure of U and OU is the boundary of U. Now, we shall
define a map deg: A(U,R™) — Q. Let us recall that we can think of S™ as the
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one point compactyfication of R™, in other words, S™ = R™ U {oo}. Take any
¢ € A(U,R™). Then we have

S (57, 57\ 911(0) < (U, U\ 971(0) —o (R, R™\ {0}),

where k, j are the inclusions. Now, we can apply the n-dimensional Darbo
homology functor with rational coefficients (from now on up to the end of this
chapter, we will omit coefficients from the notations) to the above diagram and
we get

Jxn

Q = H, (8") 225 H, (57, 5™\ 95 1(0)) 22— H, (U, U\ 3(0))

l‘/’*n

H, (R",R"\ {0}) = Q
where, by means of the excision axiom, j., is an isomorphism. We define
(2.6) Op = jin © kun(ptn) € Ha(S™, 5™\ 911(0)),

where p,, is defined in Remark 2.6.1 below.

Remark 2.6.1. Choose, once and for all, a generator oy € Hy (R, R\ {0}) =
Q and assume inductively that a generator a,,_1 € H,_1(R*~1 R"~1\ {0}) has
been constructed. Then we define a generator «,, € H, (R™,R™\ {0}) by setting
a1 X ap—1. Consider also the composition

H,(S™) 2= H,,(S™, S™ \ 0) <= H,,(R",R" \ {0})

and define
i =kt o ju(an) € H,(S™) =~ Q.
Since the composition is an isomorphism, pu, is a generator of Hl, (S™).

Moreover, taking into account Remark 2.3.25, we obtain the following fact.
Lemma 2.6.2. Let p, € H,(S™), pm € Hpn(S™), tintm € Hpgpm(S™T™).
In addition, let
am € H,, (R™,R™ N\ {0}), a, € H,(R®,R™\ {0}),
Qnm € Hyppm (R™T™ R™™\ {0}).
Then

Mn X Um = Bntm, Qpn X Oy = Optm,

where X stands for the cross product.

Definition 2.6.3. Let ¢ € A(U,R™). We define the topological degree
deg(p, U, R") of ¢ by
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Lemma 2.6.4. Given ¢ € A(U,R"), let V be an open subset of U and let
K be a compact set such that gpll(O) CK CV. Then

(@[V)an o (];n)71 © k;n(,un) = Sﬁ*n(O@)v

where ki, : H,(S™) — H,(S™, 5™\ K) and j,,-H,(V,V\ K) — H, (5", 5"\ K)

are homomorphisms induced by inclusions.

Proof. The lemma follows easily from the following commutative diagram:

H,(S™) —2m s HL, (7, 5™\ F) «2" H,(U,U \ F) -2 H,(R",R" \ {0})

d T T §

B (57) —— Ha(S7, 5"\ K) ¢—— Ho(V.V \ K) 0 Hy (B, R"\ {0))
*n Jsn ® *M

where F := ¢ (0). O

Remark 2.6.5. The above lemma implies that we may replace a set @11(0)
in the definition of the topological degree of ¢ by any larger compact set K
contained in U.

Below we shall list some properties of the topological degree defined above.

Proposition 2.6.6 (Existence). Let ¢ € A(U,R™). If deg(p,U,R™) # 0,
then 0 € p(x) for some x € U.

() and therefore

Proof. Suppose that 0 & ¢(z) for all z € U. Hence ¢;'(0) =
=0. |

H,(U,U \ ¢7'(0)) = 0, and we conclude that deg(y, U,R™)

Proposition 2.6.7 (Excision). Let ¢ € A(U,R™) and let V be an open
subset of U containing gpll(O), then

deg(p, U, R™) = deg(o|V, V,R™).

Proof. The proof follows immediately from the commutative diagram:

H,(S™) —" H, (S, 87\ F) <2 H, (U, U\ F) —2% H, (R",R" \ {0})

Kin T T %’

Hy, (57, 8"\ F) «——Hn(V,V\ F)

*M

where F := ¢ '(0). O
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Lemma 2.6.8. Let U; and Us be disjoint open subsets of S™ and let F be
a closed subset of S™ such that F C Uy UUs,. Then the following diagram is
commutative:

(14,81 4)

H,(S™,S™\ F) H,(S™,S™\ F1) @ H, (5™, 5™\ F»)

j*T T]’u@jz*

Hn(Ul U UQ, U1 U U2 \ F) m Hn(Ul,Ul \Fl) @Hn(UQ,UQ \ F2)

where all the homomorphisms in the above diagram are induced by inclusions
and F; == FNU; fori=1,2.

Proof. The above fact was given in terms of singular homology in [9]. Conse-
quently, taking into account Theorem 2.3.1, we conclude that the above lemma
is also true. ]

Proposition 2.6.9 (Additivity). Let ¢ € A(U,R) and let Uy and U be two
disjoint open subsets of U such that gpll(O) C Uy UU,y. Then

deg(<p, U7 Rn) = deg(@la Ulan) + deg<302a U27 Rn)?
where @; denotes the restriction of ¢ to U;.

Proof. By Proposition 2.6.6, we may replace U by U; U Us in the definition
of deg(p,U,R™). Let F = <p:Ll(0) and F; = FFNU;. Now, it is enough to prove
that the following diagram

H,(5™)

(K14,k24)
k.

(11 4,024)

H, (S, S™ \ F) H, (S, 8" \ Fy) & H,(S™, S™ \ Fy)

>~ | Gu ZTJ'L,@J&*

hi.+ha.
H,,(S™, 8™\ F) H,,(U1,U1 \ Fr) @ H,,(Us, Uz \ F»)

P

P1.te2,
Hy (R", R™ \ {0})

commutes, in which, except for the weighted map ¢ and its restrictions, all the
homomorphisms are induced by inclusions. For this purpose, let us observe that
the middle square commutes by Lemma 2.6.8. Furthermore, the commutativity
of the top and bottom triangles follows from the definitions and the proof is
complete. O
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Proposition 2.6.10 (Unity). IfU contains the origin and i:U — R"™ is the
inclusion of U in R™, then deg(i, U,R™) = 1.
Proof. We have the following commutative diagram:

Jen

H,(S™) — " S, (8™, 57\ {0}) 2 H, (R™, R" \ {0})

ko Tid*n Ti*n

H,, (5™, 5™\ {0}) N H,, (U, U\ {0})

Now, taking into account Remark 2.6.1, (2.6) and (2.7), we obtain the desired
conclusion. O

Proposition 2.6.11 (Linearity). If ¢ = aq U B2, then
deg(p, U,R"™) = o - deg(p1, U, R") + 3 - deg(p2, U, R"),
where a, B € Q.
Proof. Let F := ¢'(0), K1 = (¢1);'(0) and K» := (¢2)7'(0). Then
F = K; U Kj. Consider the following diagrams:

H,,(S™) —2y H,, (57, 57\ F) «2" H, (U, U\ F) 27 |, (R, R\ {0})

N ;

H, (5") —— Ha (57, "\ i) ¢—— Ha(U, U\ K1) —— Hy (R" R"\ {0})
“n Jsn

P1)xn

H,,(5") —2 4 H,, (5™, S\ F) «2" H,(U, U \ F) 2 |, (R, R \ {0})

L ;

H, (S"™) —— H,, (8™, 8™\ K3) +——H,, (U, U \ K3) —— H,(R™",R™\ {0})

Kin Jxn (#2)xn

Kyn Pxn

H, (™)~ H, (S, 87\ F) <2 H, (U, U\ F) -2 H, (R", R" \ {0})

Moreover, @i, = (ap1 ULBY2)wn = a(p1)sn + B(v2)wn. Consequently, taking into
account the above commutative diagrams and Definition 2.6.3, we obtain
deg(p,U,R") - vy, :<P*n(0<p) = O‘(Sﬁl)*n(ow) + ﬂ(¢2)*n(0<p)
= a(%"/l)*n(osm) + ﬁ(¢2)*n(0¢2)
=« -deg(v1,U,R") - o, + B - deg(p2, U,R™) - apy
= (a - deg(p1, U,R™) + B - deg(p2, U, R")) - auy,
which proves that
deg(p,U,R") = - deg(p1, U,R") 4 (3 - deg(p2, U, R")
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as required. O

Proposition 2.6.12 (w-Homotopy invariance). Let T:U x [0,1] — R"™ be a
w-map and
K:={zecU|0¢€Y(x,t) for somet e [0,1]}.
If KNoU =, then deg(Yo,U,R™) = deg(Y1,U,R"™), where To(xz) = T(x,0)
and Y1(z) = Y(x,1), for all z € U.

Proof. First, let us observe that (Y¢)7'(0) C K for every ¢ € [0, 1]. Consider
now the following diagram:
*n jiem Tt)u
H,(S™) 5 B, (S, $™\ K) <22 B, (U, U\ K) 55, (R", R™ \ {0})
for any ¢ € [0, 1]. Then, by Remark 2.6.5 and (2.7), we obtain
(2.8) (Tt)un 0 (j*n)_l 0 kun(pin) = deg(Ye, U,R") - ay,

for all t € [0, 1]. From the w-homotopy invariance of the Darbo homology functor
it follows that

(2.9) (To)w = (1)
Consequently, taking into account (2.8) and (2.9), we get
deg(To, U, R"™) = deg(T1,U,R"),
which completes the proof. O

Before proceeding further, we need to prove the following lemma.

Lemma 2.6.13. Let ¢ € A(U,R™) and ¢ € A(V,R™). Then
Oy % Oy = Oy € Ha(S™, 8™\ (¢ x 9)11(0)).

Following [9] we define a map m:.SP x 8¢ — SP¥4 p > 0,q > 0, which will
be needed in the proof of the above lemma. Define an equivalence relation ~ on
[0,1]PT¢ = [0,1]P x [0, 1]¢ by setting (z1,y1) ~ (v2,y2) if and only if one of the
following conditions holds

(1) z1,29 € OIP and y1 = yo,
(2) z1 = 29 and y1,y2 € OI1.

It is well-known that the quotient space ([0, 1]? x [0, 1]%)/~ is homeomorphic
to SP x S and that the quotient space [0,1]777/9[0, 1]P*¢ is homeomorphic to
SP+4. Consequently, we can define

7: ([0, 1]P x [0,1]7)/~ — [0,1]PT7/9[0, 1]PT4

by 7([z]~) = [z]ajo,1p+e for any [z]~ € [0,1]" x [0,1]9/~. Thus, 7 induces the
following homomorphism:

72 Hy g (S7 % S7) — Hyg(SPH9).
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Lemma 2.6.14. Let p, € H,(S?), pg € Hy(S9) and let m, be as above.
Then

Tu(fp X flq) = Hp+q-
Proof. The proof of the above statement is the same as for singular homology
given in [9]. O
Now we are ready to give a proof of Lemma 2.6.13.

Proof of Lemma 2.6.13 (due to R. Brown). Let F := ¢;'(0), G := ¢ '(0).
Consider the following diagram

H,,,(S™)  H,,(S™) Hypgn (S™ X S™)

ki@ki’l l(k’xk”)*

H,, (8™, 8™\ F) @ Hy(S™, ™\ G) —— Hyp 0 (S™ x 5™, 8™ x §"\ F x G)

j;1®j;’ll l(j’xj”)*l

H (U, U\ F) @ Hy(V,V\ G) ———— Hpin (U x V,U x V\ F x G)

- ™ Hipn (S™F7)

|

— L Hyp o (S™F, S\ F X G)

|

— (U x V,U X V\ F x G)
in which, except for the cross product and ., all the homomorphisms are induced
by inclusions. Commutativity of the above diagram can be established in the
same way as in [9]. Consequently, taking into account Lemmas 2.6.2 and 2.6.14

and commutativity of the above diagram, we deduce that O, X Oy = Ogxy,
which completes the proof. (|

Proposition 2.6.15 (Multiplicativity). Let o € A(U,R™) and 1€ A(V,R™).
Then ¢ x 1 € A(U x V,R"™™) and

deg(p x ¥, U x V,R"™™) = deg(p, U,R") - deg(s), V,R™).

Proof. First, let us observe that (¢ x ¥)7'(0) = ¢7'(0) x ¢'(0). Thus
o x 1 € A(U x V,R"™™). Moreover, we have

deg(@ X va X V7 R"™ x Rm)an+m = (SD X ¢)*(O@Xw)

2 (0 X 1)1 (0p % Oy) *E 0,1(0p) X 14n(0y)
= (deg(% U7 Rn)an) X (deg(ﬂ% ‘/7 Rm)am)
= deg(p,U,R") - deg(), V,R™)atn X .
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Since, by Lemma 2.6.2, qtpy4m = iy X Qpy, it follows that
deg(%" X 1/]7 U X ‘/a Rn+m) = deg(<p, U7 Rn) : deg(wa ‘/a Rm)a
which completes the proof. O

Proposition 2.6.16. Let T:R"™ — R" be a linear isomorphism and let ¢ €
A(U,R™). Then

deg(T o o THT(U), T(U),R") = deg(p, U,R").

Proof. Let K := ¢;'(0). Then (T oo T~1);'(0) = T(K). Consider now
the following commutative diagram:

H,(S™) —=" s H, (S™, 5™\ K) +—2" M, (U,U\ K)

o

(2.10) mlf*n EJTM ml(TU)m

Jen

Hn (5™) —— Ha (5", S"\ T(K)) «—— H.(T(U), T(U)\ T (K))
where T: 8" = R U {oo} — S = R™ U {0} is given by

~ T(x) forxzeR"™,
T(x){ (z) €

00 for x = 0
and 7T is induced by T. Moreover, the following diagram also commutes:

)

Ha(S") — Ha (57, 5" \ {0}) ¢—— Ho (R, R" \ {0})

H (S™) —— Ha(S", 5™ \ {0}) = H(R",R" \ {0})

(2.11)

IR

where T": (S™, 5™\ {0}) — (5™, 5™\ {0}) is induced by 7.
We shall consider two possible cases: Tin(ay) = ay or Tan(ay) = —an,
where «, is a generator of H,, (R™,R™\ {0}). First, suppose that Ti, (o) = au,.

~

Then, by Remark 2.6.1 and (2.11), we get Ti(,) = ay,. Consequently, from
(2.10) we obtain

(TU)«n(Og) = Oropor-1.
Thus
Tin © Pan © (THT(U))sn(Or0por-1) = Tan © 9un(0,)
= Tun(deg(p, U, R™)a,) = deg(p, U, R™) T (ar,) = deg(o, U,R™ ).
But
(Topo T71|T(U))*n = Lun O Pxn O (T71|T(U))*n

and therefore

(2.12) deg(T oo T T(U),T(U),R"™) = deg(p, U,R"),
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which completes the proof of the case Tin(an) = ap.

If Tu(own) = —ay, then, taking into account Remark 2.6.1 and (2.11), we
deduce that T,(an) = —ay, and hence, by (2.10), we have (T)U)sn(0y) =
—Orogpor-1. Thus,

Tin © Pan© (T_1|T<U))*W(OT0¢0T*1) =T 0 ‘P*n(_ow)
= —Tipn(deg(p, U, R™)ay,) = —deg(p, U, R™) Ty (o)
= —deg(o, U,R") - (—a,) = deg(p, U, R") - oy,

So in this case the equality (2.12) is also true, which completes the proof of the
proposition. (|

Lemma 2.6.17. Let ¢ € A(U,R"). If o(T) € R*~! x {0} C R", then
deg(<p, U’ R") = deg(ﬂn71 cpo infl |V7 V7 Rn_l)v

where m,_1:R" — R"! is the projection onto the first n — 1 coordinates,
in_1:R"™1 — R" is the inclusion and V := m,_1(U N (R"~* x {0})).

Proof. Let Z = ¢3!(0) C U. If Z =0, then
deg(% U, R") =0= deg(ﬂrbl oo in71|v, V, Rnfl).

So we can assume that Z # ). Since Z is compact, there exists € > 0 such that
O:(Z) C U. By Propositions 2.3.5 and 2.3.6 and Theorem 2.3.9, the following
diagram is commutative

H (S") — s B, (87, 5™\ Z) e———— H,(0.(2), 0-(2)\ 2) BN

Ja* Ja* |»

Hyo (877 = Haea (87, 8771\ 2) = H,1(0.(2), 0.(4)\ Z) —

*

IR

——— H,(R",R™\ {0})

uli)*

—— H,, 1 (R* 1, R 1\ {0})

where ¢ and ¢’ are induced by ¢, 9, is the Mayer—Vietoris homomorphism and
O-(Z) := O-(Z) NR"!. Now the assertion of our lemma follows immediately
from the above diagram. |

Proposition 2.6.18. Let ¢ € A(U,R"). If o(U) C R™ x {0} C R™, n > m,
then
deg(p, U,R™) = deg(mm © © 0 | U, U, R™),
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where T, R™ — R™ is the projection onto the first m coordinates, i,,: R™ — R"™
is the inclusion and Uy, = 7, (U N (R™ x {0})).

Proof. Let k := n —m Then, by applying k times Lemma 2.6.17, we obtain
the desired conclusion. (|

We now extend the topological degree to any n-dimensional normed linear
space E™. Let U be an open and bounded subset of E™ and let T:R™ — E™ be
any linear isomorphism. Furthermore, we put

A(U,E™) = {¢:U — E™ | ¢ is a weighted map and 0 ¢ p(0U)}.
Definition 2.6.19. Let ¢ € A(U, E™). We define the topological degree of
©:U — E™ by
(2.13) deg(p, U, E™) := deg(T* o o T|T~(U), T~ (U),R™).
Lemma 2.6.20. The above definition is independent of the choice of the
isomorphism T:R™ — E™.
Proof. Let T1:R™ — E™ and Tfl: R™ — E™ be two linear isomorphisms. We
will show that
deg(Ty oo T[T H(U), T H(U),R") = deg(Ty oo Tl Ty ' (U), Ty ' (U), R").
Let T5:R™ — R"™ be given by T3 := T2_1 oTy. Then Proposition 2.6.16 implies
that
deg(Ty " o po | Ty (), Ty ' (U), R™)
= deg(T3 0 (T ' oo Th) o T3 M T5(T7 1 (U)), T5(T7 ' (U)),R")
= deg(T{l opo T2|T271<U)’ Tzil(U)an)v
which completes the proof. O

Theorem 2.6.21. Let ¢ € A(U,E™). The topological degree defined in
(2.13) satisfies the following properties:

(a) (Existence) If deg(p,U, E™) # 0, then 0 € ¢(x) for some x € U.
(b) (Additivity) Let Uy and Uy be two disjoint open subsets of U such that
¢7'(0) C U1 UUs. Then

deg(% U’ En) = deg(SD1, Ula En) + deg(go27 U2a En)a

where @; denotes the restriction of ¢ to U;.
(c) (Contraction) Let ¢:U —o E' be a weighted map such that 7' (0)NOU =
0, where E’ is some linear subspace of E™. Then

deg(io ¢, U, E") = deg(p|UNE" . UNE', E),

where i: B — E™ is the inclusion.
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(d) (Linearity) If ¢ = api U Bp2, then
deg(p, U, E™) = - deg(p1, U, E™) + 3 - deg(p2, U, E™).
(e) (Unity) Ifi:U < E"™ is the inclusion and 0 € U, then deg(i, U, E") = 1.

(f) (Multiplicativity) Let ¢1 € A(U1, E™) and o3 € A(Uz, E™). Then @1 X
P2 € A(Ul X Uy, E™ X Em) and

deg(p1 X w2,U; X Ug, E™ x E™) = deg(p1,Ur, E™) - deg(p2, Uz, E™).
(g) (w-Homotopy invariance) Let Y:U x [0,1] —o E™ be a w-map and let
K:={ze€U:0€ Y(x,t) for somet e [0,1]}.
If KNoU =0, then deg(YTy, U, E™) = deg(Y1,U, E™).

Proof. Properties (a)—(g) for this topological degree follow immediately from
those of the topological degree in R™. |

2.6.2. Topological degree in normed spaces. Throughout this section,
E will always denote a normed space with the norm || - ||. By U we denote an
open and bounded subset of a normed space E.

Now, we define the topological degree for weighted maps in normed spaces.
We begin with the Schauder approximation theorem.

Theorem 2.6.22. Let X be a space, U an open subset of a normed space
E and f: X — U a compact map. Then, for each sufficiently small € > 0, there
exists a finite-dimensional subspace E. of E and a compact map fo: X — E.
such that

(a) fo(X)C E-NU,
(b) lIf(x) = fe(@)|| <& for all x € X,
(¢) fe is homotopic to f.

We also state a simple lemma that will be frequently used.

Lemma 2.6.23. Let ¢:U — E be a compact weighted map such that x ¢
o(x) for all x € OU, then

eo(p, U) := inf{|lz —y|| [z € OU, y € p(x)} > 0.
Definition 2.6.24. Let ¢:U — E be a weighted map. Then a weighted
map ®: U —o E defined by the formula:
®(x) =2 —¢(z) foreveryx €U

is called a weighted vector field associated with o, and if ¢ is compact then @ is
called a compact weighted vector field.

By A.(U, E) we shall denote the set of all compact weighted vector fields
®:U —o F satisfying the following condition: 0 & ®(z), for all x € 9U.
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Let ® =i— ¢ € A (U,E), K := ¢(U) and € < (1/2)eo(p,U). By using
the Schauder approximation theorem, we get an e-approximation n.: K — F.
of the inclusion j: K — E. Let U. = U N E. and define ¢.:U. — E. to be
the restriction of m. o ¢ to U.. Now, let us observe that 0 & (i — ¢.)(x) for
any x € 0g U, (6)7 where i.: U, — E. is the inclusion. Indeed, suppose on the
contrary that 0 € (i — ¢.)(zg) for some zg € O U.. Then xy € ¢-(z9) and
hence x¢ = 7. (yo) for some yo € p(zp). Consequently, we obtain

(2.14) [lyo = woll = [lyo — 7 (yo)l| < & < (1/2)0(p, V).

On the other hand, since 0g U, C U, it follows that z¢ € OU, and then

(2.15) llyo — zol| = €o(p, U).

Now, taking into account (2.14) and (2.15), we obtain a contradiction, so this
finishes the proof that (i. —¢.)7'(0)N0p, U. = 0. Consequently, we have proved
that

ie — e € AU, E.).

Therefore we can formulate the following definition.

Definition 2.6.25. Let ® € A (U, E). We define the topological degree of
® =i — p as follows:

(216) deg(¢?U7 E) = deg<15 - SDEaU&‘?EE)?
where i. — . is obtained by the above procedure and deg(ic — ¢, Ue, E¢) is
defined by (2.7).

Now we will show that the above definition is correct.

Lemma 2.6.26. Definition 2.6.25 does not depend on the choice of €, K
and m.: K — E., provided ¢ < (1/2)eo(,U).

Proof. Let ® = i — ¢ € A (U,E). Take ¢, K,m.: K — E. and ¢/, K',nl,:
K' — E. such that

e <(1/2)eo(p,U),  ¢(U)

e <(1/2)eo(p,U), ()

for y € K, y' € K’. We shall show that

; |7 (y) — yll <e,
’ HW;’ (y/) - yI” < EI’

deg(ic — e, Ue, E.) = deg(ier — per, Uer, Ecr).
For this purpose, it is enough to consider two cases

(6) The symbol O, U. denotes the boundary of U. with respect to Ek.
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Case 1. We assume that K C K'. Let Fy be a finite-dimensional subspace of
a normed space E such that E. C Fy and E., C Ey. Then, by Theorem 2.6.21
(the contraction property of topological degree), we obtain

deg(i. — 7. 0o o|UNE.,UNE., E.) = deg(ip — j° o m. 0 o|U N Ey, U N Ey, Ep),

deg(icr — 7l o p|lUNE,UNE, E.)
= deg(ig — jo 0wl 0 |U N Eo, U N Ey, Ey),
where jg: E. — Ey, jg,:EE/ — Fy and ig: U N Ey — Ey are the inclusions. Now
we shall prove that
(2.17)  deg(ip — j2 o . 0 0|U N Ey, U N Ey, Eo)
= deg(ig — j% o7l 0 o|U N Eo, U N Ey, Ey).
For this purpose, it is enough to show that there exists a w-homotopy
T:U N Ey x [0,1] —o FEy
such that
(1) Y(z,0) = (j2 o me 0 o|U N Eo)(x),
(2) Y(2,1) = (j2 o7l 0 p|U N Ep)(x),
(3) {reUNEy|zeY(x,t) for some t € [0,1]} N Or, (U N Ey) = 0.
Consider the following diagram:

T By x [0,1] 22K x [0,1] =2% K x K x [0,1]

Jflewdd

EO X EO X [O, 1]

JA
Ey
where p:UNEy — K, A: K - K x K, \: Eg X Ey x [0,1] — Ejy, are defined by:

50(:17)7 A(I) = (xvx)v )‘(xvyvt) = (1 - t)x + 1y,

@(x)
and
fl(x):jsooﬂ-Ev fQ(x):jsO/oﬂ-é’ojlv
where j': K < K’ is the inclusion. The above diagram allows us to define
a weighted map T:U N Ey x [0, 1] — Ej as follows
Y(z,t) = Mo (f1 x fo xid) o (A xid) o (@ x id)(=x, t),
forx e UNEp and t € [0, 1]. It is easy to see that
(1) T(2,0) =52 o me 0 B(w) = (j2 0 me 0 |U N Eo) (),
(2) T(2,1) =3 om0 j o B(w) = (5% 0wl 0 |U N Eo) ().
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Now we shall show that
{r e UNEy|x e (x,t) for some t € [0,1]} NI, (U N Ey) = 0.

Indeed, suppose on the contrary that there exists a point z¢ € 9g,(U N Ey) and
to € [0, 1] such that z¢ € T(zo,%0). Then there exists yo € p(xo) such that

xo = (1 —t0) f1(y0) + tof2(yo)-

Hence,

(2.18) lzo — yoll < (1 —to)[[f1(y0) — yoll + toll f2(y0) — yol|-

However,

1 1
ll7<(y0) — woll <e < 550(% U) and |7l (yo) —yoll <€’ < 550(%(])7

SO
1 1

(2.19) 171(y0) = woll < 5e0(,U)  and [ f2(y0) = woll < 520(, U).-

Moreover,

(2.20) lzo — yoll = eo(p, U),

since xo € U and yo € p(xg). Now, taking into account (2.18)—(2.20), we get

80(50, U) < 50(90’ U)v

a contradiction. Consequently, by the w-homotopy invariance of the topological
degree of weighted maps (see Theorem 2.6.21), we get (2.17). Finally, note that
the same proof works in the case when K’ C K.

Case 2. In this case we assume that K ¢ K’ and K’ ¢ K. Let K" := KUK’
and let £” < gq(pU). In adddition, let 7#”/: K" — E! be any continuous function
such that

720 (y) =yl <e€”,
for all y € K”. Now it is enough to apply Case 1 to the following two situations:

e K,me:K — E. and &' K" n/:K" — E”,
' K" 7!:K" — E! and ¢ ,K' 7.:K — FE..
Indeed, by Case 1, we obtain

(2.21) deg(ic —m.0oUNE.,, UNE.E.)
= deg(i’ — 7l 0o |U N EY,

)

U "
U ﬂ el et ),

(2.22) deg(il — 7l o plUNE", UNEL, E.)

el el ey et

=deg(icr — 7. 0o lUNE.,UNEz, Er).
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Hence, taking into account (2.21) and (2.22), we get
deg(ic — T 0 p|UNE.,UNE., E.) =deg(ic — 7l 0o o|UNE-,UNE., E.),
which completes the proof of Case 2. O

We shall collect below the most important properties of the topological de-
gree.

Theorem 2.6.27. Let ® € A (U,E). The topological degree defined in
(2.16) satisfies the following properties:

(a) (Existence) If deg(®,U, E) # 0, then 0 € ®(x) for some x € U.
(b) (Additivity) Let Uy and Uy be two disjoint open subsets of U such that
®.'(0) C Uy UUs. Then

deg(®,U, E) = deg(®1, U1, FE) + deg(P2, Us, E),

where ®; denotes the restriction of ® to U;.
(c) (Contraction) Let ®:U —o E' be a weighted map such that ®'(0) N
OU = (), where E' is some linear subspace of E. Then

deg(j o ®,U, E) = deg(®|UNE,UNE', E'),

where j: E' — E is the inclusion.
(d) (Linearity) If ® = a®; U P4, then

deg(q)vUv E) =G deg((pl?Uv E) + ﬂ ' deg((DQ?U? E)

(e) (Unity) If p:U — E is the constant map sending U to 0 and 0 € U,
then deg(i — ¢, U, E) = 1.

(f) (Multiplicativity) Let ®1 € A (Ui, E1) and ®3 € A (Us, Ez). Then
P, x Oy € AC(Ul X Uy, B X EQ) and

deg(®y x @2, Uy x Uy, By x Ep) = deg(®1, Uy, E1) - deg(®2, Uz, o).

(g) (w-Homotopy invariance) Let v:U x [0,1] —o E be a compact w-map
and let

K :={xeU|xze€~(x,t) for somet € [0,1]}.
If KNoU =0, then deg(i — o, U, E) = deg(i — 71, U, E).

Proof. (a) Existence. Let deg(®,U,E) # 0. Let ¢, = 1/n for n > myg :=
2/e0(¢,U). Then, by (2.16), we have

deg(®,U, E) = deg(ic, — ¥e,,Ue,,, Ex,).

Hence,
deg(ic, — ¢e,, U, , Ee:,) #0, forall n > my.
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Consequently, there exists an x,, € U with z,, € ¢, (z,,) = e, © (), for any
n > mg, and hence z,, € O, (p(z,)). Now | -

n=moy
therefore there is a subsequence {yg, }52, convergent to y and such that

©(xy,) is relatively compact,

Yk, € P(Tk,)s Tk, — Uk, || < €k,s

therefore xx, — y as n — co. Consequently, from the upper semicontinuity of
¢ we have y € p(y) and hence 0 € ®(y), as required.
(b) Additivity. Let e <(1/2) min{eo(¢|U1,U1),e0(p|Uz, u2),e0(¢, U)}. Then

(2.23) deg(®,U, E) = deg(ic — ¢e, Us, E).

