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INTRODUCTION

Group extensions of dynamical systems form an important and efficiently

explored class of extensions. This large class enjoys a great variety of useful

properties that make considerations on them quite fruitful. The group extensions

are considered in measure-theoretic ergodic theory and in topological dynamics

as well. In both cases the results are formally similar however the methods are

different. The methods applied in the study of the class of group extensions are

usually of algebraic and topological character, therefore some differences in the

methods may be observed on appearance (or not) of compactness of the group

in the considered group extension. In applications it is rather difficult to exceed

behind of the class of locally compact groups – the groups that admit a one-point

compactification. This is one of the main reasons to limit the object of research

to the locally compact groups, frequently even to the compact ones.

Let us now define more precisely the objects that will appear in this disserta-

tion. By [2], an ergodic extension T̃ : (Z,A,m)→ (Z,A,m) of an automorphism

T : (X,B, µ)→ (X,B, µ) is of the form

T̃ : (X × Y,B⊗ C, µ⊗ ν)→ (X × Y,B⊗ C, µ⊗ ν),

T̃ (x, y) = (Tx, ψ(x)(y)),

(1)

where ψ:X → Aut(Y, ν) is a measurable map (and ψ is called a Rokhlin cocycle).

Some examples of Rokhlin cocycles can be obtained in the following way. First

take G a locally compact second countable group and let ϕ:X → G be a cocycle.

Then suppose that G acts measurably on (Y,C, ν) as G 3 g 7→ γg ∈ Γ = {γg :

g ∈ G}. Then let

Tϕ,Γ: (X × Y,B⊗ C, µ⊗ ν)→ (X × Y,B⊗ C, µ⊗ ν)

be given by

(2) Tϕ,Γ(x, y) = (Tx, γϕ(x)(y)).

7



8 Mieczys law K. Mentzen

The extensions of the form (2) seem to be a very particular case of the general

situation (1). However, quite surprisingly, as noticed in [14], each Rokhlin ex-

tension (1) is isomorphic, as an extension, to (2); moreover, G may be taken

countable and amenable.

In this dissertation we consider measure-theoretic dynamical systems and

topological systems as well. In both cases the basic tools used in the study

are similar: joinings (ergodic in ergodic theory, and either minimal or B-sets

in topological dynamics), and the groups of essential values of cocycles. The

corresponding results obtained in ergodic theory and in topological dynamics

are comparable, not identical. Generally, the universe of group extensions in

topological dynamics pictured in this dissertation turns out to be more diverse

and containing few regularity – in contrast with the universe of measure-theoretic

group extensions.

This dissertation consists of eight chapters. Chapter 2 and Chapter 3 deal

with measure-theoretic ergodic theory, in Chapters 4 to 7 topological dynamics is

explored, Chapter 8 compares some results and properties in measure-theoretic

ergodic theory and in topological dynamics. Chapter 1 contains preliminary

notions, definitions, useful facts and theorems applied in the sequel.

The results of Chapter 2 come from a joint with A. del Junco and M. Lema-

czyk paper [44]. In [95], Veech proved a theorem describing factors of ergodic

2-fold simple automorphisms in terms of compact subgroups of the centralizer

(see also [45]). The property 2-fold simplicity is defined by 2-joinings – invariant

measures on Cartesian square of the given system, projecting onto the system

as the original measures. In particular, each system is a factor any of its join-

ing. In the 2-fold simplicity case, each ergodic 2-self-joining is either a graph

measure or the product measure and this property is sufficient to describe all

factors. But a graph measure, as a dynamical system, is isomorphic to the

original system and the natural projection factor map is one-to-one a.s. with

respect to the joining measure. In other words, a graph measure λ is one point

extension of the base system X. In particular, the relative product λ ×X λ is

ergodic. We will use this observation to define a new class of ergodic automor-

phisms, called semisimple automorphisms. An ergodic automorphism is called

semisimple if for each its ergodic self-joining the automorphism corresponding

to the self-joining is relatively weakly mixing with respect to the both marginal

σ-algebras. It turns out that many classes of automorphisms previously studied

are semisimple. Indeed, all discrete spectrum, 2-fold simple, direct products of

minimal self-joinings, Gaussian–Kronecker automorphisms are semisimple. We

exhibit a structure of factors of semisimple automorphisms; in particular, we

prove that one can decompose a given factor map X → Y of a semisimple X

into X → Ỹ → Y , where the extension X → Ỹ is relatively weakly mixing and

Ỹ → Y is a compact group extension.
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In order to study the structure of factors of a given automorphisms, we intro-

duce the notion of a natural family of factors. A general factorization theorem

for an automorphism X possessing a natural family of factors says that if Y is

a factor of X then there exists a decomposition X → Ỹ → Y for some natu-

ral factor Ỹ with the remaining properties as above, i.e. X → Ỹ is relatively

weakly mixing and Ỹ → Y is a compact group extension. We also explore er-

godic compact group extensions of semisimple automorphisms. In Section 2.5 we

describe ergodic joinings of such extensions. In Section 2.6 we apply the concept

of a natural family of factors to give a description of factors of group extensions

of 2-fold simple automorphisms, generalizing earlier results from [64] and [71].

Finally, we consider the conjecture that if, for an automorphism with a natural

family of factors, all natural factors are coalescent then all factors so are. We

give the positive answer in case of group extensions of rotations (Theorem 2.6.7).

Chapter 3 contains results from a joint with M. Lemaczyk and H. Nakada

paper [66]. It is an important problem in ergodic theory to study classes of

automorphisms with a “given” set of self-joinings, see [94]. Historically, such

an approach was first presented in [86] by D. Rudolph, where the existence of

automorphisms (so called MSJ) with a minimal structure of self-joinings was

shown. A generalization of this notion appeared in [95] and then in [45] – the

notion of 2-fold simplicity. A further generalization was proposed in Chapter 2,

where the notion called semisimplicity was introduced. As proved in Chapter 2,

such automorphisms have still strong ergodic properties, and in particular the

structure of their factors can be easily described. Based on some earlier results

of J.-P. Thouvenot, it was already remarked in Chapter 2 that some Gaussian

automorphisms are semisimple (recall that Gaussian automorphisms are never

2-fold simple). In [68] a far reaching study of Gaussian automorphisms with

a minimal (in the category of Gaussian automorphisms) set of self-joinings (called

GAG) is presented. All GAG systems turn out to be semisimple.

Almost all examples of automorphisms presented above are weakly mixing.

In fact, the only exception are ergodic rotations which are 2-fold simple but not

weakly mixing. Being more precise, the MSJ property implies weak mixing, while

in the class of 2-fold simple automorphisms we have: either such an automor-

phism is weakly mixing or it is a rotation (see [45]). In the class of semisimple

automorphisms it is a question whether the existence of a discrete part in the

spectrum forces a decomposition into direct product of the form “discrete spec-

trum automorphism × weakly mixing automorphism”. The question is natural

because it has been noticed in Chapter 2 that an ergodic distal automorphism is

semisimple if and only if it is a rotation. It follows that more is true: since each

ergodic automorphism is relatively weakly mixing over its maximal distal factor,

if an ergodic automorphism is semisimple then it is relatively weakly mixing over

its Kronecker factor (see Section 2.4).
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In Chapter 3 we will construct semisimple weakly mixing extensions of irra-

tional rotations. The main idea of the construction comes from some papers by

D. Rudolph [88] and E. Glasner, B. Weiss [38]. Roughly, we fix a simple (or even

semisimple) action of an Abelian locally compact second countable group that

will serve as fiber automorphisms of a skew product whose base is an irrational

rotation. When some assumptions on the relevant fiber cocycle are put then the

skew product turn out to be semisimple (it cannot be 2-fold simple). In order

to see that we have constructed a completely new class (in particular, no fore-

mentioned direct product decomposition exists) of semisimple automorphisms

we use some recent results from [63]: the class we will consider is disjoint in the

sense of Furstenberg from all weakly mixing automorphisms, on the other hand

the automorphisms from this class are relatively weakly mixing extension of the

base irrational rotation.

An essential part of this chapter is to show the existence of some cocycles over

irrational rotations, taking values in Abelian locally compact second countable

groups and having strong ergodic properties (see Section 3.3). Here, we consider

two examples of well known (one being real-valued, described in Subsection 3.3.1,

and the second, described in Subsection 3.3.2, integer-valued) cocycles over the

rotation by an irrational α, where α has bounded partial quotients.

Chapter 4 is based on [36] (a joint paper with E. Glasner and A. Siemaszko).

Given a dynamical system (either measure theoretical or topological), its family

of factors can have a rich and complex structure. An interesting step towards

a systematic classification of this family (in the measure theoretical case), was

taken in Chapter 2. It was shown there that for an ergodic system (X,B, µ, T ),

there always exists a unique minimal natural family of factors, N, that includes

all those factors arising from ergodic self-joinings and that has the following

property: for every factor sub-algebra A of B there exists a natural cover Â ⊃ A

such that the corresponding factor map from the factor defined by Â to the one

defined by A, is a compact group extension. This natural subfamily of factors is

strongly related to structure theory and can, in some cases, considerably simplify

the study of the family of all factors. Two such cases are studied in Chapter 2:

the case of an ergodic group extension of a group rotation and the case of what

is called in Chapter 2 semisimple systems. In some cases the minimal family of

natural factors coincides with the entire family of factors (see [26], where this

is shown for Bernoulli systems; see also [33]). However, even in these cases, the

mere fact that N consists of all factors is of great interest.

The purpose of the investigation is to study several analogies of the notion of

natural family of factors in topological dynamics, or more precisely, in the theory

of minimal dynamical systems (called here minimal flows). Our first approach

(expounded in Section 4.2) is perhaps the most straightforward one. We define

a self-joining of the minimal system (X,T ) to be any minimal subset of X ×X.

With this definition of joining we mimic the definition of natural family of factors
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given in Chapter 2. As in the measure theoretical case we get in this way the

existence of a unique smallest natural family of factors N, that includes all the

factors arising from self-joinings. This family N has the property that for every

factor Y of X there exists a unique natural cover Ỹ ∈ N such that the map

Ỹ → Y is a regular (but not necessarily a group) extension. We characterize the

least member of the smallest natural family of factors of the system (X,T ) as the

unique maximal regular factor of (X,T ). At the end of Section 4.2 we consider

an alternative approach. We call a non-empty subset W of X × X a B-set if

it is closed, T × T invariant, topologically transitive and such that the union of

the minimal subsets of W is dense in W . Now we enlarge the class of admissible

self-joinings by allowing all B-sets to be joinings. The corresponding notion of

a natural family of factors now has the property that the map π: Ỹ → Y is again

regular and in addition admits a decomposition π = ω ◦ κ, where κ is a group

extension and ω a proximal one. We show that for this type of natural family the

Kronecker factor is the least member of the smallest natural family. By a result

of Bronstein, for a PI-flow X, and in particular for a distal flow, a B-set in X×X
is necessarily minimal ([10], see also [7]), and the two notions of natural families

coincide. Unlike the situation in ergodic theory, the largest zero entropy factor

of a minimal system need not be natural.

Section 4.4, motivated by [44], [64], [71] and [92], deals with natural families

of factors for a minimal group extension of a group rotation. We show by direct

methods that for such a flow the family {X/F : F a closed normal subgroup

of G}, is a natural family of factors for the G-extension (X,T ) of the group

rotation Z = X/G (Proposition 4.4.8).

In Chapter 5, based on a joint with M. Lemaczyk paper [65], we will study

dynamical properties of extensions by topological cocycles taking values in a lo-

cally compact group G. Such a subject is under research mainly in the measure-

theoretic setting. K. Schmidt in [89] developed the idea of an essential value of

a cocycle as a tool to investigate ergodic properties of extensions by cocycles with

values in G. It is also well known that one of the consequences of Dye’s theorem

([15]) on orbital equivalence is that the first cohomology group (of cocycles tak-

ing values in a fixed locally compact group) is the same for all ergodic systems.

In particular, if G = R then for each ergodic system there exist non-regular (in

the sense of [89]) cocycles (these are cocycles φ which are not cohomologous to

any cocycle taking values in the group of essential values of φ). Of course the

structure of such cocycles is far from being understood.

In the topological setup Dye’s theorem is no more valid and we may hope

that for some classes of topological systems the structure of cocycles will be

much more clear. In this paper we make first steps following this direction and

show that a particularly easy classification appears if we study real cocycles

over minimal rotations T . We show that if such a cocycle φ is not regular then

necessarily
∫
φdµ 6= 0 (µ is a unique T -invariant measure). In this case the
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partition into orbits of the corresponding skew product

Tφ:X × R→ X × R, Tφ(x, t) = (Tx, φ(x) + t)

is the decomposition of Tφ into minimal components. Otherwise, when
∫
φdµ

= 0, the cocycle is regular and moreover, either it is a topological coboundary

or Tφ is topologically ergodic.

We should emphasize that such a classification is no longer valid for strictly

ergodic systems that are not rotations (see Section 5.5).

In [28] and [38], S. Glasner and B. Weiss studied the problem of topological

disjointness from the class WM of all minimal weakly mixing topological systems.

They considered the following situation. Assume that T :X → X is a minimal

rotation and let (St)t∈R be a weakly mixing flow on a compact Hausdorff space Y .

Assume that φ:X → R is a topological cocycle and let

T̃φ:X × Y → X × Y, T̃φ(x, y) = (Tx, Sφ(x)(y).

Then for φ running through a certain generic set of cocycles, the following results

have been proved: T̃φ is not PI but it is disjoint from all weakly mixing trans-

formations, if moreover, (St)t∈R is regular then T̃φ is a multiplier of the class of

topological systems disjoint from WM. We introduce the notion of universally

ergodic cocycles and show that the two disjointness results hold under the only

assumption of universal ergodicity of φ.

The purpose of Chapter 6, containing results of [72], is to describe groups

of essential values of continuous cocycles (over minimal rotations) taking values

in locally compact Abelian groups whose dual is connected. Recall that in the

measure-theoretic context the notion of essential values over ergodic actions has

been introduced by K. Schmidt ([89]). In topological dynamics a parallel theory

has been developed by G. Atkinson [6], although only for extensions by Rm. An

adaptation of Schmidt’s concepts was considered in Chapter 5. It was suggested

that a full description of all groups of essential values is possible over minimal

rotations and indeed, in Chapter 5 it has been shown that the only possible

groups of essential values for cocycles taking values in R are {0} and R. Here

we go further and study the case of cocycles taking values in locally compact

Abelian groups without compact subgroups. By a classification of LCA groups

([77, Theorem 25]), such a group is of the form Rm ⊕ D, where D is discrete,

torsion-free. Our main result shows that a group of essential values is then

contained in Rm and moreover, it must be a linear subspace of Rm. We will

also prove that an Rm-extension of a minimal rotation is conservative iff the

cocycle has zero mean (with respect to Haar measure), and that topological

non-ergodicity of a conservative Rm-extension leads to a functional equation.

Both these results are essential improvements of the paper by G. Atkinson [6].

In this chapter we also propose the notion of a regularity of a topological

cocycle. Namely, we say that a cocycle ϕ is regular if it is cohomologous to
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a cocycle taking all values in the group E(ϕ) of essential values of ϕ. In this case

infinity is not an essential value of the quotient map ϕ̃:X → G/E(ϕ), however

the converse does not appear to hold in general. Due to our analysis of possible

groups of essential values we show that a cocycle (over a minimal rotation) is

regular iff the corresponding extension is conservative.

We should like to emphasize that our analysis of cocycle group extensions

essentially exploits the fact that we study cocycles over minimal rotations. It

has been already noticed in Chapter 5 that the group of essential values may be

Z for some minimal extensions by R, however in this case the base cannot be

a rotation.

Chapter 7, based on [75], a joint paper with A. Siemaszko, is devoted to the

problem of minimal subsets of cylinder transformations. Let X be a compact

metric space and T :X → X be a homeomorphism of X. Let ϕ:X → R be

a continuous function. By a cylinder transformation we mean a homeomorphism

Tϕ:X ×R→ X ×R (or rather a Z-action generated by it) given by the formula

Tϕ(x, r) = (Tx, ϕ(x) + r).

We will also consider the case Rm instead of R. It is essentially proved by

A. S. Besicovitch in [8] that the cylinder transformation cannot itself be minimal.

We also mention a deep result of P. Le Calvez and J.-Ch. Yoccoz saying that

there is no minimal homeomorphism on the infinite annulus or more generally

on the two-dimensional sphere with a finite set of points removed [60]. This of

course generalizes Besicovitch’s result.