But Us =Un Es = (Ul @] UQ) n Es = (Ul N EE) @] (U2 n EE) = Uls @] UQE. Conse-
quently, the additivity property of the topological degree (see Theorem 2.6.21)
implies that

(224) deg@s — Pe, U, EE)
= deg((is - 906)|(U_1s)7 Uie, Es) + deg((is - 906)|(U_2s)7 Use, EE)'

On the other hand, in view of (2.16), we have

(225) deg((plv U17 E) = deg((ls - 906)|(U_16)7 U1€7 E€)7
(226) deg(q)2a U27 E) = deg((lé‘ - SDE)|<U_28)3 U2Ea EE)

Hence, taking into account (2.23)—(2.26), we obtain
deg((p? U7 E) = deg((blv U17 E) + deg(q)Qv U27 E)

as required.

(¢) Contraction. Let ® = i — ¢ and K := ﬁ C E’. To begin with,
observe that go(p,U) < go(p|U N E',U N E') (since 0/ (U N E') C (OU) N E').
Let m.: K — E. be an e-approximation of the inclusion ix: K — FE’, where

e < eo(p,U)/2. Consequently, by (2.16), we have

deg(] © (I)’ Ua E) = deg(l —Te 0P, U&{’ Eé)?
deg(®[UNE',UNE',E") =deg(i — 70, UL, E.),

thus
deg(j o ®,U, FE) = deg(®|UNE,UNE' E").

(d) Linearity. Let ® = (o + 8)i — (a1 U B2) and let K := (1 U p2)(U).
Observe that eo(ap1 UBp2, U) < eo(awpr, U) and eo(ap1 UBpa, U) < 0(Bp2,U).
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Let e < (1/2)eo(apr U s, U). In addition, let m.: K — E. be a continuous
function such that ||y — 7. (y)|| < & for all y € K. Then

deg(aq)l U ﬂq)Q, U, E)
= deg((a + B)ie — (a(ﬂ'e © ‘Pl) U B(WE 0 2)), UE?-EE)

= deg(a(i. — m 0 1) U B(ic — Tz 0 v2), Ue, E;)

W a-deg(ic —me 0 1,Uc, Ec) + - deg(ie — e 0 paUe, Ex)

=« -deg(®1,U, E) 4+ 3 - deg(P2, U, E),
where the equality (%) follows from the linearity property of topological degree
for weighted maps in finite-dimensional normed spaces (see Theorem 2.6.21).

(e) Unity. Let K := {0} and let Ey be a finite-dimensional subspace of E.
We define a function mp: K — FEy by mo(x) = 0 for € K. Then

deg(q), Ua E) = deg(l ) Ua E) = deg(lo — T %, U07E0) = 17

where the last equality follows from the unity property of the topological degree
for w-maps in a finite-dimensional normed space (see Theorem 2.6.21).

(f) Multiplicativity. Let ®; = i1 — 1, ®a = iz — g and K; = ¢1(U7),
Ky = ¢3(Us

Let us observe that

).
eo(p1,Ur) <eo(pr X2, U1 xUsz) and  eq(p2,Uz) < o1 X 2, Uy xUs) (7).
Take € < (1/2) min{eo(p1,U1),e0(p2,U2)}. Let w}: K1 — E! and 72: Ky — E?
be two continuous functions such that
ller — m2(e1)||p, <e forall e € Ky,

llea — m2(e2)||m, <& forall ey € Ko.
Then the function 7! x 72: K3 x Ko — E! x E? satisfies the following condition
lIex, e1) — 2 x w2 (ex, e2)l|pyx s < e,

for all (e1,e2) € Ky x Ky. Consequently, taking into account Definition 2.6.25,
we obtain

(227) deg(q)l X (1)2, Ui x UQ,El X Eg)
= deg(ilg X ’ige — (71'51 X W?) o ((pl X QDQ), U15 X U2€,E; X E?)

On the other hand, from the multiplicativity of the topological degree of weighted
maps in finite-dimensional normed spaces we deduce that

(2.28)  deg(ire X ige — (7} x 72) 0 (1 X @2),Ure x Uae, EX x E?)
= deg(i1c — m} 0 1, Urc, EL) - deg(ise — 72 0 2, Use, E2).

(") Recall that on the Cartesian product E x F of two normed spaces (E, ||-||g), (F,||-||r)
we consider the following norm ||(e, f)|| :== max{||e||g, || f||r}, for every e € E, f € F.
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Moreover, by Definition 2.6.25,
(2.:29) deg(®1, U1, B1) = deg(ire — 72 0 ¢1,Use, BL),
(2.30) deg(®2, Us, Er) = deg(ize — 72 0 p2, Use, E2).
Hence, by (2.27)—(2.30), one obtains
deg(®1 X B, Uy x Uz, By x Ez) = deg(®1, Uy, Ey) - deg(®s, Us, E»)

as required.

(g) w-Homotopy invariance. Let v:U x [0,1] — E be a compact w-map and
let K :={x €U |z € vy(x,t) for some t € [0,1]}. Assume that K N oU = .
Then

eo(y) :=inf{||lx —y|| | x € U, y € y(x,t) for some t € [0,1]} >0

and eo(7;, U) = eo(7y) for allt € [0,1]. Let K := (U x [0,1]) and e < (1/2)eo(7).
In addition, let m.: K — E. be an e-approximation of the inclusion j: K — FE.
Define 7: Tz x [0,1] — E. by 3(z,) = i.(z) — 7. o (7|7 x [0, 1])(x,2), for all
x € U, t €]0,1]. Arguing as at the beginning of this section, one shows that
{z € U. |z € 7(x,t) for some t € [0,1]} N Ip.U. = 0.

Consequently, by the w-homotopy property of the topological degree of weighted
maps in E. (see Theorem 2.6.21), we obtain
(2.31)  deg(ic — 7 0 y0|Us, Us, E.) = deg(7o, Ue, E.)

= deg(:)v/lv Ue, Ee) = deg(is — Te © 'Yl|U_s7 Ue, E5)~
On the other hand, by Definition 2.6.25, one has
(2.32) deg(i — Y0, U, E) = deg(i- — 7 0 v|U:, Us, E.),
(2.33) deg(i — v1,U, E) = deg(i. — . o1 |U., Ue, E.).
Thus, by (2.31)-(2.33), we get

deg(i — 0, U, E) = deg(i — 11,U, E)

as required. The proof of Theorem 2.6.27 is complete. |

2.7. Topological essentiality

In this section we define a notion of topological essentiality for weighted
mappings. Topological essentiality can be defined on a larger class of mappings
than the topological degree but yields less information.

The notion of topological essentiality (sometimes called topological transver-
sality) in the single-valued case was introduced by A. Granas and later studied
by many authors (cf. [5], [20], [29], [23]).

The results presented in this section are taken from the paper [61].
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In what follows, E and F are two real normed spaces and U is an open
bounded subset of E. In this section all w-maps p: X — Y are assumed to have
a weight wey: X x Y — Q such that the sum }, y wy(z,y) does not depend on
rze X and ) oy wy(x,y) # 0. We let:

yey

Wou (U, F) = {p:U — F | ¢ is a w-map and 0 ¢ p(0U)},
We (U, F) = {¢:U — F | ¢ is a w-map and compact},
Wo(U,F) = {p:U — F | ¢ € We(U, F) and ¢(x) = {0} for every z € OU}.

Definition 2.7.1. A weighted map ¢ € Wyy (U, F) is called essential (with
respect to Wy (U, F)) provided for any v € Wy(U, F) there exists a point € U
such that o(x) N (z) # 0.

Let us observe that if £ = F then the notion of essentiality can be rein-
terpreted as Zs topological degree. We give now some examples of essential
w-maps.

Example 2.7.2. Let ¢ € Wyp(B,R), where B is an open ball of radius
r > 0 centered at 0 € E. If there exist xg,z1 € 0B such that

u <0 for every u € p(zg), v>0 forevery v € p(z1),

then ¢ is an essential w-map.

To see this, we shall need the following lemma:

Lemma 2.7.3 ([10]). Let ¢:[a,b] — R be a w-map from the interval [a, b
to R with I,(p) # 0. Suppose that p(a) C R~ and ¢(b) C RT. Then 0 € ¢(z)
for some x € [a,b].

Let ¢ € Wp(B,R) and suppose on the contrary that ¢(z) Ny(z) = 0 for
every € B. We define n: B — R by the formula:

In view of Propositions 2.2.15 and 2.2.18, we deduce that 7 is a w-map with
I,(n) # 0. Moreover, 0 ¢ n(z) for every x € B. Let v:[0,1] — B be a path
between ¢ and x1 and let 7 = no~. It is easy to see that 77 has the following
properties:

(a) 77 is a w-map with I, (77) # 0,

(b) 7(0) C R~ and 7(1) C RT,

(c) 0 ¢ 7(zx) for every z € [0,1].
But this contradicts Lemma 2.7.3. This ends the proof of essentiality of .
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Example 2.7.4 (Essentiality of homeomorphism). Let U be an open and
bounded subset of E such that U € AR and let f:U — f(U) be a homeomor-
phism such that f(U) is a closed subset of F. In addition, assume that f(U) is
an open subset of F and 0 € f(U). Then f is an essential w-map.

Indeed, let 1) € Wo(U, F). Since f(U) € AR, there exists a retraction r: F' —
f(U). Let us denote by g: f(U) — U an inverse function of f. Consider

K={zecU| f(x) € (t-y(z)) for some t € [0,1]}.

It is easy to see that K is closed in U and nonempty (since 0 € f(U)). Let
s:F — [0,1] be an Urysohn function such that s(y) = 1 for y € f(B) and
s(y) =0 for y € F\ f(U). The definition of s is correct, because f(B) is closed
in F and f(B) C f(U). Define n: F — F' by the formula:

n(y) = s(y)b(g(r(y))),

for every y € F. It is easy to see that n is a compact w-map. Moreover,
I,(n) # 0. Indeed,

Lo(n) = Iy(sotpogor) = Ly(s) () lw(g)lw(r) =1 Ly(1h) - 1-1#£0.

Hence, in view of Corollary 2.5.6, we have a fixed point: y € n(y). Ify € F\ f(U),
then s(y) = 0 and y = 0, but 0 € f(U), so we get a contradiction. Therefore
we deduce that y € f(U). It follows that there exists a point € U such
that f(z) = y. Consequently, f(x) € s(f(z))¥(x). Then z € B and hence
f(z) € 9(x). This completes the proof of essentiality of f. Let us list several
properties of the topological essentiality.

Proposition 2.7.5 (Existence). If ¢ € Woy (U, F) is essential, then there
exists x € U such that 0 € ¢(x).

Proposition 2.7.6 (Compact perturbation). If ¢ € Wyy (U, F) is essential
and n € Wo(U, F), then o +1n € Woy (U, F) is an essential w-map.

Proposition 2.7.7 (Coincidence). Assume that ¢ € Way (U, F) is an es-
sential w-map and n € Weo (U, F). Let

B={xcU]| o) N (tn(x)) #0 for somet € [0,1]}.
If B C U, then ¢ and n have a coincidence.

Proposition 2.7.8 (Normalization). Assume that 0 ¢ U and U € AR.
Then the inclusion map is an essential w-map if and only if 0 € U.

Proposition 2.7.9 (Localization). Let ¢ € Wyy (U, F) be an essential w-
map. Assume that V is an open subset of U such that ¢7'({0}) C V and
V € AR. Then the restriction |V of ¢ to V is an essential w-map.
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Proposition 2.7.10 (w-homotopy). Let ¢ € Wy (U, F) be an essential w-
map. If H:U x [0,1] — F is a compact w-map such that
(a) H(x,0)={0} for every x € OU,
(b) {z €U | p(x)N H(z,t) #0 for somet € [0,1]} CU

then the map o(-) — H(-,1) is an essential w-map.

The topological essentiality has many applications in fixed point theory, anal-
ysis and other fields. In this book we give a few examples.

Proposition 2.7.11. Let ¢ € Wyy (U, F) be an essential w-map and proper
(i.e. for any compact K C F, <p:Ll(K) is compact). If D is a connected compo-

nent of F'\ p(0U) which contains 0, then D C o(U).

Proof. The set ¢(9U) is a closed subset of F, because any proper map is
closed. Let v € D. We shall show that v € ¢(U). Since F \ p(dU) is open,
its components are open, and for open set in F' connectedness is the same as
path-connectedness. So, let 0:[0,1] — D be a continuous curve with ¢(0) = 0

and (1) = v. Define w-homotopy 1: U x [0,1] —o F by the formula:

n(z,t) =o(t),
for every (z,t) € U x [0,1]. Now, we can apply the w-homotopy property to
deduce that
(P() _n<'71):U>< [071] — F

is an essential w-map. Notice that

o(x) —n(z,1) = p(z) — {v},

for every x € U. Thus, from the existence property we deduce that v € ¢(U).
This completes the proof. O

Proposition 2.7.12. Let ¢ € Wyy (U, F) be an essential weighted map and
let v € We(U, F). If p(z) N(z) = O for every x € U, then at least one of the

following conditions holds:

(a) there exists x € U such that o(x) Ny(x) # 0;
(b) there exists A € (0,1) and x € U such that p(x) N (Ap(z)) # 0.

To see this, it is enough to apply the w-homotopy property for ¢ and v, where
H(z,t) =t-(x) for z € U and t € [0,1]. Let us observe that if E = F, then
from Proposition 2.7.12 and the normalization property it follows the following
result.

Proposition 2.7.13 (Noulinear alternative). Let ) € Wa(U, F) and 0 € U,
then at least one of the following conditions is satisfied:

(a) Fix(¢) #0,
(b) there exists x € OU and X € (0,1) such that x € Ap(x).
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2.8. Extension theorems

The notion of n-locally connected space was introduced by S. Lefschetz (see
[47]). In this chapter we shall consider this notion, but with a slightly different
formulation and under the name of locally nw-connected spaces.

The aim of this chapter is twofold. First, we show a useful characterization
of locally nw-connected spaces (see Theorem 2.8.19 below). Next, we apply this
theorem to prove the Lefschetz-type result for such spaces.

Remark 2.8.1. In this section all weighted maps ¢: X — Y are assumed
to have a weight wy: X' x Y — Q such that the sum °, _y wy(2,y) does not
depend on x € X. Moreover, in this section by a space we shall mean a Hausdorff
topological space. For a given Hausdorff topological space X, by 7x we shall
denote a topology on X.

We begin with the following definition.

Definition 2.8.2. Let G be an open subset of a space X, and let U = {U,,},
1 € M, be an open covering of G. We say that U is canonical with respect to X
provided that the following two conditions are satisfied:

(a) U is locally finite, i.e. for each g € G there is a neighbourhood V of g
such that V N U, # 0 for a finite number of € M at most.

(b) For each point z € X \ G and each neighbourhood V,, C X of z in X
there is a neighbourhood W, of  in X such that U, N W, # 0 implies
U, C V.

Theorem 2.8.3 ([7]). If the space X is metric, then for each open subset G
of X there exists a canonical covering of G with respect to X.

Remark 2.8.4. Let X be a metric space and let U = {U,} be an open
covering of X. Then to a given covering U we can associate an abstract simplicial
complex N(U) whose vertices vy, correspond to the open sets Uy, and a set of
k + 1 vertices constitute a k-simplex if and only if the k£ + 1 corresponding U,,’s
have a nonempty intersection. This simplicial complex N(U) is called the nerve
of the open covering U. The geometric realization of N(U) (with the weak
topology) will be denoted by |N(U)|.

Definition 2.8.5. Let X and A be two spaces. A space X is said to be
locally w-homotopically trivial over a space A at a point x¢o € X provided that
for each neighbourhood Uy, of zo in X there is a neighbourhood U, of xg
contained in Uy, such that every weighted map ¢: A — Uy, is w-homotopic in
U, to a constant map with the weighted index equal to I, ().

Definition 2.8.6. Let n > 0. A space X is said to be locally nw-connected
if it is locally w-homotopically trivial over S™.

Remark 2.8.7. If a space X is kw-connected for each £k = 0,... ,n, then
we shall write X € w-LC™.
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Definition 2.8.8. A space X is said to be locally w-contractible at a point
o € X provided that each neighbourhood U of x( contains a neighbourhood Uy
of x¢ which is w-contractible to a point in U. A space X is said to be locally
w-contractible if it is locally w-contractible at each of its points.

Remark 2.8.9. Let X and Y be two spaces and let yp € Y. The constant
map at yo is the function ¢: X — Y with ¢(z) = yo for all z € X.

Definition 2.8.10. A set Xy C X is said to be w-contractible to a point
xg € X if the inclusion i: Xy — X is w-homotopic to the constant map at xzg.

Remark 2.8.11. If a space X is locally contractible, then it is locally w-
contractible.

Proposition 2.8.12. If a space X is locally w-contractible, then X € w-LC™
for each n > 0.

Proof. Let n > 0 and let z9 € X be a fixed point. In addition, let U,, C X be
an open neighbourhood of a point xy. Since a space X is locally w-contractible, it
follows that there exists an open neighbourhood V,,, of a point g with 7: V,, —
U, such that the inclusion V., — U, is w-homotopic to the constant map
c:Vypy — Uy, at xo. Let : S™ —o V,, be a weighted map. Hence i 0 ¢ ~,, cop
and co ¢ = I,(p) - co, where ¢g: S — Uy, is the constant map at xg, which
completes the proof. O

Let X be a metric space and let A be a closed subset of X. Assume, fur-
thermore, that dim(X \ A) < n+ 1. Then there exists a canonical covering
U = {U,}.en of the set X \ A such that each point z € X \ A belongs to n + 2
sets U, at most. Let N(U) be the nerve of this covering. Notice that for each
o € N(U) we have dimo < n + 1. Consider the following set:

(2.34) Z .= AU|N(U)].

Now we are going to define, for each x € Z, a collection N(x) of subsets of Z as
follows:

(1) If x € int A, then N(z) :={O0;NA| Oz € 7x and = € Oz}.
(2) If x € IN(U)|, then N(x) :={0; | O, € Ty(u) and z € O, }.
(3) If x € OA, then

N(z) :={(0O,NA)UNI[O,] | Oz, 0. € 7x and z € O, N O},

where N[O ] := U{st(vy,, |N(U)|) | U, C O,}.

It can be shown that the family { N (z)}.ez induces a unique topology on Z such
that N(z) is an open neighbourhood basis at , for each z € Z.
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Lemma 2.8.13. Let N[O,] ba as above and let
N[O.] == J{I7] | 7 € N(U) and |7| C N[O]}.

Then there exists an open neighbourhood of a point x in X such that N[O)] C
NI[O,].

Proof. Since U is a canonical covering, we deduce that for each x € 0A
and O, there exists an open neighbourhood O, of  such that if U, N O, then
U, CO,.

Now, we shall show that N[0)] C N[O,]. For this purpose, take any
point y € N[O,]. Then there exists U,, € U such that U,, C O and y €
st(vy,,, [N(U)[). Hence, there exists a simplex 7 € N(U) with y € (1) C
st(vo,,, IN(U)|). Let vy, ,...,vu,, be the vertices of simplex 7. Since U,, N
Uy # 0, for 1 < i < s, it follows that U,, C O,. Consequently, we obtain
st(vy,, IN(U)|) C N[O,], for i =1,...,s, and hence

7| € | st(vo,, . IN(U))).
1=0

Thus y € |7| € N[O,], which completes the proof of the lemma. O

Theorem 2.8.14. Let A be a closed subset of a metric space X with dim (X \
A)<n+1andletY € w-LC™. Then for every weighted map p: A — Y there
exists a neighbourhood U of A in Z such that ¢ can be extended to a weighted
map :U — Y.

Proof. The main idea of the proof is based on [7]. Let dim(X \ A) = ng and
let N(U) be a simplicial complex according to a canonical covering U of the set
X\ A. Let us fix U, € U and let €,: = sup, ¢y, d(z, A). Hence 05(8“ (U, )NA#D
(®). Thus we can assign to each set U, a point ay, € 05(8” (Uy) NA. Now we
proceed inductively over skeleta of N(U). Let g = (04, W, ): AU|N(U)@| —
Y be defined by the formula

oo(x) ifzeA,
O¢po (I) - . ()
0oy (x) ifx=vy, € |N(U)Y,
and
we(z,y) ifzeA,
w‘/’o ({B, y) = .
wy(au,y) ifz=ovy,.
Now, we shall show that g is a weighted map. Let us observe that it suffices
to consider the case x € JA. For this purpose, let o € 0A be a fixed point and
let U be an open subset of Y. From the upper semicontinuity of o,: A — Y we
deduce that there exists £ > 0 such that o,(0OX (z9) N A) C U. Let Wy, be an

(®) In what follows, given a subset B of a space X and ¢ > 0, we denote by OX (B) the
e-neighbourhood of B in X
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open neighbourhood of zy in X satisfying the condition (b) of Definition 2.8.2
for xg and V, = Of/3(:1c0). Consequently, we obtain

70 (0X (20) N A) U (N[Wo, ] N IN(U)))) C U,

which proves the upper semicontinuity of o, at o. Now we are going to show
that wy,, satisfies the condition (b2) of Definition 2.1.1. To see this, let us take
any open subset V of Y such that oy, (z9) N0V = ). Then there exists an open
neighbourhood V,, of zp in X such that

(2.35) D wy(@0,y) = Y wy, (2, y)

yev yev

for ' € V,, N A. Since U is a canonical covering, so there exists an open
neighbourhood Wy, of z¢ in Z such that if U, C Wy, then st(U,,U) C V,,.
Let B(xo,3¢0) C Wy, be an open ball. Now let us take any U, C B(xzo,¢0).
Then e, = sup, ¢y, d(z, A) < g0 and Oﬁ_#(UM) C Oﬁi_M (B(z0,€0)) C B(zo,3¢0).
Hence Og(EM(Uu)ﬂA C B(x0,3¢0)NA C V,NA, for allU,, C B(zo,€p). Moreover,
if vy, € N[B(xo,€0)], then ay, € 05(8“ (U,) MA C Vg, N A. Therefore for each
vy, € N[B(20,£0)] N [N(U)©], in view of (2.35), we have

Z wsao(any) = Z wsao(any)v

yeV yeV

which completes the proof that ¢q is a weighted map.

Let Wy = Z (let us observe that if ng = 0, then the proof is complete;
thus we can assume that ng > 0). Assume now inductively that for some index
kE (with 0 < k < ng) a neighbourhood Wy, of A in Z and a weighted map
or: AU (IN(U)® | N W,,) — Y are already constructed.

Now we shall show that there exists an open neighbourhood W41 of A in Z
and a weighted map ¢y 1: AU(|N(U)*+D AW, 1) — Y such that Wy C W
and @r41(z) = pr(z) for any 2 € AU (N(U)*®) | N Wyy1). For this purpose, we
shall need the following lemma.

Lemma 2.8.15. Let x9 € DA be a fived point and let ¢p: AU (IN(U)®) | N
W) — Y be as above. In addition, let or(xo) = {y1,...,ys}. Then for each
e > 0 there is 0 < § < € and an open neighbourhood Ofo C Wi of xzg in 2 such
that for each (k+1)-dimensional geometric simplex |o| lying in OZ, the following
three conditions are satisfied:

(@) er(loo]) € Uiy B(yi, ).
() S yenyner Won(228) = S yenipney Won (@0,3) for any = € |o] and i =
yeee s S
(¢) Ifer(|00]) C Ujer Bly;, ) for some subset I of {1,... s}, then pi||0c]|
admits an extension @, over |o| such that v, (|o|) C U;c; Bly;,e)-
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Proof. Let us fix ¢ > 0. We can assume that B(y;,e) N B(y;,e) = 0 for
1 # j. Since Y € w-LC", it follows that there is § < & such that for any
1< i< s, any (k+ 1)-dimensional simplex |o|, and any weighted map :|do| —o
B(y:, 6) there exists a weighted map ¢: |o| — B(y;, ) with ¢(z) = ¢(x) for all
x € |0o|. Moreover, since ¢y, is a w-map, we deduce that there exists an open
neighbourhood Ofo C Wy, of g in Z such that

S

pr(x) < | By, );

i=1

Z w#’k(w’y) = Z Wy, (:co,y),
yE€B(y,9) y€B(y,9)
for all z € (AUIN(U)®|)NOZ and 1 < i < s. Let [of C OZF be a (k +
1)-dimensional simplex and let ¢ (|00]) C Uls;l B(y;,,0) for some subset I =
{i1,...,ig} of {1,...,s}. In addition, let a:|0o| — Y be a weighted map
defined by a(z) = {y1, ... ,ys} for all x € |00, where wy: |0o|xY — Q is defined
by the formula wq(x,y) = 0 for all « € |0o|,y € Y. Then, by Proposition 2.4.3,
a weighted map ¢$_ := (¢k||00]) U a has the following decomposition

W& =otU...Up*,
where any w-map ¢! satisfies the following condition: ¢'(|dc|) C B(y;,,6), for

1 <1< 8. Consequently, any w-map ¢': |0c| — Y admits an extension @': |o| —o
Y over |o| such that &'(|o|) C B(yi,,¢€). Let p2: || — Y be defined by
X =3"U...Up*.

Since, by Lemma 2.2.9, a weighted map ¢%||0c| is w-homotopic to ¢i||0c|, we
deduce from Proposition 2.4.3 that a weighted map ¢i||0c| can be extended to
a weighted map ¢,:|o| — Y with ¢, (|o|) € U;—; B(yi,,€) and this completes
the proof of the lemma. O

Proof of Theorem 2.8.14 (continuation). From Lemma 2.8.15 it follows that
for each x € JA there exists an open subset Wy, := (O, N A) U N[O%] of Z such

that for each (k + 1)-dimensional simplex |o| contained in W, there exists an
extension @,: o] — Y of pg||0c|. Let

Wiyt = <HAN[0;]> UA.

Notice that Wk+1 does not need to be open in Z. But taking into account Lemma
2.8.13, we deduce that for each x € 9A there exists an open neighbourhood O
of z in X such that N[OY] C N[O,]. Consequently, the set

Wit = ( U N[og]) UA.

TEOA
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is open in Z. So for each (k4 1)-dimensional simplex |o| contained in W1 we
can define the following number as follows
go = inf{e | p||0c| can be extended to &, over |o|
with values in O, (¢ (|00]))}.

Now we shall prove the following lemma.

Lemma 2.8.16. Let 29 € DA be a fized point and let pp: AU (|N(UR)| N
Wi) — Y be a weighted map. Then for each € > 0 there exists an open neigh-
bourhood Ofo C Wy of g in Z such that for any (k + 1)-dimensional simplex
|o| contained in Ofo N Wiy1 the number e, satisfies the following condition:
Eo < £/2.

Proof. Let ¢r(xo) = {y1,...,ys} and let € > 0. We can assume that
B(y;,e) N Blys,e) = 0 for i # j. Let § < ¢/8 and OF C W satisfy the
assertion of Lemma 2.8.15. Let us take any (k + 1)-dimensional simplex |o| con-
tained in OZ N Wiy1. Then for a weighted map ¢y ||00|: [0o] — Y there exists
a subset I, of {1,...,s} such that

(prll00])(100]) N B(y;,,6) #0  for i € I,
(rll00])(100]) N B(yi,,6) =0 forii & I,.

Hence, in view of Lemma 2.8.15, there exists an extension @y: |o| — Y of ¢ ||00]
such that

@(lof) € Ocys({¥irs--- Wi })
where s’ := #1I,. Since for each i; € I, the following condition holds

yi € Os5((x]|00]))(|00]),
it follows that

Oc/s({Wirs - 191 }) C Ocssrs((2l|00])(|001])) C Ocpal(prllda])(|00]))-

Consequently, we obtain ¢4 (|o|) C O, /4((¢r||00])(|0c])). Thus, e, < /2, which
completes the proof of the lemma. O

The End of the Proof of Theorem 2.8.14. From the above consideration it
follows that we can assign to each (k + 1)-dimensional simplex |7| C Wiy1 an
extension @,:|7| — Y of ¢g||07| such that

(2.36) Pr C Oz, ((exllOT)(|OT])).
Consequently, we can define

US%JAZA U (|N(U)(k+1)| N Wk+1) —Y,
Weyyyt AU (INO)FD N Wyy) x Y — Q,
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by the formulas:

o (x) ifz e A,
Tonnn (@) = { o5 (x) itz € || C IN(U)FD| AW,
Wy, (x,y) fxeA yeY
o (7) = { ws, (2,y) ifz € |r| C INUYED| AWy, y € V.

Now we shall show that pri1 = (0, ;s We,,,) is a weighted map. First, we
prove that o, , is upper semicontinuous. Of course, the upper semicontinuity
of 0, ., at every point z of the set (AU (IN(U)**+D|NWyi1)) \ OA is evident,
S0 it remains to check this at the points of JA. For this purpose, let us fix
a point 29 € dA. The upper semicontinuity of o, ,, at xo will be proved if we
show that for any € > 0 there exists an open neighbourhood Ofo C Wi of xg
in Z such that oy, ., (z) C Oz(0y,,,(w0)) for all z € OZ,. Let us observe that
an upper semicontinuity of o,, at a point zg implies the existence of an open

neighbourhood 550 =ONAUNI[O, ] C Wy of zg such that
(2.37) 04, (2) C Ocj16(04, (0)) for z € (Ogy N A) U (N[O, ]) N[N (U)K))).

Moreover, by Lemma 2.8.16, we can assume that e, < ¢/8 for each (k + 1)-
dimensional simplex |7| contained in N[O} | N [N (U)*+D]. Consequently, if
|7| € N[O, ] N |N(U)HF+D| N Wy, then by (2.36) and (2.37) we have

T2 (T) C Oae, ((04,1107))(107]) C Ocya(Oc/16(0, (0)))
- 06/2(U<Pk (IO)) = 06/2(U<Pk+1 (xo))

From Lemma 2.8.15 it follows that there exists an open neighbourhood O of xg
in X such that N[O} ] C N[O;D] and hence for each z € (O, N A) U (N[O} N
|N(U)*+)| N W, 1) we obtain

Opri1 (LL') C 06/2 (U¢k+1 (1'0)),

which proves that o, ,, is upper semicontinuous at xo.