The problem of the minimal subsets of a cylinder transformation turns out to

be related to the problem of possible forms of ω-limit sets. H. Poincaré was the

first to consider flows (generated by differential equations) on R3 that had time

one homeomorphisms topologically isomorphic to cylinder cocycle extensions

over irrational rotations [83]. He made an attempt at classifying possible form of

the vertical section of ω-limit sets. His classification turned out to be partial and

only A. B. Krygin gave the full classification in [55]. In [56] A. B. Krygin gave

a full classification in the differentiable situation proving that actually there are

four possibilities: either {0} – the case of coboundary, or R – the case of transitive

point, or R+, or R−.

In Sections 7.1 and 7.2 of this chapter we show that there are no minimal

sets for any transitive cylinder transformation defined by bounded variation co-

cycles over an irrational rotation on the circle (Theorem 7.1.4) and over adding

machines (Theorem 7.2.4). Moreover, the only compact monothetic groups that

do not admit transitive cocycles are finite cyclic groups (Theorem 7.3.6).

Chapter 8, based on [74], is devoted to compare some twin notions in mea-

sure-theoretic ergodic theory and in topological dynamics. Some notions and

theorems in topological dynamics imitate their analogues from measure-theoretic
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ergodic theory (see [34]). However the structure of objects in topological dy-

namics is sometimes more complicated than in ergodic theory. In particular the

theorem saying that each measure-theoretic dynamical system is built up from

ergodic components has no appropriate version in topological dynamics. The two

most similar counterparts in topological dynamics of measure-theoretic ergod-

icity are minimality and topological transitivity (topological ergodicity). Both

notions have some properties similar to ergodicity, unfortunately not all of them.

In this chapter we will compare some properties of special cocycle extensions

(see (2) above) in measure-theoretic ergodic theory and in topological dynamics.

It is known that each measure-theoretic extension is a cocycle extension [2],

however the cocycle takes its values in a big Polish group, namely in the group

of all automorphisms of a fixed Lebesgue space. In topological dynamics there are

extensions that cannot be represented as cocycle extensions (see Example 8.2.1).

The special cocycle extensions considered below will strongly depend on cocycles

taking values in locally compact groups.

To study them, the main tool we will use is the notion of the group of

essential values of a cocycle. This notion was introduced by Klaus Schmidt ([89])

in the measure-theoretic context. A topological version of the notion of group

of essential values inherits many properties and consequences of the original

Schmidt’s definition (see [6], [64]). In this chapter we also work with the problem

whether the conjugacy class of the group of essential values is a cohomology

invariant in a nonabelian case. In measure-theoretic ergodic theory this is not

true – see [5]. We present a counterexample to this guess in topological dynamics

(see Example 8.2.3). In [74] a comment on this example was given that this

is a topological counterexample to a relevant measure-theoretic theorem [13,

Proposition 1.1]. This comment miss the goal as [13, Proposition 1.1] is based

on an extra assumption that the cocycle under considerations is regular. It is

easy to see that the Danilenko’s proof works also in topological dynamics. On

the other hand, for some constructions and strong theorems in ergodic theory

there is a topological counterpart. In this chapter we compare descriptions of

isomorphisms of Rokhlin cocycle extensions in ergodic theory and topological

dynamics.

In the topological context we will study only extensions of the form (2) and

here Γ is assumed to be a continuous action of a locally compact second countable

group G on a compact metric space Y . In the study of extensions of the form (2)

an important role is played by associated, so named, cylindrical transformations

Tϕ:X ×G→ X ×G, Tϕ(x, g) = (Tx, ϕ(x)g). Similarly to the measure-theoretic

situation central object is the set E∞(ϕ) of essential values of ϕ. We will give

(Section 8.2) examples that some important properties of E∞(ϕ) that hold in

ergodic theory are not inherited by topological dynamics. In this paper we also

describe (Section 8.3) base preserving equivariant homeomorphisms of Rokhlin

cocycle extensions of minimal flows, that means, equivariant homeomorphisms
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of the form Ŝ: (X × Y1, T̃ ) → (X × Y2, T ), where both T̃ and T are Rokhlin

cocycle extensions of a given topologically transitive flows (X,T ), and both these

extensions are defined by the same cocycle ϕ:X → G. The results of this chapter

refer to [63, Proposition 5], [14, Theorem 7.3], [67, Proposition 2.1].





CHAPTER 1

PRELIMINARIES

1.1. Measure-theoretic dynamical systems

Let T be an automorphism of a probability Lebesgue space (X,B, µ) (some
basic information on Lebesgue spaces can be found in Appendix A). Then the
quadruple X = (X,B, µ, T ) will be called a measure-theoretic dynamical sys-
tem, or shortly a dynamical system. In the sequel we will often shortly call T
a dynamical system.

One of the most important theorems in ergodic theory is so named the
Birkhoff–Khinchin Ergodic Theorem:

Theorem 1.1.1 (Birkhoff–Khinchin Ergodic Theorem). Let (X,B, µ, T ) be
a dynamical system and f ∈ L1(X,B, µ). Then for µ-almost every x ∈ X the
following limits exist and are equal to each other

lim
n→∞

1
n

n−1∑
k=0

f(T kx) = lim
n→∞

1
n

n−1∑
k=0

f(T−kx)(1.1)

= lim
n→∞

1
2n+ 1

n∑
k=−n

f(T kx) def= f(x).

Further f(Tx) = f(x) whenever the limits above exist. Moreover,

(1.2) f ∈ L1(X,B, µ) and
∫
X

f(x) dµ =
∫
X

f(x) dµ.

The limits that appear in the Birkhoff–Kchinchin Ergodic Theorem are called
time means or means along trajectory.

A measurable set A is called invariant with respect to the automorphism T if
µ(A4TA) = µ(A4T−1A) = 0. A measurable function f is said to be invariant
with respect to the automorphism T if µ({x ∈ X : f(x) 6= f(Tx)}) = 0.

Now we formulate one of the most important definition in ergodic theory.

17
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Definition 1.1.2. A dynamical system (X,B, µ, T ) is said to be ergodic if for
any invariant with respect to T set A, either µ(A) = 0 or µ(Ac) = µ(X \A) = 0.
In such a case T is said to be an ergodic automorphism.

Each ergodic dynamical system may be characterized in the following way.

Proposition 1.1.3. Let T be an automorphism of a probability Lebesgue
space (X,B, µ). The following statements are equivalent.

(a) T is ergodic.
(b) For every A ∈ B with µ(A) > 0 we have µ

(⋃
n>0 T

−nA
)

= 1.
(c) For every A,B ∈ B with µ(A) > 0, µ(B) > 0 there exists n > 0 with

µ(T−nA ∩B) > 0.

Now we give a characterization of ergodicity in terms of measurable real
functions.

Proposition 1.1.4. Let T be an automorphism of a probability Lebesgue
space (X,B, µ). The following statements are equivalent.

(a) T is ergodic.
(b) If f is measurable and (f ◦ T )(x) = f(x) a.e. then f is constant a.e.
(c) If f ∈ L2(X,B, µ) and (f ◦ T )(x) = f(x) a.e. then f is constant a.e.

Theorem 1.1.5. Suppose that T is an automorphism of a probability Le-
besgue space (X,B, µ). Then T is ergodic if and only if for all A,B ∈ B

lim
n→∞

1
n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Definition 1.1.6. Let T be an automorphism of a probability Lebesgue
space (X,B, µ).

(a) We say that T is weakly mixing if

lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0 for all A,B ∈ B.

(b) We say that T is strongly mixing or mixing if

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B) for all A,B ∈ B.

Evidently each strongly mixing transformation is weakly mixing, and each
weakly mixing is ergodic. We also have the following characterization of weakly
mixing automorphisms.
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Theorem 1.1.7. Suppose that T is an automorphism of a probability Lebes-
gue space (X,B, µ). The following statements are equivalent:

(a) T is weakly mixing.
(b) There exists a subset J ⊂ Z+ of density zero such that

lim
J 63n→∞

µ(T−nA ∩B) = µ(A)µ(B) for all A,B ∈ B.

(c) For each A,B ∈ B we have

lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)|2 = 0.

(d) T × T : (X ×X,B⊗B, µ× µ)→ (X ×X,B⊗B, µ× µ) is ergodic.
(e) T ×T : (X×X,B⊗B, µ×µ)→ (X×X,B⊗B, µ×µ) is weakly mixing.

(f) If 0 6= f ∈ L2(X,B, µ) and λ ∈ C satisfy f ◦ T = λf then λ = 1 and f

is constant a.e.

If we are given a dynamical system T on a probability space (X,B, µ), then
other T -invariant probability measures on (X,B, µ) may exist. The following
theorem gives some information on the structure of the set of such measures.

Theorem 1.1.8. Suppose T is a dynamical system on a measurable space
(X,B) along with two probability T -invariant measures µ and ν on B. Then:

(a) If µ is ergodic with respect to T while ν is absolutely continuous with
respect to µ, then µ = ν.

(b) If both measures µ and ν are ergodic with respect to T then either µ = ν,
or µ and ν are mutually singular.

Theorem 1.1.9. Let T be an automorphism of a probability Lebesgue space
(X,B, µ). Then there exists a measurable partition P of X satisfying the follo-
wing conditions.

(a) Each element of the partition P is a T -invariant set.
(b) If C ∈ P and µC is the conditional measure on C, then T is ergodic on

the Lebesgue space (X,B, µC).

The partition P the theorem above is describing is called a decomposition of
T into ergodic components. By virtue of Theorem A.2.6, such a decomposition is
unique. Each system (X,B, µC) is called an ergodic component of the dynamical
system (X,B, µ, T ). The decomposition (see Definition A.2.5)

µ =
∫
X/P

µC dµ
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is called the decomposition of the measure µ into ergodic components or the ergo-
dic decomposition. Denote by E(X,T ) the family of all ergodic for T probability
measures on X. By Theorem 1.1.9, E(X,T ) is non-empty.

Definition 1.1.10. Let T : (X,B, µ) → (X,B, µ) be an automorphism of
a probability Lebesgue space. By the centralizer C(T ) of T we mean the set

C(T ) = {S:X → X : S preserves µ and ST = TS}.

Note that the centralizer is always a semigroup, not necessarily a group. The
notion of coalescence, described below, comes from [80].

Definition 1.1.11. Let T : (X,B, µ) → (X,B, µ) be an ergodic automor-
phism. We will say that T is coalescent , if C(T ) is a group.

We equip C(T ) with the weak topology in the following way. We say that
a sequence (Sn)n≥1 of elements of C(T ) converges weakly to S ∈ C(T ) if

µ(S−1
n (A)4S−1(A)) n→∞−−−→ 0 for each A ∈ B.

Definition 1.1.12. Let (X,B, µ, T ) and (Y,C, ν, S) be two measure-theo-
retic dynamical systems, and let π:X → Y be a measurable map satisfying
µ(π−1(C)) = ν(C) for all C ∈ C. If S ◦π = π◦T then we call π a homomorphism.
In such a case (Y,C, ν, S) is said to be a factor of (X,B, µ, T ), and (X,B, µ, T )
is said to be an extension of (Y,C, ν, S). If π is a conjugacy (i.e. π−1 is an
isomorphism of the σ-algebras C and B), then we call π an isomorphism.

1.2. Ergodic dynamical systems with discrete spectrum

The content of this section is borrowed from [98, Chapter 3].
Let (X,B, µ, T ) be a dynamical system. Define

UT :L2(X,B, µ)→ L2(X,B, µ)

by UT (f) = f ◦ T . Then UT is a unitary operator on L2(X,B, µ). It is clear
that if (X,B, µ, T ) and (Y,C, ν, S) are two isomorphic dynamical systems then
the corresponding unitary operators UT and US are conjugate, i.e. there exists
an invertible linear operator W :L2(X,B, µ) → L2(Y,C, ν) such that UT ◦W =
W ◦ UT and

∫
Wf ·Wg dν =

∫
f · g dµ for all f, g ∈ L2(X,B, µ) (i.e. W is an

isomorphism of Hilbert spaces).
An important role in ergodic theory play eigenvalues of UT . It is clear that

if T and S are isomorphic then UT and US have the same eigenvalues.

Theorem 1.2.1. Let (X,B, µ, T ) be an ergodic dynamical system and let
UT be the corresponding unitary operator. Then:

(a) It UT f = λf , where λ ∈ C, f ∈ L2(X,B, µ, T ), f 6≡ 0, then |λ| = 1 and
|f | = const a.e.
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(b) Eigenvalues corresponding to different eigenvalues of UT are orthogonal.
(c) If f and g are both eigenvalues corresponding to the eigenvalue λ then

f = cg a.e. for some c ∈ C.
(d) The eigenvalues of UT form a subgroup of the unit circle T = {z ∈ C :
|z| = 1}.

Definition 1.2.2. We say that an ergodic dynamical system (X,B, µ, T )
has discrete spectrum (pure-point spectrum) if there exists an orthonormal basis
for L2(X,B, µ, T ) consisting of eigenvalues of T .

Theorem 1.2.3 (Discrete Spectrum Theorem). Let (X,B, µ, T ), (Y,C, ν, S)
be ergodic dynamical systems with discrete spectrum. Then these systems are
isomorphic if and only if UT and US have the same eigenvalues.

Natural examples of ergodic transformations with discrete spectrum are ro-
tations on groups. For a compact Abelian group G, denote by ν the normalized
Haar measure on G, and by Ĝ the character group of the group G. Let a ∈ G,
the automorphism T :G → G defined by T (g) = ag, g ∈ G, is called a rotation
on the group G. If moreover this automorphism is ergodic with respect to the
Haar measure ν, we call T an ergodic rotation.

Theorem 1.2.4. Let T , given by T (g) = ag, be an ergodic rotation on
a compact Abelian group G. Then T has discrete spectrum. Moreover, every
eigenfunction of UT is a constant multiple of a character, and the eigenvalues of
UT are {γ(a) : γ ∈ Ĝ}.

Theorem 1.2.5 (Representation Theorem). Every ergodic dynamical sys-
tem (X,B, µ, T ) with discrete spectrum is isomorphic to an ergodic rotation on
some compact Abelian group. The group is metrizable if and only if (X,B, µ) has
a countable basis.

Theorem 1.2.6 (Existence Theorem). Every subgroup Λ ⊂ T = {z ∈ C :
|z| = 1} is the group of eigenvalues of an automorphism with discrete spectrum.

Consider now an ergodic dynamical system X = (X,B, µ, T ) and let π:X→
Y = (Y,C, ν, S) be a homomorphism such that the system Y has discrete spec-
trum. Then Y is a canonical factor of X in the sense that whenever π:X →
Y = (Y ,C, ν, S) is another homomorphism such that Y is isomorphic to Y, then
π−1(C) = π−1(C), [79]. Using this property one can deduce that each ergodic
dynamical system X is possessed of the largest factor with discrete spectrum, i.e.
a factor with discrete spectrum Y such that whenever Y is another factor with
discrete spectrum of X, then Y is a factor of Y.

Definition 1.2.7. Let X be an ergodic dynamical system. The largest factor
with discrete spectrum of X is called the Kronecker factor.
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1.3. Measure-theoretical joinings

If T : (X,B, µ) → (X,B, µ), S: (Y,C, ν) → (Y,C, ν) are ergodic automorphi-
sms then by a joining of T and S we mean any T × S-invariant measure λ on
X × Y such that, for B ∈ B and C ∈ C,

λ(B × Y ) = µ(B), λ(X × C) = ν(C).

The set of all joinings of T and S we will denote by J(T, S) or J(X,Y ), while
the subset of J(T, S) consisting of all T × S-ergodic joinings, by Je(T, S) or
Je(X,Y ). Obviously the product measure µ×ν is a joining of T and S, therefore
J(T, S) 6= ∅.

Proposition 1.3.1. If λ ∈ J(T, S) and if

λ =
∫
E(T,S)

γ dτ(γ)

is its ergodic decomposition, where E(T, S) stands for all T ×S-ergodic measures
on X × Y , then τ(Je(T, S)) = 1.

Proof. As λ is a joining, for any B ∈ B we have

µ(B) = λ(B × Y ) =
∫
E(T,S)

γ(B × Y ) dτ(γ).

Each measure γ( · ×Y ) is an ergodic measure on B, hence the equality above gives
an ergodic decomposition of µ. However µ is already ergodic, so γ( · × Y ) = µ

for τ -a.e. γ ∈ E(T, S). In a similar way we prove that γ(X × · ) = ν for τ -a.e.
γ ∈ E(T, S). Thus γ ∈ Je(T, S) for τ -a.e. γ ∈ E(T, S). �

Proposition 1.3.1 says that the ergodic decomposition of a joining consists of
joinings. In particular Je(T, S) 6= ∅.

If f :X → Y is a measurable map then we define a graph measure µf on X×Y
by

µf (A×B) = µ(A ∩ f−1(B)).

It is easy to observe that the µf -measure of the graph of the map f in X × Y is
equal to 1 (notice that if µf ∈ J(T, S) then S ◦ f = f ◦ T ).

Lemma 1.3.2. If λ ∈ Je(T, S) then

(1.3) λ = µf ⇔ ∀
C∈C

∃
B∈B

λ(B × Cc ∪Bc × C) = 0.