Now, we shall show that w,, ,, satisfies the condition (b2) of Definition 2.1.1.
Notice that the condition (b1) of Definition 2.1.1 is obviously satisfied by w,, _, .
Moreover, to check the condition (b2) of Definition 2.1.1 it suffices to restrict our
considerations to the case of x € 0A. For this purpose, let us fix a point zy € 0A
and let V be an open subset of Y such that o, ., (o) N9V = . In addition,
let 0y, (20) = {y1,... ,ys} and oy, (o) NV = {yi,,... ,¥i,, }. Choose € >0
such that

(1) B(yi,€) N By;,e) =0 for i # j,
(ii) B(y;,e)CcViforl=1,...,¢,
(ii) B(yj,e)NV =0 fory; ¢ V.
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Since oy, is a weighted map, there is an open neighbourhood OZ, = (04, NA)U
N[0, ] C Wy of g in Z such that

(2'38) Z Wy, (x,y) = Z Wy, (I(va) = Z Wepiq (IOvy)
yevng(yil €) yEEJlB(yil €) yE_DIB(yi, €)

for all z € OZ N (|N(U)*)|U A). Moreover, there exists an open neighbourhood

(550 = (Oz, NA)U N[O}, | C Wiy1 of 29 in Z such that

S

Opri1 ({E) C U B(yi,g),

i=1
for all z € (550 N (IN(U)E+HD U A). Let

OZ = (0py N Oy NA)UNI[O, NO, ] COZ NOZ C Wiy

0

Let |7| be a (k + 1)-dimensional simplex contained in N[O}, N (5;0] Then for
each « € |7| we have

/

Swanten) = X wan) = (ol (I U K09 )

yeV s/ =1
ye U K(yj,;.e)
i=1

= Z wSDkJrl(x/’y) = Z Wepy, (w’,y)

/

ye_@l K(yj;-e) ye'@1 K(yj,.e)
(2.38)
- Z w@k+1(x07y) - Z W41 (x07y)7
yeV

Sl
Y€ ‘UI K(yj;¢)

for all 2/ € |07|. From Lemma 2.8.13 it follows that there exists an open neigh-
bourhood O} C O, N O, of zy in X such that N[O} ] C N[O, N O, ].
Consequently, from the above considerations we obtain the following equation

Z Wep, 41 (117, y) = Z Wer 41 (Io, y),

yev yev

for all @ € (Oyy N Oy N A) U (N[OZ]N[N(U)E+D]) € Wysq, which completes
the proof of the fact that w,,,, satisfies the condition (b2) of Definition 2.1.1.
Consequently, after ng steps, we arrive at the desired weighted map @ :=
¢no Of the neighbourhood U := W,,, of A in Z. The proof of the theorem is
complete. O

The following lemma is crucial for our further considerations.
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Lemma 2.8.17 ([7]). Let A be a closed subset of a metric space X and let
Z be as in (2.34). Then there exists a continuous map x: X — Z satisfying the
condition: x(x) = x for every point x € A.

From Theorem 2.8.14 and Lemma 2.8.17 we immediately obtain the following
theorem.

Theorem 2.8.18. Let A be a closed subset of a metric space X and let
dim(X \ A) <n+ 1. Assume further that Y € w-LC™. Then any weighted map
p: A — Y can be extended to a weighted map ©:U — Y, where U is an open
neighbourhood of A in X.

Theorem 2.8.19. For any metric space Y and n = 0 the following condi-
tions are equivalent:
(a) Y € w-LC™.
(b) If A is a closed subset of a metric space X and dim(X \ A) < n+1,
then for every weighted map p: A — Y there exists a neighbourhood U
of A in X such that ¢ can be extended to a weighted map ¢:U — Y.
(c) IfVy is a neighbourhood of a point y € Y, then there exists a neighbour-
hood Vo C Vy, such that, for any metric space X and for any closed subset
of A in X satisfying the condition dim(X \ A) < n+ 1, any weighted
map @: A —o Vy can be extended to a weighted map o: X —o V.
(d) IfVy is a neighbourhood of a point y € Y, then there exists a neighbour-
hood Vi C Vy, such that for any metric space X with dim(X) < n and for
any weighted map p: X —o Vj there exists a weighted map ¢: X x[0,1] —o
Vy, with the following properties: ¢(x,0) = (), d(x,1) = L,(p)y, for
any x € X.

Proof. The implication (a)=(b) has been proved in Theorem 2.8.18. More-
over, the proof of the implications (b)=-(c), (c¢)=(d), (d)=(a) goes similar to
the proof of the corresponding implications in the proof of Theorem 9.1 in [7]
and therefore it is left as an exercise to the reader. g

Corollary 2.8.20. Let X be a metric space with dim(X) < n. Then X € w-
LC"™ if and only if X is locally w-contractible.

Proof. The implication <« follows from Proposition 2.8.12. Conversely, let
us fix g € X and let U,, C X be an open neighbourhood of z¢. In addition, let
Vo C Uy, satisty condition (d) in Theorem 2.8.19. Since dim(Vp) < dim(X) < n,
it follows by condition (d) in Theorem 2.8.19 that the inclusion i: Vo — Up is
w-homotopic to the constant map k: Vy — Uy at xp, which completes the proof
of the corollary. O

Now, we are going to prove the following version of the Lefschetz fixed point
theorem for weighted maps. From now on, only metric spaces are considered.
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Lemma 2.8.21. Let X be a compact space and let Y be an ANR. In ad-
dition, let a:Y —o X be a weighted map, let j: X — Y be an embedding. Then
a weighted map ¢: X —o X given by p(x) = ao j(x), for all x € X, admits the
following properties:

(a) ¢ is a Lefschetz map,
(b) if A(p) # 0, then Fix(p) # 0.

Proof. From Theorem 2.5.1 it follows that a weighted map joa:Y — Y
is a Lefschetz map. Consequently, by Proposition 2.3.12, « o j is a Lefschetz
map and A(aoj) = A(joa). Let A(p) # 0. Then A(jo a) # 0. Now, from
Theorem 2.5.1 we deduce that there exists a point yg € Y such that yo € joa(yo).
Thus j = (yo) € j~tojoa(ys) = alyo) = (a0 )57 (yo)), which completes the
proof. O

Theorem 2.8.22 ([31]). For every n > 1 there exists a compact (n + 1)-
dimensional absolute retract X ™) such that every separable metric space of di-
mension < n has an embedding into X ™).

Theorem 2.8.23. Let K be a compact space with dim K < n and assume

that p: K — K can be factored as K x4 K, where X is a w-LC"-space, ¢
1s a weighted map and f is a single-valued continuous map. Then

(a) ¢ is a Lefschetz map,
(b) if A(p) # 0, then Fix(p) # 0.

Proof. Our proof of the above theorem is based upon ideas found in [31].
From Theorem 2.8.22 it follows that there is an embedding j: K < Y™ of K
into a compact absolute retract Y™ with dim(Y ™) = n + 1. Since dim(Y ) \
J(K)) < n+1 (see [18]), it follows from Theorem 2.8.19 that there is an extension
a:U —o X of the weighted map avoj~1: j(K) —o X over an open neighbourhood
U of j(K) in Y. Consider the commutative diagram

U+ j(K)

where i: j(K) — U is the inclusion. Consequently, ¢(x) = (f o @) o (i o j)(z).
Now, since U is an ANR, our assertion follows at once from Lemma 2.8.21. [






CHAPTER 3

WEIGHTED CARRIERS

In this chapter, we give a definition and several examples of weighted carriers.
Next, we prove some properties of such mappings that will be used in the sequel.

3.1. Definition and examples
Given any multivalued map ®: X — Y we put
D(®) = {(V,z) | V is an open subset of Y and ®(z) NIV = 0}.

Definition 3.1.1. A multivalued u.s.c. map ®: X — Y with compact val-
ues is said to be a weighted carrier if there exists a function Ijec: D(®) — Q
satisfying the following conditions:

(a) (Existence) If Lyioc(®, V,x) # 0, then ®(z) NV # (.
(b) (Local invariance) For every (V,x) € D(®) there exists an open neigh-
bourhood U, of a point x such that for each =’ € U, we have

leoc((pv V7 :E) = wloc((bv ‘/7 x/)'

(c) (Additivity) If ®(z) NV C UleVi, where V;, 1 < ¢ < k, are open
disjoint subsets of V', then

k
leoc((ba ‘/7 I) = Z leoc((pv ‘/iv I)

i=1

A function Iec: D(®) — Q satisfying the above conditions will be called
the local weighted index of ®.

Moreover, notice that for a weighted carrier ¥, the set ¥(x) does not need
to have a finite number of connected components.

Remark 3.1.2. Let us notice that Definition 3.1.1 is equivalent to that
of [10], but our definition of weighted carriers will turn out to be much more
useful in our considerations.

67
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Remark 3.1.3. The additivity property in the case of k = 1 will be called
the excision property.

Below, we shall present a number of examples of weighted carriers.

Example 3.1.4. It is easy to see that if ®: X — Y is an upper semicontin-
uous map with connected values, then ® is a w-carrier. Indeed, it is enough to
define a function I1oc: D(®) — Q as follows

1 if &(z)n
leoc(q)v U7 :17) =

U # 0,
0 if ®(z)NU =9,

for any (U, z) € D(®).

Example 3.1.5. If o: X — Y is a weighted map, then Ioc: D(¢) — Q is

defined by Tyioc(p, U, z) := ZyGU wy(x,y) for any (U, x) € D(yp).

Example 3.1.6. Let X be a compact ANR and let f: X x [0,1] — X be
a continuous function with the Lefschetz number A(fy) # 0 of fo, where fo(z) =
f(z,0) for all x € X. Then a multivalued (u.s.c.) map ®:[0,1] — X defined by
O(t) = {z | fi(z) := f(x,t) = x} for all t € [0,1] is a weighted carrier, because
a function ILjee: D(®) — Q given by

Tioc(®, U, t) :=ind(f:, U, X)

satisfies all the conditions of Definition 3.1.1, where ind(f, U, X) denotes the
fixed point index for single-valued maps (for more information on the fixed point
index for single-valued maps, see [31]).

Example 3.1.7. Let M and N be two topological manifolds of the same
dimension and let f: M — N be a proper map (i.e. for any compact K C N,
f71(K) is compact) from M onto N. Then the multivalued map ®: N —o M
given by ®¢(n) = f~1(n), for all n € N, is a weighted carrier. For more details
concerning this example we recommend [10].

Example 3.1.8. Let U: X —o Y be a continuous map such that ¥(z) has 1 or
n acyclic components for all x € X, where n > 2 is fixed. Then I y10c: D(¥) — Q
is defined as follows
1 if¥(x)CU,
Lptoc (O, U, x) :=X k, ifU(z)NU #£0,
0 if¥(x)nU =0,

where k; denotes a number of connected components of ¥(x) contained in U.
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Example 3.1.9. Let ¥: X — X be an upper semicontinuous multivalued
map and let ¥(z) consist of a finite number of Q-acyclic components, for any
x € X. If ¥ is an m-multivalued map (see Remark 3.1.11 below), then ¥ is
a weighted carrier. Note that the converse is not true, i.e. a weighted carrier
need not be an m-multivalued map (see Example 3.1.10 below).

Example 3.1.10. Let Y = {1/n | n € N} U {0} be a subset of R and let
U: X — Y be defined by ¥(z) = Y for any z € X. In addition, let B be a
collection of subsets of Y such that

BeB < B=YorB={l/i}or B=Y\{1,1/2,...,1/i} for some i€ N.

Now, we shall define a nontrivial function Iyy1oc: D(¥) — Q. For this purpose,
let us observe that (V,z) € D(¥) if and only if it can be represented as a finite
union of elements of B. Consequently, it is enough to define a function [0 on
all pairs (B,z) with B € B and x € X. Let

By=Y, Bi=Y\{1}, B,=Y\{1,1/2},... B, =Y\ {1,1/2,... ,1/n},....

Then, we put
Tioc(¥, By, z) :=1 forx € X,
Tpioc(¥, By, 2) :=0 forx € X,
Tpioc(¥, By, x) :=1 forx € X,
TIpioc(¥, By, x) := (1/2)((-1)" 4+ 1) for z € X,
and
Lploc (P, {1/(2k+1)},2) =1 forx e X, k>0,
Tpioc (P, {1/(2k)},2) = -1 forxze X, k> 1.

One can easily show that the above function I, satisfies the conditions of
Definition 3.1.1. Of course, ¥ is not an m-multivalued map. Using this example
one can construct another example of a weighted carrier, which is not an m-
multivalued map.

Remark 3.1.11. Let ¥: X — Y be an upper semicontinuous multivalued
map with compact values. Two points (x1,y1), (22,y2) € 'y are equivalent
((x1,y1) ~ (z2,y2)) if and only if 1 = x5 and y1,y2 are in the same connected
component of (z1) = W(x). This defines a new set I'y = I'y /.. with elements
denoted by (x,C(z)), where C(x) denotes a connected component of ¥(x) as
a subset of Y.
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In what follows, a map m: Ty — Q is called the multiplicity function for W.
Note that in the above definition Q can be replaced by an arbitrary ring without
zero divisors.

Let W and m be as above. Then a map V¥ is called an m-multivalued map if
the following two conditions are satisfied:

(a) ¥(z) consists of finitely many connected components for each = € X,

(b) for all zy € K with U(xg) = C1(x0)U...UCs(xg), s = s(xp), and disjoint
open neighbourhoods U; of C;(zg) in Y there exists a neighbourhood U
of zg such that:

and

m(zo, Ci(z0)) = Z m(z,C(z)) forallzeU, i=1,...,s.
C(z)CU;,

Example 3.1.12. Further examples can be found in [10].

Remark 3.1.13. From now on, all multivalued weighted carriers ¥: X —o
Y are assumed to have a local weighted index Iyioc: D(¥) — Q such that
Tpioc(, Y, z) does not depend on z € X (for instance, if X is connected, then the
number I, (¥,Y,z) does not depend on the choice of € X, see Lemma 3.1.14
below).

Lemma 3.1.14. Let U: X — Y be a weighted carrier and let X be a con-
nected space. Then, for every xz,z' € X,

I’LUIOC(\II7 Y7 17) = wloc(\Ilv Y7 xl)'

Proof. Assume to the contrary that there are two points xg,z;, € X such
that

leoc(q/a }/7 1'0) 7é leoc(q/a }/7 1'6)
Let

X = {.’L’ eX | leoc(\l/,}/,l') = wloc(‘llvyv :EIO)}a
Xy i={z € X | Lioc(V,Y, ) # Lyoc(¥,Y, ()}
From the local invariance property of Lo it follows that X; and X5 are open.

Moreover, X1 N Xo =0, X1 # 0, X5 # 0 and X = X; U X5, so we get a contra-
diction. O

The assumption in Remark 3.1.13 allows us to give the following definition.
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Definition 3.1.15. Let ¥: X — Y be a weighted carrier and let zg € X.
Then the number

Iw(\I/) = wloc(\I/a Y, xO)
is said to be the weighted index of V.

3.2. Basic properties

Lemma 3.2.1. Let U: X — Y be a weighted carrier and let U be an open
subset of Y. In addition, let X be a connected subset of X such that ¥(z)NOU =
0 for each x € Xo. Then

leoc(\pv U7 :17) = wloc(\Ijv Uv y)

for any x,y € Xy.

Proof. Let us define a map I: Xg — Q by I(y) := Luyoe(V,U,y), where the
set Q is endowed with the discrete topology. Then from the local invariance of
IL1oc we infer that the above function I is locally constant. Therefore, by the
connectedness of X, I is constant, which completes the proof. O

Definition 3.2.2. Let U be an open subset of Y and let ¥: X — Y be
a weighted carrier. Let C' be a connected subset of X satisfying the following
condition: ¥(x) N AU = 0. Define Iioc(P|(C,U)) to be Lyoc(P|(C,U)) :=
Tpioc(P, U, ¢p), where ¢y € C' is an arbitrary fixed point.

Let ¥:Y — Z and ®: X — Y be two weighted carriers. Assume also that
for any x € X, the set ®(x) consists of finitely many connected components

Ct,...,Cf . Now, let us fix a point x € X. Since CF, i = 1,...,s,, are

compact disjoint subsets of ®(z), there exist open subsets V/* of Z such that
(3.1) CfcV® and V' NV'=0,

fori £#jandi,j=1,...,s,. Let U be an open subset of Z such that ¥ o ®(z)N
oU = 0.

Definition 3.2.3. Under the above assumptions we let
Lploc(W o @,U, ) = Z Ltoc(®, Vi*, @) - Lytoc (Y|(C, U)),
i=1

where Tyioc(PU|(CF,U)) is defined as in Definition 3.2.2.

Let us observe that from the localization property of Ioc for @ it follows
that Tyioc(®, V¥, x) does not depend on the choice of V;*, and hence the above
definition is correct.
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Proposition 3.2.4. Let U:Y — Z and : X — Y be as above. Then
a function Lyoc: D(¥ o @) — Q defined as in Definition 3.2.3 satisfies the exis-
tence, local invariance and additivity properties (and hence ¥ o ® is a weighted
carrier).

Proof. Let us fix x € X. Let ®(x) = CTU...UC? , where Cf are components
of ®(z). Moreover, let U be an open subset of Z such that ¥ o ®(z) N oU = 0.

(Existence) Let Lyoe(V o @, U, x) # 0. Then there exists 1 < ig < s, such
that

leoc((bv ‘/1:57 I) ! leoc(\IIKOixo ’ U)) 7& 0.

Since Luytoc(Y[(CF, U)) = Luloc (¥, U, ¢;,) for any point ¢;, € Cf., it follows that
Lioc (W, U, ¢;y) # 0. Consequently, ¥(c;,) NU # @ and hence ¥(®(x)) NU # 0,
because ¢;, € Cf. C ®(z).

(Local invariance) We first shall show that for any C¥, i = 1,..., s, there
exists an open neighbourhood W of C¥ in Y such that

(3.2) Lotoc (U(C2,U)) = Lpoc(¥, U, y) for all y € W7

and W NW5 = () for ¢ # j. For this purpose, we fix C7. By the local invariance
of Iyloc for W we infer that for any y € C} there exists an open neighbourhood
O, of y such that for each y" € O} the following equalities hold

leoc(q/a U, yl) = wloc(\llv U, y) = wloc(\IJ|(C]g‘Ca U))
Since ¥ is u.s.c. and W(y) N OU = ) for y € C¥, it follows that for any y € C7
there exists an open neighbourhood O} of y such that ¥(y') N 9U = () for each
y' € Oy. Let O, := O, N Oy for y € CF. Moreover, let /V[v/jz i=Uyecr Oy Then

Ltoc (W, U, y) = Lutoc(¥|(C7,U))  for y € W
It is easy to see that there exist open sets /I/IZ?”, i=1,...,8s, such that
CF C WP and WFNWF=0 fori#j.

Obviously, if we put W := Wf N Wf, then W N W} = () for i # j and i,j =
1,...,8y; which completes the proof of (3.2). Now let us put Iyioc (¥|(W7,U)) :=
Tpioc(P, U, y), where y € W7 is an arbitrary fixed point. Hence

(3.3) Lutoc (W|(W,U)) = Lutoc(¥[(CF,U))

for all 1 <17 < s;. Consequently, from the local invariance of [0 for ® we infer
that for each 1 < ¢ < s, there exists an open neighbourhood O of the point z
such that

(34) leoc((bv Wixv I) = wloc((I)v Wizv I/)

for all 2’ € OF. Since ® is u.s.c. we can deduce that there exists an open
neighbourhood O, of the point z such that ®(O,) C Jiz, WF. Let O, :=
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Oy N (Niz, OF). Since the sets W, 1 < i < s, satisfy the condition (3.1), we
have

leoc(\Ij © (b, Uv I) = Z leoc((bv ijv :E) : leoc(\IjKCfv U))
j=1
Now we shall show that for any ' € O, the following equality holds
leoc(\p o (bv Uv I) = wloc(\II o (I)v U7 :17/)7

where

Lutoc (U0 ,U,2') =Y Lutoc(®, V", 2") - Lutoe(T|(CF, U)),
j=1

Cf/ are components of ®(z'), 1 < j < 8,7, and Vj””/ are open subsets of Y such
that

Cy cVP and VP NVE =0 fori#j.
For this purpose, let us fix 2’ € O,. Let Iizl ={1 <k < sy | C,fl C W2} for
1<i< s, (1), Then

(35) leloc((bv‘/jw ,.’,E/), 'leoc(\I/KCf 7U))
j=1
=3 Lutoe(@, V&) - Lnoc(TI(CF, U))
=1 jery’
= Z Z leoc((pv ‘/jx/vxl) : leoc(\IjKCizv U))
=1 jery

where the last equality follows from the fact that for any j € Iix, and any y €
C’f, C WF we have

x’ T (3-3) T
leoc(\I/KCj 7U)) = wloc(\Ijv va) = wloc(\I/KWi 7U)) = wloc(\p|(0i 7U))

Consequently, we have

Z leoc(q)v ‘/jx,7 Il)) .

jer'

Sz
33) = Y- LoaelC2.0) -
i=1
(1) Let us note that the set If/ defined above can be empty, but it holds only in the case
Lotoc(®, W, ) = 0. Thus, if I*' = 0, then we put

Z I'Luloc(q)y V'Jz 7:Bl) : leoc(\p‘(c’;E 7U)) =0
jerr'
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Now, let us observe that, if we show that

(36) Z leoc<q)a‘/jw/ax/) = wloc(q)avvax)v
jers'

then the proof of the local invariance of I1o. will be completed, because

leloc U|(CF,U)) - Lutoe (@, W, 2) = Lyt (¥ 0 @, U, ).

Now let us fix i € {1,...,s5}. Since
d(z') N ij, = Cf, CWF and ®(2')N ij/ C ij/ for any j € I¥,
we deduce from the excision property of I 0. for ® that
Litoc (@, V¥, 2') = Lyioo(®, VF N W, 2')
for all j € I¥'. Hence

Z leoc(q)v ijw/’ LL'/) = Z I’wlOC(q)a ‘/J'w/ N Wf» :EI)
jers’ jery’

© leoc(é,( U VmW):c)

jery’
— dwloc <(I), < U V]zl) N Wizva/)v
jer

where the equality (%) holds true by the additivity property of Iyjoc for .
Consequently, applying the excision property of I,10c, we obtain

’ 3.4
leoc ((I)’ ( U ‘/Jw ) N vaxl) = wloc(éavvaxl) (:) wloc(éavvax)v
jery’

which completes the proof of (3.6).
(Additivity) Let $o®(z)NU C U?:l Uj, UpnNU, =0 for m#n,U; CU
for 1 < j < k. We first show that

(37) wloc(\p| ZIUJIOC \IJ| ))

for 1 < i < s;. For this purpose, let us fix 1 < ip < s, and ¢f € Cf . Since
U(cg)NU C U§:1 U;, we deduce from the additivity property of Ioc for ¥
that

Iu}loc(\pKC’iva)) = wloc \IJ U7 Czo leloc \I/ Ujvczo)
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and, taking into account the following equality

leoc(\I/KCf,Uj)) = wloc(\va' ci )7

VR
we obtain (3.7). Consequently,

leoc(\I/ o®,U, {E) = Z I’wlOC(q)a V;Ia LL’) : Iw10c<\11|(cixa U))

=1

Se k
= Z leoc(q)a szafﬂ) : (waloc(qj|(ciz’ Uj))
i=1 j=1

k sy
= Z Z leoc((bv ‘/izv I) : leoc(\p|(0ix7 UJ))

j=1i=1
k
= Z I’wlOC(\I] © (I)’ U]a .’L'),
j=1

which completes the proof of the additivity property of I,,oc for ¥ o ®. O
As an easy consequence of Proposition 3.2.4 we obtain the following corollary:

Corollary 3.2.5. Let f:Y — Z be a single-valued map and let ¥: X — Y
be a weighted carrier. Then

leoc(\ll of,U, .’[7) = w10C<\I]7 U, f(:E))

Lemma 3.2.6. Let V: X — Y be an upper semicontinuous multivalued map
and let f:Y — Z be a continuous function. If U is an open subset of Y such

that f oW NOU =0, then ¥(x)Nof~HU) = 0.

Proof. Let fo¥(z) NU = ). Suppose, contrary to our claim, that ¥(zx) N
df~Y(U) # 0. Now, observe that

(3.8) of7'(U) = FTHU)NY\fHU) C FTHO) NN\ fHU)
= O)NfHZ\U) =7 UN(Z\U)) = f1(9U).
Take a point yo € ¥(x) NJf~1(U). Then, by (3.8), we obtain yo € f~1(U).

Consequently, f(yo) € fo¥(x)NIU, which contradicts the fact that foUNOU =
(). The proof of the lemma is complete. O

Moreover, we have the following corollary:

Corollary 3.2.7. Let f:Y — Z be a continuous function and let U: X —o Y
be a weighted carrier. Assume additionally that W(x) consists of finitely many
connected components for each x € X. Then

Lotoc(f 0 U, U, 2) = Lyoo (¥, f 1 (U), ).



76 ROBERT SKIBA

Proof. Let x € X be a fixed point and let U be an open subset of Z such that
foU(z)NOU = (. Hence, by Lemma 3.2.6, we infer that (¥, f~1(U),z) € D(¥).
Let ¥(z) =C1U...UCs,, where C;, 1 < i < s, are connected components of
VU (z). Now, we choose open sets Vi¥,... ,VZ in Y such that

C;CVy® and VNV =0
for i # j. Since U(z)NAf~1(U) = 0, it follows that
U(x)NfHU)=Cr U...UCh,.

Without loss of generality we may assume that V" C f~1(U) provided C; C
F~YU)N¥(z). Then

1) &
Lutoe(f 0 U, U, 2) L S™ Lutoe (W, V7, 2) Lutoe (F1(Ci, U))
=1

2
@ > Lutoc (¥, V¥, 2) Ltoc (F(Ci, U)),
CiCf~HU)NY(x)

where the equality (1) follows from the definition of I for f o ¥, and the
last equality uses the fact that Iyoc(f|(Cs,U)) =0 for C; C Y\ f~1(U). Since
Luoc(f|(Ci,U)) =1 for C; € f~YU) N ¥(z), we have

Z leoc(\Ijv ‘/ixv I)leoc(.ﬂ(civ U))
C;Cf~H(U)NY(x)
= > Luee(¥, Vi 2) -1
CiCf~HU)N¥(x)
3 4 _
(:) wloc(\Ijv U ‘/f,iE) (:) wloc(\Ijvf 1(U)7:E)7
{ilG:Cf~H(U)N¥(z)}

where (3) follows from the additivity property of I,1oc and (4) follows from the
excision property of Ioc, since

U(z)nfH(U) C U VEC D),

{ilCicf =1 U)NT(x)}
and the result follows. O
Corollary 3.2.7 leads to the following definition.

Definition 3.2.8. Let ¥: X — Y be a weighted carrier and let f:Y — Z
be a single-valued map. Then I1oc: D(f o ¥) — Q is defined by

(3.9) leoc(fo \IJ,U, «T) = wloc(\I/af_l(U)vx)v
for any (U,x) € D(f o ).

By Lemma 3.2.6, if (U,z) € D(f o ¥), then (f~}(U),z) € D(¥), which
implies that the above definition is correct.
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Proposition 3.2.9. Let V: X — Y and f:Y — Z be as above. Then
a function Iyoc: D(f o U) — Q defined as in (3.9) satisfies the existence, local
mvariance and additivity properties.

Proof. 1t is easy to see that f o ¥ is an upper semicontinuous map. Let us
fix a point z € X. Let U be an open subset of Z such that f o ¥(z) NoU = (.

(Existence) Assume that Iyjoc(foW, U, x) # 0. Then Lyloc(¥, f~H(U),x) # 0.
Consequently, from the existence property of Lo for ¥ it follows that ¥(z) N
f~YHU) #0. Thus fo¥(z)NU # 0, since

D# ()N fHU))Cfol(x)nfofHU)C foW(z)NU.

(Local invariance) Since f o ¥ is upper semicontinuous, it follows that there
exists an open neighbourhood V,, of the point x such that f o ¥(y) NoU = { for
all y € V.. Moreover, from the local invariance of I,o. for ¥ we deduce that
there exists an open neighbourhood W, of x such that

(3.10) Lutoc (W, f7HU), ) = Lutoe (¥, fHU), 2),

for all z € W,. Let O, :=V, NW,. Then (U,z) € D(f o) for all z € O, and

leoc(f . \II7 U» {E) = wloc(\IIa f_l(U)v :E)

3.10 _
( = ) leoc(\Ijvf 1(U)7Z) = wloc(fo \IJ,U,Z).

(Additivity) Let foW(z)NU c U, Vi C U and V; N V; = 0 for i # j.
Observe that

U(z) N fHU) CfHfo ()N fH(U) = fH(fo¥(x)ND)
k k
crt ( U m-) =J o).
i=1 i=1
Then, by the additivity property of Lo for ¥, we obtain

leoc(fO\IJ,U,I) = wloc(\pvfil(U)vx)
k

k
= waloc<\llvf_1(%)ax) = waloc(f o \I/,V;,:B),
i=1

i=1
which completes the proof. O

Lemma 3.2.10 (Gluing lemma for weighted carriers). Assume that a space
X is a union of two closed subsets X = AjUAy and AjNAy # (. LetUi: A) — Y
and Uy: As — Y be two weighted carriers such that

\Ill(a) = \112((1) and leoc(qllv U, (L) = wloc(‘ll2a U, a)»
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for all a € A1 N Ay and for all (U,a) € D(¥1) (*?). Then U: X — Y given by

Uq(x orx € Ay,
() { (@) f 1
\IJQ(x) fOTxEA27

and
Iwoc\IJ7U,fE OTIEEA,
leoc(\I/,U,:E){ loe(¥1 ) [ 1
Lptoc (U2, U, z)  for x € As.

s a weighted carrier.

Proof. The proof is straightforward. O

Proposition 3.2.11. Let X be an ANR, let A be a closed ANR subspace
of X and let Y be an arbitrary metric space. If ¥: A x [0,1] — Y is a weighted
carrier such that Vo: A — Y is extendable to a w-carrier \/I]\é: X — Y, then there
is a w-carrier U: X x [0,1] — Y such that

(a) U[X x {0} = ¥,
(b) Wy|A =Wy, for every t € [0,1],
where Wy(z) := V(t,z) and Wy(z) := VU(t,x) for all t € [0,1] and = € A.

Proof. The proof proceeds along the same lines as in the case of single-valued
maps in [35]. For the sake of completeness we give the details. Indeed, since
X x {0} U A x [0,1] is a compact ANR in X x [0,1] (see Theorem 1.2.4), it
follows there exists an open neighbourhood V of X x {0} UA x [0,1] in X x [0, 1]
and a retraction 7: V — X x {0} U A x [0,1]. Let U: X x {0} U A x [0,1] — Y
be given by

~ { U(x,t) forxe Atel0,1],

U(x,t) =< ~
Uo(xz) forx e X.

By Lemma 3.2.10, Tisa weighted carrier. Let UV —Y be a weighted carrier
given by the formula W'(x,t) = ¥ o r(x,t) and let u: X — [0,1] be an Urysohn
function such that

1 ifzeA,

u(z) = {

0 ifzeX\WV

Finally, define ¥: X x [0,1] — Y by

U(x,t) = V' (z, u(z)t),

for all (z,t) € X x [0,1]. Tt is easy to see that U is the desired extension of U,
which completes the proof. O

Now we are able to prove:

(12) Observe that if a € A1 N Az, then (U, a) € D(¥1) if and only if (U, a) € D(¥2).
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Corollary 3.2.12. Let X, A C X and Y be as in Proposition 3.2.11 and let
V C U be subsets of Y. In addition, let p: A — V' be a w-map. Then ¢ can be
extended to a w-map @: X —o U if and only if o U (—IL,(¢))yo: A — V can be
extended to a w-map ©: X — U, where yg € Y is any fixed point.

Proof. The implication = is obvious.

< Let o U (=1 (9))yo: A — V be a weighted map and let $: X — U be an
extension of ¢ U (—1I,(¢))yo over X. Then a weighted map U I, (¢)yo: X — U
satisfies

WU, (p)yo (T, Y) = Wiop(x,y) forallz € A, ye U,

where ¢:V — U is the inclusion. Hence, in view of Lemma 2.2.9, a w-map
P U Ly(p)yo|]A: A — U is w-homotopic to i o 9: A — U. Consequently, by
Proposition 3.2.11, it follows that there exists a w-map @: X — U with @(x) =
o(x) for all x € A, which completes the proof. O

At the end of Chapter 3, we prove some properties of I, for weighted carriers.

Proposition 3.2.13. Let V:Y — Z and ®: X — Y be as in Definition
3.2.3. Then
I,(Vo®)=T1,(T)- L,(P).

Proof. Let us fix a point x € X. Then, we have

leoc(\I/ o®,Z, LL’) = Z I’wlOC(q)a V;maw) 'le()C(\I]KCfv Z))

=1

= Z leoc(q)v V?» :E) : leoc(q/a Z, Cf) = Z leoc<q)a V;w» :E) : Iw(\ll)

=1 i=1

= I, () - (ifwloc(@,w,x)> =I1,(9)- (leoc <@L_J1sz)>

- Iw(\I/) . (leoc(q)vyvx)) = Iw(\Ij) : Iw(©)7
where ¢f € C7. O

Corollary 3.2.14. Let f:Y — Z be a continuous function and ¥: X — Y
a weighted carrier. Then

I,(f o W) =1,(7).
Proof. This corollary follows immediately from Definitions 3.1.15 and 3.2.8.0J

Proposition 3.2.15. Let f: X1 — X5 and g: X3 — X4 be two continuous
functions. In addition, let U: X5 — X3 be a weighted carrier. Then

I,(go¥o f)=1L,(P).

Proof. First, observe that Proposition 3.2.9 together with Proposition 3.2.4
implies that g o W o f is a weighted carrier. Finally, the assertion follows from
Proposition 3.2.13, Corollary 3.2.14 and the fact that I,(f) = 1. O
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Definition 3.2.16. We say that two weighted carriers ¥, ®: X — Y are
homotopic if there exists a weighted carrier T: X x [0,1] — Y such that
T(z,0) =¥(z), Y(z,1)=(x) forallzeX;
Tuioc(Y, U, (2,0)) = Lyioc (¥, U, x) for all (U,x) € D(P);
Tpioc (T, U, (2,1)) = Tpioc(®, U, z)  for all (U, z) € D(P).

Proposition 3.2.17. If two weighted carriers ¥, ®: X — Y are homotopic,
then

I,(T) = I,(®).

Proof. Let T: X x[0,1] — Y be a homotopy between ¥ and ® and let g € X
be a fixed point. Furthermore, define a multivalued map o:[0,1] — Y by

o(t) = T(xo,t)

for all t € [0,1]. It is easy to see that o is a weighted carrier. Since [0, 1] is
connected, it follows from Lemma 3.1.14 that

(3.11) Lioc(0,Y,0) = Lyloc(0, Y, 1).

On the other hand, we have

(3.12) I, (V) = Lyioc (P, Y, 20) = Tuioc (T, Y, (20,0)) = Lyioc(o,Y,0),

(3.13)  Lw(®) = Lutoc(®,Y, x0) = Lutoc(Y, Y, (20, 1)) = Luioc(0, Y, 1).
Consequently, the conclusion follows from (3.11)—(3.13). O



CHAPTER 4

APPROXIMATION METHODS

In this chapter we are going to study some approximation techniques allow-
ing to investigate fixed points of weighted carriers. The use of the approximation
technique in the fixed point theory of weighted carriers goes back to J. Pejsa-
chowicz [54] and G. Conti, J. Pejsachowicz [10].

4.1. Graph-approximations

Definition 4.1.1 ([54]). Let U: X — Y be a weighted carrier and Xo C X,
and let € > 0. A weighted map ¥: Xg — Y is said to be an e-approximation of
U: X —o Y (written ¢ € a,,(V,¢)) if

(a) ¥(z) C O(¥(O:(x))) for all z € Xy,
(b) Lutoc(¥, C, ) = Lyioc (¥, C, x) for any piece C of O (¥ (0. (x))) (3) and
x € Xo.

Remark 4.1.2. From Lemma 4.1.3 below it follows that the above definition
is correct, i.e. (C,z) € D(V¥) and (C,z) € D(¢). Moreover, we have I,(¥) =
I, () since

Ly (V) = Lytoc (¥, O (¥ (O (2))), ) = Lutoc (@, O (¥(Oc(x))), x) = Lu(p).

Lemma 4.1.3. Let U be an open subset of X and let C' be a piece of U. If
K is a subset of U, then KNOC = 0 (where C denotes the boundary of C with
respect to X).

Proof. It is enough to show that 9CNU = (. For this purpose, let us observe
that C' and U\ C are open in X. Consequently, 9CN(U\C) = () and 0CNC = §;
and hence OC N U = (). This completes the proof. O

Moreover, we have the following result:

(13) Given a space Z, by a piece of Z we mean any open and closed subset of Z.

81
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Proposition 4.1.4. Let ¥: X — Y be a w-carrier and let ¢: X — Y be
a w-map. In addition, let 0 < &1 < e2. If v is an e1-approzimation of ¥, then
@ is also an ea-approximation of V.

Proof. The first condition of Definition 4.1.1 is obviously satisfied, only the
second one needs to be proved. For this purpose, let us fix x € X and let C
be a piece of O.,(¥(O.,(z))). Then C := C N O, (¥(O., (x))) is a piece of
Oc, ((O¢, (x))). Since ¢ is an e1-approximation of ¥, it follows that

(4.1) Lytoc (s 57@ = Ltoc(¥, 6’717)
Consequently, by the excision property of I 0, we obtain

(42) leoc(‘;ovéax) = wloc(ﬁﬂ,C, .CE),
(43) leoc(\I/,é,;L') = wloc(q/acvx)-

Now, taking into account (4.1)—(4.3), we have
leoc((Pv C, fL') = wloc(\llv C, LL’),

which completes the proof. O

Remark 4.1.5. Let U: X — Y be a w-carrier and let Xy C X. If a weighted
map @: Xg — Y is a d-approximation of ¥|Xy, then ¢ is also a d-approximation
of U.

The following lemma will be used repeatedly throughout this paper.

Lemma 4.1.6 ([28]). Let : X — Y and ¢:Y — Z be two upper semicon-
tinuous multivalued maps. If X is a compact space, then for every e > 0 there
is & > 0 such that Os(p)Os(W)(z) C Oc(p o Y(Oc(x))) for any x € X, where
Os5()0s(¥)(x) == O5(¢(05(0s (1(O5(2))))))-

Now we use the above lemma to obtain the following proposition which will
be needed in the sequel.

Proposition 4.1.7. Let X be a compact space, p: X — Y a weighted map
and ©:Y —o Z a weighted carrier. Then for each € > 0 there exists § > 0 such
that if ¥:Y — Z is a -approzimation of ®, then i o ¢ is an e-approximation
of ® o .

Proof. Let € > 0. From Lemma 4.1.6 it follows that there exists § > 0 such
that

05(2)0s(¢)(x) C Oc(® 0 (O (2))),
for all z € X. Let ¢:Y — Z be a d-approximation of ®:Y — Z. Let us fix
x € X. Then

P(p(x)) € Os(2(O0s(p(2)))) € O5(P)0s(9)(2) C O(® 0 p(O())).
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What is left is to show that
leoc(w ° Y, C, LL’) = wloc(q) °, C» {E)

for any piece C' of O (® o p(O:(x))). Let p(x) = {y1,... ,yn,}- Now let us
observe (see Definition 3.2.3) that

Iu}loc(¢ °Q, 07 I) = Z leoc(@v ‘/izv x) : Iu}loc(wv Cv yz)v
=1

IUJIOC((I) ° Y, 07 CE) = Z leoc(SDa V;'wa .’L') . Iw10C<q)a C? yi)»

=1

where Vi, ..., V)7 satisfy the following conditions
yi € V¥ and VfﬂVfZ(Z) for i # 7.
Consequently, it is enough to show that the following equality holds

IUIIOC(wa Cv yz) = w100<q)a Cv yl)

For this purpose, let us observe that

(44)  Tutoc(, Cyi) = Lutoc(¥, C N Os(®(O5(y:))), i)
= wloc(q)70 N 05(‘1’(06(%))),%) = wloc((I)707 yz)7

where the first equality and the last one follow from the excision property of
Ty10c, because

Y(y) NC C CNOs(2(Os(yi))) C C,
B(y:) N C C CNOs(B(Os(wi))) C C.

Moreover, since C'N Os(P(O5(y;))) is a piece of Os(®(Os(y;))), we deduce that
the second equality in (4.4) follows from the fact that v is a d-approximation
of ®. This completes the proof. O

Corollary 4.1.8. Let Xo C X be a compact subset and let ¥: X — Y
be a weighted carrier. Then for each ¢ > 0 there exists 6 > 0 such that if
©: X —o Y is a §-approzimation of U, then ¢|Xo: Xo —o Y is an e-approzimation
Of \I/|X02X0 —o Y.

Before proceeding further, we prove some necessary lemmas.

Lemma 4.1.9. Let X be a locally connected space and let V: X — Y be
a weighted carrier. Then for every ¢ > 0 and x € X there exists d, > 0 such
that for any y € B(x,6,) and any piece C of O (¥(x)) the following equation
holds:
leoc(‘lf, C, LL’) = wloc(\IJ, C, y)
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Proof. Let us fix e > 0 and x € X. Since V¥ is a weighted carrier, it follows
that there exists 1, > 0 such that

(4.5) (B(z,n:)) C Oc(¥(x)),

for all y € B(x,7n,). Additionally, since X is locally connected, it follows that
there exists a connected neighbourhood (}4) V, of x and 6, > 0 such that
B(z,05) C Vu C B(z,n:). Now, let C be a piece of O (¥(x)). Then for all
y € B(x,n,) we have U(y) NIC = (§ (where IC denotes the boundary of C' with
respect to Y), by (4.5) and Lemma 4.1.3. Consequently, in view of Lemma 3.2.1,
we obtain
leoc<\I]7 C, fL') = wloc(\I/a C, y)

for all y € V,;; and hence for all y € B(x,d,). This completes the proof. O

Lemma 4.1.10. Let X be a compact locally connected space and let ¥: X —o
Y be a weighted carrier. Then for every e > 0 there exists § > 0 such that if two
points x,y € X satisfy the following condition dx(x,y) < J, then there exists
a point z € X such that

(4.6) U(z) C O:(¥(2)) and V(y) C O:(¥(2)),
(4.7) z€0.(x) and z€ O (y),
(48) leoc(qj,c,x) = wloc(\I/,C,Z) = wlOC(\pvcvy)v

for any piece C' of O (¥(z)).

Proof. Let us fix e > 0. Since V is an upper semicontinuous multivalued map
with compact values, it follows that for any 2 € X there exists 0 < §/, < & such
that U(B(z,0.,)) C O (¥(x)). Moreover, in view of Lemma 4.1.9, there exists
0 > 0 such that for any piece C' of O.(¥(x)) and any y € B(x,d!) we have the
following equality

(49) leoc(\IJ?O? I) = wloc(\Ijvcv y)
Let 0, := (1/2) min{0d.,, 0"} and let {B(x,d,)}zex be the open covering of X.
Since X is compact, there exists a finite subcovering B(x1, 95, ), ... , B(zk, dz,)

of this covering. Let us put ¢ := (1/2) min{d,,,...,ds,}. Now we shall show
that such a § satisfies the conclusion of Lemma 4.1.10. Indeed, let us take two
points z and y with dx (z,y) < 0. Then for a point z there exists 1 < ig < k such
that € B(2i,,0z,,). Let 2z := x;,. Then ¥(z) C O(¥(2)). Since dx(y,2) <
dx(y,x) +dx(z,2) <040, <e/2+¢/2 = ¢, we deduce that U(y) C O (¥(2))
and y € O.(z); and hence (4.6) and (4.7) are satisfied. Finally, (4.8) follows from
(4.9) and the fact that dx(z,2) < 07 and dx(y,z) < 97/, which completes the

proof. ]

(%) Recall that by neighbourhood of z in X we mean always a set containing x in its
interior; thus a neighbourhood does not need to be open.
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Now we are able to prove the following corollary.

Corollary 4.1.11. Let X be a compact locally connected space and let ¥: X
—o Y be a weighted carrier. Then for every e > 0 there exists dy > 0 such that
for every x € X and every piece C of O (V(O¢(x))) we have

leoc(\IJ?O? I) = wloc(\Ijvcv y) fO’I’ any 'y € B(x75‘P)

Proof. Let us fix € > 0 and let § > 0 be as in Lemma 4.1.10 according
to ¥ and . We shall show that such a ¢ satisfies the conclusion of the above
corollary. For this purpose, let us choose a point y such that dx (x,y) < §. Then,
by Lemma 4.1.10, we deduce that there exists a point z such that

O:(¥(2)) C O(¥(O0c())),
U(z) C O(¥(2)) and T(y) C O (¥(2)).
).

Let C be a piece of O-(¥(O.(z))). Since C N O (¥(z)) is open and closed in
O:(¥(2)), it follows by Lemma 4.1.10 and the excision property of I1oc that

Lotoe(W,C,2) = Tytoe(¥,CNO((2)), ) " Ijtoe(¥,C N O(V(2)), 2)

FE Ltoe(U,C N 0(¥(2)),y) = Lutoc(¥, C.y),
which completes the proof. (|

Lemma 4.1.12. LetU: X — Y and ¢: X — Y be two upper semicontinuous
multivalued map with compact values. In addition, let 6 > 0. Then the following
conditions are equivalent:

(a) p(z) C Os(¥(05(x))) for all xz € X.
(b) Ty, C O5(T'w) (recall that in X xY we consider the maz-metric).

Proof. Assume that ¢(z) C O5(¥(O5(z))) for all x € X. Take (z,y) € T'y,.
Then y € Os(¥(Os(x))); hence, there exists ¥ € Y such that y € Os(y) and
¥y € U(Os(z)). But y € ¥(Os(x)) if and only if there exists T € Os(x) such that
y € ¥(z). Thus (z,y) € Os(T) x O5(y) C Os(T'w), so this finishes the proof
that T, C Os(I'y). Conversely, suppose I', C Os(I'w). Take (x,y) € T',. Then
y € @(x). Moreover, there exists (Z,y) € I'y such that (z,y) € O5((Z,y)) =
Os(Z) x Os(y). Thus y € Os(y) C Os5(¥(Z)) C Os(¥(Os(z))), which completes
the proof that ¢(z) C O5(¥(05(x))). O

Proposition 4.1.13. Let C be a compact subset of X CY and let p: X —o
Y be an upper semicontinuous multivalued map with compact values such that
Fix(p) NC = (0. Then there exists § > 0 such that x & D(p(D(z,9)),0) for all
rzeC.

Proof. Suppose, to the contrary, that such § > 0 does not exist. Then we ob-
tain a sequence {z,} C C such that z,, € D(¢p(D(zn,1/n)),1/n). Consequently,
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we get a sequence {y,} with

(4.10) Yn € @(D(2n,1/n)), d(xn,yn) < 2/n,

for all n € N. Since y,, € p(D(zy,1/n)), it follows that there exists a sequence
Zn € D(x,,1/n) such that y, € ©(Z,). The compactness of C' implies that,
passing to subsequence if necessary, =, —— o € C. Thus

(4.11) Tn B 20, Yn =3 x0.

By the upper semicontinuity of ¢ and (4.11), we obtain zy € p(zp). Conse-
quently, Fix(¢) N C # 0, a contradiction. O

Corollary 4.1.14. Let C be a compact subset of X CY and let p: X —o
Y be an upper semicontinuous multivalued map with compact values such that
Fix(o)NC = 0. Then there exists § > 0 such that if a multivalued map ¢: X — Y
satisfies the condition 'y, C O5(T'y), then Fix(¢) N C = 0.

Proof. This result follows immediately from Lemma 4.1.12 and Proposition
4.1.13. 0

Proposition 4.1.15. Let E™ be a finite-dimensional normed space and let
U be an open and bounded subset of E™. In addition, let ¢:U —o E™ be an upper
semicontinuous multivalued map with compact values such that

{xeU|0€p@)}ndl=0.

Then there exists § > 0 such that if a multivalued map : U — E™ satisfies the
condition Ty, C O5(Ty), then {x € U | 0 € ¢(z)} N AU = 0.

Proof. The proof is quite similar to that of Proposition 4.1.13 and is left to
the reader. |

Proposition 4.1.16. Let X be a compact space and let V: X — Y be a
weighted carrier. In addition, let f:Y — Z be a continuous function. Then
for any € > 0 there exists 0 < § < € such that fo @ € ay(f o ¥, e) provided
© € ay(¥P,0).

Proof. Let € > 0. Then, by Lemma 4.1.6, there exists § > 0 such that
(4.12) O5(f)0s(¥)(x) C Oc(f 0 ¥(Oc(x))),
for all x € X. Let ¢ € a,(¥,6). Hence, by (4.12), one has
fop() CO:(fo¥(0:(x))),

for all x € X. It now remains to show that for any piece C C O(f o ¥(O.(x)))
the following equality holds

(413) leoc(f o \IJ,C, LL’) = wloc(f o <p,C, LL’)
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For this purpose, it is enough to show that
(4.14) Lutoc(¥, f7H(C),2) = Lutoc(p, f1(C), )
since
Lutoc(f 0 ¥, C, ) *2° Lioe (W, f7H(C), 2),
Lutoe(f 09, C,2) *Z7 Lyioc(ip, f7H(C), ).

Let us fix a point z € X and let C be a piece of O.(f o ¥ (O.(x))). Now, we shall
prove that f=1(C) N Os(¥(Os(x))) is open and closed in Os(¥(Os(x))). Since

f(0s(¥(05(x)))) € O(f 0 ¥(O:(x))),
it follows that one can define the following continuous function
F:05(¥(0s(x))) — O:(f 0 ¥(O:(2))),
by F(z) = f() for all z € O5(¥(Os(x))). It is easy to see that
(4.15) F7HCO) N Os(¥(05(2))) = (F)~H(O).

Moreover, observe that (f)~*(C) is open and closed in Os(¥(Os(x))), thus, by
(4.15), f~HC) N Os(¥(Os(x))) is open and closed in Os(¥(Os(x))) as required.
Returning now to the proof of (4.13), we deduce from the excision property of
Tloc for ¥ that

(4.16) Litoc (W, f7HC), 2) = Lpioe(¥, f~H(C) N Os(¥(0s(x))), z),
(4.17) Lutoc(, ~H(C), ) = Lunoc(ip, f1(C) N Os(

<
Q
(=1

&
&

since

T(x)Nf7H(C) C [7HC) NO0s(T(0s(x))) € f7H(O),
(@) N f7HC) € f7HC) NOs(T(0s(x)) C f7H(O).

Since f~1(C) N Os(¥(Os(x))) is a piece of Os(¥(Os(x))) and ¢ € a,(¥,7), we
deduce that

(4.18) leoc(\l/, fﬁl(C) N 05(\11(05(,%))), x)
= wloc(cp» f_l(c) N OJ(W(OJ(I)))vx)

Consequently, taking into account (4.15)—(4.18) we obtain (4.13), which com-
pletes the proof. O



88 ROBERT SKIBA

4.2. w-UV-sets

Following [43], we propose the following definitions, which will play a crucial
role in the sequel.

Definition 4.2.1. Let V C U be subsets of a space Y. We say that the
inclusion V' — U is w-homotopy 0O-trivial if for any connected component C' of
V and for any weighted map ¢: 0A; — C satisfying the following condition

Z ww(O,y) = Z ww(l,y)

yel yeC

there exists a weighted map @: A; — U such that ¢(z) = ¢(x) for every z €
aA; (19).

Definition 4.2.2. Let V C U be subsets of a space Y and let n > 1 be
an integer. The inclusion V' < U is said to be w-homotopy n-trivial if it is
w-homotopy O-trivial and for any integer 1 < k < n + 1 and for every weighted
map ¢: 0A — V there exists a w-map @: Ap, — U such that ¢(z) = p(z) for
every x € 0Ay.

It is easy to see that we can replace in the above definition Agy1 by the unit
closed disk D**! in R¥*! and A4 by the unit sphere S*, for k > 0.

Definition 4.2.3. Let A be a compact subset of a space X. We say that
the inclusion A <— X has:

(a) w-UV™-property (n > 0) if for every € > 0 there exists 0 < § < € such
that the inclusion Os(A) — O(A) is w-homotopy n-trivial;
(b) w-UV¥-property if it has w-UV"-property for each n > 0.

Now, we are going to show some facts concerning the above notions. In
particular, we will prove that the class of sets satisfying some w-UV -properties
is quite large.

Proposition 4.2.4. Let X be a locally connected space (*°), let A be a com-
pact subset of X and let n > 1. If for any € > 0 there exists §, 0 < § < €, such
that:

(a) Os5(A) — O.(A) is w-homotopy 0-trivial,
(b) for each positive integer 1 < k < n and 9 € Os(A), the inclusion
Os(A) — O.(A) induces the trivial homomorphism

i (05(A), x0) — m (O (A), o),

(1) By a 1-dimensional simplex A; we mean a line segment [0, 1].

(16) If a space X is locally connected and V is an open subset of X, then V is locally
connected. Hence any connected component C of V' is open in X. This observation will be of
use in the proof of Proposition 4.2.4 and later.
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then the inclusion A — X has a w-UV™-property.

Proof. The proof will be divided into a number of steps. (We proceed by
proving successively more general cases.)
Step 1. Fix € > 0 and let 4 > 0 be such that the induced homomorphism

(4.19) i (05(A), o) — mj; (O=(A), o)

is trivial for 1 < k& < n and for all 2y € O5(A). We divide Step 1 into a sequence
of cases.

Case A. Let ¢: 8™ — Os5(A) be a w-map with I,(¢) = 0 and ¢(sg) = zo,
where sg € S™ is a fixed point. Since the homomorphism (4.19) is trivial, it
follows that a w-map i o ¢: S™ — O.(A) is w-homotopic to the constant map at
xo (with the weighted index equal to 0), where i: O5(A) — O (A) is the inclusion.
Hence, in view of Proposition 3.2.11, we conclude that ¢ o ¢ can be extended to
a w-map @: D"t — O.(A).

Case B. Let ¢: S™ —o Os(A) be a w-map with I,,(¢) # 0 and ¢(sg) = o (so
as in Case A). Let ¢: S™ —o Os(A) be given by ¢ = ¢ U (—1,(¥))yo, where yq
is an arbitrary fixed point of A. Since I, (1)) = 0, we conclude, by Case A, that
there exists a weighted map ¢: D" —o O.(A) such that 1(z) = ¢(z) for cach
x € S™. Therefore, by Corollary 3.2.12, we obtain a w-map @: D"** — O.(A)
such that @(z) = p(z) for all z € S™.

Case C. Let ¢: 8™ — O5(A) be a w-map and let us assume that #p(sg) > 1.
Assume also that there exists a w-map «: [0, 1] — Og(A) such that

a(0) = ¢(s0), (1) = o,
wa(0,y) = wy(so,y) for all y € Os(A).
Now let us define T: (S™ x {0}) U ({s0} x [0,1]) — Os(A) by
p(z) ift=0,

a(t) if x = so.

Y(z,t) = {

Then, in view of Proposition 3.2.11, there exists a w-map T: S™ x [0,1] —o O5(A)
such that T|(5™ x {0})U({so} x [0,1]) = Y. Now, applying Case A or Case B to
T(-,1): 5" — Os(A) (A7), we obtain an extension T: D" — O.(A) of T(-,1).
Let

To: (S™ x {0}) U ({s0} x [0,1]) U (D" x {1}) —o O-(A)

be defined as follows

plx) ift=0,
Yo(z,t) = ¢ at) if z = s,
Y(z) ift=1.

(A7) 1t Iw(:f“( -,1)) =0, then we apply Case A, otherwise we apply Case B.
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Since (S™ x {0})U({s0} x [0, 1])U(D" 1 x {1})is an ANR and is closed in D"+ x
[0, 1], we infer from Proposition 3.2.11 that we can extend Y to a weighted map
T: D"+ x [0,1] — O(A). Finally, let us observe that Y(-,0): D"*! —o O.(A)
satisfies the following condition 'Y’(:E, 0) = p(z), for every z € S™.

Step 2. Let € > 0. Then under the assumptions of Proposition 4.2.4 it follows
that there exists 6 < e such that

(a) Os5(A) — O-(A) is w-homotopy 0-trivial,

(b) for each positive integer 1 < k < n and 29 € Os(A) the inclusion

O5(A) — O.(A) induces the trivial homomorphism

i (05(A), 20) — m; (O=(A), xo)-

Moreover, for § there exists n < § such that

(c) Oy(A) = Os5(A) is w-homotopy 0-trivial.
Let us fix 1 < k < n and let sy be the base point of S*. Now we shall show that
for any w-map ¢: S* — O,(A) there exists a w-map @: D**1 — O.(A) with
P(x) = p(z) for all x € S*. To see this, let us fix a w-map ¢: S¥ — O, (A).
Let us observe that if for a given w-map ¢: S¥ —o O, (A) there exists a w-map
a:[0,1] — Os(A) such that

(4.20)  «(0) = ¢(s0), wa(0,y) =we(so,y) forallye O,(A4), #a(l) =1,

then by Step 1 we infer that there exists a w-map @: DF*! — O.(A) with
@(z) = p(z) for all € S*. Therefore we can assume that for ¢: S* — O, (A)
there is no a:[0, 1] —o Os(A) satisfying (4.20). Let O,(A) = U,¢; O#, where
Of is the connected component of O, (A). Since O,,(A) is locally connected, it
follows that the connected components of O,(A) are open in O, (A). Hence, by
the compactness of ¢(S*¥), we obtain

#I’::{j€I|<p(Sk)ﬂOf7é(/)}<oo.

Obviously, p(S*) c | el Oﬁn. Let us choose a point y;,, in each component
O;‘m and let us define a w-map a: S* —o O, (A) as follows

Oé(l'):{yjl,... >yjs}7 wa(xay)zoa

for all z € S*, y € O,(A), where s := #I'. Let ¢*:S* — 0,(A) be defined
by ¢ := ¢ U a. Then, by Proposition 2.2.8, a w-map ¢ has the following
decomposition p® = p§ U...U p%, where any w-map ¢35, satisfies the following
condition ¢, (5¥) € O . Let (,,:{0,1} — O£ , m =1,... s, be defined as

Im?

follows
wp,, (0,y) := wypa (s0,y), forallye Ofm,
wﬁm(17y]m) = IIU(SD%)’ w57n<1’y) = 0 fOl“ y # ijL’
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where 1 < m < s. Since the inclusion O,(A) — Os(A) is w-homotopy 0-
trivial, it follows that for any 3, there exists a w-map B [0,1] — Os(A) with
B};|{0,1} = Bm. Hence, by Step 1, for any w-map ¢2,:S% — O,(A) C Os(A)
there exists a w-map $%: D1 — O.(A) such that ¢% (z) = ¢% (z) for all
x € S*. Consequently, a w-map @: D**!1 — O_(A) given by

e =T U...Upy,

is an extension of ¢®: S¥ —o O,,(A). Since w-maps ¢ and ¢ satisfy the condition:

wSlJ(xvy) = Wy (xvy)a

for all x € S* and y € O.(A), Lemma 2.2.9 implies that ¢ is w-homotopic to
©%; and hence, by Proposition 3.2.11, we conclude that there exists a w-map
@: DM — O.(A) such that $(x) = ¢(x) for all z € S*. O

Now we will prove that the converse of the last statement is also true.

Proposition 4.2.5. Let X be a space and let A be a compact subset of X.
If the inclusion A — X has a w-UV™-property (n > 1), then for each € > 0
there exists 0, 0 < § < &, such that the homomorphism

hi: i (05(A), w0) — 71 (0= (A), z0)

induced by the inclusion i: O5(A) — O (A) is trivial for 1 < k < n and for all
xo € Os(A).