Proof. If λ = µf , then for a C ∈ C put B = f−1(C). Clearly the equality
λ(B × Cc ∪Bc × C) = 0 holds.

To prove the converse observe first that for such sets C and B we have µ(B) =
ν(C) = λ(B×C). If λ(B′×Cc∪B′c×C) = 0, then µ(B′∩B) = µ(B) = µ(B′),
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so B = B′ almost surely. Thus for a given C the set B is unique up to the
measure µ. Define an isomorphism F of the Boolean σ-algebras C̃ and B̃ by

F (C) = B ⇔ λ(B × Cc ∪Bc × C) = 0.

Then F defines an isomorphism of Lebesgue spaces f : (X,B, µ)→ (Y,C, ν) such
that f−1(C) = F (C) for all C ∈ C. Clearly λ = µf and we are done. �

If Y = X and f = Id, the identity function, then the graph measure µId we
will call the diagonal measure.

Now we present the definition of simple and minimal self-joinings transforma-
tion (see [45]). Let (X,B, µ, T ) be an ergodic dynamical system. If S1, . . . , Sk ∈
C(T ) then we call the image of the measure µ under the map

X 3 x 7→ (S1x, . . . , Skx) ∈ X × . . .×X︸ ︷︷ ︸
k times

= Xk}

an off-diagonal measure. Each off-diagonal measure is clearly an ergodic k-joining.
By a product of off-diagonal (POOD) on Xk we mean that the set {1, . . . , k} has
been split into ti-element subsets Ai, i = 1, . . . , r, then on each Xti we put an
off-diagonal measure and then take the product of these off-diagonal measures. A
POOD is evidently a self-joining of (X,T ). Note that both product measure and
off-diagonal measures on Xk are POOD. We say that T is k-simple if C(T ) is
a group and each k-self-joining of (X,T ) is POOD and T is simple if it is k-simple
for each positive integer k. If T is simple and additionally C(T ) = {Tn : n ∈ Z}
then we say that T has minimal self-joinings, (MSJ).

Definition 1.3.3 ([22]). Two automorphisms Ti: (Xi,Bi, µi)→(Xi,Bi, µi),
i = 1, 2, are said to be disjoint if J(T1, T2) = {µ1 × µ2}. We will then write
T1 ⊥ T2.

The notion of disjointness given in Definition 1.3.3 is also called the disjoint-
ness in Furstenberg sense.

Definition 1.3.4. If S: (Y,C, ν)→ (Y,C, ν) is a common factor of

Ti: (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2,

and λ ∈ J(Y, Y ), by the relatively independent extension λ̂ ∈ J(X1, X2) of λ we
mean the measure

λ̂(A1 ×A2) =
∫
Y×Y

E(A1|Y )(y1)E(A2|Y )(y2) dλ(y1, y2).

Denote by λ̂ = µ1 ×C µ2 the relatively independent extension of the diagonal
measure on Y ×Y . By the relative product T1×S T2 of T1 and T2 with respect to
S we mean the relatively independent extension of the diagonal measure on Y .
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We say that T1 and T2 are relatively disjoint over S, if the relative product
T1 ×S T2 is ergodic.

1.4. Group extensions of measure-theoretic dynamical systems

Let T : (X,B0) → (X,B0) be an automorphism of a standard Borel space
(X,B0), that means T is a bijective map such that T−1B0 = B0. Let µ be a pro-
bability T -invariant measure on (X,B0). Denote by B the T -invariant σ-algebra
of all µ-measurable subsets of X. Then (X,B, µ) is a probability Lebesgue space
with T being an automorphism of it. In what follows all σ-algebras under consi-
deration will be complete with respect to the corresponding measure.

Let G be a locally compact group with the unit element e, equipped with
a left-invariant Haar measure ν = νG defined on the σ-algebra B(G) of Borel
subsets of G. Suppose that ϕ:X → G is a Borel map. Define a Z-cocycle ϕ( · ):Z×
X → G for the Z-action n 7→ Tn, n ∈ Z, by

(1.4) ϕ(n)(x) =


ϕ(Tn−1x)ϕ(Tn−2x) . . . ϕ(Tx)ϕ(x), n > 1,

e, n = 0,

ϕ(Tnx)−1ϕ(Tn+1x)−1 . . . ϕ(T−1x)−1, n 6 −1.

Then the cocycle identity

(1.5) ϕ(n+k)(x) = ϕ(n)(T kx)ϕ(k)(x)

is fulfilled. Note that each measurable Z-cocycle Φ = Φ(n, x) is of the form (1.4):
simply define ϕ(x) = Φ(1, x). In what follows we will shortly call measurable
ϕ:X → G a cocycle. Such a cocycle allows us to define an Tϕ:X ×G→ X ×G
by the formula

(1.6) Tϕ(x, g) = (Tx, ϕ(x)g).

Then

(1.7) (Tϕ)n(x, g) = (Tnx, ϕ(n)(x)g), n ∈ Z.

The map Tϕ preserves the (possible) infinite measure µ×νG. The dynamical sys-
tem (X×G,B⊗B(G), µ×νG, Tϕ) is called a group extension of T , or, indicating
the group, a G-extension of T . If G is compact then Tϕ is also called a compact
group extension. We say that the cocycle ϕ is ergodic if the corresponding group
extension Tϕ is ergodic, i.e. if for each Tϕ-invariant set A ∈ B ⊗ B(G), either
(µ× νG)(A) = 0 or (µ× νG)(Ac) = 0.

For each g ∈ G, let σg(x, h) = (x, hg). For this right action of G on X × G
we have Tϕσg = σgTϕ.
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If H ⊂ G is a closed subgroup then we define Tϕ,H :X ×G/H → X ×G/H
by the formula

(1.8) Tϕ,H(x, gH) = (Tx, ϕ(x)gH).

If no confusion can arise then we will denote the measure ν restricted to the sets
of the form BH =

⋃
b∈B bH, B ⊂ G, i.e. to the sets invariant with respect to

the right action of H on X ×G, again by ν = νG. Let µ̃ = µ× ν. Denote by B̃

the product σ-algebra B⊗ B(G). If p:G → G/H is the natural projection then
we denote

(1.9) B̃H = B⊗ p(B(D)).

The factor Tϕ,H of Tϕ we will call a natural factor of Tϕ and Tϕ,H an isometric
extension of T . If the group H is normal in G, then we call Tϕ,H a normal natural
factor of Tϕ.

Theorem 1.4.1 (Veech’s Theorem, [34]). Let us assume that T : (X,B, µ)→
(X,B, µ) is an ergodic automorphism and that C is its factor. Let

µ⊗C µ =
∫
J22 (T )

γ dP (γ)

be the ergodic decomposition of the relatively independent extension of the diago-
nal measure on C⊗C. If P -a.e. γ is a graph measure, then there exists a compact
subgroup H ⊂ C(T ) such that Y = X/H, i.e.

C = {B ∈ B : h(B) = B for all h ∈ H}.

In other words, B is a group extension of A by the group H.

The proof of the theorem below, that is a relative version of Veech’s Theorem,
was communicated to the author by M. Lemaczyk.

Theorem 1.4.2. Suppose that T : (X,B, µ) → (X,B, µ) is an ergodic au-
tomorphism, G is a compact metric group equipped with the normalized Haar
measure ν defined on the σ-algebra G of Borel subsets of G. Denote µ = µ × ν.
Let ϕ:X → G be a measurable cocycle such that Tϕ is ergodic. If A is a factor of
Tϕ such that B⊗ {∅, G} ⊂ A, then there exists a compact subgroup H ⊂ G such
that A = B⊗B(G)H , where B(G)H is the Borel structure on the quotient space
G/H. In other words, each factor A satisfying B ⊗ {∅, G} ⊂ A ⊂ B ⊗ B(G) is
an isometric extension of B.

Proof. Let

µ⊗A µ =
∫
Je2 (T )

γ dP (γ)
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be the ergodic decomposition of the relatively independent extension of the
diagonal measure ∆A on A⊗A. Observe that

P ({γ ∈ Je2 (T ) : γ|A⊗A = ∆A}) = 1.

Now suppose that γ ∈ Je2 (T ) satisfies γ|A⊗A = ∆A, then

γ|(B⊗{∅,G)⊗(B⊗{∅,G}) = ∆B⊗{∅,G},

and consequently

γ({(x, g, x, h) : x ∈ X, g, h ∈ G}) = 1.

The (measurable) map (x, g, x, h) 7→ g−1h is Tϕ×Tϕ-invariant, hence it is γ-a.e.
constant, i.e. there is g0 ∈ G such that g−1h = g0 for γ-a.e. (x, g, x, h). This is
equivalent to say that γ is a graph joining. By virtue of Veech’s Theorem, there
exists a compact subgroup H ⊂ G such that

A = {B ∈ B⊗B(G) : Bh = B for all h ∈ H} = B⊗B(G)H ,

which finishes the proof. �

The content of the following can be found e.g. in [50]–[52]. We will list some
basic facts concerning the ergodic decomposition of a compact group extension
of an ergodic automorphism and, in Section 2.5, apply them in our analysis of
ergodic joinings for group extensions of semisimple automorphisms.

Let (X,B, µ, T ) be an ergodic dynamical system. Let G be a compact metric
group equipped with the normalized Haar measure ν on the family B(G) of Borel
subsets of G. Assume that ϕ:X → G is a Borel map. Because the G-extension
Tϕ is not necessarily ergodic with respect to µ̃, let

µ̃ =
∫
E(Tϕ)

λ dγ(λ)

be the ergodic decomposition of µ̃.
Take any λ ∈ E(Tϕ). Denote by H the stabilizer of λ in G, i.e. H = {g ∈

G : λg = λ}.

Lemma 1.4.3.

(a) H is a closed subgroup of G.
(b) If (x, g), (x, h) ∈ Y , then hH = gH.

Let us decompose λ over the factor (X,µ, T ):

λ =
∫
X

λx dµ(x).

Let νH denote the Haar measure on H.
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Lemma 1.4.4. For almost each x ∈ X there exists a g = gx ∈ G such that

λx = δx × gνH .

Let us define a function τ :X → G/H by

(1.10) τ(x) = gxH

where gx is defined by Lemma 1.4.4. Then (X × G/H, λ, Tϕ) is isomorphic to
(X,µ, T ): the map p:X × G/H → X, p(x, gH) = x is measurable and λ-a.e.
one-to-one. Therefore p is invertible and p−1(x) = (x, τ(x)). It forces τ to be
measurable. Also

(1.11) τ(Tx) = ϕ(x)τ(x)

Theorem 1.4.5. There exists a function t:X → G such that the system
(X ×G,λ, Tϕ) is isomorphic to (X ×H,µ× νH , Tψ), where

ψ(x) = t(Tx)−1ϕ(x)t(x).

By [89], ergodicity of Tϕ may be described using the notion of essential values
of ϕ. Denote G∞ = G ∪ {∞} to be the one-point compactification of G (if G is
compact then G∞ = G).

Definition 1.4.6. A g ∈ G∞ is called an essential value of ϕ if for each
positive measure set U ∈ B and for each open neighbourhood G∞ ⊃ V 3 g there
exists an integer n such that the set

U ∩ T−nU ∩ {x ∈ X : ϕ(n)(x) ∈ V }

has positive measure. Denote by E∞(ϕ) the set of all essential values of ϕ and
set

E(ϕ) = E∞(ϕ) ∩G.

The set E(ϕ) has the following properties.

Proposition 1.4.7.

(a) E(ϕ) is a closed subgroup of G;
(b) ϕ is a coboundary if and only if E∞(ϕ) = {0};
(c) Tϕ is ergodic if and only if E(ϕ) = G.

Given a cocycle ϕ:X → G, let ϕ∗:X → G/E(ϕ) be the corresponding qu-
otient cocycle.

Lemma 1.4.8. E(ϕ∗) = {0}.
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Definition 1.4.9. Assume that the group G is Abelian. We say that ϕ is
regular if it is cohomologous to a an ergodic cocycle ψ taking all values in E(ϕ)
i.e. if there exists a measurable function f :X → G such that all values of the
cocycle ψ(x) = (f(Tx))−1ϕ(x)f(x) are in E(ϕ).

By [89], regular cocycles are, in measure-theoretic ergodic theory, characte-
rized by the following property.

Proposition 1.4.10. A cocycle ϕ is regular if and only if E∞(ϕ∗) = {0}.

It follows that a regular ϕ is cohomologous to a cocycle ψ:X → E(ϕ) and
the latter cocycle is ergodic as a cocycle with values in E(ϕ). In particular, if
E(ϕ) is cocompact then ϕ is regular and as a direct consequence we obtain that
all cocycles taking values in compact groups are regular.

Proposition 1.4.11 ([69]). Let T be an ergodic automorphism. Assume that
G and H are Abelian locally compact second countable groups and let π:G→ H

be a continuous group homomorphism. Let ϕ:X → G be a cocycle. Then

π(E(ϕ)) ⊂ E(π ◦ ϕ).

Moreover, if ϕ is regular then

π(E(ϕ)) = E(π ◦ ϕ).

1.5. Rokhlin cocycle extensions

Let (Y,C, ν) be a probability Lebesgue space, G an Abelian locally compact
second countable group; in what follows we will assume that G contains no
non-trivial compact subgroup. Let {Rg}g∈G be a measurable action of G on
(Y,C, ν) by automorphisms of the Lebesgue space (Y,C, ν), i.e. the following
map

G× Y 3 (g, y) 7→ Rg(y) ∈ Y
is measurable, and satisfies Re = IdY and Rg+h = Rg ◦Rh.

Definition 1.5.1. We say that the action {Rg}g∈G is ergodic if for any
C ∈ C satisfying ν(RgC4C) = 0 for all g ∈ G we have ν(C) = 0 or ν(C) = 1.

Definition 1.5.2 ([67], [90]). We say that the action {Rg}g∈G is mildly
mixing if for any sequence (gk)k≥1 of elements of G going to infinity in G, and for
any C ∈ C satisfying limk→∞ ν(RgkC4C)→ 0 we have ν(C) = 0 or ν(C) = 1.

Definition 1.5.3. We say that the action {Rg}g∈G is weakly mixing if the
action G× (Y × Y ) 3 (g, y1, y2) 7→ (Rg(y1), Rg(y2)) ∈ Y × Y is ergodic.
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Let T : (X,B, µ) → (X,B, µ) be an ergodic automorphism, G = {Rg}g∈G an
action of G on (Y,C, ν), where G is an Abelian locally compact second countable
group. Assume that ϕ:X → G is a cocycle. We define

Tϕ,G : (X × Y,B⊗ C, µ× ν)→ (X × Y,B⊗ C, µ× ν),

Tϕ,G(x, y) = (Tx,Rϕ(x)(y)).

We call T
ϕ,G a Rokhlin cocycle extension of T . We will make use of some recent

results from [63] (Propositions 1.5.4 and 1.5.5 below).

Proposition 1.5.4. If G is ergodic and ϕ is ergodic then Tϕ,G is ergodic.

Proposition 1.5.5.

(a) If the action G is mildly mixing and Tϕ,G is ergodic, then the extension
Tϕ,G → T is relatively weakly mixing.

(b) If G is weakly mixing, Tϕ,G is ergodic and the maximal spectral type of
G satisfies the group property then the extension Tϕ,G → T is relatively
weakly mixing. In particular, the assertion holds whenever the action G

is Gaussian.

We will also make use of the following relative unique ergodicity result ([63])
for Rokhlin cocycle extensions.

Proposition 1.5.6. Assume that ϕ is ergodic and G is a Borel action on
(Y,C). Suppose that ρ is an ergodic Tϕ,G-invariant measure (on B ⊗ C) whose
projection on B equals µ. Then ρ = µ⊗ ν′, where ν′ is G-invariant and ergodic.

The following disjointness result has been proved in [67].

Proposition 1.5.7. Suppose that W is an ergodic automorphism. If T ⊥
W , ϕ:X → G is ergodic and the action G = {Rg}g∈G is mildly mixing, then
Tϕ,G ⊥W .

1.6. Gauss dynamical systems

The definition of Gauss dynamical system given below comes from [12]. Con-
sider the space M of all bisequences of real numbers, i.e. let M = RZ. We will
use the following notation: if x ∈ M , then let x[s] be the sth position in the
sequence x. Suppose that M is the σ-algebra generated by the cylinder subsets
of the space M , i.e. by the sets of the form

Cs,A = {x ∈M : x[s] ∈ A},

where s ∈ Z, A ⊂ R is a Borel set. Denote by T the shift transformation in
the space M given by (Tx)[s] = x[s + 1]. A probability measure µ on M is
said to be a Gauss measure if the joint distribution of any family of variables
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x[s1], x[s2], . . . , x[sr] is an r-dimensional Gauss distribution. It is known that
such a probability distribution is well defined by the numbers

(1.12)
m(si) =

∫
x[s] dµ(x), i = 1, . . . , r,

b(si, sj) =
∫
x[si] · x[sj ] dµ(x), i, j = 1, . . . , r.