Proof. Let us fix € > 0. Let § > 0 be such that for any 1 < k < n and any w-
map ¢: S¥ —o Os5(A) there exists a w-map @: D**1 —o O (A) with ¢(z) = p(z)
for all x € S*. Now we are going to show that the induced homomorphism
hi:m? (O5(A), z0) — T (0 (A), x0) is trivial for any 1 < k < n and for each
xo € Os(A). To see this, let us fix 1 < k < n and zg € Os(A). Let ¢: (S*,59) —o
(Os(A),z0) be a pointed w-map with I, (¢) = 0. Hence, by the definition of 4,
we infer that there exists a w-map @: D**! — O.(A) such that $(x) = ¢(x) for
x € S*. Then, in view of Lemma 2.4.2, i o ¢ is w-homotopic to the constant map
at zo (with the weighted index equal to 0) relative to sg, which proves that the
homomorphism hy, is trivial. O

As an immediate consequence of the above propositions we obtain:

Corollary 4.2.6. Let X be a locally connected space and let A be a compact
subset of X. Then the inclusion A — X has a w-UV"™-property (n > 1) if and
only if for any € > 0 there exists §, 0 < & < €, such that

(a) Os5(A) — O.(A) is w-homotopy 0-trivial,
(b) for each positive integer 1 < k < n and zg € Os(A) the inclusion
O5(A) — O (A) induces the trivial homomorphism

i (05(A), 20) — ;! (O=(A), zo)-
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Proposition 4.2.7. Let X be a locally path-connected space and let A C
X be a compact subspace. Then for any open subsets U and V' satisfying the
condition A CV C U C X the inclusion V — U is w-homotopy 0-trivial.

Proof. Let V' C U be open subsets of X and let C be a connected component
of V. Due to our assumptions C' is locally path-connected and connected. Hence
C'is path-connected. Let ¢: 0A1 —o C' be a weighted map with > - w,(0,y) =
> yec We(l,y). Then, in view of Lemma 2.2.10, there exists a weighted map
¢: Ay — C with |0A; = . This completes the proof. a

Consequently, combining Corollary 4.2.6 with Proposition 4.2.7, one obtains
the following corollary.

Corollary 4.2.8. Let A be a compact subset of a locally path-connected
space X, n > 1. Then A has a w-UV™-property if and only if for each € > 0
there exists 6 > 0 such that the inclusion Os(A) — O.(A) induces the trivial
homomorphism hi: 7y (Os(A), zo) — T (O (A), o) for any 1 < k < n and for
all zg € Os(A).

Taking into account Corollary 4.2.8 and Theorems 1.5.3 and 2.4.1 we get the
following theorem.

Theorem 4.2.9. Let X be an ANR and let A be a compact subset of X,
k > 1. Then the inclusion j: A — X has a w-UV¥*-property if and only if
for each € > 0 there exists 0 < 0 < € such that the induced homomorphism
ji: Hi(O5(A),Q) — H;(0.(A),Q) is trivial for each 1 <i < k.

The following lemma is crucial for our considerations.

Lemma 4.2.10. Let X, Y be ANRs and let Xg C X and Yy C Y be compact
subsets. In addition, assume that the inclusion Xy — X has a w-UV™-property,
where n > 1. If Yy is homeomorphic to X, then the inclusion Yo — Y has also
a w-UV™-property.

The proof of the above lemma is the same as in [4]. The only difference is
using the w-homotopy functor instead of the homotopy functor.

Proposition 4.2.11. Let X be the Hilbert cube and let A C X be a compact
subset. Assume, furthermore, that A is k-acyclic, k > 1. Then for each € > 0
there exists 0 < e such that the inclusion j: O5(A) — O.(A) induces a trivial
homomorphism j.: Hy(Os(A), Q) — Hy(O-(A),Q) for each 1 <1< k.

Proof. Our proof is based upon ideas found in [31]. Since X is the Hilbert
cube, there exists, in view of lemma 1.2.6, a sequence {Z;}52; of compact ANR-
spaces such that Z;41 C Z;, for i > 1, and (1,2, Z; = A. Let us fix Z;,. Now



CHAPTER 4. APPROXIMATION METHODS 93

consider the diagram

ﬁl<Zsa Q)

J/pls

(A, Q) —2— H1(Ziy, Q) ——— H)(Z,,, A; Q)

Al
J/ %

Hl(Zioa ZS7Q)3

where all homomorphisms are induced by inclusions, the triangle is commutative;
and both the horizontal and vertical lines are exact, s > ig,l > 1. Let us observe
that if H;(A,Q) = 0 for some [ > 1, then from the above diagram we deduce
that kerw; = 0. Additionally, dim Im w; < oo, because compact ANRs have the
Cech homology of finite type. Now we shall show that there exists an index N,
such that the homomorphisms p§: H;(Zs, Q) — Hi(Zi,, Q) are trivial for s > Nj,
and 1 <1 < k. Let 1 < lp < k be fixed and let zi“,... ,zi‘l)o be a basis for

wy, (Hy, (Ziy, Q) C Hyy(Ziy, A; Q). Now, by applying Lemma 1.5.2 to
(ZimZS) ) (Zi07ZS+1) ) (Ziovzs+2) 2.

and ufO:IfIZO(ZiO,A;(@) — Hy,(Zi,, Zs; Q) for s > iy, we obtain Nli(;) > ip such
that the homomorphism uf0|<zi°, e ,zifl’[)}: (... ,zifl’o> — Hy(Zi,, Zs;Q) is
a monomorphism for s > N;;’. Moreover, since kerw;, = 0 and A\j = pj o
wy,, we deduce that the homomorphism /\lSO:fIlO(ZiO,Q) — Hy,(Ziy, Zs;Q) is

a monomorphism for all s > Nlig’. Thus, from the exactness of the vertical

sequence in the above diagram, we infer that Imp; = 0 for s > Nli;’. Let
Ny :=maz{N}°,... ,N;°}. Then for 1 <1< k and s > N;, the homomorphism
(4.21) pi: (2., Q) — Hi(Zs,,Q)

is trivial. Let € > 0. Now, let us observe that there exists ig such that Z, C
Oc(A) for s > i, because A = ()2, Z; and Z;11 C Z;. Let us fix s > N;

(N;, = o). Since Zg is a compact ANR, there exists an open subset U C X with
Zs CU C O.(A) and a retraction r5: U — Z;. Let f: U — O.(A) be factored as

U Lz, 2z, s 0.(A),

where j; and is are the inclusions. Then, by the compactness of A and Lemma
1.2.5, we infer that there exists ¢ < e with O5(A) C U and such that f|O5(A) is
homotopic to the inclusion j: Os(A4) — O.(A). Hence

(f105(A))ut = ju: Hi(Os(A), Q) — Hi(0:(A), Q).
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But (f]Os5(A))ws = (is)si © (Js)st © (rs|Os(A))w and (js)« = pj, so, in view of
(4.21), the homomorphism (f|Os(A)).; is trivial for 1 < I < k. Consequently,
j*l:ﬁl(Og(A),Q) — I—_u[l(OE(A),Q) is the trivial homomorphism for 1 < I < k,
which completes the proof. (|

Corollary 4.2.12. Let X be an ANR and let A C X be a compact subset.
Assume, furthermore, that A is k-acyclic, k > 1. Then for each € > 0 there exists
0 < e such that the inclusion j: Os(A) — O.(A) induces a trivial homomorphism

ju: Hi(O5(A), Q) — Hi(0:(A),Q) for 1 <1< k.

Proof. Since any compact metric space admits an embedding into the Hilbert
cube Q¥, it follows that there exists a compact subset B of Q“ which is homeo-
morphic to A. Moreover, since A is k-acyclic and since A is homeomorphic to B,
we deduce that B is also k-acyclic. Now, in view of Proposition 4.2.11 and The-
orem 4.2.9, we infer that the inclusion B — Q¥ has a w-UV*-property. Hence,
by Lemma 4.2.10, the inclusion A < X has a w-UV*-property. Consequently,
by Theorem 4.2.9, the assertion follows. (|

Proposition 4.2.13. Let X and A C X be as in Proposition 4.2.11. If for
each € > 0 there exists § < & such that the inclusion j: Os(A) — O (A) induces
a trivial homomorphism j.: Hi(Os(A),Q) — H;(O:(A),Q) for any 1 <1 < k,
then A is k-acyclic.

Proof. Let {Z,}52, be a sequence as in Lemma 1.2.6 corresponding to A.
Then, under our assumptions, there exist two sequences {e,,}5°_; and {im, }00_;
such that

(1) Zi =Q% e1=1,1;1 =1, Em+1 < Em;

(2) Zim+1 C Ogm (A) C Zim for m > 1;

(3) the inclusion j: O;,, ., (A) — O, (A) induces the trivial homomorphism
ju: Hi(O.,,.,, (A),Q) = Hi(O-,, (A),Q) for any m > 1, 1 <1< k.

Since the inclusion J;,,: Z;,, .,

Em41

— Z,;, can be factored as

Zim+2 — OEm+1 (A) — OEm (A) T L

the induced homomorphism (J; )*l:fifl(Zim”,@) — Hy(Z;,,Q) is trivial for
any m > 1 and 1 <1 < k. Therefore

(4.22) lim Hi(Z;,,, ), Q) =0,

m

and since A = (\"_, Zi,, _,, so by Lemma 1.5.1 and (4.22) we infer that

I—_UIZ(A, Q) =0 for 1 <1 < k, which completes the proof. O

Corollary 4.2.14. Let X be an ANR and let A C X be a compact subset.
If for each € > 0 there exists 6 < & such that the inclusion j: Os(A) — O (A)
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induces a trivial homomorphism j.: Hy(Os(A),Q) — H;(O-(A),Q) for any 1 <
I < k, then A is k-acyclic.

Proof. By the same argument as in the proof of Corollary 4.2.12, there exists
a compact subset B of the Hilbert cube @Q“ which is homeomorphic to A. Under
our assumptions Theorem 4.2.9 implies that the inclusion A < X has a w-UV*-
property. Hence, by Lemma 4.2.10, it follows that the inclusion B — @Q“ has
a w-UV*-property. Consequently, by Theorem 4.2.9 and Proposition 4.2.13, we
infer that B is k-acyclic. Since A is homeomorphic to B, we deduce that A is
also k-acyclic. This completes the proof. O

Finally, from Corollaries 4.2.12 and 4.2.14 we obtain the following theorem.

Theorem 4.2.15. Let X be an ANR and let A C X be a compact sub-
set, k > 1. Then A is k-acyclic if and only if for each ¢ > 0 there exists
0 <e such that the inclusion j: O5(A) — O (A) induces a trivial homomorphism

Gu: H1(O5(A), Q) — H;(O-(A),Q) for all 1 <1< k.

Now let us observe that Theorem 4.2.9 together with Theorem 4.2.15 implies
the following theorem.

Theorem 4.2.16. Let X nad A C X be as in Theorem 4.2.9 and k > 1.
Then A is k-acyclic if and only if the inclusion A — X has a w-UV*-property.

Since a subset A of a space X is positively acyclic if and only if it is k-acyclic
for all k£ > 1, we obtain, by Theorem 4.2.16, the main result of this section.

Corollary 4.2.17. Let X be an ANR and let A be a compact subset of X.
Then A is positively acyclic if and only if the inclusion j: A — X has a w-UV“-
property.

We shall conclude this section by introducing the following notion, which will
be used in what follows.

Definition 4.2.18. Let 0 < n < co or n = w. A weighted carrier ¥: X — Y
is said to be a w-UV™-wvalued carrier if, for each z € X, the inclusion ¥(z) — Y
has w-UV™-property.

4.3. Existence of approximations

In this section, we improve an approximability theorem for weighted carriers
defined on compact polyhedra due to G. Conti and J. Pejsachowicz (see Theo-
rem 4.1 in [10]). Next, following [3] and [27], we extend the above theorem to
the case of compact ANRs.

We start with the following lemma that is crucial in what follows.
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Lemma 4.3.1. Let X be a compact space and let Y be a space, n = 0.
If U: X — Y is a w-UV"™-valued carrier, then for each € > 0 there exists 6,
0 < § < e, such that for each x € X two properties hold:

(a) for any connected component C of Os(¥(Os(x))) and for every weighted
map p:0A1 —o C with 3 o wy(0,y) = 32, cowy(l,y) there erists
a weighted map @: A1 —o O (¥(0c(x))) such that ¢(x) = p(x) for all
x € 0Aq;

(b) if n > 0, then for each k, 1 < k < n+ 1, and any weighted map
©: 0Ag, —o Os(¥(0s(x))) there exists a w-map @: Ay, —o O (¥(O.(x)))
such that o(x) = p(x) for all x € OA.

The proof of the above lemma is similar in spirit to that of [27, Lemma 5.8],
so the details are left to the reader.
We shall establish the first approximation result of this section.

Theorem 4.3.2. Let X be a compact polyhedron (%) and let A be a sub-
polyhedron of X. Let Y be a locally connected space. If dim(X \ A) < n+1 and
U: X — Y is a w-UV"™-valued carrier, then for any e > 0 there exists § > 0 such
that if po: A — Y is a §-approximation of U: X —o Y| then there exists a w-map
p: X —o Y being an e-approzimation of ¥ with ¢|A = ¢y.

Proof. The main idea of our proof follows from [10], [27]. Let us fix € > 0
and let dim(X \ A) = ng. By using Lemma 4.3.1, we can construct a sequence
{ei}10, (1?) such that

(1) ep, i=¢,

(2) 4e; < egjqpq for 0 < i <mg — 1,

(3) for any « € X, any connected component C' of O, (¥ (O2,(x))), and
any weighted map ¢:0A; —o C with 37 o we(0,y) = >, ccwe(l,y)
there exists a weighted map @: Ay —o O, /2(¥(Og, j2(x))) such that
o(x) = p(z) for all z € AT,

(4) for any x € X, any positive k, 1 < k < ng — 1, and any w-map

©: OAk 1 —o Oge, (U(Oae, (z)))

there exists a w-map @:Agr1 — Oc,,,/2(¥(O,,,/2(x))) such that
p(z) = p(z) for all © € OAgy1.

Let 6 := gp and let @g: A — Y be a d-approximation of ¥: X — Y. Let (K, L)
be a triangulation of (X, A) finer than the covering {O.,/2(z)}sex of X, i.e.
|[K| = X, |L| = A and let L be a subcomplex of K. We shall prove now
that ¢: A — Y can be extended to an e-approximation of ¥: X —o Y. For this

(*®) Recall that by a polyhedron we shall mean the space |K| of a simplicial complex K
with the Whitehead topology (see also Preliminaries).

(1) During the construction we can assume that ng > 1, because otherwise ng = 0 and
then we put {&;}0, :=e.
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purpose, choose for each simplex o of K\ L a point x, such that |o| C O, /2(zs).
Let us notice that if o is a vertex v of K \ L, then we can take x, = v. Let v
be a vertex of K such that v € L. Since Y is locally connected, it follows that
the open set O, (¥(O,,(v))) is also locally connected and hence the connected
components of Og, (¥(Og,(v))) are open in O, (¥(Og,(v))). Consequently, by
the compactness of U(v), we infer that it meets only a finite number of connected

components of O, (¥ (O, (v))), say C7, ... ,Cy . Let us choose a point y; in each
C?. We define a weighted map ¢°: |K(©|U|L| — Y (?°) by the formula
wo(x) if x € |L],
() =

D Luoe(¥,CF 0)y) ifw = v e KO\ L.
=1

Obviously, ¢ is an eg-approximation of W:|K| — Y. Now we extend ¢" to
|[KM|UJ|L|. For this purpose, let us fix a 1-dimensional simplex o = [vg, v;] such
that o ¢ L. Since |o| C Og,/2(25), we have

Oeo(vi) C 060(|0|) - 080(060/2(x0’)) - 0250(x0)7 for i =0, 1.
Moreover, since ¢ is an gg-approximation of W: |K| — Y, we infer that
‘Po(vi) C O (¥(O)(vi))) C O2e (¥(O2e (25))), fori=0,1.

Now we shall show that for each piece C' of Oagy(¥(Oaze,(2s))) the following
condition holds:

leoc(QOO, Ca UO) = wloc(@ov Ca vl)-
Indeed, let us fix a piece C of Oge, (¥(O2¢,(z5))). Let

C;=Cn 050 (\IJ(OEO (Ui))),

for i = 0,1. Then C; is a piece of O, (¥(O,,(v;))), for i = 0,1. Since ¢° is an
go-approximation of ¥: |K| — Y, we obtain

(423) leoc(QOO» C, vi) = wloc(@ov Ci7 vi) = wloc(\Ilv Ci7 vi) = wloc(\I/7 C, vi)a

for ¢ = 0,1; where the first equality and the last one above follow from the
excision property of I0.. Consequently, since |o| is connected and

U(lo]) € W(Oc/2(25)) C Oee (¥ (O2e (25))),
we deduce from Lemmas 3.2.1 and 4.1.3 that
Ttoc (¥, C,vg) = Lploc(¥, C,v1).
Hence, taking into account (4.23) and (4.24), we obtain
Tutoc(¢°, Cyv0) = Tutoe (¢, C, v1).

(20) Given a simplicial complex we shall denote by K® the simplex of K consisting of all
simplexes o € K with dim(o) < 4.
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Thus, by the definition of g9, we can extend °||0c|: |00| —o Oae, (¥ (Oac, (75)))
to

Po |U| —° 061/2(\I/<061/2<$U)))'
Now we are going to show that ¢, is an e1-approximation of ¥:|K| — Y. First,

let us observe that for each x € |o| we have x5 € O, /2(%), since |o| C Og, /2(z5).
Thus

Oc, /2(¥(0z, j2(25))) C Oc, j2(¥(O¢, 12(Ocyj2(2)))) C Oc, (¥(Oc, (2)))-

This shows that ¢, (z) C Oc, (¥(Og, (2))), for each x € |o|. So, it is enough to
show that if C is any piece of O, (¥(Og, (z))), then

leoc(‘ﬂch C» :17) = wloc(\Ijv C» :17)
For this purpose, let us fix « € |o| and let C be a piece of O, (¥(Og, ())). Since
po(v0) C @o(lol) C O, 2(¥(O:, j2(25))) C Oc, (¥(Ox, (2))),
U(vo) € ¥(lo]) C O, y2(¥(O, 2(25))) C O, (¥(O, (2))),
it follows, in view of Lemma 4.1.3 and Lemma 3.2.1, that

(425) Iw]oc(@a’, 07 UO) = wloc(@o» 07 x)?
(426) leoc(\II?Cv UO) = wlOC(\Ilvcvx)'

Since ¢, ||00| is an gg-approximation of ¥: |K| — Y, we conclude that
SDU(UO) - OEO (\I/<O€0 (UO))) C O, (‘I](Oal (,’B)))

Then, by the excision property of I1oc, we have

(4.27) Ltoc(¢o; C,v0) = Lptoc($os C N Ocy (Y(Og, (v0))), v0),
(4.28) Lutoe (¥, C,v0) = Twioe (¥, €N Og, (¥(O, (v0))), vo)-

Now let us observe that C' N O, (¥(Og,(v0))) is a piece of O (¥(Og,(v0))).
Hence, taking into account the fact that ¢,||0o| is an ep-approximation of
U: |K| — Y, we obtain

(4.29) Lutoc(Pos C N O, (¥(Ogy(v0))),v0) = Lutoc(¥, C N Ogy (¥(Og, (v0))), vo)-
Consequently, from (4.25)—(4.29) we get
leoc(‘ﬂav C» 517) = wloc(\Ijv C» 517)7

which proves that ¢, satisfies the second condition of Definition 4.1.1. Now
using the gluing lemma we obtain a weighted map o': |[K(M|U|L| — Y being an
e1-approximation of ¥: |K| — Y with !||K©| U |L| = ¢°. Suppose now that
@™ |[K(M|U|L| — Y is an e,-approximation of ¥:|K| — Y, 7 < ng. Let 7 be an
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(7 + 1)-dimensional simplex such that 7 ¢ L. Then |7| C O, 2(27) C O¢, ja2(2+)
and ¢"(x) C O, (¥(O,,.(x))), for all z € |07]. Consequently,

¢"(107]) C Oc, (¥(O¢,(1071))) C Oc, (¥(Oc, (Oc, (27)))) C Oz, (¥(Ose, (27)))-

Thus, by the definition of &,, a w-map ¢"||07|: |07| — Oae, (¥(Ox2e,.(z,))) admits
an extension to

gp:‘Ll: || — O, ., /2(¥(Ox, ., j2(7))).

Let us observe now that for each x € |7| we have

Osr+1/2<\y(06r+1/2(l’7))) - 057‘+1(q/<057‘+1(x)))’

because |7| C O, /2(x) C O, ., /2(2;) and hence

Sp'rr—i_l(x) C 08r+1 (\I/<O€r+1 (LL'))),

for each € |7|. This implies that ¢! satisfies the first condition of Definition
4.1.1. Let us fix 79 € |07]. Now we shall prove that ¢" ! also satisfies the second
condition of Definition 4.1.1. For this end, let us fix « € |7| and let C be a piece

of Oc, , (¥(O,,,(x))). Then by Lemma 4.1.3 and Lemma 3.2.1 we get

(430) leoc(SD:+1» Ca 1'0) = wloc((P:+1a C» {E),
(431) Iu}loc(\Ijvcv :170) = wlOC(\Ilvcvx)'
Moreover,

(4-32) leoc(@:+lﬂcm08r (\D(Oér (:Bo))),:Eo) = w100<\yvcm06r (\D(Oér (:Co))),:Eo),

because " t1||d7| is an e,.-approximation of W. Next, by the excision property
of Iyloc, we infer that

(4'33) leoc(@:—+17 cn OET (\D(Oér (‘TO)))’ .%'0) = wlOC((P:+1’ Cv ,’Eo),
(4.34) Tpioc (T, C N O, (¥(O¢, (20))), 20) = Luioc(¥, C, xp).

Therefore, taking into account (4.30)—(4.34), we obtain
Lutoc (@5 P[0T, O ) = Lutoe(¥, C, ),

which ends the proof that ¢"*! is an ¢, 1-approximation of ¥. Now, using the
gluing lemma, we obtain a weighted map ¢"*1: | K"tV |U|L| — Y being an €, 1-
approximation of U:|K| —o Y with "t ||K(")| U |L| = ¢". This completes the
inductive step. Consequently, after ng+ 1 steps, we arrive at an e-approximation
@ = "0 of U. The theorem is proved. g

Let us notice that the following theorem was proved in [10].
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Theorem 4.3.3. Let Xg C X be a finite polyhedral pair, let' Y be a metric
ANR and let : X — Y be a weighted carrier with positively acyclic values.
Given any € > 0 there exists 6 > 0 such that any d-approximation p: Xg — Y of
D|Xo: Xg — Y can be extended to an e-approximation ¢: X — Y of ®.

It should be noted that Theorem 4.3.2 was proved under the weaker assump-
tions than Theorem 4.3.3 but with a slight different conclusion, which will be
much more convenient in applications.

The following three lemmas will be used in the proof of the main result of
this section.

Lemma 4.3.4 ([23]). Let K be a compact subset of X and let U be an open
neighbourhood of K in X. Then for any retraction U — X and any € > 0
there exists & > 0 such that O5(K) C U and dx (r(z),z) < € for each x € O5(K).

Lemma 4.3.5 ([49]). Let (X, A) be a pair of compact ANRs and let n > 0.
Then there is a finite polyhedral pair (P, Py) and maps of pairs p: (P, Py) —
(X, A) and ¢: (X, A) — (P, Py) such that dx(po q(x),x) <n for each x € X.

Lemma 4.3.6 ([8]). Let X be a compact ANR and let ¢ > 0. Then there
exists § > 0 such that if fo, f1: X — X are §-close (*'), then there exists a map
h: X x [0,1] = X such that

(a) h(z,0) = fo(x) for allz € X,

(b) h(x,1) = fi(x) for allz € X,

(¢) diam(h({z} x [0,1])) < & for any x € X, where diam(h({z} x [0,1])) :=
sup{dx (h(x,t1), h(x,t2)),t1,t2 € [0,1]}.

We shall now prove the following lemma that will play a central role in the
sequel.

Lemma 4.3.7. Let (X, A) be a pair of compact ANRs and let Y be a metric
space. In addition, let U: X —o Y be a weighted carrier and let € > 0. Then
there exists v > 0 such that if a weighted map o: (X x {0}) U (A x [0,1]) =Y
has the property that the weighted maps ¥o(-,0): X — Y and ¢o(-,t): A — Y,
for each t € [0,1], are y-approzimations of U, then there exists a weighted map
P: X x [0,1] — Y such that for each t € [0,1] the weighted map ¥(-,t): X — Y
is an e-approzimation of ¥ and ¥|(X x {0}) U (A x [0,1]) = .

Proof. The basic idea of the proof follows from [3]. Let M := (X x {0})U
(A x [0,1]). Since X x {0}, A x [0,1], (X x {0})N (A x [0,1]) = A x {0} are
ANRs, we infer from Theorem 1.2.4 that M is also an ANR. Hence there exists
an open neighbourhood U C X x [0,1] of M and a retraction r: U — M. Let dg

(21) Let f,g: X — X be two mappings and let dx be a metric in X, € > 0. We shall say
that f and g are e-close provided for every z € X we have dx (f(z), g(x)) < e.
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be as in Corollary 4.1.11 for ¥ and ¢/2. From Lemma 4.3.4 it follows that there
exists 0 < v < min{e/2, dy} such that

(4.35) O,(M) Cc U and dxx[o1](r(2), 2) < min{e/2, 0y}

for every z € O4(M). Now take a w-map 9 as in the formulation of Lemma
4.3.7 according to 7. Define a w-map 1: O, (M) —o Y by the formula: g o r.
Let us observe that for each (x,t) € Oy(M) we have

(4.36) P(z,t) C O-(T(0:(2))).
Indeed, let (2/,t') := r(x,t). Then, by (4.35), we get
(4.37) dx(2',2) < dx x[0,1] (r(x,t), (z,t)) < min{e/2, 0y }.

Therefore

U(@,t) = tho(a’, 1) € O5(¥(04(2))) C Oc(¥(O:(x))),

which verifies (4.36). Let V be an open neighbourhood of A in X such that
V' x[0,1] C O,(M). Since A and X \ V are disjoint subsets of X, there exists an
Urysohn function, i.e. there is a map u: X — [0, 1] such that u(z) = 1, for every
x € A and u(z) = 0, for every X \ V. Define a w-map ¢: X x [0,1] — Y by

U@, t) = (@, u(2)t).

Now, let us observe that from (4.36) we get

P(x,1) C O (¥ (Oc(2)))

for all (z,t) € X x [0,1]. Therefore the proof will be completed, if we show
that for each ¢ € [0,1] a w-map ¥(-,t): X —o Y satisfies the second condition of
Definition 4.1.1. To this end, we need to consider 3 cases.

Case 1. Let xy € A and let C be a piece of O (¥(O:(z9))). In addition, let
us fix tg € [0,1]. Then we have

¥(z0,t0) = ¥(z0, u(x0)to) = (0, t0) = 10 0 7(x0, to) = Yo(wo, to)-

Hence

Luioc(Y( -, 10), C,x0) = Luwtoc(¥o( -, o), C, x0).

Since O~ (¥ (O, (x0))) C O(¥(O:(z0))) and C C O (¥ (O:(x0))), we infer that
C N O (¥(04(x0))) is a piece of O, (¥(O(x0))). Therefore

Tuioc(¥o( -, t0), Cz0) = Twioc(to( -, t0), C N O (¥ (O (20))), xo)
= wloc(\D,CﬂOV(\II(O,Y(xo))),xo),
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where the first equality follows from the excision property of Lo for ¥o( -, o),
but the second one follows from the fact that ¥g(-,%0): A — Y is a y-approxi-
mation of W. Using once again the excision property of I10c, we get

leoc(q/a an O'y<\I](Ov(5UO)))a 1'0) = wloc(\I/a C, ,’Eo),
which proves that

leoc(’l/)( : 7t0)7 Ca IO) = wloc(\Ijv 07 :170)'

The proof of Case 1 is complete.
Case 2. Let zp € X\ V and let C C O.(¥(O.(z0)) be as above. In addition,
let us fix tg € [0,1]. Then

Y(wo, to) = ¥(x0, u(z0)to) = ¥(x0,0) = 1o o r(w0, 0) = b0 (20, 0).
Hence

leoc(w< : 7t0)7 Ca 1'0) = wloc(wO( i) 0)7 C, LL’0).
Since 9o ( -, 0) is a y-approximation of ¥ we have

(4.38)  Twtoc(vo(-,0), C,wo) = Lwioc(to(+,0), C N Oy (¥(O4(x0))), o)
= wloc(\I]aCﬂOv(w<07<$0)))7$0)
(4.39) = Tuloc(¥, C, 20)

where the equalities in (4.38) and (4.39) follow from the excision property of
Twioc. Therefore

leoc(w< : 7t0)7 C, 1'0) = wlOC(\IJa C, xO)»
which completes the proof of Case 2.

Case 3. (In this case Corollary 4.1.11 plays a crucial role) Let 2y € V' \ A
and let C' C O.(¥(O.(x0))) be a piece of O (V(O:(xg))). In addition, let us fix
to € [0,1]. Let (2/,t') := r(xo,to). Since

w<$07t0) =1 o T‘(CL’Q,to) = ¢0(x/’tl)’

we have

(440) leoc(w< . ,to), C» :EO) = wloc("/JO or, C, (an tO)) = wloc(wO( . at/)a C» xl)-

Moreover,

tho(a', 1) € O4(¥(O4(2'))) C Oc(¥(Oc(0))),
because o(-,t') is a y-approximation of ¥ and dx(xg,2’) < /2 by (4.37).
Consequently, the same reasoning as in Case 1 establishes that

(441) leoc(w0<' ,t/),C, xl) = wloc(\IIaC? :EI)'
Since dx (z9,2") < dg, Corollary 4.1.11 implies that
(442) leoc<\llvca LL'/) = wloc(‘llvca 1'0).
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Therefore, taking into account (4.40)—(4.42), we get
Ltoc(¥( -1 t0), C,0) = Lutoc(¥, C, x0),
which completes the proof of Case 3, and hence the lemma follows. O

We now prove the main result of this section.