If µ is a Gauss measure, then (M,M, µ) is said to be a Gauss random process.
The Gauss measure µ is stationary (that means invariant with respect to T ) if

(1.13) m(s) = m = const, b(s1, s2) = b(s1 + s, s2 + s),

for all s1, s2, s ∈ Z, equivalently

b(s1, s2) = b(0, s2 − s1) def= b(s2 − s1), s1, s2 ∈ Z.

One usually assumes that the mean m vanishes, since the transformation x[s] 7→
x[s]−m maps arbitrary Gauss measure µ into a Gauss measure with zero mean.
The function b(s), s ∈ Z, is said to be the correlation function of the Gauss
measure. Moreover, the correlation function is positive definite. By the Herglotz
theorem (Theorem A.3.3), it may be presented in the form

b(s) =
∫ π

−π
eiλs dσ(λ),

where σ is a finite positive Borel measure on the circle T. The measure σ is called
the spectral measure of the Gauss measure µ. If m = 0 then the spectral measure
σ uniquely determines the original measure µ. Moreover, as b(s) = b(−s), we
have σ(A) = σ(−A) for any Borel set A ⊂ T.

Definition 1.6.1. The shift transformation on the space (M,M) equipped
with a Gauss stationary measure µ is said to be a Gauss automorphism.

There is a more abstract equivalent definition of Gauss automorphism. Sup-
pose T is an automorphism of a measure space (M,M, µ). The real element
h0 ∈ L2(M,M, µ) is said to be a Gauss element with zero mean if for any
collection of integers n1, . . . , nr the random variables hjj , j = 1, . . . , r, where
hn = UnT h0 = h0 ◦ Tn, have the joint Gauss probability distribution with zero
mean. In such a case for Borel sets C1, . . . , Cr ⊂ R we have

µ({x : hn1(x) ∈ C1, . . . , hnr (x) ∈ Cnr})

=
∫
C1×...×Cr

p(t(1), . . . , t(r)) dt(1) . . . dt(r),

where p(t(1), . . . , t(r)) = const · exp[−(Dt, t)/2], t = (t(1), . . . , t(r)), D is the ma-
trix inverse to the scalar product matrix B =

(
‖(hni , hnj )‖

)
i,j

and the constant
is determined by the normalization condition.
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Definition 1.6.2. The automorphism T is called a Gauss automorphism if
there exists a Gauss element h0 ∈ L2(M,M, µ) with zero mean such that the
T -invariant minimal σ-algebra Mh0 containing of all sets of the form Bn,C =
{x ∈M : hn(x) ∈ C}, n ∈ Z, C ⊂ R, is a Borel set, coincides with M.

In general, if h0 is a Gauss element, then we refer to the σ-algebra Mh0 as
to Gauss subalgebra.

1.7. Topological dynamics – definitions and notations

Let X be a locally compact space. By Hom(X,X) we denote the group of all
homeomorphisms of the space X with the uniform convergence topology, making
Hom(X,X) a topological group. For a compact metric (X, d) the topology of
uniform convergence is defined by the metric

d(p, q) = sup
x∈X

d(p(x), q(x)) + sup
x∈Y

d(p−1(x), q−1(x))

for p, q ∈ Hom(X,X).
Let T be a locally compact group acting on X as a group of homeomor-

phisms Γ = {γt : t ∈ T} ⊂ Hom(X,X). More precisely, we consider a map
T × X 3 (t, x) 7→ γt(x) ∈ X that is continuous and satisfies the conditions:
γts(x) = γt(γs(x)), γe(x) = x = IdX(x), where e denotes the unit of T . In the
sequel we will assume that the action Γ is effective i.e. γt = IdX if and only if
t = e. The pair (X,Γ) will be called a locally compact T -flow , or shortly a T -flow .
To emphasize that X is compact we call (X,Γ) a compact T -flow . For the case
T = Z, any action of Z is defined by one homeomorphism γ1; this homeomor-
phism is traditionally denoted by T and in such a case we will denote a Z-flow
by (X,T ).

Let (X1,Γ1) and (X2,Γ2) be two T -flows. By (X1 ×X2,Γ1 × Γ2) we denote
the T -flow given by the action (x1, x2, t) 7→ (γ1

t (x1), γ2
t (x2)).

Let (X,Γ) be a T -flow. For x ∈ X denote

Orb(x) = OrbΓ(x) = {γt(x) : t ∈ T},

the orbit, and

Orb(x) = OrbΓ(x) = Orb(x),

the orbit closure of the point x. Similarly, for a set A ⊂ X write OrbΓ(A) =
{γt(x) : x ∈ A, t ∈ T} for the orbit, and OrbΓ(A) = Orb(A) for the orbit closure
of the set A. The flow (X,Γ) is point transitive, if there exists x0 ∈ X with dense
orbit: Orb(x0) = X. A set A ⊂ X is said to be Γ-invariant, if γt(A) = A for
all t ∈ T . We say that a set M ⊂ X is Γ-minimal, if M is closed, Γ-invariant
and each nonempty closed invariant subset of M is equal to M . If X is minimal
itself, we call the T -flow (X,Γ) a minimal flow.
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Theorem 1.7.1. If X is a compact Hausdorff space then there exists a mi-
nimal subset of the T -flow (X,Γ).

Theorem 1.7.1 fails when the phase space X is only locally compact, an
example (somewhat artificial) can be found in [7, Chapter 1, pp. 27–28]. In
Chapter 7 a large family of quite natural locally compact flows that do not
admit minimal subset will be described.

For open sets U, V ⊂ X the dwelling set D(U, V ) ⊂ T is defined by

D(U, V ) = {t ∈ T : γt(U) ∩ V 6= ∅}.

For x ∈ X and an open U ⊂ X define the dwelling set D(x, U) by

D(x, U) = {t ∈ T : γt(x) ∈ U}.

Clearly X is point transitive if and only if there exists x0 ∈ X such that
D(x0, U) 6= ∅ for every nonempty open U ⊂ X. A point x ∈ X is almost perio-
dic if for each nonempty open neighbourhood U 3 x the dwelling set D(x, U)
is syndetic (a set A ⊂ T is syndetic whenever there exists a compact subset C
of T such that T = CA; see e.g. [97, IV(1.2)]). If T = Z, then the notion of
a syndetic set coincide with the notion of a relatively dense one: a set A ⊂ Z is
relatively dense if there exists a positive integer N with the property that each
n ∈ Z has a form n = k + r, where k ∈ A and 0 6 r 6 N . Each element of
a compact minimal set is almost periodic; for each almost periodic point x0, the
closure orbit OrbΓ(x0) is a compact minimal set. A flow (X,Γ) is topologically
ergodic if D(U, V ) 6= ∅ for any non-empty open sets U, V ⊂ X. Equivalently, X
is topologically ergodic if and only if each nonempty open invariant subset of X
is dense. Each point transitive flow is topologically ergodic, not vice versa. Both
these notions coincide however in the case of metric spaces.

Let (X,T ) be a Z-flow. An x ∈ X is called a recurrent point if for any
open neighbourhood U of x the dwelling set D(x, U) is both upper and lower
unbounded. In other words, a point x ∈ X is recurrent if there exist sequences
of integers ni → +∞, mi → −∞ such that Tnix → x, Tmix → x. An x ∈ X
is called a wandering point if there exists an open neighbourhood U of x such
that D(U,U) = {0}, i.e. the sets TnU , n ∈ Z, are pair-wise disjoint. If X is
a complete metric space then the set consisting of all recurrent and wandering
points is residual ([40, Theorem 7.24]). By definition, T is conservative if for
any non-empty open set U ⊂ X, D(U,U) \ {0} 6= ∅. Clearly, T is conservative
if and only if no point in X is wandering. If (X,T ) is point transitive and X is
a perfect space then T is conservative. Conservative homeomorphisms are also
called regionally recurrent ([40]) or non-wandering ([97]).

We say that (X,Γ) is uniformly rigid (or shortly rigid) if there exists a sequ-

ence (tj)j>1 of elements of the group T such that tj
j→∞−−−→ ∞ and γtj

j→∞−−−→ Id
uniformly; we will then call (tj)j>1 a rigidity time for T ([37]). The simplest
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uniformly rigid homeomorphisms are rotations on monothetic groups: if X is
a monothetic group with {an : n ∈ Z} = X, then the homeomorphism T :X → X

defined by T (x) = ax, x ∈ X, is called a minimal rotation (note that such a T
is indeed a minimal homeomorphism). If T is such a rotation and Tntx→ x for
some x, then (nt)t>1 is a rigidity time for T .

A pair (x, y) ∈ X×X is called distal if there exists δ = δ(x, y) > 0 such that
d(γt(x), γt(y)) > δ for all t ∈ T . If a pair is not distal, it is said to be proximal .
A flow (X,Γ) is called distal if each pair (x, y) ∈ X ×X, x 6= y, is distal. A flow
(X,Γ) is called proximal if each pair (x, y) ∈ X × X is proximal. No Abelian
group T admits non-trivial proximal flows (see [27]).

Every distal flow can be decomposed into minimal pieces (see [16]). From
this it is easy to deduce Ellis’s result that if (X,Γ) is a minimal flow, then the
T -flow (X ×X,Γ× Γ) is decomposable into minimal pieces if and only if (X,Γ)
is distal.

We say that two compact flows T -flows (X1,Γ1) and (X2,Γ2) are disjoint , if
for the T -flow (X1 ×X2,Γ1 × Γ2), the only nonempty closed Γ1 × Γ2-invariant
subset D ⊂ X1 × X2 satisfying πi(D) = X1, where πi(x1, x2) = xi, i = 1, 2, is
just X1 ×X2. In such a case we will write X1 ⊥ X2.

The centralizer , C(X,Γ), of (X,Γ) is the set of all continuous S:X → X

that commute with the action Γ of T :

C(X,Γ) = {S:X → X : S is continuous and S ◦ γt = γt ◦ S for all t ∈ T}.

Clearly, C(X,Γ) equipped with the topology of uniform convergence is a topo-
logical semigroup. The set of all invertible elements of C(X,Γ) we denote by
Aut(X,Γ). We endow Aut(X,Γ) with the topology induced by the metric given
by the formula

d(f1, f2) = sup
x∈X

d(f1(x), f2(x)) + sup
x∈X

(f−1
1 (x), f−1

2 (x)),

that makes Aut(X,Γ) a topological group.
Let (X,Γ) be a T -flow. We say that a T -flow (Y,∆) is a factor of (X,Γ) if

there exists a continuous map π:X → Y (called a homomorphism) such that
π(X) = Y and π ◦ γt = δt ◦ π. In such a case (X,Γ) (or sometimes π) is called
an extension of (Y,∆). It is easy to see that any factor of a minimal flow is also
minimal. If the map π is also a homeomorphism, we say that (X,Γ) and (Y,∆) are
isomorphic and call π an isomorphism. If π: (X,Γ)→ (Y,∆) is a homomorphism
we can define a closed equivalence relation Rπ ⊂ X ×X by

(1.15) Rπ = {(x, x′) ∈ X ×X : π(x) = π(x′)}.

The relation Rπ is Γ-invariant, that means (γt(x), γt(x′)) ∈ Rπ for each t ∈ T
whenever (x, x′) ∈ Rπ. Obviously, the quotient space (XRπ ,ΓRπ ) (here ΓRπ de-
notes the quotient action of T on XRπ ) with the quotient topology is isomorphic
to (Y, S). This allows us to picture factors of (X,Γ) as Γ × Γ-invariant, closed
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equivalence relations (ICER’s) on X, also called factor relations. Conversely, gi-
ven such a relation R we can define a homomorphism π: (X,Γ) → (XR,ΓR) by
π(x) = [x]R (here [x]R denotes an equivalence class of x). Note that if we have two
factor relations Ri, i = 1, 2, and a homomorphism π: (XR1 , TR1) → (XR2 , TR2)
with πR2 = π◦πR1 , then R1 ⊂ R2. If we have a family {Ri}i∈I of factor relations,
by
∨
i∈I Ri we denote the smallest factor relation containing all Ri’s.

If Y ⊂ X and R is a factor relation on X × X, then by RY we denote the
restriction of R to Y (i.e. RY = R ∩ (Y × Y )).

We say that a T -flow (X,Γ) is equicontinuous, if for each x ∈ X and for
each α ∈ AX – the uniform structure on X (see Section B.1 for the definition
of uniform structure), there exists an open neighbourhood U of x such that
γg(U) ⊂ α[γg(x)] for all g ∈ G. The standard examples of equicontinuous flows
are rotations on topological groups. An extension π: (X,Γ) → (Y,∆) is said to
be an equicontinuous extension if for each α ∈ AX there exists β ∈ AX such that
(γt(x), γt(x′)) ∈ α for all t ∈ T and for all (x, x′) ∈ Rπ.

Next we describe a special class of extensions – the group extensions. The
following definition is a slight modification of [97, V (4.1)].

Definition 1.7.2. An extension π: (X,Γ) → (Y,∆) of T -flows is called
a group extension with group K whenever the following conditions are fulfilled:

(a) K is a topological group acting continuously on X from the right as
a subgroup of Aut(X,Γ) of automorphisms of (X,Γ);

(b) the fibers of π are precisely the K-orbits in X.

An important example of a group extension is a cocycle extension.

Definition 1.7.3. Let (X,Γ) be a T -flow, K a locally compact group, Φ:
T ×X → K a continuous cocycle. Define a T -action γΦ:T ×X ×K → X ×K
by the formula

(1.16) γΦ(g, x, k) = (γg(x),Φ(g, x)k).

Denote ΓΦ = {(γt( · ),Φ(t, · )) : t ∈ T}. The T -flow (X×K,ΓΦ) is called a cocycle
extension of (X,Γ).

If the cocycle extension (X × K,ΓΦ) is point transitive, we say that Φ is
a point transitive cocycle.

In this dissertation we will deal mainly with T = Z. In this case each cocycle is
defined by a single continuous map. To be more precise consider a Z-flow (X,T ),
where T :X → X is a homeomorphism, and a continuous map ϕ:X → K, where
K is a locally compact group. Define a cocycle Φ = ϕ( · ):Z×X → K by

(1.17) ϕ(n)(x) =


ϕ(Tn−1x)ϕ(Tn−2x) . . . ϕ(Tx)ϕ(x), n > 1,

e, n = 0,

ϕ(Tnx)−1ϕ(Tn+1x)−1 . . . ϕ(T−1x)−1, n 6 −1.
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Then clearly the cocycle identity ϕ(n+k)(x) = ϕ(n)(T kx)ϕ(k)(x) is fulfilled. Thus
a continuous map ϕ defines a Z-cocycle ϕ(n). Conversely, each Z-cocycle Ψ:Z×
X → G is of the form Ψ(n, x) = ϕ(n)(x), where ϕ(x) = Ψ(1, x). Therefore we
will call a continuous function ϕ:X → K a Z-cocycle.

Definition 1.7.4. Let (X,T ) be a compact Z-flow, (Y,Γ) a compact G-flow,
where G is a locally compact Abelian group and Γ = {γg : g ∈ G} an effective
continuous left action of G on Y . Assume that ϕ:X → G is a continuous map.
We define a homeomorphism Tϕ,Γ:X × Y → X × Y by

Tϕ,Γ(x, y) = (Tx, γϕ(x)(y)), x ∈ X, y ∈ Y.

The Z-flow (X × Y, Tϕ,Γ) we will call a Rokhlin cocycle extension of T .

A homomorphism π: (X,Γ) → (Y,∆) of T -flows is called isometric if there
exists a group extension ρ:Z → Y and a homomorphism σ:Z → X such that
π ◦ σ = ρ.

A minimal T -flow (X,Γ) is regular if for each almost periodic point (x, y) ∈
X ×X there exists an S ∈ C(X,Γ) such that y = S(x).

The following theorem is due to W. H. Gottschalk, [39], and J. Auslander, [7].

Theorem 1.7.5. Every compact regular distal flow is equicontinuous (is a
group extension of a trivial flow).

The notions of distality and regularity can be “relativized” (with respect to
factor). Let π: (X,Γ) → (Y,∆) be a homomorphism of T -flows. Then π is said
to be distal (regular) provided the defining conditions from the absolute case
hold for every (x, y) ∈ Rπ. The homomorphism is called proximal if every pair
(x, y) ∈ Rπ is a proximal pair; it is called a weakly mixing homomorphism if the
flow (Rπ, T × T ) is point transitive. In any such a case the flow (X,Γ) is called
a distal (regular, proximal, weakly mixing) extension of (Y,∆), respectively.

We will also use the relativized version of Theorem 1.7.5, [29]. This could
be considered as a topological version of theorem of Veech (see [95], also [45];
a proof of Veech’s theorem is also contained in [61]).

Theorem 1.7.6. Let (X,T ) be a compact minimal Z-flow and let π:X → Y

be a regular distal homomorphism. Then π is a group extension.

1.8. Universal flows

Let T be a group with the discrete topology. Suppose that X is a compact
Hausdorff space and Γ ⊂ Hom(X,X) is a continuous left action of T on X,
i.e. (X,Γ) is a T -flow. Fix x0 ∈ X. Such a flow with distinguished point will be
called a pointed flow and denoted either by (X,Γ, x0) or shortly by (X,x0). If we
have a family {(Zσ, zσ)}σ∈Σ of pointed minimal flows we may choose x0 ∈

∏
σ∈Σ
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satisfying x0(σ) = zσ and set

(1.18)
∨
σ∈Σ

(Zσ, zσ) = (Orb(x0), x0).

For two pointed minimal flows (X,x0) and (Y, y0) we will use the notation

(1.19) (X,x0) ∨ (Y, y0) = (X ∨ Y, (x0, y0)).

By Theorem B.2.5, the continuous map T 3 t 7→ γt(x0) ∈ X can be extended to
a continuous map βT 3 p 7→ px0 ∈ X. In such a way we have defined an action
of T on βT by (t, p) 7→ tp. Clearly each map p 7→ tp is a homeomorphism so
we can consider a T -flow (βT, T ). This flow is evidently point transitive. Now,
if (X,Γ, x0) is a pointed T -flow that is point transitive with Orb(x0) = X, then
we are able to define a homeomorphism π: (βT, T ) → (X,Γ) in the following
way. Extend the map T 3 t 7→ γt(x0) ∈ X to a continuous map βT 3 p 7→
px0 = π(x0) ∈ X. Then (X,Γ) is a factor of (βT, T ). This means that (βT, T ) is
the universal flow in the class of all compact Hausdorff point transitive T -flows.
Notice that it is true that for each x ∈ X the map βT 3 p 7→ px ∈ X is
continuous, however in general the mapX 3 x 7→ px ∈ X need not be continuous.
Observe also that (pq)x = p(qx) for p, q ∈ βT , x ∈ X.

Lemma 1.8.1. Let (X,Γ) be a compact Hausdorff flow and x ∈ X.

(a) Orb(x) = (βT )x.
(b) Orb(x) is minimal if and only if x ∈Mx for each minimal ideal M ⊂ βT

if and only if in each minimal ideal there is an idempotent v such that
vx = x.

Proof. The property (a) is clear.
(b) Assume that Orb(x) = (βT )x is a minimal set. Then (βT )x = Mx

and x = ex ∈ (βT )x = Mx, where e is the unit element of the group T , so
x ∈ Mx. In particular, x = m0x for some m0 ∈ M . Consider the nonempty
set {m ∈ M : mx = x}. By Lemma B.2.7, this set contains an idempotent.
Suppose now that vx = x, where v ∈ M is an idempotent; then x = vx ∈ Mx.
To this end assume that x ∈ Mx for each minimal ideal M ⊂ βT . We will
show that Mx is a minimal set. Suppose A ⊂ Mx is an invariant closed set.
Then (βT )A ⊂ A. Let mx ∈ A, then (βT )mx ⊂ Mx, (βT )m ⊂ M , and, by
minimality of M , (βT )m = M . Thus (βT )mx = Mx ⊂ A, hence Mx is minimal.
As Mx = (βT )x = Orb(x), Orb(x) is a minimal set. �

Lemma 1.8.2. Let (X,Γ) be a compact Hausdorff T -flow, x, y ∈ X. The
following conditions are equivalent.

(a) x and y are proximal.
(b) There exists p ∈ βT such that px = py.
(c) There is a minimal ideal M such that px = py for every p ∈M .
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Proof. Suppose x and y are proximal, then there is a net (ti)i∈I of elements
of T such that γti(x)→ z, γti(y)→ z. Passing to a subnet if necessary we may
assume that ti → p ∈ βT . Then px = z = py.

Suppose that (b) is true, px = py. Let M be a minimal ideal, then N = Mp

is also a minimal ideal and clearly qx = qy for all q ∈ N .
Clearly (c) implies (a). �

Lemma 1.8.3. Let (X,Γ) be a minimal compact Hausdorff T -flow, x ∈ X.
Then

P (x) = {y ∈ X : x and y are proximal}
= {vx : v is an idempotent in some minimal ideal of βT}.

Proof. If x and y are proximal, then, by Lemma 1.8.2, there is a minimal ideal
M such that px = py for all p ∈ M . As X is minimal, there is an idempotent
v ∈ M such that y = vy (Lemma 1.8.1) and vx = vy = y. Conversely, if v is an
idempotent in βT then x and vx are proximal since vx = v(vx). �

Lemma 1.8.4. Let (X,Γ) be a compact Hausdorff T -flow, v an idempotent
in some minimal ideal of βT . Then every pair of different points in vX = {x ∈
X : vx = x} is distal.

Proof. If x, y ∈ vX, then v(x, y) = (x, y) and hence Orb(x, y) ⊂ X × X

is a minimal set (Lemma 1.8.1(b)). If x and y were proximal, this minimal set
would be included in the diagonal. �

Now fix a minimal ideal M in βT . Denote by J the set of all idempotents in
M and choose a distinguished idempotent u ∈ J . Denote

G = uM.

By Proposition B.2.8, G is a group.
Given a compact Hausdorff minimal T -flow (X,Γ), choose a point x0 ∈ uX =

{ux : x ∈ X} = {x : ux = x}. Under the map βT 3 p 7→ px0 ∈ X, the ideal M
is mapped onto X and u onto x0. Thus (M,u) is a universal minimal pointed
flow in the sense, that for every minimal flow X there is a point x0 ∈ X such
that (X,x0) is a factor of (M,u). Unless we say otherwise the base point x0 of
a minimal pointed flow (X,x0) will be chosen so that ux0 = x0.

Definition 1.8.5. Let (X,x0) be a pointed minimal flow. Define the Ellis
group of (X,x0) to be

G(X,x0) = {α ∈ G : αx0 = x0}.

It is clear that G(X,x0) is a subgroup of G.
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Proposition 1.8.6. Let π: (X,x0)→ (Y, y0) be a homomorphism of pointed
minimal flows.

(a) G(X,x0) ⊂ G(Y, y0).
(b) G(X,x0) = G(Y, y0) if and only if π is proximal.
(c) If π is proximal then π−1(y) ⊂ Jx for any x ∈ π−1(y).
(d) π is distal if and only if for every y ∈ Y and p ∈ M with py0 = y the

following holds: π−1(y) = pG(Y, y0)x0.

Proof. (a) Let α ∈ G(X,x0), then αy0 = απ(x0) = π(αx0) = π(x0) = y0).
(b) Suppose G(X,x0) = G(Y, y0). We show that x1, x2 ∈ π−1(y0) implies x1

and x2 are proximal. For such x1, x2 we have x1 = px0, x2 = qx0 for p, q ∈
M . Denote α = up−1q, then αy0 = up−1qy0 = up−1qπ(x0) = up−1π(qx0) =
up−1π(px0) = upp−1π(x0) = uy0 = y0. Thus α ∈ G(Y, y0) and hence α ∈
G(X,x0) i.e. up−1qx0 = x0. Thus ux1 = upx0 = up(up−1qx0) = uqx0 = ux2 and
x1, x2 are proximal.

Conversely suppose that π is proximal and let α ∈ G(Y, y0). Then π(αx0) =
αy0 = y0 implies αx0 and x0 are proximal. On the other hand αx0 and x0 are
distal (α = uα) by Lemma 1.8.2(c), hence αx0 = x0 and α ∈ G(X,x0).

(c) Suppose π is proximal and let x, x1 ∈ π−1(y), then x and x1 are proximal
and by Lemma 1.8.2(b) there exists an idempotent v′ in some minimal ideal L
of βT such that x1 = v′x. Now let v ∈ J be equivalent to v′ (i.e. vv′ = v′,
v′v = v, see Lemma B.2.10), then y = π(v′x) = π(vv′x) = vπ(v′x) = vy, and
hence π(vx) = vπ(x) = vy = y. It follows that vx and v′x are proximal. But
vv′x = v′x ant thus vx, v′x ∈ vX and by Lemma 1.8.2(c), vx and v′x are also
distal. Therefore x1 = v′x = vx ∈ Jx, and the proof is complete.

(d) Suppose π−1(py0) = pG(Y, y0)x0, and let v ∈ J be such that vp = p.
Then pG(Y, y0)x0 ⊂ vX and π is distal by Lemma 1.8.2(c).

Let π be distal. If y = px0 for some p ∈ M then for α ∈ G(Y, y0) we have
π(pαx0) = π(px0) = py0 = y. Thus pG(Y, y0)x0 ⊂ π−1(y). On the other hand
if π(x) = y then x = qx0 for some q ∈ M and since π(qx0) = y = π(px0) we
conclude as in (b), that α = up−1q ∈ G(Y, y0). If v ∈ J is such that vq = q

then q = vpα. Now y = π(x) = π(qx0) and y = py0 = vαy0 = π(vαx0). Thus
qx0 = v(pαx0) and pαx0 are both distal and proximal. Hence they are equal and
x = qx0 = pαx0 ∈ pG(Y, y0)x0. �

Proposition 1.8.7. Let φ: (X,x0)→ (Y, y0) and ψ: (Z, z0)→ (Y, y0) be two
distal homomorphisms of compact Hausdorff minimal pointed flows. There exists
a homomorphism θ: (Z, z0)→ (X,x0) if and only if G(X,x0) ⊃ G(Z, z0).

Proof. Suppose first that θ exists. Then, by Proposition 1.8.6(a), G(X,x0) ⊃
G(Z, z0).

Suppose that G(X,x0) ⊃ G(Z, z0). For p ∈ M define θ(pz0) = px0. If z =
pz0 = qz0 for p, q ∈M then up−1q ∈ G(Z, z0) and by assumption, up−1qx0 = x0
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and pp−1qx0 = vqx0 = px0, where v = pp−1 is an idempotent inM . Thus qx0 and
px0 are proximal. Now pz0 = qz0 implies py0 = qy0 and hence φ(px0) = φ(qx0).
This implies that px0 and qx0 are also distal i.e. px0 = qx0 and θ is well defined.
Clearly θ is a continuous homomorphism and the proof is complete. �

Let (X,Γ) be a compact Hausdorff T -flow and let 2X be the family of all
closed nonempty subsets of X. Recall that the Vietoris topology on 2X is defined
by a basis consisting of sets of the form

〈U1, . . . , Un〉 =
{
A ∈ 2X : A ⊂

n⋃
i=1

Ui, A ∩ Ui 6= ∅, i = 1, . . . , n
}
,

where U1, . . . , Un are open subsets of X. In this topology, if a net (Ai)i∈I co-
nverges to A, limAi = A, then

A = {limxi : xi ∈ Ai, i ∈ I ′ and (Ai)i∈I′ is a subnet of (Ai)i∈I}.

Because X is assumed to be compact Hausdorff, so is 2X with Vietoris topology.
This topology is metrizable if and only if X is metrizable.

There is a natural T -flow structure on 2X induced by (X,Γ), namely (t, A) 7→
γt(A). The map T 3 t 7→ γt(A) ∈ 2X can be extended to a map

βT 3 p 7→ p ◦A ∈ 2X .

The following lemma is clear.

Lemma 1.8.8. Suppose A ∈ 2X , p, q ∈ βT . The following statements hold:

(a) p ◦ A is the set of all points x ∈ X such that there exist nets (xi)i∈I
of elements of A and (ti)i∈I of elements of T for which lim ti = p and
lim γti(xi) = x,

(b) pA ⊂ p ◦A,
(c) p ◦ (q ◦A) = (pq) ◦A.

For an arbitrary A ⊂ X (not necessarily closed) define

(1.20) p ◦A = p ◦A.

Recall that G = uM ⊂M , where M is a fixed minimal ideal in βT and u a fixed
idempotent in M ; G is a group with the unit element u. One can easily verify
the following.

Proposition 1.8.9. The operation

G ⊃ A 7→ (u ◦A) ∩G

defines a closure operation on G.

The operation G ⊃ A 7→ (u ◦ A) ∩ G will be denoted by G ⊃ A 7→ A
τ
. The

topology induced on G by this operation we will call the τ -topology.
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Lemma 1.8.10. A
τ

= u(u ◦A).

Proof. We have u(u ◦ A) ⊂ G, u(u ◦ A) ⊂ u ◦ (u ◦ A) = u2 ◦ A = u ◦ A. On
the other hand if p ∈ (u ◦A) ∩G then up = p so p ∈ u(u ◦A). �

The following proposition collects facts proved in [27, IX.1].

Proposition 1.8.11.

(a) In τ -topology G is a T1 compact space.
(b) τ -topology is weaker than the original topology induced from M .
(c) For each β ∈ G the maps

G 3 α 7→ αβ ∈ G and G 3 α 7→ βα ∈ G

are homeomorphisms in the τ -topology.
(d) All the groups of the form G(X,x0), where ux0 = x0, are closed in

τ -topology.

Definition 1.8.12. For every τ -closed subgroup F of G we let

F ′ :=
⋂
{V τ

: V is τ -open neighbourhood of u in F}.

Proposition 1.8.13 ([27, Theorem IX.1.9]). Let F be a τ -closed subgroup
of the group G.

(a) F ′ is a τ -closed normal subgroup of F . Moreover, F ′ is invariant under
all topological automorphisms of the group F .

(b) F/F ′ with the quotient topology is a compact Hausdorff topological group.
(c) If K is a τ -closed subgroup of F then F/K is a Hausdorff space if and

only if F ′ ⊂ K.

Definition 1.8.14. We say that a compact Hausdorff minimal pointed T -flow
(X,Γ, x0) is incontractible if u◦Gx0 = X. We say that an extension φ: (X,x0)→
(Y, y0) is relatively incontractible (RIC), if for every p ∈M ,

φ−1(py0) = p ◦ G(Y, y0)x0.

RIC-extensions are open and have a dense set of almost periodic points in the
relation Rπ. Every distal extension is RIC. Every homomorphism from a minimal
flow to the one-point flow is RIC.

Theorem 1.8.15 ([27, Proposition X.3.2]). Let φ:X → Y be a homomor-
phism of compact Hausdorff minimal flows. Then there exists a commutative
diagram of minimal flows homomorphisms

X

φ

��

X∗
θ∗oo

φ∗

��

Y Y ∗
θ

oo
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where θ, θ∗ are proximal and φ∗ is RIC. The extensions θ and θ∗ are isomorphi-
sms if and only if φ is already RIC. We may also assume that X∗ = X∨Y ∗, and
θ∗ and φ∗ are projections onto the first and the second coordinate respectively.

Definition 1.8.16. The diagram in Theorem 1.8.15 is called the shadow
diagram of φ:X → Y .

The main reason that RIC-extensions are so useful is the following theorem
(see [18]).