Theorem 4.3.8. Let X be a compact ANR, let A C X be a closed ANR,
and let' Y be a locally connected space. In addition, let V: X —Y be a w-UV<-
valued carrier. Then for each € > 0 there exists § > 0 such that if g: A — Y
is a d-approzimation of U: X —o Y, then there exists a weighted map p: X — Y
being an e-approzimation of ¥ with ¥|A = 1.

Proof. The proof is based on [3]. Let € > 0 be fixed. Let v be as in Lemma
4.3.7 according to X, A, ¥, and . Let §y be as in Corollary 4.1.11 according
to ¥ and e. In addition, let 7 > 0 be as in Lemma 4.3.6 for X and min{~y/2, dy}.
We can assume that 7 < min{vy/2,dg¢}. Then for a pair of compact ANRs (X, A)
and 7 there is, by Lemma 4.3.5, a polyhedral pair (P, Py) and maps of pairs

(4.43) p: (P, Py) — (X,A) and ¢:(X,A) — (P, )

such that for each 2 € X we have dx(pog(z),z) < n. Since P is compact space,
we infer that there exists 0 < v < «y such that if z,y € P, then dx (p(z), ¢(z)) <
/2 provided that dp(z,y) < p. Thus p(O,(q(z))) C O,(x) for each z € X. Let
®: P — Y be a weighted carrier given by ® = Wop. It is easy to see that ®
is a w-UV«-valued carrier. In view of Theorem 4.3.2, there exists v > 0 such
that if 6y: Py — Y is a v-approximation of ®: P —o Y, then there exists a pu-
approximation §: P — Y of ® with 6| Py = . Next, in view of Proposition 4.1.7,
there exists 0 < § < /2 such that if g: A — Y is a d-approximation of ¥: X —o
Y, then g o p|Py: Py — Y is a v-approximation of ®: P — Y. Now, let g
be a d-approximation of W. We shall prove that there exists a weighted map
: X — Y being a J-approximation of ¥ with ¥|A = 1g. Let us observe that
by the choice of ¢ the composition ¢ o p| P is a v-approximation of ®: P — Y.
Therefore, from Theorem 4.3.2 it follows that a weighted map g op|Py: Py — Y
admits an extension zZ:P —o Y being a p-approximation of ®. Let us define
now a weighted map 1: X — Y by ¢ = 1; o q. We shall show now that 1 is
a y-approximation of ¥: X — Y. Since 1; is a p-approximation of ®, we have

d(@) = ¥lg(x)) C 0,(2(0,(a())))

for each € X. Hence, taking into account a definition of ® and (4.43), we get

Ou(®(0u(q(2)))) = Ou(¥ 0 p(Op(a())))
C Ou(¥(04(2))) € O4(¥(04())),
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for each x € X. Now, we are going to show that for any z € X and for any piece
C of O,(¥(0,(x))) the following condition is satisfied:

Luloc (E, C, I) = wloc(\I/7 C, I)
To this end, let us fix € X and C C O,(¥(O,(x))). Let us observe that

Tutoe(¥, C, )

= Tutoc(1, C N O, (¥(0u(g(2)))), z)
= Lutoc(1 04, C N OL(W(Ou(g(2))),x)  (F=10q)
= Lutoe(1h, C' N 0, (¥(0,(g(x)))), q(x))  (Corollary 3.2.5)
= Lutoc(®,C'N Ok (¥(Op(q()))), a(x)),

where the last equality follows from the fact that {/; is a p-approximation of ®.
Consequently, we get

(excision of Iyoc)

Luntoc(®,C N OL(¥(0u(q(x)))), a(x))
= Tuloc(®, C, q(x)) (

= Lyioc(Yop,C,q(z)) (& =Vop)

= Luloe(¥,C,pog(x)) (Corollary 3.2.5).

Since dx (p o q(z),x) < n < dy, due to Corollary 4.1.11, we get
leoc<\llv Cap © Q(x)) = wloc(\llv C, LL’)

Summing up, we have showed that

Twtoc (E» C, fL') = wloc(\llv C, LL’),

which proves that 1) is a y-approximation of ¥. Now we shall use Lemma 4.3.7

excision of Ipoc)

to modify the weighted map 1) because 1) is not the required approximation of ¥
yet. For this purpose, let us recall that for each a € A we have

b(a) =1 o qa) = do(p o g(a)).

Moreover, idg: A — A and po g:A — A are n-close. Therefore, in view of
Lemma 4.3.6, there exists a map h: A x [0,1] — A such that
(4.44) h(-,0)=poglA and h(-,1)=1ida,
(4.45) diam(h({a} x [0,1])) < min{v/2,dg}.
Let ¢o: (X x {0})U (A x [0,1]) — Y be given by

e if (2,) € X x {0},

¢0(x7 t) = .
Yoo h(x,t) if (z,t) € Ax[0,1].

Since

Yo o h(a,0) = (g o p) 0 q(a) = ¥(a),
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for all @ € A, in view of Corollary 3.2.5, we get
leoc (E» U» CL) = lwloc (1/10 . (p © Q)a U, a) = wloc(wm va © Q(a))
= wloc(mevh(avo)) == wloc(’l/)O o h7U7 (CL,O)),

where a € A and U is an open subset of Y such that ¢(a) N OU = (). Hence, by
the gluing lemma, ¢q is a weighted map. We shall show now that for all ¢ € [0, 1]
a w-map ¢o(-,t) is a y-approximation of ¥ (the case ¢ = 0 has already been
proved). Let us fix t € (0,1] and a € A. Then

¢0(a7t) =1po h(avt) C OJ(W(OS(h(avt))))v

because vy is a d-approximation of W. Moreover, since h(a,t) € O, /2(a), we
have Os(h(a,t)) C Oy/215(a). Thus

(4.46) do(a,t) C O4(¥(0,(a))),

since § < 7/2. Let C be a piece of O,(¥(0O4(a))). Now we are going to prove
that

leoc(¢0( . at)v Ca a) = wloc(‘llv Ca a)'
First, note that

leoc(¢0( : 7t)a C, (L) = wloc(wO o h( : at)v C, a) (¢0( : 7t) =1po h( : 7t))
= Luloc (o, C, h(a,t)). (Corollary 3.2.5)

Additionally,

Yo o h(a,t) € O5(¥(0s(h(a, 1)) C Os(¥(0s(042(a))))

C O04/2(¥(04(a))) C O4(¥(04(a))),
and hence CNOs(V(O5(h(a,t)))) is a piece of Os(¥(O5(h(a,t)))). Consequently,
by the excision property of Ioc, We get
Lptoc (o, Cy h(a,t)) = Iyloc(o, C N Os (¥ (0O5(h(a,t)))), h(a,t))
and
Lvtoc(th0, C N Os (¥ (O5(h(a,t)))), h(a,t))
== wloc(\I/7 cn 05(\11(05(}1(0'7 t))))v h(av t))v

because g is a d-approximation of ¥. Thus
leoc(‘lf, cn 05(\11(05(]7,(&, t)))), h(a, t)) = wloc(‘l’, C, h(a, t)) = wloc(\IJ, C, a),

where the first equality follows form the excision property of Ioc, and the
second one holds by Corollary 4.1.11, because, by (4.45), dx (h(a,t),a) < dy (let
us recall that dy was defined at the beginning of our proof). Consequently, we
have showed that

(447) leoc(¢0( . at)v Ca a) = wloc(‘llv Ca a)'
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From (4.46) and (4.47) we infer that the assumptions of Lemma 4.3.7 are sat-
isfied, and hence ¢ admits an extension ¢: X x [0,1] — Y such that for each
t € [0,1] the w-map ¢(-,t): X — Y is an e-approximation of . Finally, to
complete the proof, we define 1): X — Y by putting ¢ := ¢(-,1). |

In particular, we obtain the following corollary (see Corollary 4.2.17).

Corollary 4.3.9. Let X be a compact ANR, let A C X be a closed ANR,
and let Y be an ANR. In addition, let ¥: X — Y be an upper semicontinuous
multivalued map with acyclic values (with respect to the Cech homology with
coeffcients in Q). Then for each & > 0 there exists § > 0 such that if ¢g: A — Y
s a d-approximation of ¥: X —o Y, then there exists a weighted map p: X — Y
being an e-approximation of U with ¢|A = ¢q.

Moreover, from the above considerations we obtain the following corollaries.

Corollary 4.3.10. Let V: X — Y be a w-UV¥-valued carrier, let X be
a compact ANR and let Y be a locally connected space. Then for each € > 0
there exists an e-approzimation ¢: X —Y of U.

Proof. It is enough to take A = () in Theorem 4.3.8. O

Corollary 4.3.11. Let ©: X x[0,1] — Y be a w-UV¥-valued carrier and let
X, Y be as above. Then for each € > 0 there exists § > 0 such that if p;: X — Y
is a §-approzimation of O, then there exists an e-approximation : X x[0,1] — Y

of © such that Y| X x {i} = ¢; for i =0,1.

Proof. Let us take A = X x {0} U X x {1} and let ¢)9: A — Y be defined as
follows

wo(z) if (x,t) € X x {0},
Yo (:E, t) = .
e1(z) if (x,t) € X x {1}.
This completes the proof if we invoke Theorem 4.3.8. |

Corollary 4.3.12. Let X be a compact ANR and let Y be an ANR. In
addition, let ©:X x [0,1] — Y be a weighted carrier with positively acyclic
values (with respect to the Cech homology with coefficients in Q). Then there
is § > 0 such that if ¢;: X — Y is a d-approximation of ©, for i = 0,1, then
©wo,1: X — Y are w-homotopic.

Corollary 4.3.13. Let X and Y be as in Corollary 4.3.11. Let U: X — Y
be a w-UV¥-valued carrier. Then for each € > 0 there is a 6 > 0 such that
for any two d-approzimations g, p1: X — Y of U there exists a w-homotopy
P: X x [0,1] — Y such that

(a') ’(/J(,O) = Yo Cmdl/’(al) = ¥1,
(b) ¥(-,t) is an e-approximation of ¥ for any t € [0,1].
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Proof. Let ©: X x[0,1] — Y be a w-UV“-valued carrier defined by ©(z,t) =
U(z) for all z € X and ¢ € [0,1]. Then, in view of Corollary 4.3.11, there exists
the required weighted homotopy . (|

In particular, we get:

Corollary 4.3.14. Let X, Y and V: X — Y be as above. Then there is
6 > 0 such that any two §-approximations Yo, 1: X — Y of ¥ are w-homotopic.

Corollary 4.3.15. Let X be a compact ANR and let Y be an ANR. In
addition, let U: X — Y be a weighted carrier with positively acyclic values (with
respect to the C'ech homology with coefficients in Q). Then there is 6y > 0 such
that any two dy-approrimations Yo, P1: X — Y of ¥ are w-homotopic.

We shall end this section by proving approximation results for w-carriers
defined on pairs of compact ANRs.

We say that ¥: (X, A) — (Y, B) is a w-carrier if Ux: X — Y is a w-carrier
and U(A) C B. Tt is easy to see that if U: (X, A) —o (Y, B) is a w-carrier, then
W4 : A — B is also a w-carrier.

Definition 4.3.16. Let U: (X, A) —o (Y, B) be a w-carrier and let ¢ > 0. We
say that a w-map ¢: (X, A) —o (Y, B) is an e-approzimation of ¥ if p4: A — B
is an e-approximation of ¥ 4 and ¢x: X — Y is an e-approximation of ¥x: X —o
Y.

Definition 4.3.17. We say that ¥:(X,A) — (Y, B) is a w-UV¥-valued
carrier if W41 A —o B and x: X — Y are w-UV%-valued carriers.

Theorem 4.3.18. Let (X, A) be pair of compact ANR's, let (Y, B) be a pair
of locally connected spaces and let ®: (X, A) — (Y, B) be a w-UV*¥-valued carrier.
Then for each € > 0 there is a w-map : (X, A) — (Y, B) such that ¢ is an e-
approximation of .

Proof. The proof is similar to that of [3, Theorem 3.1(i)], but for the sake
of completeness we give details. Let us take ¢ > 0 and let 0 < § < € be as
in Theorem 4.3.8. Since ®4: A — B is a w-UV%¥-valued carrier, we conclude,
using Corollary 4.3.10, that there is a d-approximation ¢y: A — B of ® 4. Con-
sequently, in view of Theorem 4.3.8, there exists a weighted map ¢: X — Y
such that ¢ is an e-approximation of ®x: X — Y and ¢|A = ¢o. Hence
we obtain a weighted map ¢: (X, A) — (Y, B) being an e-approximation of
®: (X, A) — (Y, B). This completes the proof. O

Similarly to [3, Theorem 3.1(ii)], we get the following theorem.

Theorem 4.3.19. Let (X, A), (Y,B) and ®: (X, A) — (Y, B) be as in the
formulation of Theorem 4.3.18. Then for each ¢ > 0 there is § > 0 such that if
0, Y: (X, A) —o (Y, B) are d-approzimations of ®, then there exists a w-homotopy
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0: (X x [0,1], A x [0,1]) — (Y, B) such that 8(-,0) = ¢(-), 8(-,1) =(-) and
0(-,t): (X, A) — (Y, B) is an e-approzimation of ® for each t € [0,1].

Proof. Let ¢ > 0 and let ®: (X x [0,1], 4 x [0,1]) — (Y, B) be defined by
®(x,t) ;= ®(z) forall t € [0,1], x € X. It is easy to see that ® is a w-UV“-valued
carrier. Additionally, let us define M := (X x{0})U(Ax[0,1])U(X x{1}). Using
the same arguments as in the proof of Lemma 4.3.7, we see that M is an absolute
neighbourhood retract. Let 0 < v < € be as in the formulation of Theorem 4.3.8
for X x [0,1], M, 5XX[0)1]:X x [0,1] — Y and e. Moreover, Corollary 4.3.13
provides 0 < 6 < « according to ®4: A — B and 7. Let p,¢: (X, A) — (Y, B)
be given §-approximations of ®. Then, by definition of §, there is a w-homotopy
0: A x [0,1] — B such that

(a) 6(-,t) is a y-approximation of ®4 for all t € [0, 1],
(b) (-,0) =pa(-) and (-, 1) =a(-).
Now let us define a w-map 0: M —o Y as follows
ox(x) if (z,t) € X x {0},

O(x,t) =< O(x,t) if (x,t) € Ax[0,1],
Uvx(z) if (z,t) € X x {1}.

Since 0 is a ~y-approximation of EXX[OJ]:X x [0,1] — Y, we conclude from
Theorem 4.3.8 that there exists an extension 8: X x 0,1] — Y of § over X x [0, 1]
such that 8 is an e-approximation of 5XX[0)1]:X x [0,1] —o Y, which implies
that there is a weighted map 0: (X x [0,1], A x [0,1]) — (Y, B) satisfying all
requirements of the assertion. This completes the proof. (|

Corollary 4.3.20. Let (X, A), (Y,B) and ®:(X,A) — (Y, B) be as above.
Then there is 6 > 0 such that if v,¢:(X,A) — (Y, B) are §-approximations
of @, then there is a w-homotopy 0: (X x [0,1], A x [0,1]) —o (Y, B) such that
9("0) :(p(') and@(-,l) :w<)

4.4. Bijection theorem

In this section we will present a weighted version of Theorem 4.5 given in [27].
More precisely, we obtain a bijection between homotopy classes of weighted car-
riers and homotopy classes of weighted maps.

Given two spaces X, Y, we put

Ag(X,Y)={U: X — Y | ¥ is a w-carrier and for every € > 0,a,,(¥,¢) # 0}.

Definition 4.4.1. We say that ¥ € A(X,Y) if
(a) ¥ e Ay(X,Y);
(b) for any § > 0, there is € > 0 such that any two weighted maps ¢, €
ay(U,e) are joined by a w-homotopy v: X x [0,1] — Y such that
v(+,t) € ay(¥,0) for all ¢ € [0,1].
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Moreover, we put
Ac(Xo, X) ={¥ € A(Xy, X) | Fix(¥)NC = 0},

where Xy C X and C'is a closed subset of Xy. In what follows, by W (Xo, X) we
shall denote the set of all weighted maps ¢: Xg — X such that Fix(¢) N C = 0.
Now we will give the definition of homotopy in Ag (X, X).

Definition 4.4.2. Two weighted carriers ¥, ® € A (Xo, X) are called ho-
motopic (in Ac(Xo, X)) if there exists a mapping T € Ag(Xo x [0, 1], X) such
that

Y(z,0) = ¥(z), YT(z,1)=(x) forallze Xy
and z € Y(z,t) forallz € C, ¢t € [0,1]. If ¥ and ¢ are homotopic, then we write
U~ .

Proposition 4.4.3. If C is a closed subset of a compact space Xg, then the
relation ~¢ is an equivalence.

To prove the above proposition, we need the following lemma.

Lemma 4.4.4. Let X be a compact space and let T € Ag(X x [0,1],Y).
Then for each € > 0 and t € [0,1] there is § > 0 such that if ¢: X x [0,1] - Y
18 a d-approximation of Y, then ¢ is an e-approximation of Y.

Proof. Let € > 0 and fix t € [0,1]. In addition, let A\;: X — X x [0, 1] be
given by A¢(x) = (x,t). Obviously, T, = To\; and p; = po A, so the conclusion
follows from Proposition 4.1.7. |

Proof of Proposition 4.4.3. Obviously ~¢ is reflexive and symmetric. To get
the transitivity we need Lemma 4.4.4. The proof of this fact uses the same idea
as in the proof of Proposition 4.4 in [27], therefore, we omit it. |

We denote the homotopy class of ¥ € Ac(Xo, X) by [¥]c and the set of all
homotopy classes by [Ac(Xo, X)].

We say that two weighted maps in W (X, X) are homotopic if there exists
a weighted and fixed point free on C' homotopy joining these weighted maps.
We denote the homotopy class of ¢ € W (Xo, X) by [¢]c and the set of all
homotopy classes by [Wea (X, X)].

Remark 4.4.5. Let X be an ANR and let Xy C X be a compact ANR.
Then, in view of Corollary 4.3.13 and Corollary 4.2.17, we have W (X, X) C
Ac(Xo, X), where C' is a closed subset of Xj.

Now, we are in position to prove the main result of this section.

Theorem 4.4.6. Let (X, Xg) be a pair of compact ANR’s. If C is a closed
subset of Xo, then there is a bijection F:[Ac(Xo, X)] — [We(Xo, X)].

Proof. The proof of the above theorem is essentially based on the ideas
from [27]. Let [®)¢ € [Ac(Xo,X)]. Then, in view of Corollary 4.1.14, there
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exists 6(®) > 0 such that any §(®,C)-approximations of ® is fixed point free
on C. Since & € A (Xo, X), there exists e(®,C) < §(P,C) such that for any
0 < e < e(P,0), any two e-approximation of ® are joined by a w-homotopy
being a 6(®, C)-approximations of ®. Consequently, the above considerations
allow us to define a function F' as follows:

F([®lo) = [#lo,

where ¢: Xg — X is an arbitrary (®, C)-approximation of ®. One can show
that the above definition is correct (The proof uses the arguments similar to
those in the proof of Theorem 4.5 in [27], therefore, we omit it).

Now we have to show that F' is a bijection. Observe that the surjectivity
of F follows from Remark 4.4.5. To prove the injectivity of F it is enough to
show that for any ® € Ax(Xo, X) there exists € > 0 such that if ¢ is an e-
approximation of @, then ¢ € [®]¢. For this purpose, let us fix & € Ax (X, X).
In addition, let § > 0 be as in Proposition 4.1.13 for ® and let 0 < £ < § be as
in Definition 4.4.1 for ® and 4.

Before moving further, we need to prove the following lemma.

Lemma 4.4.7. Let Xg and X be as above and let &: Xg — X be a weighted
carrier. In addition, let § > 0. Then Vg: Xog — X given by

Ug(z) = D(®(D(x,9)),0)
s a weighted carrier.

Proof. First, we shall show that U4 is upper semicontinuous. For this pur-
pose, it is enough to show that the graph I'y,, is a closed subset of Xy x X. Let
{(®n,yn)} C Ty, be a sequence such that {(zn,yn)} — (z,y) € Xo x X. Since
Yn € Yo(x,) = D(®(D(zp,9)),0), it follows that there exists a sequence {y,}
such that g, € ®(D(zp,0)) and dx(yYn,Un) < 0 + 1/n, for all n € N. Moreover,
there exists a sequence X, € D(zp,0) with ¢, € ®(X,,). We can assume, without
loss of generality, that T, — Zp € D(x,d) and g, — Zo. Since ® is u.s.c. we
conclude that

go S (I)(f(o) C @(D(l’o,(;))
Thus
Yo € D(yo,0) C D(®(Zo),0) € D(®(D(xo,6)), ),
and hence (z9, o) € Iy, .

The remaining part of the proof will be devoted to the construction of a local
weighted carrier for ¥g. To this end, let us fix a point zg € X and let V' be an
open subset of X such that g (z9) NV = (). Then we put

(448) leoc(\pqthvV) = wloc(q)vx()vv)'

First, observe, first, that the above definition is correct since ®(x) C Vg (x)
for any x € X. Moreover, it is easy to see that the local weighted index given by
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(4.48) has the following properties: existence and additivity. In order to state
the local invariance property of I10c for Ug, take a point g € X and an open
subset V of X with Wg(29) NOV = (. Since g (xo) NV and Wg(x) N (X \ V)
are compact, there exist open sets U; and U such that

\I/<p($0)ﬂVCU1 CUl CcV and W@(xo)ﬂ(X\V) CUQCUQ CX\V

The upper semicontinuity of &y implies that there exists an open neighbourhood
O}, of zg such that Vg (x) C Uy UU; for all € O], . Moreover, there exists an
open neighbourhood O, of a point zo such that

leoc(q)v Zo, V) = wloc((I)v z, V)
for any = € O} . Let Oy, := O}, N O}, . Consequently, (Vg,V,2) € D(®y) and
leoc(\pqh Zo, V) = wloc((I)v Zo, V) = wloc((I)v z, V) = wloc(\IJ'ibv &Z, V)v
for any = € O,,, which completes the proof of Lemma 4.4.7. O
Let ¢ be an e-approximation of ® and let Ug: Xy — X be given by Uy (z) =
D(®(D(z,¢)),e) for any 2 € Xy. In addition, define x: X x [0, 1] — X as follows
O(x) ifte]0,1/3),
x(x,t) =< Uoe(x) ifte[1/3,2/3],
olx) ifte(2/3,1].
Following the same lines as in the proof of Lemma 4.4.7, one can easily prove
that x is upper semicontinuous. Define a local weighted carrier Lyoe: D(x) — Q
for x by
Lploc(®,V,2)  ift €[0,1/3),
(4.49) Tpioc (X, Vs, (2,t)) = < Tpioc(Po, V,x) if t €[1/3,2/3],
Loloc(p, V,2)  ift €(2/3,1],
for all (x,V, (z,t)) € D(x), where Ug(z) := D(®(D(x,¢)),¢e) for any x € Xj.
Now observe that such a local weighted carrier has the following properties:
existence and additivity. In order to prove the local invariance property of Iioc
we need to consider only two cases.
Case 1. Fix zg € Xy and let tg = 1/3. In addition, let V be an open subset

of X such that x(zg,to) NOV = . Since ¥y is a weighted carrier, there exists
an open neighbourhood Oy, of xg such that

(450) leoc<\I]<I>a‘/a$0) = wloc(‘lhba‘/ax)a

for any = € O,. Moreover, (?,V,z) € D(¥4) for all z € O,,. Consequently, by
(4.48), one has

(451) Iw10c<\I]<I>7V7$) = wloc((bvvvx)?
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for any « € O,,. Thus, taking into account (4.49)—(4.51), one obtains

leoc(Xa ‘/7 (x07 tO)) == wloc(X, V7 (Iv t))v

for all (z,t) € O, x (0,2/3).

Case 2. Fix xy € Xo and let to = 2/3. Let V be an open subset of X such
that x(zo,t0) N OV = 0. Since Vg is a weighted carrier, there exists an open
neighbourhood O, of z¢ such that

(452) leOC<\I]‘I>7 v, 1'0) = wloc(\I]<I>a v, fL') and qj@(x) NoV = (Z)v

for all x € Oy,. Since ¢ is an e-approximation of @, for all z € X and any piece
C of O.(¥(Oc(x))), one has

(453) leoc<Q0,C7x) = wloc((I)vca .’L')

Observe that O (®(O.(x))) NOV = 0, for any x € O,,, since O (P(0:(z))) C
Ug(z) and ¥e(xz) NIV = 0. Consequently, any connected component C' of
O:(®(0:(x))), for all x € O,,, is contained either in V or in X \ V. Since X is
locally connected, we infer that any connected component C' of O, (®(O.(z))) is
open in O (®(O(x))). We have

VN O0.(2(0:(x)) = JCF,

where all the C#’s are connected components of O, (®(O.(z))) contained in V.
Therefore,

(4.54)  Tutoe(®, V@) = Lytoc(®, V N O (®(0: (x))), z)
= lwloc (@,UCf,x) = leloc(q)vcz;vvx)'

Note that the compactness of ®(x) and the existence property of L. for ®
guarantees that the summation in (4.54) is finite. Hence, in view of (4.53), we
obtain

waloc(q)v Cfvx) = ZIIU100<90’ Czw’x) = wlOC((pv U Czw’x)

= Luioc(p, V N O (2(0:(2))), 7) = Lutoc(p, V, ),

for z € Og,, where the last equality follows from the excision property of I ioc
for ¢ since ¢(x) C O (®(O:(z))) C VU X \ V. Consequently,

leoc(q)v V» :E) = wloc(@a ‘/a LL’),

for x € O,. But
leoc(\p{h V7 :E) = wloc((I)v V7 I)v
for all x € Xy, so

(455) leoc((P,V,fE) = wloc(‘I]qMva)v
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for all x € O,,. Thus, taking into account (4.49), (4.52) and (4.55), we obtain

leoc(X, V7 (:1707 2/3)) == wloc(X7 V7 (I, t))

for all (z,t) € Oy, x (1/3,1), which completes the proof that the local invariance
property of I, holds for x.

Now we shall show that x € Ag(Xo x [0,1], X). Let n > 0 (of course, we can
assume that 1 < ¢). Let ¢: Xg —o X be an n-approximation of ®. Then, by the
definition of e, there is a w-homotopy Y: Xy x [1/3,2/3] —o X such that

T(-,1/3)=¢(-), Y(-,2/3)=¢(-), Y(-,t) € an(P,6) forte[l/3,2/3].
Define ¥: X x [0,1] — X by
o(x) if t €10,1/3),
I, t) =< Y(x,t) ifte(l/3,2/3],
o(x) ift € (2/3,1].
It is easy to see that ¢} is an n-approximation of y. Moreover, from the con-

struction of x it follows that « ¢ x(z,t) for € C,t € [0,1] and, consequently,
X € Ac(Xo x [0,1], X). This completes the proof. O

Remark 4.4.8. Let us note that Theorem 4.4.6 allows us to construct the
fixed point index for weighted carriers defined on a compact ANR. The details
of the construction will appear in the forthcoming work of the present author.

4.4.1. Induced homomorphisms. In this section, our aim is to define
the homomorphism induced in the Darbo homology for weighted carriers having
positively acyclic values (with respect to the Cech homology).

We start with the following remark.

Remark 4.4.9. From now on, by a space we shall understand a metric
ANR.

If X, Y are spaces, then by M(X,Y) we denote the class of all weighted
carriers ®: X — Y with positively acyclic values (with respect to the Cech
homology with coefficients in the field of rational numbers Q) and such that

Iy (®) # 0.

Definition 4.4.10. Let X be a compact ANR and let ® € M(X,Y). We
define the induced homomorphism ®.,: H, (X,Q) — H.(Y,Q) by

(I)* = P

where ¢ € a,,(®,ds) (do is given as in Corollary 4.3.15).

Notice that Corollary 4.3.15 guarantees that the above definition is correct.
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Proposition 4.4.11. Let X be a compact ANR. If two weighted carriers
¥ € M(X,Y) are joined by a weighted carrier T € M(X x [0,1],Y), then
P, =0,.

Proof. Our proposition follows immediately from Definition 4.4.10, Corollary
4.3.12 and the w-homotopy invariance of the Darbo homology functor. ]

Lemma 4.4.12. Let ¥ € M(Y, Z) and let f: X — Y be a continuous func-
tion, where X and'Y are compact. Then (Vo f), = U, o f,.

Proof. By Proposition 4.1.7, there exists 6 > 0 such that if ¢ € a,,(7,0),
then p o f € aw(¥ o f,0w0f) (dwos is given as in Corollary 4.3.15). Let v :=
min{d, dwor}. Then for every ¢ € aw(¥ o f,dwor) and ¢ € a,(¥,) there is
a w-map x: X X [0,1] — Z such that x(z,0) = ¢¢(z) and x(z,1) = ¢ o f(z) for
any « € X. Consequently, taking into account the w-homotopy invariance of the
Darbo homology functor, we obtain

(Wo fe=(pr)e = (pofle=Wiof,

which completes the proof. (|

Lemma 4.4.13. Let ¥ € M(X,Y) and let f:Y — Z be a continuous func-
tion, where X andY are compact. If fo W € M(X, Z), then (fo W), = f.oU,.

Proof. Let ¢ := min{dw,dsow}. By Proposition 4.1.16, there exists § < ¢
such that if ¢ € a,, (¥, ), then fo U € a,(f oV, e). Let ¢ € a,(V,d). Then

feoVWe=fiope=(fop) = (fol).,
which completes the proof. (|

If E is a normed space, then by U(FE) we denote the class of all open subsets
of E. Let U be an open subset of a normed space E and let C(U) be the family
of all compact ANRs contained in U, directed by the inclusion, i.e. A < B if and
only if A C B for A,B € C(U). Let us consider the following direct system
(4.56)

Su = {H*(Dv Q)v (iDz,Dl)*: H*(Dlv Q) - H*(D27 Q) | D,D1,D; € C(U)}v

where the homomorphism (ip, p, )« Hi(D1,Q) — H. (D2, Q) is induced by the
inclusion ip, p,: D1 — Da. Since the Darbo homology functor satisfies the axiom
of compact carriers and since C(U) is cofinal in the family of all compact subsets
of U, it follows that
H,(U,Q) = lim H,.(D,Q).
Dec(v)
Given ¥ € M(U,Y), we define the family of induced homomorphisms

(4.57) {(¥|D),: H.(D,Q) — H.(Y,Q) | D € C(U)}.
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Lemma 4.4.14. Under the above assumptions we have
(W[D1)« = (¥|Dz 0 ipy,p, )« = (¥|D2)s © (ipy, D, )

Proof. The conclusion of the lemma follows from Lemma 4.4.12. |

From the universal property of the direct limit of (4.56) (see Definition1.4.2)
we get for the family (4.57) the unique homomorphism

U®:= lim (¥|D).
DeC(U)

satisfying the following condition:
(4.58) U o (ip)s = (¥|D).,

for any homomorphism (ip).«: H.(D,Q) — H,(U, Q) induced by the inclusion
ip: D — U, where D € C(U). Consequently, the above considerations allow us
to give the following definition.

Definition 4.4.15. Let U be an open subset of a normed space E and let
¥ € M(U,Y). Then the induced homomorphism ¥,:H,(U,Q) — H,(Y,Q) is
defined as follows

U, = v,

Remark 4.4.16. Let ¥ € M(U,Y). If some homomorphism h,: H., (U, Q) —
H.. (Y, Q) satisfies the following condition A, o (ip). = (¥|D), for any homomor-
phism (ip).: H.(D,Q) — H.(U, Q) induced by the inclusion ip: D — U and any
D € C(U), then from the universal property of the direct limit (see Definition
1.4.2) we get h, = U°.

Proposition 4.4.17. Let U be an open subset of a normed space E and let
O,V eM(U,Y). If there exists a weighted carrier T € M(U x [0,1],Y) such that
YT(-,0)=®(-) and Y(-,1) =¥(-), then &, = T,.

Proof. Let D € C(U). Then, by Proposition 4.4.11, we obtain (®|D), =
(¥|D)... Consequently,
(@) 0 (ip)« = (2[D)x = (¥[D)x = (V):* 0 (i)«

(see also (4.58)) for any homomorphism (ip).:H.(D,Q) — H.(U,Q) induced
by the inclusion ip: D — U and any D € C(U). Thus, by Remark 4.4.16 and
Definition 4.4.15, we obtain ®, = ¥, which completes the proof. O
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Proposition 4.4.18. Let ¥ € M(V,Y) and let f:U — V be a continuous
function, where U and V are two open subsets of some normed spaces Fy and
Es, respectively. Then (Vo f), =W, o f,..

Proof. First observe that ¥ o f € M(U,Y). Let

Jat H*(U» Q) — H*<V» Q), V.« H*(Va Q) = hi)n H*(D» Q) — H*(Ya Q)a
Dec(v)
(Vo /) HU,Q) = lm H.(D,Q)~ H.(%,Q)
Drec(U)

be induced homomorphisms. Now the proof will be divided into two steps.
Step 1. Let Z C U be a compact ANR. We shall show that

(4.59) U, o(f|Z)s = (Vo flZ)..

Since f(Z) is a compact subset of V, there is, by Lemma 1.2.7, a compact ANR
X such that f(Z) C X C V. It is clear that

(Jx © fI(Z, X))« = (ix)« © (fI(Z, X))x,

where jx: X — V is the inclusion and f|(Z, X) is the contraction of f to the
pair (Z, X). Thus

(460)  W.o(f|Z). = V.o (jx o f1(Z, X)) = .0 (jx)e o (f1(Z X))
From Definition 4.4.15 and (4.58) it follows that
(4.61) W. 0 (jx)e o (f1(Z, X)) = (¥1X), 0 (f1(Z, X)),
Moreover, by Lemma 4.4.12, we have
(4.62) (W]X)x 0 (fI(Z, X))« = (¥[X 0 fI(Z, X)) = (Yo f]Z).
Consequently, taking into account (4.60)—(4.62), we obtain

V.o (fl2)s = (Vo fl2)-,

as required.
Step 2. Now we shall show that for any compact ANR Z C U and for any
inclusion jz: Z — U the following equality holds

(4.63) (Wo f)eo(iz)s =Tuo fuo(jz)s

By Step 1, one has

(4.64) V.o foo(jz)e = Wo(fojz)e = (Wo f|Z).,
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for any compact ANR Z C U. On the other hand, let us recall (see Definition
4.4.15 and (4.58) for ¥ o f) that the homomorphism (¥ o f), induced by ¥ o f
has the following property

(4.65) (Toflio(jz)x=(To fojz)e=(To flZ).

for any compact ANR Z C U. Consequently, in view of (4.64) and (4.65), we
get (4.63). Hence, by Remark 4.4.16 (for ¥ o f), we deduce that

(o f)u=T.of,

which completes the proof. (|

Proposition 4.4.19. Let ¥ € M(U, X) and let f: X — Y be a continuous
function, where U is an open subset of a normed space E. If f o ¥ € M(U,Y),
then

(foU),=fioU,.

Proof. Let Z C U be a compact ANR and let jz: Z — U be the inclusion.
Observe that (in view of Definition 4.4.15 and (4.58) for ¥ and ¥ o f) ¥, and
(f o W), satisfy the following equalities

(4.66) U0 (jz)x = (¥|2)x,
(4.67) (f o W)so(fz)« = ((f 0 ¥)|2)..

In view of (4.66), one has
feoWio(jz)s = fuo ([2)..
Since ¥|Z € M(Z,X) and fo¥|Z € M(Z,Y), it follows from Lemma 4.4.13 that
(4.68) (foW|Z), = f. 0 (¥]2)..
Thus, taking into account (4.66)—(4.68), we obtain
(foW)io(jz)s = faoVio(jz),

for any compact ANR Z C U. Consequently, by Remark 4.4.16 (for f o ¥), one
has

(foW),= fuol,

as required. O
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4.5. Fixed point theorems for w-carriers

In this section we would like to show how the technique of weighted approxi-
mations can be used to give a generalization of the Lefschetz fixed point theorem
for weighted carriers obtained in [10].

In what follows, we use the following notations:

A — the class of all ANR'’s;
K — the class of all compact ANR’s;
U — the class of all open subsets of normed spaces.

Let P be a distinguished class of spaces. Following [4], we write ® € M(P)(X,Y)
if there exists a factorization

@
(4.69) Dp:X=Xg—oX; —0-+—0 X, =Y
(n = n(®) depends on ®), where ® = &, 0P, 10...0P1, &; € M(X;_1, X;),

1<i<n,and X; € P,fori=0,...,n—1, and X,, € A. In this case we say
that Dg is a decomposition (in M(P)) of ®.

Definition 4.5.1. If ®, ¥ € M(P)(X,Y) have decompositions Dg (see

(4.69)) and
T,y T, v,
Dg:X=Xg—0Xy —0-+—0X,, =Y

then we say that the compositions Dg and Dy are homotopic in M(P) if n = m,

X; = X/, and there is a map x; € M(X;_1 x [0,1], X;) with x;(-,0) = ®,,

xi(+,1) =¥;, 1 < i< n. The multivalued map x: X x [0,1] — Y given by
X(l',t) = Xn© Yn—l ©...0 Yl (:’E,t),

where Y, € M(X;_1 x [0,1], X; x [0,1]) is given by X;(z,t) = xi(z,t) x {t}

for x € X;—1,t € [0,1], 1 < i < n—1, is called a homotopy (observe that

Definition 4.5.2. Let ¥ € M(P)(X,Y) have two decompositions

Uy D} \ 2%
D:X=Xy—0Xy —0--—0 X, =Y,
! !, v’

DX =X), X ... 5X =V
We say that D’ dominates over D (written D’ > D), if n = m and, for each
1 < i < n, there is h;: X; — X! with hg = h,, = id such that a diagram

\2]
Xio1 —X;

/ I
Xifl o Xi
K
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commutes (i.e. ¥, oh; 1 =h;0¥;) for 1 <i<n. If D> D" and D’ > D then
we say that D and D’ are equivalent.

Lemma 4.5.3. Let ¥ € M(K)(X,X) have a decomposition

1 Wy v,
X=Xg—X;] —o0--+— X, =X.

Then (U,,)x0...0 (W), is a Leray endomorphism.

Proof. Tt follows from the fact that if a space X is a compact ANR, then
H..(X, Q) is of finite type (see Definition 1.6.7). O

Lemma 4.5.4. Let ¥ € M(K)(X,Y) have a decomposition

Wy W,

X:XOEOXl—O---—'oXn:Y.
In addition, let Y be a path-connected space and X CY. Then
(T)xo 0.0 (¥1)wo([o]) = L (Py) - Ly (V1) - .o Ly (Pq)[jx 0 0],
for all [o] € Ho(X,Q), where jx: X — Y is the inclusion.

Proof. By Definition 4.4.10, one has (U;). := (¢;)«, for 1 < i < n, where
pi € aw(\I/zéxpl) Then

4.70 ()00 ...0(P1)o([o]) = (@n)so 0.0 (¢1)x0([0])

(4.70)
(4.71) = (pno...0op1)0(lo])

(4.72) © Lu(@no...00)[jx 0 0]
(4.73) 2T Ly(en) - L) lix 0 0,

where the equality () follows from Lemma 2.3.13. On the other hand, by Re-
mark 4.1.2, we have

(4.74) Ly (Wi) = Lu(i),

for i =1,...,n. Consequently, the assertion follows by combining (4.70)—(4.73)
with (4.74). O

Definition 4.5.5. Let ¥ € M(K)(X, X) have a decomposition

L1 Wy v,
D\pX:X()*OXl—o—oXn:X

Then we define the Lefschetz number of Dy by

A(Dg) = A(Tp)xo0...0(T1),).
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Lemma 4.5.6. Let ¥ € M(K)(X,X) and Dy be as in Definition 4.5.5.
Then for every e > 0 there exists v > 0 such that

(pno...0op1)(z) CO(¥(O(x))) foreach z € X,
Iy(pno...op1) #0,
provided that ¢; € ayw(V;,7), for any 1 <i < n.
Proof. The first assertion follows from Lemma 4.1.6, while the second asser-

tion follows from the following facts

I,(¥;) =I,(p;) 70 for1<i<n, (Remark 4.1.2)
I

Iy(pno...op1) =ILu(on) ...  Lu(p1). (Proposition 2.2.7) O

Moreover, from Lemma 4.5.4 and Definition 4.5.5 it follows the following
corollary.

Corollary 4.5.7. Let ¥ € M(K)(X,X) and Dy be as in Definition 4.5.5.
In addition, let X be an acyclic space (with respect to the Darbo homology with
rational coefficients). Then

ADy) =ILy(Uy) - Ly(Vp—1) - .o Iy (T1).
Now we are able to prove the following theorem.

Theorem 4.5.8. Let ¥ € M(K)(X, X). If

Wy WUy v,
Dy: X=Xy —oX] —0--—0 X, =X

is a decomposition of U, then A\(Dg) # 0 implies that U has a fized point.

Proof. Suppose that © ¢ ¥(x) for all z € X. Then from Corollary 4.1.14
it follows that there exists d9 > 0 such that if ¢: X — X is a weighted map
with 'y, C Os,(T'w), then Fix(p) = 0. Let v > 0 be given as in Lemma 4.5.6
according to Dy and dy. Moreover, in view of Definition 4.4.10, one has

Upp0...00, =¢p,0...001, = (Pn0...001 )k,

where ¢; € a,,(V;,70), 1 < i < n, and 7o := min{~, do, 0w,, dw,, ... ,0w, . Then

(4.75) 0#£ADgw)=M(pno...0p1)s)
(4.76) Fix(¢n o...0p1) = 0.

Now, taking into account (4.75) and (4.76), we obtain a contradiction with The-
orem 2.5.1, which completes the proof. O
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Lemma 4.5.9. If ¥ € M(K)(X, X) has two decompositions

\21 Wy vy,
Dyg: X=Xg—0X; —0---— X, =X,
oy o v,
Dy: X=X —oX{ —o-+— X/ =X
such that Dy < DY, then A(Dy) = A(DY).

Proof. Without loss of generality we may assume that n = 3. Since Dy <
D}, there is a continuous map h;: X; — X! with hg = hg = idx, 1 < 3, such
that the following diagram

v,
Xio1 —X;

(4.77) hl lm

X/ 1 —OX/
\Ili

commutes, for 1 <4 < 3. By (4.77), Lemma 4.4.12 and Lemma 4.4.13, we obtain

(W5). 0 (W), o (W), = (Th). o (4. o (hy 0 Ty).

(
= (U5)w 0 (U5)s 0 (h1)w 0 (U1)u = (U3)x 0 (¥ 0 hy)s 0 (Uy)s
=(U3)x 0 (h20oWa)u 0 (U1)s = (V3)x 0 (h2)s 0 (¥a)s 0 (V1)
= (V5 0h2). 0 (Wa)wo (¥1)s = (V3)s 0 (¥a)s 0 (Uy),.

Consequently, we get
A(Dw) = M(¥s)x 0 (¥2)x 0 (T1)s) = A((¥5)x 0 (¥5)« 0 (¥))s) = A(Dy),
which completes the proof. (|
From Lemma 4.5.9 it follows immediately the following corollary.

Corollary 4.5.10. Let ¥ € M(K)(X, X). If ¥ has a decomposition

V21 Wy
Dy: X = Xg —o X; —20 -
W1 Wit Wit v,

o X1 5 Xy —o Xpy1 —o -+ —0 X, = X,

where hy: Xx_1 — Xk is a continuous function, then

~ 1 Wy Vi1 Wy y10hy Upio v,
Dy: X=Xg—oXy —0-+ —0 X7 —o0 Xpy1 —o - — X, =X

is a decomposition of ¥ and N(Dg) = A(Dy).

We can give the following definition.
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Definition 4.5.11. Let ¥ € M(U)(X, X) be a compact multivalued map.
In addition, let ¥ have a decomposition

L1 Wy v,
D\pX:X()*OXl—o—oXn:X

Then we define the Lefschetz number of Dy by

A(Dg) :=A((Pp)s0...0(Tq)s).

The above definition is correct since the following lemma holds.

Lemma 4.5.12. Let U and Dy be as in Definition 4.5.11. Then (¥,). o
..o (U1), is a Leray endomorphism.

Proof. Let K := U(X). Then, by Lemma 1.2.7, there exists a compact ANR
Z such that K C Z C X. We have the following diagram:

H.(Z,Q) —2" L H,(X,Q)

/
(¥1,),0...0(¥1|2). (¥!,),0...0(¥1). (¥p),0...0(¥1),
/

where jz: Z — X is the inclusion and ¥} := ¥, |(X,_1,Z). Commutativity of
the lower triangle follows from the fact that (jz)« o (¥]). = (¥,).. Moreover,
commutativity of the upper triangle follows form Definition 4.4.15 and the fact
that (¥1).0(jz)« = (¥1]Z).. Consequently, by Proposition 1.6.9, it follows that
(¥7),0...0(¥1), is a Leray endomorphism since (U/,), o...0(¥1]|Z), is a Leray
endomorphism (by Lemma 4.5.3), which completes the proof. (|

In the proof of the next lemma we shall make use of the following remark.
Remark 4.5.13. Let ¥ € M(U)(U,Y) have a decomposition

Uy Wy W,
D\pU:XoioXlio—oXn:Y

Let
So ={Ho(Z,Q), (iz,,2,)«:Ho(Z1,Q) — Ho(Z2,Q) | Z,Z1,Z2 € C(U)}.
be a direct system. Consider also a family of homomorphisms
{(Wn)w00...0(V1]Z)0:Ho(Z,Q) — Ho(Y,Q)} zec(x)-
If some homomorphism h: Hoy(U, Q) — Hy(Y, Q) satisfies the following condition

ho(ip)o= (¥pn)wo...0(¥1|D)so
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for any homomorphism (ip).o: Ho(D,Q) — Hy(U, Q) induced by the inclusion
ip: D — U and any D € C(U), then from the universal property of the direct
limit (see Definition 1.4.2) one obtains

h = (\I/n)*O ©...0 (\Ijl)*o.
Lemma 4.5.14. Let ¥ € M(U)(X,Y) have a decomposition

V5 Uy v,
X =Xy 0o X] —o0--—0 X, =Y.

In addition, let Y be a path-connected space and X CY. Then
(Tr)wo 0.0 (¥1)wo([o]) = L (Py) - Ly (V1) - oo Ly (Pq)[jx 0 0],
for all [o] € Hp(X,Q), where jx: X — Y is the inclusion.
Proof. Let h: Hy(X,Q) — Ho(Y, Q) be a homomorphism defined by
W) = Lo(@a) - ..+ Lo (¥1)[jx o),

for all [o] € Hp(X,Q). In addition, let Z C X be a compact ANR and let
jz:Z — X be the inclusion. Then we have the following commutative diagrams

(jz)=o0

HO(Zv Q) —>H0<X7 Q)

(4.78) X JDW*

H0<X7 Q)

Ho(Z,Q) Y28 By (X, Q)

(4.79) R Jh

HO(Xa Q)

where Dy, = (Up)s00...0 (U1)s and Dy = (Up)s00...0 (¥1|Z)s0. The
commutativity of the diagram (4.78) follows from the following equality

(W1)x0 0 (jz)+0 = (P1|Z) 0,
which holds by Definition 4.4.15 and (4.58). Moreover, by Lemma 4.5.4, we have
(Wn)wo o0 (V1] 2)wo([7]) = Lw(¥n) - ... Lo (V1] Z) [z 0 7]
=1L,(Uy) ... Iy(¥1)|jz o 7],
for all [1] € Hy(Z,Q). Since
ho (jz)«o(l7]) = h(liz o 7]) = Luw(¥n) - ... - Lu(¥1)[jz o 7],
it follows that

D[t =ho(jz)s([7]),
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for all [7] € Ho(Z,Q), this proves the commutativity of the diagram (4.79).
Consider now a family of homomorphisms

{(¥n)woo...0(¥1]Z)w0:Ho(Z,Q) — Ho(Y,Q) | Z € C(X)}
and a direct system

SO = {HO(Z7Q)7 (izz,Zl)*:HO(Zva) - H0<Z23Q) | Z7 Z1’Z2 S C(X)}

Consequently, taking into account the above considerations and Remark 4.5.13,
we obtain the desired conclusion. |

Corollary 4.5.15. Let ¥ € M(U)(X, X) and Dy be as in Definition 4.5.11.
In addition, let X be an acyclic space (with respect to the Darbo homology with
rational coefficients). Then

A(Dg) = Lo (V) - Ly (V1) - ... - L (7).

Proof. Follows immediately from Definition 4.5.11 and Lemma 4.5.14. |

Theorem 4.5.16. Let ¥ € M(U)(X, X) be a compact multlivalued map. If

‘IJTI

2 2 3
Dy: X=Xg—oX; —0---—0 X, =X

18 a decomposition of ¥, then

(a) Dy is a Lefschetz map;
(b) A(Dw) # 0 implies that U has a fized point.

Proof. From Lemma 4.5.12 it follows that Dy is a Lefschetz map. Moreover,
arguing as in the proof of Lemma 4.5.12, there exists a compact ANR Z such
that U(X) C Z. Now consider the following diagram:

(Jz)«

H.(Z,Q) H.(X,Q)
’ J/ ’ / J/
(‘l/n)*o...o(‘llﬂZ)* (\I/n)*o...o(‘lll)* (¥y,),0...0(¥1),
/

Jz)«
where jz: Z — X is the inclusion and ¥/, := ¥,,|(X,,—1, Z). Then, by Proposi-
tions 1.6.8 and 1.6.9, we have
A(P!),0...0(01]2).) = A(Dy).

Now, if we assume that A(Dy) # 0, then A((¥]), o...0 (¥1]Z).) # 0. Thus,
from Theorem 4.5.8 we deduce that Fix((¥)), o (¥p—1), 0 ... 0 (¥1]2).) # 0,
and hence, Fix(¥) # @, which completes the proof. O
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Corollary 4.5.17. Let ¥ € M(U)(X, X) be a compact multivalued map. If
X is an acyclic ANR or X € AR, then ¥ has a fized point.

Proof. Let

Wy 2 \ 2%
Dy: X=Xg—oX; —0--—0 X, =X
be a decomposition of ¥. Then, in view of Corollary 4.5.15, we have
A(Dg) =1,(0,) ...  I,(Ty).

Since ¥ € M(U)(X, X), it follows that I,(¥,) ... I,(¥1) # 0. Thus the
conclusion follows from Theorem 4.5.16. O

Lemma 4.5.18. If a compact multivalued map ¥ € M(U)(X,X) has two
decompositions

v, Wy
Dy:X=Xyg—0X) —0--- —0 X, =X,
/ /! \Il/l / ‘Il/2 v, /
Dy X =Xy —oX| —o--—0 X, =X
such that Dy < Dy, then A(Dy) = A(Dy,).

Proof. As in the proof of Lemma 4.5.9 we may assume that n = 3. Moreover,
since Dy < DY, there is a continuous map h;: X; — X/ with hg = hg = idx,
1 < ¢ < 3, such that the following diagram

W,
Xi1 —X;

(4.80) hl lm

/ l
Xifl o' Xi
i

commutes for 1 < i < 3. Now, using (4.80), Proposition 4.4.18 and Proposition
4.4.19 (see the proof of Lemma 4.5.9), one can deduce that

(W3). 0 (U5)x 0 (¥])s = (Wa)s © (P2)x 0 (1)
Hence A(D\p) = A(Dq;/) O

Corollary 4.5.19. Let ¥ € M(U)(X, X) be a compact multlivalued map. If
WU has a decomposition

2 Wy Wp 1 b Wit Wigo v,
Dy: X o Xy o 0 X M X R Xy e X

where hy: Xx_1 — Xk is a continuous function, then

~ Uy Wy W1 Wyt10hy Wito v,
Dy: X —0 Xy —0-- —0 X}y —o Xpy; —o -+ —o X
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is a decomposition of ¥ and A(Dg) = A(Dy).
Proof. This corollary follows immediately from Lemma 4.5.18. O

Let ¥ € M(A)(X, X) be a compact multivalued map and let ¥ have the

following decomposition
T, Ty T,
Dy: X=Xyg—o0X{ —0--+—0 X, =X.

Observe that the Arens—Eells theorem implies that there are normed spaces
E; and embeddings s;: X; — E; (i.e. homeomorphisms onto closed subsets).
Moreover, there are open sets U; C E; and maps r;: U; — X; such that r; os; =
idx, (since X; € A, for 1 < ¢ < n), where Ey = E,,, so = Sn, Uy = Up, 70 = Tp.
Let U;:U;_q —o U; be given by U, =s;0W;0m_1, 1 <i<n Itis easy to see
that ¥; € M(U;_1, U;). Consequently, we deduce that ¥ € M(U)(U, U) with the
following decomposition:

481 DU = Uy o Uy 20 20, = U,
7]

Remark 4.5.20. It is easy to see that rgoWosy=V, where ¥ € M(A)(X, X)
and W is given by (4.81).

Definition 4.5.21. We define the Lefschetz number of Dy by the formula
A(Dw) == A(Dy),
where Dy is given by (4.81).
Lemma 4.5.22. The above definition is correct.

Proof. Let us take EI, s, U/, rj:U! — X; and E/, s/, U/, r/:U! — X

as above. In addition, let W,:U/_; — U/ and U}:U}’ | — U} be given by

U =sioW,or,_,and ¥/ =35/ oW, 0r) |, 1<i<n, where E) = E/, s;, = s,

U,=U},ry=rl and Ef = E!, s = s, Uy =U, r§ =rl. Consider also the
following decompositions:

! \I,/l ! ‘IJ/2 v !

Dy Uy —o U] —2o... 50

" " "

1 2 n
D\p//ZUél —0 {/ — ... — U".

We shall show that A(Dg/) = A(Dyg~). For this purpose, let

\f}/ \I// ‘11/ g \f}/

n—1 n

1 2 3
Dy iUl —o Ul —o Uy —o Uy—o -+ 0

!
n—1-

Now the proof will be divided into two steps.
Step 1. As a first step we will show that

(4.82) A(Dy) = A(Dg,).

where ¥} :=s{ oW or and ¥] :=s/ oV, or
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By Definition 4.5.11, we have

A(Dy) = A((T)),
A(Dg) = A((F,). 0 (¥,_).0...0 (), o (¥

o)
—~
<
—
~—
*
o)
O
—~
S
o~
~—
*
o)
—~
S

Let us observe that

(U3)s 0 (Uy_q)x 0.0 (V). 0 (V).
shoW,or, 1)eo (¥ _1)so

1 oidx, oWpor _)eo (U _1).o...0(W *0(3'10\11107“6)*
/

(T osi)oW, or

/
= (
= (s
= (s n ) 0)
((shor!)osl oW, orl 4 _1)s0...0 (W), 0(sh oWy ory).
= (short)uo(shoW,or, _1)eo (V) _1)xo...0(¥h), o(s]oWyo0r)).,
where the last equality follows from the fact that

((sh,or!osl oW, orl 1)e=1(s,0r)o(sloW,or ).

(see Proposition 4.4.19). Consequently, we have

A((T7)x 0 (W], 1)s 0.0 (Ty)s 0 (P])s)
=A((s,,0or)so(shoWyor _)eo (U _1)o...0o(Wh),0(s)oWyor))).

Moreover, by Proposition 1.6.9, one obtains

A((s;lor Jeo (shoW,o0rl, _1)wo (¥, _1)so...0(U)).o(shoWiory),)
((smoWnor,_1)so (¥, 1)xo...0 (W), 0(s]0W07p).0 (s, 0r))
((shoWyor _1)wo (U, _)so...0o(Wh).o(s]oWyory).o(syorn)s).

On the other hand, by Proposition 4.4.19, we have

(sh 0 W1 orh) o (sg0my)s = (s10W10rg0sy0r).

= (shoWio0idx, 07))s = ()0 Uyor)),.

Consequently, taking into account the above considerations, we obtain

ory)s o (sy 0 Wnory_1)so (¥ _1)so...0(Wy).o(s)oWyorg).)
) Jo0...0(Uh)o(shoWyory).o(shory))
_)x 0 (Whg)won 0 (Uh)uo(sh o Wrory).) = A(Dy),

as required.
Step 2. Since Dg, > Dy, it follows from Lemma 4.5.18 that

(4.83) A(Dg,) = A(Dy).
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Finally, taking into account (4.82) and (4.83), we get the desired conclusion,
which completes the proof of the lemma. O

Theorem 4.5.23. Let ¥ € M(A)(X, X) be a compact multivalued map. If

Wy WUy v,
Dy: X=Xy —oX] —0--—0 X, =X

is a decomposition of VU, then A(Dy) # 0 implies that U has a fixed point.

Proof. Let

T T T,
(4.84) Dg:U =Uy —o U —o-+ —oU, =U.

be a decomposition according to (4.81). Then, by Definition 4.5.21, A(Dy) =
A(Dg). Hence, if A(Dy) # 0, then A(Dg) # 0. Consequently, in view of

Theorem 4.5.16, we obtain Fix(¥) # (). Thus, by Remark 4.5.20, Fix(¥) # 0,
which completes the proof. O

Corollary 4.5.24. If X is an acyclic ANR or X € AR, then any compact
multivalued map U € M(A)(X, X) has a fized point.

Proof. Let

Uy D} \ 2%
Dy: X=Xg—oX; —0---—0 X, =X

be a decomposition of ¥ and let Dg:U — U be a decomposition defined
by (4.81). Then, by Definition 4.5.21, one has

A(Dg) = A((U,)s0...0(Uy),).
Since (¥,,) 0...0 (V) € M(U)(U,U), it follows from Corollary 4.5.15 that
A(T)eo...0(W1)s) = L,(Vy,) ... - L, (Ty).

Furthermore, by Proposition 3.2.15, we have I,,(V;) = I, (¥;), for 1 < i < n.
Consequently,

A(Tn)s 0.0 (T1),) = L(Tn) - ... Lo (W) £ 0.

So the assertion follows from Theorem 4.5.23. O

4.6. Topological degree for compositions of w-carriers

Our principal aim in this section is to define and investigate the topological
degree for compositions of weighted carriers having positively acyclic values. For
this purpose we use the technique of weighted approximation on the graph. Our
approach is based on the paper [4].

Before giving the formal definition of topological degree, we establish the
following lemma.
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Lemma 4.6.1. Let X be a compact ANR and let Y be an ANR. In addition,
let

U, Wy o,
Dy:X=Xg—oX; —o-—0 X, =Y
be a decomposition of We M(K)(X,Y). Then for any § >0 there is e((¥, Dy), X)
> 0 such that, for each 0 < e < e((¥, Dy), X), if i, i € ay(Vi,e) for 1 <i <
n, then there exists a weighted map x: X x [0,1] — Y such that

x(z,0) =pno0...0p1(x) foreachzx e X,
x(x,1) = o...091(x) for each z € X,
I'y, COs(T'y) for each t € [0,1].

Proof. 1t is sufficient to prove the assertion for n = 2 (i.e. Dy = Uy 0 Uy).
The more general case can be proved analogously. Let 6 > 0. Then, by Lemma
4.1.6, there exists 0 < v < § such that

(4.85) O4(¥2)0,(¥1)(z) C O5(¥2 0 W1 (05())),

for all z € X. Since ¥y € A(X, X1) and Uy € A(X2,Y), there is £ <  such
that, for ¢}, ¢ € aw(P1,€) and @h, ©h € ay, (P2, ), there are w-maps

¢12X X [0,1] —o Xl, ¢22X1 X [O, 1] — Y
such that
(4'86) ¢1('7O) :(Pll(')v ¢1('71) :(Plll(')’ ¢1("t) an(klll,'y)
(487) ¢2(7O) :90/2(')7 ¢2('71) :90/2/(')7 ¢2('7t) € aw(\IJ%'Y)'

for all ¢ € [0, 1].
Let e((®, Dg), X) := . Then, in view of (4.85)—(4.87), we see that

(92)t 0 (¢1)e(z) C (¢2)e(0~(P1(04(2))))
C O4(22(04(04(21(04(2)))))) C Os(P2 0 ®1(0s(x))),

where (¢1):(x) = ¢1(x,t), for all t € [0,1], z € X, and (¢2)+(z) = ¢2(z,t), for all
t€10,1], z € X1. Let ¢1: X x [0,1] — X; x [0,1] be given by

1(z,t) = ¢1(x,t) x {t} forallt€[0,1], v € X.
Then y := ¢3 0 ¢, is a desired w-homotopy, which completes the proof. (|

Let E™ be a finite-dimensional normed space and let U be an open subset
of E™ such that U € K. Then we put

M(K)or (U, E™) == {¥ € M(K)(T, E) | ¥3(0) N dU = 0}.