Theorem 1.8.17. Let (X,T ) π−→ (Y, T ) be a RIC-extension of minimal
flows. Then there exists a commutative diagram

X
σ //

π

��

Z

ρ
~~~~
~~
~~
~~

Y

where ρ is an isometric extension with B = F ′A (B = G(Z, z0), F = G(Y, y0),
and A = G(X,x0)). The flow Z is the largest isometric extension of Y within X,
and ρ is an isomorphism if and only if π is a weakly mixing extension if and
only if B = F .

Definition 1.8.18. We say that a minimal flow X is strictly PI, if there is
an ordinal ν and flows {Wα : α ≤ ν} such that

(a) W0 is the trivial flow.
(b) For every α < ν there exists a homomorphism φα:Wα+1 → Wα which

is either proximal or almost periodic.
(c) For a limit ordinal α ≤ ν, Wα =

∨
β<αWβ .

(d) Wν = X.

We say that X is a PI-flow if there exist a strictly PI flow X ′ and proximal
homomorphism φ:X ′ → X.

Using the shadow construction and Theorem 1.8.17 repeatedly one obtains
the following structure theorem.

Theorem 1.8.19 ([18]). Given a RIC homomorphism π = π0: (X,T ) →
(Y, T ) of metric minimal flows, there exist a countable ordinal η and a canonically
defined commutative diagram (the canonical PI-tower):

X = X0

π0

��

σ1

##H
HH

HH
HH

HH
X1

θ̃1oo

π1

��

Y = Y0 Z1ρ1
oo Y1

θ1

oo

· · ·

· · ·

Xν

πν

��

σν+1

""E
EE

EE
EE

E Xν+1
θ̃ν+1

oo

πnu+1

��

Yν Zν+1ρν+1
oo Yν+1

θν+1

oo

· · ·

· · ·

Xη = X∞

π∞

��

Yη = Y∞
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where for each ν ≤ η, πν is RIC, ρν is isometric, θν , θ̃ν are proximal and π∞ is
RIC and weakly mixing. For a limit ordinal ν,Xν , Yν , πν are the inverse limits
of Xι, Yι, πι for ι < ν. In terms of Ellis groups: B = AF∞ and AB′ = B, where
A = G(X), B = G(Y∞), and F = G(Y ). The extension π is PI if and only if
X∞ = Y∞.



CHAPTER 2

SEMISIMPLE AUTOMORPHISMS

2.1. Group and isometric extensions, joinings

Let T : (X,B0)→ (X,B0) be an automorphism of a standard Borel space. Let
µ be a probability T -invariant measure on (X,B0), B the T -invariant σ-algebra
of all µ-measurable subsets of X. Then (X,B, µ) is a probability Lebesgue space
with T being an automorphism of it. Let S: (Y,C, ν) → (Y,C, ν) be a factor
of T : (X,B, µ) → (X,B, µ). If no confusion can arise, we will often use the
following abbreviations: T → S or B → C or even X → Y . In terms of joinings
we can express the fact that the extension X → Y is a group extension (see
Theorem 1.4.1 – the Veech’s Theorem).

Suppose now that B1 ⊂ B is a T−invariant sub-σ-algebra (factor), hence
giving rise to a factor T : (X,B1, µ) → (X,B1, µ) of T . Note that if we take the
family of all factors of T , say Bκ, κ ∈ Λ, containing B1 with the property that
each λ ∈ Je(Bκ,Bκ) that projects onto the diagonal measure on B1 ⊗ B1 is
a graph joining, then the smallest factor of T containing all Bκ, κ ∈ Λ enjoys the
same property. Hence there exists the maximal factor B̃ ⊂ B such that B̃→ B1

is a group extension. Note also that if B1,B2 ⊂ B are factors then the smallest
factor of B containing B1 and B2 can naturally be identified with an ergodic
joining of B1 and B2.

Suppose (X,B, µ, T ) → (X,B1, µ, T ) is an extension of ergodic systems.
Denote

µ =
∫
X

µx dµ(x)

to be the disintegration of µ over µ. We have T = T θ, where

T θ(x, z) = (Tx, θx(z))

with X = X × Z, µ = µ× ν (see [23]). Then µx can be viewed as a measure on
B just concentrated on the fibers of the natural map π:X → X, i.e. µx = δx×ν.

43
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Definition 2.1.1. Denote H = L2(X,µ). We say that a function f ∈ H is
almost periodic (AP) if for each ε > 0 there exist g1, . . . , gk ∈ H such that for
each p ∈ Z

(2.1) min
1≤j≤k

‖fT p − gj‖L2(µx) < ε

for a.a. x ∈ X.

Definition 2.1.2. If B1 is a factor of B then we say that the extension
B → B1 is compact if the set of AP functions is dense in the Hilbert space
H = L2(X,µ).

Theorem 2.1.3 ([99]). An extension (X,B, µ, T ) → (X,B1, µ, T ) is com-
pact if and only if there exists a compact group G and its closed subgroup H

such that Z = G/H and θx = ϕ(x)H for a measurable map ϕ:X → G, i.e. the
extension X → X is an isometric extension.

Proposition 2.1.4. Suppose that (X,B, T ) → (X,B, T ) is an ergodic iso-
metric extension. Then there exists an ergodic extension (Y,C, S) of X such that
Y → X is a group extension and moreover for each ergodic extension (Y ′,B′, S′)
of X with Y ′ → X a group extension we have

Y ′ //

  
AA

AA
AA

AA
X // X

Y

OO

Proof. Let S̃: (Ỹ , C̃, ν̃) → (Ỹ , C̃, ν̃) be any ergodic extension of X that is
a group extension of X. Take the family of all factors C̃κ ⊂ C̃, κ ∈ Λ, that are
group extensions of B and set

C =
⋂
κ∈Λ

C̃κ.

Note that if λ ∈ Je(C,C) projects onto the diagonal measure on B⊗B then for
any ergodic extension λ̂ of λ on C̃⊗ C̃ we have that λ̂ is a graph measure. Hence
if A ∈ C then there exists a set B̃ ∈ C̃ such that

λ̂(A× Ỹ4Ỹ × B̃) = 0.

Thus, it is clear that B̃ ∈ C̃κ for each κ ∈ Λ and consequently B̃ ∈ C. By Veech’s
Theorem, C→ B is a group extension.

Take any ergodic joining of Y ′ and Y which is diagonal on X; we get a sys-
tem Z. Now, Y and Y ′ are represented in Z by some invariant σ-algebras, say A

and A′. Let C1 = A∩A′ ⊂ C⊗C. Take any ergodic self-joinings λ on C1⊗C1 that
is diagonal on X ×X. Then this joining has an ergodic extension λ̃ to Z × Z.
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Take any set C ∈ C. Because A and A′ are group extensions of X, there exist
A ∈ A and A′ ∈ A′ such that

λ̃(C × Z4Z ×A) = 0, λ̃(C × Z4Z ×A′) = 0.

Therefore A = A′ ∈ A∩A′ = C. Hence λ is a graph joining and consequently C1

is a group extension of X. �

Definition 2.1.5. The extension Y of X, defined (up to an isomorphism)
by Proposition 2.1.4, will be called the minimal group cover of X.

Definition 2.1.6 ([23]). An extension X → X is called distal if for a certain
ordinal η we have a family of factors Bκ, κ ≤ η, such that Bκ+1 → Bκ is compact,
and if κ is a limit ordinal then Bκ =

⋃
κ′<κBκ′ .

H. Furstenberg in [23] proved for each factor B1 ⊂ B the existence of the
maximal B̂ ⊂ B such that B̂ → B1 is distal. Actually this follows from the
following lemma:

Lemma 2.1.7. If B1 ⊃ B and B2 ⊃ B are ergodic distal extensions and
λ ∈ Je(B1,B2) satisfies λ|B⊗B = ∆, then (B1⊗B2, λ) is a distal extension of B.

Proof. Let λ ∈ Je(B1,B2) and λ|B⊗B = ∆. By Theorem 1.4.5, if B1 and B2

are group extensions of B then λ is a group extension of µ because (B⊗B,∆) is
isomorphic to (B, µ). Consequently, if B1 and B2 are isometric extensions of B,
then, by Theorem 1.4.2, λ is also isometric extension of B.

Now we will use transfinite induction. Assume that B̃1 and B̃2 are ergodic
extensions of B such that each ergodic joining of B̃1 and B̃2 which projects onto
B ⊗ B as the diagonal measure, is a distal extension of B. Let B1 ⊂ B̃1 and
B2 ⊂ B̃2 be ergodic isometric extensions. Extend λ to an ergodic joining λ̂ of
some ergodic group covers of B1 and B2. Then λ̂ is a group extension of B. Again
by the Theorem 1.4.2, λ is an isometric extension of B.

If B1 and B2 are inverse limits of consecutive isometric extensions, then
by the considerations above λ is a distal extension of B as an inverse limit of
isometric extensions of B. �

Now, let us consider λ ∈ J(T, S), where T : (X,B, µ)→ (X,B, µ), S: (Y,C, ν)
→ (Y,C, ν). Then there exist the biggest σ-algebras B1(λ) ⊂ B, B2(λ) ⊂ C such
that λ identifies B1(λ)× Y with X ×B2(λ). Indeed, take the family of all pairs
(B1,B2), B1 ⊂ B, B2 ⊂ C, where λ identifies B1 × Y with X × B2. Then the
smallest factor containing all of B1, say B̃1, and the smallest one containing all
of B2, say B̃2, has the property, that B̃1 × Y

λ= X × B̃2. In fact, consider B× Y
and X × C as two sub-σ-algebras of B × C, where the equality between sets is
understood modλ. Then B×Y ∩X×C is on one hand a sub-σ-algebra of B×Y ,
so of the form B′ × Y , and on the other hand, a sub-σ-algebra of X × C, so of
the form X × C′. We have B1(λ) = B′ and B2(λ) = C′.
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2.2. Furstenberg decomposition

Definition 2.2.1. Let T : (X,B, µ)→ (X,B, µ) be an ergodic automorphism
and A ⊂ B be its T -invariant σ-algebra. We call T relatively weakly mixing
(rel. w. m.) with respect to A, if the relatively independent extension of the
diagonal measure on A, say λ = µ×Aµ, is ergodic. For short this will be denoted
by B→ A rel. w. m.

Note that if T2 is weakly mixing and T1 is ergodic then clearly T1×T2 → T1

rel. w. m.
Suppose that B → A2 rel. w. m. and we have B ⊃ A1 ⊃ A2. Then we can

consider the relatively independent extension of the diagonal measure on A2 in
B ⊗ B as well as in A1 ⊗ A1. The latter is a factor of the former, so obviously
A1 → A2 rel. w. m.

Definition 2.2.2. Let T : (X,B, µ)→ (X,B, µ) be ergodic and A be a factor
of it. Assume that A ⊂ A1 ⊂ B is another factor. The decomposition B →
A1 → A is called a Furstenberg decomposition of B → A, if B → A1 rel. w. m.
and A1 → A is distal.

By the method presented in [23] we know that for each A ⊂ B there exists
a Furstenberg decomposition of B→ A.

Proposition 2.2.3. For any A ⊂ B there exists only one Furstenberg de-
composition of B→ A.

Proof. Let C be the maximal distal extension of A such that B → C → A.
Take any Furstenberg decomposition B → Ã → A of B → A. Then, by Lem-
ma 2.1.7, each ergodic joining of C and Ã that projects onto A⊗A as the diagonal
measure is a distal extension of A. Therefore Ã ⊂ C. Conversely, since B→ Ã is
rel. w. m., so is C→ Ã. Hence C = Ã. �

Proposition 2.2.4. Let T : (X,B, µ)→ (X,B, µ) be ergodic and

T ′: (X ′,B′, µ′)→ (X ′,B′, µ′), T1: (X1,B1, µ1)→ (X1,B1, µ1)

be its two ergodic extensions. Suppose that λ ∈ Je(T ′, T1) is such that λ|X×X =
∆X . Assume moreover, that (X1, µ1) → (X,µ) is distal and (X ′ × X1, λ) →
(X ′, µ′) rel. w. m. Then in (X ′ ×X1, λ) we have B′ ×X1 → X ′ ×B1.

Proof. Let us assume that

(X ′ ×X1, λ)→ (X̂1, µ̂1)→ (X1, µ1) and (X ′, µ′)→ (X̂, µ̂)→ (X,µ)

are Furstenberg decompositions. It is then clear that the extension (X̂1, µ̂1) →
(X,µ) is distal. By Lemma 2.1.7, the maximality of X̂1 and the fact that the
extension X̃ → X, where X̃ is the smallest factor of (X ′ × X̂1, λ) containing
X̂1 and X̂, is distal, we must have X̂ ⊂ X̂1. Therefore, (X ′, µ′) and (X̂1, µ̂1)
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are relatively disjoint over X̂. Thus, no harm arises if we assume that λ is the
relative product of X ′ and X̂1 over X̂. To be more precise, let

X ′ = X̂ × Z ′, T ′(x̂, z′) = (T̂ x̂, θ′x̂(z′)),

X̂1 = X̂ × Z1, T1(x̂, z1) = (T̂ x̂, θ1
x̂(z1)).

Therefore, the relative product X ′ ×
X̂
X̂1 of X ′ and X̂1 over X̂, denote it by

T̃ : (X̂ × Z ′ × Z1)→ (X̂ × Z ′ × Z1), is defined by the formula

T̃ (x̂, z′, z1) = (T̂ x̂, θ′x̂(z′), θ1
x̂(z1)).

By our assumption, the relative product ˜̃T = T̃ ×X′ T̃ : X̂ × Z ′ × Z1 × Z1 →
X̂ × Z ′ × Z1 × Z1 is ergodic. It is clear that

˜̃
T (x̂, z′, z1, z2) = (T̂ x̂, θ′x̂, θ

1
(x̂,z′)(z1), θ1

(x̂,z′)(z2)),

where θ1
(x̂,z′)(zi) = θ1

x̂(zi), i = 1, 2. Therefore the relative product X̂1 ×X̂ X̂1

which is defined on X̂ × Z1 × Z1 by the formula

(x̂, z1, z2) 7→ (T̂ x̂, θ1
x̂(z1), θ1

x̂(z2))

is a factor of ˜̃T , hence is ergodic. This means however that X̂1 = X̂ that com-
pletes the proof. �

As a consequence we have

Proposition 2.2.5. Let T : (X,B, µ)→ (X,B, µ) be ergodic and {Ai : i ∈ I}
a family of its factors such that B→ Ai rel. w. m. for each i ∈ I. Then

B→ A =
⋂
i∈I

Ai rel. w. m.

Proof. Let A′ ⊃ A be the maximal distal extension of A in B. Then B→ A′

rel. w. m. By virtue of Proposition 2.2.4, A′ ⊂ Ai and consequently A′ ⊂ A,
hence A′ = A. �

Proposition 2.2.6. Suppose that B ⊃ A1 ⊃ A2, and that both extensions
B→ A1 and A1 → A2 are relatively weakly mixing. Then the extension B→ A2

is relatively weakly mixing as well.

Proof. Let Â2 be the maximal distal extension of A2 in B. We have Â1 → A2

is distal while A1 → A2 rel. w. m. Therefore Â2 and A1 are disjoint relatively
to A2, so Â2 ∩ A1 = A2. It follows from Proposition 2.2.5 that B → Â2 ∩ A1

rel. w. m. �
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2.3. Semisimplicity

Definition 2.3.1. Let T : (X,B, µ) → (X,B, µ) be ergodic. We say that T
is semisimple if for every self-joining λ ∈ Je(T, T ) we have

(X ×X,λ) πi−→ (X,µ) rel. w. m.,

where πi:X ×X → X, π(x1, x2) = xi, i = 1, 2.

Below we present some examples.

Example 2.3.2. Suppose that the automorphism T has discrete spectrum.
In such a case each joining λ ∈ Je(T, T ) is a graph joining, so T is semisimple.

Example 2.3.3. Assume that T has 2-fold simplicity property, i.e. if λ ∈
Je(T, T ) then either λ is a graph joining or λ = µ × µ. So, immediately from
Definition 2.3.1 we get that T is semisimple.

Example 2.3.4. T1, . . . , Tk, 1 ≤ k ≤ ∞, with MSJ (for definition see Sec-
tion 1.3). Then clearly T1 × . . .× Tk is semisimple.

All the examples above are in some sense pure; they are either weakly mixing
or discrete spectrum. Semisimple maps can however have mixed spectrum.

Example 2.3.5. T = T1 × T2, where T1 has discrete spectrum and T2 has
MSJ. Then each λ ∈ Je(T, T ) is either a graph joining (T can be viewed as a
group extension with a constant cocycle of T2) or appears in the ergodic decom-
position of µ×µ, where µ = µ1×µ2. Any such a λ is isomorphic to T1×T2×T2,
so T is semisimple.

Proposition 2.3.6. Let T : (X,B, µ) → (X,B, µ) be semisimple and let
A1,A2 ⊂ B be factors. Suppose that B → Aj rel. w. m., j = 1, 2. Then, for
each λ ∈ Je(A1,A2), we have

(A1 ⊗A2, λ)→ (Aj , µ) rel. w. m., j = 1, 2.

Proof. Extend λ to λ ∈ Je(T, T ) whose projection on A1⊗A2 is λ. We have
that both extensions (X ×X,λ) → (X,µ) → (A1, µ) are rel. w. m. By Propo-
sition 2.2.6, (X ×X,λ)→ (A1, µ) rel. w. m. But obviously, we have a sequence
of factors

(X ×X,λ)→ (A1 ⊗A2, λ)→ (A1, µ),

so we must have (A1 ⊗A2, λ)→ (A1, µ) rel. w. m. �

Substituting in Proposition 2.3.6, A1 = A2 = A we obtain the following

Corollary 2.3.7. Suppose that T : (X,B, µ) → (X,B, µ) is semisimple and
let A ⊂ B be a factor. If B → A rel. w. m., then also T : (X,A, µ) → (X,A, µ)
is semisimple.
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2.4. Natural factors and the structure
of factors for semisimple automorphisms

Definition 2.4.1. Let T : (X,B, µ)→ (X,B, µ) be ergodic. Suppose that N

is a class of factors satisfying

(2.2) N is closed under taking intersections and containing B and the trivial
σ-algebra N.

We will call N natural if

(N-1) Bi(λ) ∈ N for all λ ∈ Je(T, T ), i = 1, 2.
(N-2) If A1,A2 ∈ N and S:A1 → A2 establishes an isomorphism then S sends

natural factors contained in A1 into natural factors contained in A2.

Since N is closed under intersections, for each factor A ⊂ B we have a smallest
natural factor Â ∈ N with Â ⊃ A.

Definition 2.4.2. Let A ⊂ B be a factor. The smallest natural factor Â ∈ N

such that Â ⊃ A will be called the natural cover of A.

Remark 2.4.3. Suppose that T is an ergodic automorphism. Then directly
from the definition it follows that there exists the smallest family N0 of natural
factors. Note also that if B→ A rel. w. m. then A ∈ N0. Indeed, in such a case
we have µ×A µ ∈ Je(B,B) and obviously Bi(µ×A µ) = A, i = 1, 2.

Proposition 2.4.4. A family N satisfying (2.2) is natural if and only if
whenever λ ∈ Je(T, T ) and λ restricted to factors A1 ⊗ A2 establishes their
isomorphism then λ is an isomorphism on the natural covers.

Proof. Suppose that a family N of factors satisfies (2.2).
First assume that N is natural. Let λ ∈ Je(T, T ) and λ|A1⊗A2 is an isomor-

phism. By (N-1) we have that Âj ⊂ Bj(λ), j = 1, 2, and (N-2) completes this
part of the proof.

To prove the converse take λ ∈ Je(T, T ), then λ establishes an isomorphism
between B1(λ) and B2(λ). Since these two are the biggest with this property we

must have B̂j(λ) = Bj(λ), j = 1, 2 and (N-1) follows. Now, let A1,A2 ∈ N and
S be an isomorphism between them. Lift this isomorphism to a λ ∈ Je(T, T ).
Take A ∈ N with A ⊂ A1. Then λ is an isomorphism of A = Â with SA but
also with ŜA. Hence SA = ŜA so SA ∈ N which completes the proof. �

Corollary 2.4.5. Let N be a natural family of factors for T . Then for each
factor A of T the extension Â→ A is a group extension.

Proof. Take any ergodic self-joining λ on Â⊗ Â that is diagonal on A⊗ A.
Hence λ establishes an isomorphism of A with itself (by the identity). From
Proposition 2.4.4, λ is an isomorphism of Â with itself, so λ is a graph joining on
Â⊗ Â. By Veech’s Theorem (see Theorem 1.4.1), Â→ A is a group extension.�
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Lemma 2.4.6. Let T̂i: (X̂i, B̂i, µ̂i)→ (X̂i, B̂i, µ̂i), i = 1, 2, be ergodic distal
extensions of Ti: (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2. Assume that λ̂ ∈ Je(T̂1, T̂2)
has the property that its restriction λ to B1⊗B2 is a graph joining and moreover
for i = 1, 2 the extension (B̂1 ⊗ B̂2, λ̂) → (B̂i, µ̂i) is rel. w. m. Then λ̂ is also
a graph joining.

Proof. Note that in (B̂1⊗B̂2, λ̂) the σ-algebras B1 = B2 (mod λ̂). Therefore

B̂1 ⊗ B̂2 → B̂1 → B1 and B̂2 ⊗ B̂2 → B̂2 → B2

are, by assumption, two Furstenberg decompositions of B1 = B2. By Proposi-
tion 2.2.3 we have B̂1 = B̂2 (mod λ̂), so λ̂ is an isomorphism of B̂1 and B̂2. �

Below, we will consider a family of natural factors for semisimple maps.

Proposition 2.4.7. Let T : (X,B, µ)→ (X,B, µ) be ergodic and semisimple.
Put

N = {A ⊂ B:B→ A rel. w. m.} ∪ {N}.
Then the family N is natural.

Proof. By Proposition 2.2.5, N is closed under intersections. We will prove
that if λ ∈ Je(T, T ) establishes an isomorphism of A1 and A2 then λ is also an iso-
morphism of natural covers Â1 and Â2. Now, Â1 and Â2 can be described as the
maximal distal extensions of A1 and A2 respectively. By Proposition 2.3.6, if by λ̂
we denote the restriction of λ to Â1⊗Â2 then (Â1⊗Â2, λ̂)→ (Âi, µ) rel. w. m.,
j = 1, 2. Lemma 2.4.6 finishes the proof. �

By applying Proposition 2.4.7 and Corollary 2.4.5 we obtain the following

Theorem 2.4.8 (Structure Theorem). Assume that the automorphism T :
(X,B, µ) → (X,B, µ) is ergodic and semisimple. Then for each factor A there
exists an Â with B→ Â rel. w. m. such that Â is a group extension of A.

Remark 2.4.9. If T is 2-fold simple then the only factors with respect to
which T is rel. w. m. are the trivial ones, so applying Theorem 2.4.8 we obtain
the well known Veech’s Theorem on factors of 2-fold simple maps (see [95], [45]).

Reamrk 2.4.10. Applying Theorem 2.4.8 it is very easy to give examples
of T that are not semisimple. Indeed, if there are B2 ⊂ B1 ⊂ B such that
B → B1 isometric, B1 → B2 isometric but B → B2 is not isometric, then B

is not semisimple. Since B → B2 is distal, we must have B̂2 = B. If B were
semisimple, then, by Theorem 2.4.8, B→ B2 would be a group extension.

Corollary 2.4.11. If T : (X,B, µ) → (X,B, µ) is ergodic and semisimple
then its entropy h(T ) is equal to zero.

Proof. First, note that no Bernoulli T : (X,B, µ) → (X,B, µ) is semisimple.
Indeed, take any nontrivial weakly mixing compact group extension Tϕ: (X ×
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G, B̃, µ̃) → (X × G, B̃, µ̃) of T . By [87], Tϕ is again Bernoulli with the same
entropy as T . Now, in B̃ we have two factors, namely, B̃ and B isomorphic to
T . If T were semisimple, then the smallest factor containing these two factors
(equal to B̃) would have to be rel. w. m. with respect to B; a contradiction.

Suppose that h(T ) > 0. Then there exists a Bernoulli factor A with the
same entropy. Take the natural cover Â of A. Then Â→ A is a compact group
extension. If Â is weakly mixing then Â is Bernoulli, so Â is semisimple. In
general, Â can be represented as Â = Ã ⊗ K, where Ã is Bernoulli and K is
the maximal Kronecker factor of Â (see [87]). Moreover, Ã can be represented
as a nontrivial group extension of a Bernoulli factor, say of Ã1. Hence Ã ⊗ K

is a nontrivial group extension of Ã1 ⊗ K. But these two automorphisms are
isomorphic so the former is not semisimple. �

Remark 2.4.12. Suppose that T is ergodic and distal. Then T is semisimple
if and only if T has discrete spectrum. Indeed, if T is semisimple and K is its
maximal Kronecker factor then B → K rel. w. m. (K̂ is a group extension of
K that is a group extension of one point dynamical system; since K̂ must be
semisimple, we have K̂ = K).

2.5. Joinings of ergodic group extensions
of semisimple automorphisms

Assume that T : (X,B, µ)→ (X,B, µ) and S: (Y,C,m)→ (Y,C,m) are ergo-
dic automorphisms. Let G1, G2 be compact metric groups with Haar measures
ν1, ν2 respectively. Let ϕ1:X → G1, ϕ2:Y → G2 be such that Tϕ1 and Sϕ2 are
ergodic.

Suppose that λ ∈ Je(T, S) has the property that the two extensions

(T × S, λ)→ (T, µ) and (T × S, λ)→ (S,m)

are rel. w. m. The following theorem describes any λ̃ ∈ Je(Tϕ1 , Sϕ2) whose
projections on B⊗ C is λ.

Theorem 2.5.1. There are normal closed subgroups H1 ⊂ G1, H2 ⊂ G2,
a continuous group isomorphism v:G1/H1 → G2/H2 and a Borel map f :X ×
Y → G2/H2 such that for any Borel sets A ⊂ X, C1 ⊂ G1, B ⊂ Y , C2 ⊂ G2 we
have

λ̃(A× C1 ×B × C2) =
∫
X×Y×G1/H1

E(χA×Y×C1 |H1)(x, y, g1H1)

· E(χX×B×C2 |H2)(x, y, f(x, y)v(g1H1)) d(λ× ν1)(x, y, g1H1).

The proof of Theorem 2.5.1 is long and is divided into several lemmas.
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Let π:X×G1×Y ×G2 → X×Y , π(x, g1, y, g2) = (x, y). Then π∗λ̃ = λ. Let
us decompose λ̃ over the factor (X × Y, λ, T × S):

λ̃ =
∫
X×Y

λ̃(x,y) dλ(x, y).

Let H = {(h1, h2) ∈ G1 × G2 : λ̃(h1, h2) = λ̃ }, be the stabilizer of λ̃. By
Lemma 1.4.4,

λ̃ =
∫
X×Y

δ(x,y) × (g1, g2)νH dλ(x, y),

where (g1, g2)H = τ(x, y).
Let H1 ⊂ G1, H2 ⊂ G2 be given by

H1 = {g1 ∈ G1 : (g1, e2) ∈ H}, H2 = {g2 ∈ G2 : (e1, g2) ∈ H}

where ei denotes the unit element of the group G1, i = 1, 2. Put πi:G1×G2 → Gi,
πi(g1, g2) = gi, i = 1, 2.

Lemma 2.5.2. πi(H) = Gi, i = 1, 2.

Proof. First, we note that Tϕ1×Sϕ2 , X×G1×Y ×G2, λ̃) is a group extension
of T × S, where the group we extend by is H (see Theorem 1.4.5). If we take
the projection onto the first three coordinates, then we get a group extension
of (T × S,X × Y, λ) by π1(H). This group extension is ergodic. On the other
hand, (Tϕ1 , X×G1, µ̃)→ (T,X, µ) is a group extension and (T ×S,X×Y, λ)→
(T,X, µ) rel. w. m., so the relative product Tϕ1 ×(X,µ,T ) (T × S, λ) is ergodic.
This relative product is equal to ((T × S)ϕ2 , λ̂)ϕ1 , i.e. it is a group extension of
(T × S, λ) via G1. Since the latter is ergodic, π1(H) = G1.

The proof of the equality π2(H) = G2 is similar. �

The next lemma immediately follows from Lemma 2.5.2.

Lemma 2.5.3. The subgroups H1 and H2 are normal in G1 and G2 respec-
tively.

Lemma 2.5.4.

(a) If (g1, g2), (g1, g̃2) ∈ H then g̃−1
2 g2 ∈ H2.

(b) If (g1, g2) ∈ H, (g̃1, g2) ∈ H then g̃−1
1 g1 ∈ H1.

(c) (g1, g2) ∈ H if and only if g1H1 × g2H2 ⊂ H.

Proof. (a) Let us assume that (g1, g2) ∈ H, (g1, g̃2) ∈ H. Then (g−1
1 , g−1

2 ) ∈
H and H 3 (g−1

1 , g̃−1
2 )(g1, g2) = (e1, g̃

−1
2 g2). Therefore g̃−1

2 g2 ∈ H2. The proof of
(b) is similar.

(c) Assume that (g1, g2) ∈ H. Take h1 ∈ H1 and h2 ∈ H2. Then (h1, e2) ∈ H
and (e1, h2) ∈ H. Therefore (h1, h2) ∈ H and, by assumption,

H 3 (g1, g2)(h1, h2) = (g1h1, g2h2).
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Because h1, h2 were arbitrary, g1H1 × g2H2 ⊂ H. �

We define a map v:G1/H1 → G2/H2 by the following formula

(2.3) v(g1H1) = π2((g1H1 ×G2) ∩H).

Lemma 2.5.5. The map v defined by (2.3) is a continuous group isomor-
phism.

Proof. By Lemma 2.5.4, v is well defined. The continuity of v is evident.
Obviously v is bijective. Because H1×H2 ⊂ H, v(H1) = H2. We now prove that
v is a group homomorphism.

Take gH1, gH1 ∈ G1/H1. Set v(gH1gH1) = g̃H2, v(gH1) = g1H2, v(gH1) =
g1H2. Then ggH1 × g̃H2 ⊂ H, gH1 × g1H2 ⊂ H, gH1 × g1H2 ⊂ H. This im-
plies ggH1 × g1g1H2 ⊂ H. By Lemma 2.5.4, g̃H2 = g1g1H2, i.e. v(gH1gH1) =
v(gH1)v(gH1).

Obviously v(g−1H1) = v(gH1)−1. �

As an immediate consequence of Lemma 2.5.4 and Lemma 2.5.5 we have

Lemma 2.5.6. H =
⋃
g∈G1 gH1 × v(gH1).

Let

(T × S)ϕi,Hi :X × Y ×Gi/Hi → X × Y ×Gi/Hi,

(T × S)ϕi,Hi(x1, x2, gHi) = (Tx1, Sx2, ϕi(xi)gHi), i = 1, 2.

Then (X × Y × Gi/Hi, λ × νi, (T × S)ϕi,Hi), i = 1, 2, is an ergodic dynamical
system.

Our next aim is to define an isomorphism I of (T ×S)ϕ1,H1 and (T ×S)ϕ2,H2 .
It will have the form

I = If,v:X × Y ×G1/H1 → X × Y ×G2/H2,

If,v(x, y, gH1) = (x, y, f(x, y)v(gH1)),

for some measurable map f :X × Y → G2/H2.
Let α: (G1 ×G2)/H → G2/H2 be the (open) map given by

(2.4) α((g1, g2)H) = g2v(g−1
1 H1).

We have to prove that α is well defined. Assume that (g1, g2)H = (g̃1, g̃2)H.
Then (g−1

1 g̃1, g
−1
2 g̃2) ∈ H and therefore

(2.5) v(g−1
1 g̃1H1) = g−1

2 g̃2H2.

We will show that (g2v(g−1
1 H1))−1g̃2v(g̃1H1) = H2.

Indeed, by (2.5),

(g2v(g−1
1 H1))−1g̃2v(g̃−1

1 H1) = v(g1H1)g−1
2 g̃2H2v(g̃−1

1 H1)

= v(g1H1)v(g−1
1 g̃1H1)v(g̃−1

1 H1) = H2.
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Thus α is well defined.
Having α we can define the desired function f :X × Y → G2/H2, by setting

(2.6) f(x, y) = α(τ(x, y)),

where τ is defined by (1.10) and it satisfies (1.11) for ϕ = ϕ1 × ϕ2.
Now, one easily checks that

(T × S)ϕ2,H2 ◦ I = I ◦ (T × S)ϕ1,H1 .

We will also use the following

Lemma 2.5.7.

(a) τ(x, y) =
⋃
g∈G1

gH1 × f(x, y)v(gH1) λ-a.s.

(b) λ̃

( ⋃
(x,y)∈X×Y

g∈G1

{(x, y)} × gH1 × f(x, y)v(gH1)
)

= 1.

Proof. (a) Fix (x, y) ∈ X × Y . Set τ(x, y) = (a, b)H. Then by (2.4), (2.6)
and Lemma 2.5.6,⋃

g∈G1

gH1 × f(x, y)v(gH1) =
⋃
g∈G1

gH1 × bv(a−1H1)v(gH1)

=
⋃
g∈G1

gH1 × bv(a−1gH1) =
⋃
g∈G1

agH1 × bv(gH1)

= (a, b)
⋃
g∈G1

gH1 × v(gH1) = (a, b)H = τ(x, y).

(b) Using (a) we have

1 = λ̃

( ⋃
(x,y)∈X×Y

{(x, y)} × τ(x, y)
)

= λ̃

( ⋃
(x,y)∈X×Y

(
{(x, y)} ×

⋃
g∈G1

gH1 × f(x, y)v(gH1)
))

= λ̃

( ⋃
(x,y)∈X×Y

g∈G1

{(x, y)} × gH1 × f(x, y)v(gH1)
)
. �

Proof of Theorem 2.5.1. By Lemma 2.5.7 we can define an isomorphism

U : (X × Y ×G1/H1 ×G2/H2, λ̃, (T × S)ϕ1×ϕ2,H1×H2)→
((X ×Y ×G1/H1)× (X ×Y ×G2/H2), (λ× ν1)I , (T×S)ϕ1,H1 × (T×S)ϕ2,H2)

by
U(x, y, gH1, f(x, y)v(gH1)) = (x, y, gH1, x, y, f(x, y)v(gH1)).
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Then U sends the measure λ̃ to (λ× ν1)I and we have

λ̃(A×B × C) =
∫
X×Y×G1/H1

χA×B(x, y, gH1)

· χA×C(x, y, f(x, y)v(gH1)) d(λ× ν1)(x, y, gH1)

for A ⊂ X × Y , B ⊂ G1/H1, C ⊂ G2/H2.
Therefore, for A ⊂ X ×G1, B ⊂ Y ×G2,

λ̃(A×B)

=
∫
X×Y×G1/H1

E(χA | H1)(x, y, gH1) · E(χ
B
|H2)(x, y, f(x, y)v(gH1)) dλ dν1

which finishes the proof of Theorem 2.5.1. �

Corollary 2.5.8. Assume T : (X,B, µ)→ (X,B, µ) is an ergodic semisimple
automorphism. Let G be a compact metric group equipped with the normalized
Haar measure ν, let ϕ:X → G be such that Tϕ is ergodic, and suppose λ̃ ∈
Je(Tϕ, Tϕ) is an extension of some λ ∈ Je(T, T ). Then there are normal closed