Now, from Proposition 4.1.15 and Lemma 4.6.1 we obtain the following corol-
lary.
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Corollary 4.6.2. Let U be an open subset of E™ such that U is a compact
ANR. Let

Dy:U=Xyg—o0X{ —o--+—0 X, =E™
be a decomposition of ¥ € M(K)ar (U, E™). Then there exists (¥, Dg),U) > 0
such that, for each 0 < e < e((¥, Dy),U), if vi, i € aw(¥;,¢) for 1 < i < n,
then there exists a multivalued map x:U x [0,1] — R™ such that
x(2,0) =@no...00(zx) foreachz e U,
x(z,1) =9, 0...091(x) for each x € U,
{x €U |0 € x(a,t) for somet € [0,1]}NOU = .
Now we are able to formulate the definition of topological degree.

Definition 4.6.3. If ®, ¥ € M(K)sy (U, E™) have decompositions

_ Py Py D, m
De:U=Xg—o Xy —o--- o X, = E™,

J— \111 \1/2 ‘llk
Dy:U=X9g—oX{ —o0--+—o0 X}, =E™,

then we say that the compositions Dg and Dy are homotopic in M(K)gy if
n ==k, X; = X/, and there is a map x; € M(X;_1 x[0,1], X;) with x;(-,0) = @,,
xi(+,1) = ¥;, 1 < i< nsuch that a homotopy x: U x [0,1] —o E given by
(438) X 1) = xn 0 0T (1),

where ¥, (x,t) = xi(z,t) x {t} forz € X;_1,t €[0,1], 1 < i < n—1, satisfies the

following condition

{x €U |0 € x(a,t) for some t € [0,1]} NOU = (.

Definition 4.6.4. Let U be an open subset of R” such that U is a compact
ANR. Let ¥ € M(K)sp (U,R") and let

JR— ‘Ill \1/2 \I,’Vl
Dy:U=Xyg—0X; —0--—0 X, =R"
be a decomposition of ¥. We define a topological degree of (¥, Dg) by the formula
Deg((V, Dy),U,R") :=deg(¢pn o ...0¢1,U,R"),

where deg stands for the topological degree for weighted maps (see Chapter 2)

and ;i € aw(\pivg)v 1 < 1 < n, and € < 5((\IJ’D‘II)’U)

The correctness of this definition follows from Corollary 4.6.2 and the w-
homotopy invariance of the topological degree of weighted maps.
Remark 4.6.5. It should be noted that the topological degree of ¥ depends

on its decomposition Dy (see Example 4.6.6 below), and therefore we shall use
the notation Deg((¥, Dy ), U, R"™) instead of Deg(¥, U, R"™).
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Example 4.6.6. Let D(0,1) C R? be the closed disk with the centre at
0 € R? and radius » = 1. Additionally, we shall identify R? with the field of
complex numbers. Thus, given z € R?, we can write

z = |z|(cosa + isina),

where | - | denotes a modulus of a complex number. Let ¥: D(0,1) — D(0,1) be
defined by

U(z) = {|z| x|z €S}
for all z € D(0,1). In addition, let ®: D(0,1) — D(0,1), f1, fo: D(0,1) — R? be
defined by

@(|z|(cosa + sina)) = {|z|(cos(a + B) + isin(a + 3), 8 € [0,37/4])},
filz) = 22 and fa(z) = 25,

From Example 3.1.4 it follows that W is a weighted carrier. Observe that ¥ =
fio® and ¥ = fy0®. Let id: D(0,1) — D(0,1) be the identity map. It is easy
to see that id € a,,(®,¢) for any € > 0. Consequently, we have

Deg((¥, f1 o ®), B(0,1),R?) = deg(f; oid, B(0,1),R?)
Deg((U, fy 0 ®), B(0,1),R?) = deg(fs oid, B(0,1),R?)

)

2
3.

Proposition 4.6.7. If ¥ € M(K)sy (U, R™) has two decompositions

— Uy Wy W,

(4.89) Dy:U=X9g—oX; —o0--+—0X,, =R",
_ v, : 8
(4.90) Dy U=X) —oX| —0... 5 X/ =R"

such that Dy < DY, then

Deg((V, Dy),U,R™) = Deg((¥, Dy,), U, R™).

Proof. To prove this proposition one applies arguments similar to those used
in the proof of Proposition 2.2 in [4]. The only difference is that in the proof of
Proposition 4.6.7 one has to use the corresponding graph-approximation results
presented in this work (see also the proof of Lemma 4.5.9). ]

As an immediate consequence of the above proposition, we obtain

Corollary 4.6.8. Let ¥ € M(K)oy (U,R™). If ¥ has a decomposition

_ Wy Wp 1 b Wit Wit T
Dy:T o Xy oo 250 Xy 1 Xy 0 Xy o s o R,

where hy: Xx_1 — Xk is a continuous function, then

W1 Wyi10hy Wito W,

~ 0 Wy
Dyg:U—o0Xy —0-+- —0 X}y —o0 Xpy3 —o---—oR"
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s a decomposition of ¥ and

Deg((¥, Dy), U, R") = Deg((¥, Dy), U, R™).

Theorem 4.6.9. Let ¥, ® € M(K)sp (U, R™) have decompositions
Dg:U=Xg—oX; —o -+ —0 X, =R"

_ (o3 [ D, n
Dg:U=Yy —Y] —o--- —0Y,, =R",

respectively.

(a) (Existence) If Deg((¥, Dy),U,R™) # 0, then 0 € U(x) for some x € U.
(b) (Additivity) Let Uy and Us be disjoint open subsets of U such that
\Il;l(O) C Uy UUy and let U; denote the restriction of ¥ to U;, then

Deg((¥, Dy),U,R") = Deg((¥1, Dy, ), U1, R") + Deg((¥2, Dg_), U, R™),

where

_‘I’llUil ‘1’2 \II7YL n
Dg Uy —o X3 —o .-+ —o X, =R,

— [Tz Ty Ty n
Dg,:Uy —o Xy —o -+ —0 X;;, = R".

(c) (Contraction) If ¥(U) C R*¥ x {0} € R™ and Uy, € ANR (??), then
Deg((¥, Dy), U,R") = Deg((mx © ¥|Uy, D'), Ur, R¥),

where m: R™ — RF is the projection onto the first k coordinates, Uy =
(U N (RF x {0})) and

, U |Un Wy W1 oW o
DU, — Xy —0--+ —0 X,,_1 —o R".

(d) (Linearity) Let T = a¥ and

— a¥y Uy 2
Dy:U=Xy—o Xy —0 -+ —0 X,, = R"™.

Then
Deg((Tv DT)v U7 ]Rn) = Q- Deg((\PvD‘P)v Uv ]Rn)

(e) (Homotopy invariance) If the decompositions Dy, Dg are homotopic in
M(K)su, then

Deg((¥, Dy),U,R") = Deg((®, Dg), U, R").

(22) Tt is easy to see that if U is an open subset of R such that U € ANR, then the set
7 (U N (R™ x {0})) does not to be an ANR.
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(f) (Linear invariance) Let T:R™ — R™ be a linear isomorphism. Then
Deg((¥, Dy), U, R") = Deg((T o W o THT(U), Dy), T(U), R"),

where

, 1 V10T Wy W1 T lo¥,, n
Dy:T - (U) —0 Xy —o -+ —o0 X,y —o X, =R™

Proof. (a) Existence. Suppose that Deg((¥, Dy),U,R™) # 0. In addition,
we can assume without loss of generality that W is a composition of two weighted
carriers, i.e. ¥ = Wy o Wy. Take g, = 1/n for n > 1/e((¥, Dy),U). Then, by
Lemma 4.1.6, for any &, there exists d,, < &, such that

05, (92)O0s,, (¥1) () C O, (Tq 0¥ (0;, (2)))
for all # € U. Furthermore, we have
(4.91) 0 # Deg((¥, Dy), U, R"™) = deg(s, o s, , U, R"),

where @5, € ay(V1,0n),%s, € aw(VPa,0d,). Consequently, it follows from the
existence property of the topological degree for weighted maps that there exists
a sequence z,, € U such that

0 € s, 0 ws, (xn) C Os, (V2)O05, (V1) (x,) C O, (¥g 0 U1 (O;, (z,)))-

By the compactness of U, (up to a subsequence) x,, — xo. Finally, the upper
semicontinuity of ¥ implies that 0 € ¥(x() as required.
(b) Additivity. Let

e = min{e((¥, Dy),U),e((¥1, Dy, ), U1),e((V2, Dg), U2)}.

So, by Proposition 4.1.7, there exists § < € such that if ¢ € a,(¥1,9), then
o|U; € aw(01|U;,¢) for i = 1,2. Let ¢; € ay(¥;,6) for i = 1,... ,m. Then, we
have

Deg((V, Dy),U,R") = deg(om o ...0p1,U,R")

2 —_— N
(:) deg(gﬁm 0...0 901|U1, Ul,Rn) + deg(gpm 0...0 901|U2, UQ,R”)

© Deg((W1, Dy, ), Ui, R") + Deg((¥z, Dy, ), Uz, R"),

where the equality (2) follows directly from the additivity property of the topo-

logical degree for weighted maps and the equality (3) holds by Definition 4.6.4.
(c) Contraction. Let ¢ = min{e((V, Dy),U),e((my o ¥|Uy, D'),Ux)}. By

Corollary 4.1.8, there exists 6. < € such that if ¢; € a,(¥1,6.), then ¢1|Uy €

. (¥1|Uy, €). Moreover, in view of Proposition 4.1.16, there is 6" < & such that

if G € aw(m o Uy, d:), then i 0 &y, € ay(¥y, ), where i: RF < R™ is the
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inclusion. Let gg := min{d.,6”}. Let ¢; € ay(¥4,e0) for 1 <4 < m — 1 and
Om € Ay (T 0 Uy, e0). Thus, from Definition 4.6.4 we may conclude that

Deg((V, Dy),U,R"™) = deg((i 0o @) 0...0p1,U,R")

© deg(m 0 (i0 @m)o...0 @ |Uk, U, RF)
= deg(pm o ... 0 p1|Uk, Up, RY)
= Deg((ﬂk o \I/|U_k7 D/)v Ukka)v

where the equality (%) follows from the contraction property of the topological
degree for weighted maps.

(d) Linearity. First we observe that @1 € a,(¥P1,¢) if and only if ayp; €
aw(a¥y,e)and {z €U |0 € ¥(2)} ={z € U | 0 € a¥(x)}. Let p; € ay(¥;,¢)

for 1 < ¢ < m, where ¢ < e((V, Dy),U). Then, by Definition 4.6.4, we have

Deg((T7 DT)? Ua Rn) = deg(@m ©...0 (aspl)a Ua Rn)

© - deg(pm o ...0 01, U,R") = a-Deg((¥, Dy), U,R"),
where the equality () follows from the linearity property of the topological
degree for weighted maps.

(e) Homotopy invariance. Let Dy and Dg be homotopic in M(K)syr. Just
as in the proof of the existence property we can assume that ¥ and ® are
compositions of two weighted carriers, i.e. ¥ = Uy0W¥; and & = &30 P;. Under
these assumptions, there exist two weighted carriers

Xl:ﬁl X [0,1] — X7 and X2:X1 X [0,1] —o R" (X1 S K:)

such that

e x1(2,0) = Wy(x), for all z € U, and x2(y,0) = Uy(y), for all y € X7,

o xi(z,1) = ®(x), for all x € U, and x2(y, 1) = ®2(y), for all y € X7,

o {rcU|0¢ x(z,t) for some t € [0,1]} N OU =0,
where x:U x [0,1] —o R” is given by (4.88). From Proposition 4.1.15 it follows
that there exists § > 0 such that if a weighted map ¢:U x [0,1] —o R™ satisfies
the following condition I', C Os(T'y), then

{x €U |0¢€ ¢(x,t) for some t € [0,1]} N AU = 0.
Consider the following decompositions
— X19%0 X2

Dy:U —o X x [0,1] —o R™,

—_ X101 X2

Dg:U —o X3 x [0,1] —o R",
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where ig: U — U x [0,1] and i1: U — U x [0, 1] are given by ig(z) = (x,0) and
i1(z) = (z,1), for all z € U, respectively. By Proposition 4.6.7, one obtains
(4.92) Deg((¥, Dy), U, R") = Deg((¥, DY), U, R™),

(4.93) Deg((®, D), U,R") = Deg((®, D3),U,R").

We can assume that § < min{e((¥, D},),U),e((®, D}),U)}. Now, we shall show
that

Deg((V, DY), U,R™) = Deg((®, D}), U, R™).
By Lemma 4.1.6, there exists 0 < v < d such that
Oy(x2)O~(X1)(z, 1) € Os(x2 © X1(0s((x, 1)),

for each (z,t) € U x [0,1]. Furthermore, in view of Lemma 4.4.4, there exists
o < such that if ¢y, € aw(X;,0), then

©x, © o € aw(X; ©%0,7), ¥x, ©91 € aw(Xy ©71,7)-

Let o5, € aw(X1,0) and ¢y, € aw(x2,0). Consequently, from the w-homotopy
invariance of the topological degree for weighted maps it follows that

(4'94) deg(@xz °¥x, ° io, U, Rn) = deg(@xz o ¥x, © i1, U, Rn)'

On the other hand, by Definition 4.6.4, we have

(4.95) Deg((¥, Dy,), U, R"™) = deg(py, © ¢y, ©io, U,R")
and
(4.96) Deg((®, D3),U,R") = deg(py, © ¢x, ©i1,U,R").

Consequently, taking into account (4.94)—(4.96), one obtains
(4.97) Deg((¥, Dy,),U,R"™) = Deg((®, D},), U, R™).
Finally, in view of (4.92), (4.93) and (4.97), we get

Deg((¥, Dy), U, R") = Deg((®, Da), U, R"),

as required.
(f) Linear invariance. We start with the following simple observation

{zeU|0€V(z)}NoU =0
e{reT0)|0€ToVoT ()} NA(TU))=0.
Let ¢ = min{e((¥, Dy),U),e((T oV o T~YT(U),D’),T(U))}. In view of Propo-

sition 4.1.7, there exists 6. < ¢ such that if @1 € a,,(¥y,d.), then ¢, o TT(U)
€ a, (¥, o T7YT(U),¢). Additionally, by Proposition 4.1.16, there exists 6 < ¢
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such that if @, € ay(¥m,dY), then Top,, € ay(ToW,y,, ). Let §. := min{d., 0"}
and let ¢; € ay,(¥;,d:) for 1 < i < m. Then, be Definition 4.6.4, we obtain

Deg((¥, Dy),U,R") = deg(pm o...0 91, U,R")
Y deg((T o pm) 0 ... 0 (g1 o THT(T)), T(U), R")
— Deg((T o ¥ o T~ YT(@)), D'), T(U),R™),

where the equality (x) follows immediately from the linear invariance of the
topological degree for weighted maps. (|

We now extend the topological degree to any k-dimensional normed space
E*. Choose any linear isomorphism 7: RF — E¥.

Definition 4.6.10. Let U be an open subset of E¥ such that U is a compact
ANR. Let ¥ € M(K)ap (U, E¥) and let

v,

_ A2 v 3
(4.98) DU =Xg—o0 X| —o -+ —o0 X, = EF

be a decomposition of ¥. We define a topological degree of (¥, Dy) by the
formula

Deg((U, Dy), U, E*) := Deg((T"* o W o T|T~XT), D), T~ (U),RF),

where

) 1 e V10T Wy W1 T oW, &
DT (U) — Xy —o -+ —0 X1 —o X, =R"

Lemma 4.6.11. Definition (4.98) does not depend on the choice of a linear
isomorphism T:RF — EF.

Proof. Let T1:RF — E* T5:R* — E* be two linear isomorphisms. We shall
show that

Deg((Ty ' oV o Ty |Ty 1 (U), D1), Ty (U) R")
= Deg((Ty o W o To|Ty 1(T), Do), Ty L(U), R¥),

where
1 W07y 2N W, 1 Tflo\Iln k
Dy:Ty7 (U) —0 Xy —0 -+ —0 X1 —o X, =RY
W07 Wy W, 1 Ty tow,

Dy: Ty N U) — Xy —o -+ —0 X, 1 —o X, =R~
Let T3: RF — R* be given by T3 := Tfl o T5. In addition, let

\I/, Wo W, 1 v’

DT o THT) —o Xy o v —0 X,y T X,, = RE
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where U} = W, o Ty o T3|T5 * o T H(U), W/, = Ty ' o Ty o U,,. Then, by the
linear invariance of Deg (see Theorem 4.6.9), one has
Deg((Ty ' o ¥ o T1|Ty 1(U), D1), Ty 1(U), R¥)
= Deg(Ty o Ty 0 W o Ty o Ty|T; o T (0), DY), Ty o T (U), RY)
=Deg((Ty ' o ¥ o To|T; 1(T)), Do, T, 1(U), R¥),
where the last equality follows from the fact that D} = D, and T‘{1 N A—
Tyt O
In the next theorem we collect some properties of Deg.

Theorem 4.6.12. Let ¥, ® € M(K)ay (U, E¥) have decompositions

_ Wy Uy

\II*VL
Dy:U=Xy— X; —o--- —o0 X,, = EF,
_— <I>1 ‘I>2 ‘bn k
Dp:U=Yy—oY] —o .- —0 Y, =E",

respectively.

(a) (Existence) If Deg((V, Dy ), U, E¥) # 0, then 0 € ¥(x) for some x € U.
(b) (Additivity) Let Uy and Us be disjoint open subsets of U such that
\I/:Ll(()) C U1 UUsy and let U; denote the restriction of ¥ to Us, then

Deg((¥, Dy), U, E*) = Deg((¥1, D, ), Ur, E¥) + Deg((¥2, Dy ), U, E*),

where

U, L2 W, k
D@I:Ul —o Xy —o ... —0 X,, = F%,

0|0, Py v, k
D%:Ug —o0 Xy —o---—o X, = E".

(c) (Contraction) Let E' be a subspace of E*, U be an open subset of EF
and U :=UNE. If ¥ e MK)ov (U, E') and U’ € ANR, then

Deg((jg o ¥, Dj,,ow),U, E¥) = Deg((¥|U’, D), U’, E'),

where jp: B’ — E* is the inclusion and

J— ‘1/1 \Pg \1’7171 jE/O\I/n

. k

Dj ov:U —o0X —o-v —0 X, 1 —o E7,
/_‘1’1\W Wy W1 v, ,
DU —o0 Xy —o -+ —0 X,,_1 —o F".

(d) (Linearity) Let T = a¥ and

J— Ot‘lfl \I/Q \I}n k
DTZU:X();OXlio...*oXn:E .

Then
Deg((Y, Dv),U, E*) = a - Deg((¥, Dy), U, E¥).
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(e) (Homotopy invariance) If the decompositions Dy, Dg are homotopic in
M(K)su, then

Deg((\llvD‘I’)a U, Ek) = Deg((q), Dq’)a U, Ek)

Proof. This theorem follows immediately from Definition 4.6.10 and Theorem
4.6.9. g

Now, we are going to show that some requirements of Definition 4.6.10 can
be removed. More precisely, it turns out that there is no need to require U to
be bounded subset of E¥.

Let E* be a k-dimensional normed space and let U be an open subset of E*.
Then we put

M(U)o (U, E*) := {¥ € M(U)(U, E¥) | $1'(0) is compact}.

Definition 4.6.13. If ®, ¥ € M(U) (U, E¥) have decompositions

‘I>1 q>2 (I)n k
De:U=X9g—0X; —o0---— X,, = FE%,

v, Wy W,
Dy:U=Xyg—o0X| —o- —o X,, = E*,

then we say that the compositions D¢ and Dy are homotopic in M(U)g if n = m,
X, = X/, and there is a map x; € M(X;_1 x [0,1], X;) with x;(-,0) = ®,,
xi(+,1) =9,;, 1 <i< n, such that the following set

{r €U |0 € x(z,t) for some t € [0,1]}
is compact, where x: U x [0,1] — E* is a homotopy given by

X(2, 1) 3= Xn ©Xn—10--- 0 X1 (2, 1)
with X;(x,t) = xi(z,t) x {t} forz € X;_1,t €[0,1], 1 <i<n—1.
Let ¥ € M(U)o(U, E*). Since W;'(0) is compact, it follows that there are
open balls B(x1,81),... , B(Zm, 0m) such that

\I/:Ll(()) C U B({Ei,éi) C U B({Ei,éi) cU.
i=1 i=1
Let U := U, B(x,6;). Since U is a finite union of compact convex sets, we
deduce that U is a compact ANR (see Theorem 1.2.4).

Definition 4.6.14. Let U be an open subset of E¥ and ¥ € M(U)o(U, E*).
In addition, let

‘IJTI

Uy v 3
(4.99) Dg:U =Xg —o X| —o - —o0 X, = EF
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be a decomposition of ¥. We define a topological degree of (¥, Dy) by the
formula

(4100) Deg((\ljv D‘ll)v U, Ek) = Deg((\I}|U7 D(I/)vwv Ek)v

where U is as above nad
’ J— ‘I’l‘ﬁ \PQ \I/nfl n k
Dy:U—o Xy —o0-+ —o X,,_1 — X,, = E".
Lemma 4.6.15. Definition (4.100) does not depend on the choice of U.
Proof. Let ¥ € M(U)o(U, E*) and let

\PQ ‘I’nl k
Dy: U—0X1—0---—0Xn 1—0X =F

be a decomposition of ¥. In addition, let U; and Us be two open subsets of E*
such that

\I/_T_l CUl UB LL'“ z UB :Ez» z 7

UH0) CUs = UBxl,cX UB o, 87) C

J

Let U3 := U; UUs. Now, using once again Theorem 1.2.4, we infer that Us is an
ANR. Then, in view of the excision property of Deg (see Theorem 4.6.12), one
has

(4.101) Deg((¥|Us, D3), Us, E¥) = Deg((¥|Uy, D), Uy, EF),
(4.102) Deg((¥|Us, D3), Uz, E*) = Deg((¥[Us, Ds),Us, E*),
where
DT 2 x, e M x, T x, = B
U |Uy Uy Wno1

Dy~ Xy o 0 Xy o X, = BV,
__ U, |Us Uy U1 n k
Dg:Ug —° Xl —=©% - —0 Xn,1 40Xn:E .
Consequently, taking into account (4.101)—(4.102), one obtains
Deg((\IIHU_Q? D2)7 UQ? Ek) = Deg((\mU_l» D1)7 U17 Ek)v
which completes the proof. O

We conclude this section with the standard properties of the topological
degree.



140 ROBERT SKIBA
Theorem 4.6.16. Let ¥, ® € M(U)o(U, E*) have decompositions
\21 \P vy, k
D\DZU:XO—OXl —O_oXn:E )
(o8 (D) d, k
De:U=Yy—oY —o .- —0Y,, = E",

respectively.

(a) (Existence) If Deg((V, Dy),U, E¥) # 0, then 0 € ¥(x) for some x € U.
(b) (Additivity) Let Uy and Us be disjoint open subsets of U such that
\I/_T_l(()) C U1 UUsy and let ¥; denote the restriction of ¥ to Us;, then

Deg((¥, Dy), U, E*) = Deg((¥1, D, ), U1, E¥) + Deg((¥2, Dy ), U, E*),
where
\IlllUl Wo v, k
D@I:Ul —o X3 —o - —0 X, = E",

Wy |Uz Py v, &
Dg,:Us —o Xj —o -+ —o X, = E.

(c) (Contraction) Let E' be a subspace of E*, U be an open subset of EF
and U’ := UNE'. If ¥ € MU)o(U, E'), then

Deg((jE’ © \II’DJ'E/O‘I’)’ U, Ek) = Deg((\II|U’,D/),U/,E/),

where jpi: E' — E¥* is the inclusion and

L2 Uy Vi1 Jpro¥n

DjyoniU —o Xy —o o —0 X,y 2" BE,
, /‘I’l\U/ Wy W,1 v, ,
DU —o X; —o -+ —0 X,,_1 — E".

(d) (Linearity) Let T = a¥ and

aWvy \ 2 \ 2% k
Dy:U=Xyg—oX{ —o0---—0 X, = E".

Then Deg((Y, Dy),U, E¥) = a- Deg((V, Dy), U, EF).
(e) (Homotopy invariance) If the decompositions Dy, Dg are homotopic in
M(U)o, then

Deg((\llvD‘I’)a U, Ek) = Deg((q), Dq’)a U, Ek)

Proof. This theorem follows from Definition 4.6.13 and Theorem 4.6.12. [

Remark 4.6.17. It is possible to define a topological degree for composi-
tions of weighted carriers defined on open subsets of arbitrary normed sapce.
The details will be given in a forthcoming paper of the present author.



CHAPTER 5

REMARKS
ON THE NIELSEN FIXED POINT THEORY
FOR WEIGHTED MAPS

In this chapter we are going to show that the Nielsen fixed point theory
cannot be extended to the multivalued weighted case. More precisely, we show
that there is no w-homotopy invariant for weighted maps ¢: X — X defined on
compact ANR’s, denoted by N,,(¢), with the following properties:

(a) #Fix(p) = Nu(p),

(b) if ¢ ~u 1, then Ny (p) = Nu(¥),

(c) if f is a continuous single-valued function, then N, (f) = N(f), where
N(f) stands for the Nielsen number for single-valued continuous maps
(see [8] where the definition and the properties of N are presented).

Let g be a fixed point of S° and let
0,87 i= 5 % [0, 11/(8° x {0,1)) U ({ro} x [0, 1))

be the reduced suspension of S°. In addition, let h:%,,S° — S C R? be
a homomorphism given by
et if ¢ £ xg,
5.1) ) ={ ) s
(1,0) if z = xo.

Lemma 5.0.1 (see [53] or [40]). Let p,1:%,,5° — ,,S° be two weighted
maps such that ¢([x0,0]) = ¥([x0,0]) = [x0,0] and L,(p) = I,(p) = 0. Then
@k~ (pUY), where

o([z, 2t]) if 0 <
exullst) = { |
e([z, 2t =1]) if 1/

Let a:%,,5% — 2, 5% and ¢: £,,59° — %,,5° be given by

¥
N H

a([x,t]) = [‘T’t]’ C([,’B,t]) = [.”L'o,t],

141
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for [x,t] € S. In addition, let 3,7: ¥,,5° — X,,S5° be defined by

C(@UDO(m2)  iF0<t<1/2,

Al 1)) = { (@U(=D)e)([z,2t— 1)) if1/2<t<1,
B2 iO<E<1/2,

V(lzt]) = { Blz,2t—1] if1/2<t<1,

where (—1)c: ¥,,5° — %,,5° is a weighted map with I, ((—1)c) = —1.
Proposition 5.0.2. Let 3,7: ¥,,5° — £,,5Y be as above. Then v ~,, U
and hence yUc ~, SUBUC
Proof. This follows from Lemma 5.0.1. |

Lemma 5.0.3. Let v:%,,5° — 3,,5° a:3,,8° — %,,5° be as above.
Then y U ¢ ~y, 7, where 7: 3,,,S° — 3,59 is given by

o[z, 4t] fo<t<1/4,

(5.2) (e f]) = afz, 4t — 1] zf 1/4<t<1/2,
a(lr, 4t —2] if1/2<t<3/4,
o[z, 4t — 3] f3/4<t< 1.

Proof. 1t is clear that yUc = 7UO0-c. Hence to prove the result it is enough
to show that 7U(0-¢) ~,, 7. To this end, it is sufficient to consider the following
w-homotopy

(TU(0-0)(z) 0Lt 1/2,
0(z,t) = { )
7(2) if1/2<t<1,
which completes the proof. O

Proposition 5.0.4. Let 3:3,,5° — X,,5° and 7,¢:$,,5° — ¥,,5° be as

above. Then T ~,, UG Uec.

Proof. This proposition follows immediately from Proposition 5.0.2 and Lem-
ma 5.0.3. 0

Lemma 5.0.5 ([8]). Let X be a compact ANR and let f: X — X be a con-
tinuous function. In addition, let h:Y — X be a homomorphism. Then

N(f)=N(htofoh).

Lemma 5.0.6 ([8]). Let x:S' — S' C C be given by r(z) = z*. Then
N(k) =3.

It is easy to see that the following diagram

Yy 80 —— 8, 8°

hl Jh

Slﬁsl
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commutes, where 7 and h are defined by (5.2) and (5.1), respectively. Since h is
a homomorphism, it follows that
(5.3) r=h"tokoh.

Consequently, taking into account Lemmas 5.0.5 and 5.0.6 and (5.3), we
obtain the following result.

Proposition 5.0.7. Let 7:3,,5° — %,,5° be defined by (5.2). Then
N(r) =3.
Now, we are able to formulate and prove the main result.

Theorem 5.0.8. The Nielsen fixed point theory for single-valued maps de-
fined on compact ANRs cannot be extended to the class of multivalued weighted
maps.

Proof. Let 3,7,¢:%,,5° — 3,,5° be as above. Suppose, contrary to our
claim, that such a w-homotopy invariant N, exists. Consequently, from the
w-homotopy invariance of N,, and Proposition 5.0.4 we obtain

Ny,(BUBUc) = Ny(7).
Since 7 is a single-valued map, it follows that
Nu(T) = N(7) =3,

where the latter equality holds by Proposition 5.0.7. Hence, a weighted map
B U B U c should have at least three fixed points. On the other hand, it is easy
to see that 8 U (U c has only one fixed point, a contradiction. The proof of the
theorem is complete.
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