subgroups H1, H2 ⊂ G, a continuous group isomorphism v:G/H1 → G/H2 and
a Borel map f :X × X → G/H2 such that for any Borel sets A,B ⊂ X and
C1, C2 ⊂ G we have

λ̃(A× C1 ×B × C2) =
∫
X×X×G/H1

E(χA×X×C1 |H1)(x, y, gH1)

· E(χX×B×C2 |H2)(x, y, f(x, y)v(gH1))d(λ× ν)(x, y, gH1). �

Assume that T : (X,B, µ)→(X,B, µ) is an ergodic automorphism and ϕ:X→
G a cocycle such that Tϕ is ergodic. Suppose that S ∈ C(T ) has an extension to
S̃ ∈ C(Tϕ). If we assume that additionally S is invertible then it is well known
that

(2.7) S̃(x, g) = Sf,v(x, g) = (Sx, f(x)v(g)),

where f :X → G is measurable and v:G→ G is a continuous group epimorphism
(this result can be directly deduced from Theorem 2.5.1). In general we obtain
the following:

Proposition 2.5.9. If S̃ ∈ C(Tϕ) is an extension of some S ∈ C(T ) then S̃

is of the form (2.7), where v:G→ G is a continuous group homomorphism (not
necessarily onto).

Proof. Write S̃(x, g) = (Sx, ψ(x, g)). Since S̃Tϕ = TϕS̃ we get

ψ(Tϕ(x, g)) = ϕ(Sx)ψ(x, g).

Writing σg(x, h) = (x, hg) we have σg ∈ C(Tϕ). Set

Fg(x, h) = ψ(x, h)−1ψσg(x, h) = ψ(x, h)−1ψ(x, hg).
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We have

FgTϕ(x, h) = (ψTϕ(x, h)−1ψσgTϕ(x, h) = (ψTϕ(x, h))−1ψTϕ(x, hg)

= (ϕ(Sx)ψ(x, h))−1ϕ(Sx)ψ(x, hg) = Fg(x, h).

Thus Fg is a constant function. Set

v(g) = Fg( · , · ).

Clearly v:G→ G is measurable. We now show that v is a group homomorphism.
We have v(e) = e and

v(g1g2) = ψ(x, h)−1ψ(x, hg1g2)

= ψ(x, h)−1ψ(x, hg1)ψ(x, hg1)−1ψ(x, (hg1)g2) = v(g1)v(g2).

In particular, v is continuous.
Put

f(x, h) = ψ(x, h)v(h)−1 a.s.

Take any g ∈ G. Then for a.e. (x, h) we have

fσg(x, h) = f(x, hg) = ψ(x, hg)v(hg)−1

= ψ(x, h)ψ(x, h)−1ψ(x, hg)v(g)−1v(h)−1 = ψ(x, h)v(h) = f(x, h).

Therefore f depends only on x �

Definition 2.5.10 ([79]). Assume that A ⊂ B is a factor of T . We call it
a canonical (resp. weakly canonical) factor of T if for each isomorphic copy A′ of
A we have A′ = A (resp. A′ ⊂ A).

Proposition 2.5.11. Suppose that T : (X,B, µ) → (X,B, µ) is semisimple.
Let T̂ : (X̂, B̂, µ̂)→ (X̂, B̂, µ̂) be an arbitrary ergodic distal extension of T . Then
T is a weakly canonical factor of T̂ .

Proof. Suppose that B′ is a factor of B̂ isomorphic to B. Let A be the smallest
factor containing B and B′. Since T is semisimple, A → B rel. w. m. However,
B̂ → A → B, and B̂ → B is a distal extension. Hence A and B̂ are relatively
(over B) disjoint, and consequently B = A. �

Remark 2.5.12. Notice that the centralizer of a semisimple automorphism
need not be a group; for instance, take T = T1 × T1 × . . . , where T1 has MSJ.

Remark 2.5.13. D. Newton in [79] asked about canonicality of automor-
phisms, i.e. whether there are automorphisms which are canonical factors in an
arbitrary ergodic extension. As shown in [61], the only ones with this property
are those with discrete spectrum. Let us ask what is the class of automorphisms
which are canonical factors in an arbitrary ergodic distal extension. The above
proposition says that semisimple coalescent automorphisms enjoy this property.
The question arises whether they are the only ones.
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It follows from Proposition 2.5.11 that a semisimple automorphism sits weak-
ly canonically in any of its ergodic group extensions. In particular, if S̃ ∈ C(Tϕ),
then S̃−1(B) ⊂ B and we can apply Proposition 2.5.9. Hence we obtain the
following generalization of the results from [4], [79], [71]:

Corollary 2.5.14. If Tϕ: (X × G, µ̃) → (X × G, µ̃) is an ergodic group
extension of a semisimple automorphism and S̃ ∈ C(Tϕ) then there are S ∈
C(T ), a Borel map f :X → G and a continuous group homomorphism v:G→ G

such that
S̃(x, g) = (Sx, f(x)v(g)).

If, additionally, T is coalescent, then v is onto.

2.6. Applications of natural families

Lemma 2.6.1. Assume that T : (X,B, µ)→ (X,B, µ) is a 2-fold simple we-
akly mixing automorphism, ϕ:X → G a cocycle such that Tϕ is weakly mi-
xing. Let λ̃ ∈ Je(Tϕ, Tϕ) with λ̃|B⊗B an isomorphism. Then B1(λ̃) = B̃H1 and
B2(λ̃) = B̃H2 for some H1 and H2 which are normal.

Proof. Let H ⊂ G × G be the stabilizer of λ̃. By Lemma 2.5.2, πi(H) = G,
i = 1, 2. Since B1(λ̃) and B2(λ̃) are two factors between B and B̃ (λ̃ is an
isomorphism on the base), it follows that B1(λ̃) = B̃H1 and B2(λ̃) = B̃H2 , where
H1, H2 are closed subgroups of G (this easily follows from the relative version of
Veech’s Theorem). We will prove that for each g ∈ G

(2.8) B̃g−1H1g ⊂ B1(λ̃).

Fix g ∈ G. Since πi(H) = G, i = 1, 2, there exists g2 ∈ G such that (g, g2) ∈ H.
We have

σg(B̃H1) = B̃g−1H1g, σg2(B̃H2) = B̃g−12 H2g2
,

so (by the definition of B1(λ̃) it is enough to show that

σgB̃H1 = σg2B̃H2 mod λ̃.

This is however obvious, because if A ∈ B̃H1 , B ∈ B̃H2 and

λ̃(A× (X ×G)4(X ×G)×B) = 0

then

λ̃(σgA× (X ×G)4(X ×G)× σg2B) = λ̃(A× (X ×G)4(X ×G)×B) = 0.

Therefore (2.8) follows. The proof is complete by the symmetry of the argu-
ment. �
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Lemma 2.6.2. Let T be semisimple and coalescent, ϕ:X → G ergodic,
H ⊂ G a closed subgroup and Ŝ ∈ C(Tϕ). Assume that B̃H is Ŝ-invariant. If Ŝ
is invertible on B̃ then Ŝ so is on B̃H .

Proof. By Corollary 2.5.14 we have

Ŝ(x, g) = Sf,v(x, g) = (Sx, f(x)v(g)),

where v:G → G is a group automorphism. We have assumed that Ŝ−1B̃H ⊂
B̃H which means that Sf,v(x, gH) ∈ X × G/H for all (x, g) ∈ X × G. But
Sf,v(x, gH) = (Sx, f(x)v(gH)) so f(x)v(g)v(H) ∈ G/H for all (x, g) ∈ X × G,
hence v(H) = (f(x)v(g))−1

g(x,g)H and v(H) = g0H. But v(H) is a subgroup,
so g0 = e and hence v(H) = H. We have achieved that on X ×G/H

Ŝ(x, gH) = Sf,v,H(x, gH) = (Sx, f(x)v(g)H)

and one directly checks that Sf,v,H is invertible. �

Corollary 2.6.3. If T → T is an isometric ergodic extension, T is semi-
simple and the group cover of T is coalescent then T is also coalescent.

Proposition 2.6.4. If Tϕ: (X × G, µ̃) → (X × G, µ̃) is a weakly mixing
group extension of a weakly mixing 2-fold simple map T , N is the natural family
of factors for T defined in Proposition 2.4.7 then the family

NG = {B̃H : H is a normal closed subgroup of G} ∪ {N}

is a natural family of factors for Tϕ.

Proof. Since obviously N is closed under taking intersections (the smallest
closed subgroup generated by a family of closed normal subgroups is normal)
and Lemma 2.6.2 holds true, it remains to show that if S̃: B̃H1 → B̃H2 is an
isomorphism of two natural factors then S̃ sends natural factors contained in
B̃H1 to natural factors contained in B̃H2 . By Proposition 2.5.9, S̃(x, gH1) =
(Sx, f(x)v(gH1)), where v:G/H1 → G/H2 is a continuous group isomorphism,
S ∈ C(T ) and f :X → G/H is measurable. If H ′ is a closed normal subgroup
containing H1 then by the form of S̃ we have S̃B̃H′ = B̃v(H′/H1) and it is clear
that v(H ′/H1) is a normal subgroup of G/H2. �

Remark 2.6.5. From Proposition 2.6.4 and Structure Theorem we get im-
mediately the result on the structure of factors for group extensions of rotations
proved in [71].

Remark 2.6.6. If we assume that a 2-fold simple map is not weakly mixing,
then in fact it has discrete spectrum (see [45]) and then both Lemma 2.6.1 and
Proposition 2.6.4 are valid for each ergodic cocycle ϕ:X → G.

The question whether or not each factor of a coalescent automorphism is
again coalescent was stated by D. Newton in 1970, [80], and the negative answer
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is contained in [61] (see also a recent paper by A. Fieldsteel and D. Rudolph [19]).
An ergodic group extension of a rotation need not be coalescent, but we will
assume, that this is the case and ask about the coalescence of all factors. Our
goal is to prove the following theorem (which is a generalization of a result from
[61] for the Abelian case).

Theorem 2.6.7. If Tϕ: (X ×G, µ̃)→ (X ×G, µ̃) is an ergodic group exten-
sion of a discrete spectrum T and N denotes the natural family of factors defined
in Proposition 2.6.4, then all factors of Tϕ are coalescent whenever all natural
factors so are.

Proof. Let E be such a factor of Tϕ that is isomorphic to its proper factor
E′ $ E. To simplify the notation we assume that Ê = B̃. Now, E′ ⊂ E and they
are isomorphic, so by coalescence property of natural factors we have Ê′ = Ê = B.

Let H(E) be the compact subgroup contained in C(Tϕ) that determines E.
Let S be this (noninvertible) element of the centralizer of E that gives rise to an
isomorphism of E and E′. Denote by Ŝ an extension of S to C(Tϕ). By assumption

of this theorem, Ŝ is invertible. Moreover the factor E′ = S
−1

E is determined by
Ŝ−1H(E)Ŝ. Consequently

Ŝ−1H(E)Ŝ ⊂ H(E)

and the inclusion is strict. Denote

H = {g ∈ G : σg ∈ H(E)},

where σg(x, h) = (x, hg). Note that each σg ∈ C(Tϕ) and it can be written
as Idg,τg , where τg(h) = g−1hg. Now, each element Û ∈ H(E) is of the form

Û = Uf,v (Proposition 2.5.9) and if two elements Û , ̂̂U ∈ H(E) have the same
projections on the first coordinate (i.e. they are liftings of the same U ∈ C(T ))

then Û = ̂̂
U ◦ σg for certain g ∈ H. Suppose that Ŝ = Sf,w, where w:G→ G is

an automorphism. Then we have

Ŝ−1 = (S−1)w−1[(fS−1)−1],w−1 ,

where w−1 denotes the inverse in the sense of composition of maps, and

(Sf,w)−1 ◦ σg ◦ Sf,w = σw−1(g).

Take under consideration the factor B̃H , which is determined by the group H(E)∩
{σg: g ∈ G} ⊂ C(Tϕ), and consider Ŝ−1B̃H . The latter factor is determined by

Ŝ−1H(B̃H)Ŝ = {σw−1(g) : g ∈ H}.

Denoting H ′ = {g ∈ G : σw−1(g) ∈ Ŝ−1H(E)Ŝ} we have H is a proper subgroup

of H ′ because Ŝ−1H(E)Ŝ determines S
−1

E = E′ and E′ is a proper factor of E.
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Thus BH′ is a proper factor of BH . Moreover, Ŝ−1(BH) = BH′ , and therefore

{σw−1(g) : g ∈ H} = Ŝ−1H(BH)Ŝ = H(Ŝ−1(BH)) = H(BH′).

It implies that B̃H has a proper factor B̃w−1(H) isomorphic to it. The result
follows from Lemma 2.6.2. �

2.7. Final remarks

In 1997 P. Gabriel, M. Lemańczyk and K. Schmidt showed [26] that for
Bernoulli transformations the smallest natural family of factors consists of all
factors (later, E. Glasner, [33], gave an alternative proof of this theorem). On
the other hand for all 2-fold simple maps the smallest natural family consists
only of one element (see Remark 2.4.9). From this point of view Bernoulli shifts
are an opposition of 2-simple systems.

For semisimple maps on the set Je(T, T ) there is a natural structure of a mo-
noid (see [35]). Suppose that λ1, λ2 ∈ Je(T, T ). We have

(X ×X,λ1) rel. w. m.−−−−−−→ X
rel. w. m.←−−−−−− (X ×X,λ2)

so the relative product over X is rel. w. m. Since λ1×X λ2 is ergodic, hence the
projections on the first and on the third coordinate give us an ergodic self-joining
obtained by λ1 ◦ λ2 ∈ Je(T, T ). This multiplication is associative and has a unit
– the diagonal measure on X. If T is weakly mixing then µ× µ ∈ Je(T, T ) and
(µ × µ) ◦ λ = µ × µ for each λ ∈ Je(T, T ). More generally, if A is a factor
and λ ∈ Je(T, T ) is diagonal on A then (µ ×A µ) ◦ λ = µ ×A µ. In particular,
the relatively independent extensions of diagonal measures gives us idempotents.
The only invertible elements are graph joinings µS with S ∈ C(T ) necessarily
invertible. In 2003 Y. H. Ahn and M. Lemańczyk proved a much more general
theorem ([3, Theorem 1]) saying that an automorphism is semisimple if and only
if the set of all ergodic self-joinings forms a semigroup with the circle ◦ operation.
This theorem suggests that semisimplicity is a quite natural notion.



CHAPTER 3

SEMISIMPLE GROUP EXTENSIONS OF ROTATIONS

In this chapter we show that semisimple actions of locally compact second
countable Abelian groups and cocycles with values in such groups can be used to
built new examples of semisimple automorphisms (Z-actions) that are relatively
weakly mixing extensions of irrational rotations.

3.1. General backgrounds

Recall (see Definition 2.3.1) that T is semisimple if for each ergodic λ ∈ Je(T )
the extension (B ⊗ B, λ) → (B × X,λ) is relatively weakly mixing (clearly,
(B×X,λ) can be identified with (B, µ)). It has been noticed in Chapter 2 that
an ergodic distal automorphism is semisimple if and only if it is isomorphic to
a rotation. Moreover, if T is semisimple and B→ A is relatively weakly mixing
then A is also semisimple. It follows that if T is semisimple and D stands for its
maximal distal factor then D is semisimple because B→ D is relatively weakly
mixing. We have shown the following.

Proposition 3.1.1. If T is semisimple then it is a relatively weakly mixing
extension of its Kronecker factor.

Let (X,B, µ) be a standard probability space. Let T : (X,B, µ)→ (X,B, µ) be
an ergodic automorphism. Assume that G is an Abelian locally compact second
countable group, ϕ:X → G is a cocycle and consider the group extension

Tϕ: (X ×G,B⊗ G, µ×mG)→ (X ×G,B⊗ G, µ×mG),

Tϕ(x, g) = (Tx, ϕ(x) + g).

Here G denotes the σ-algebra of Borel sets of G and mG stands for a (infinite
whenever G is not compact) Haar measure on B(G). As it follows from [89],
ergodicity of ϕ is “controled” by the group E(ϕ) of essential values of ϕ (see
Definition 1.4.6).

61
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Given T : (X,B, µ) → (X,B, µ) and ϕ:X → G by ϕ∗µ we denote the image
of µ on G via ϕ. Recall also that an increasing sequence (qn)n>1 of integers is
called a rigidity time for T if T qn → Id weakly. We will make use of the following
essential value criterion.

Proposition 3.1.2 ([69]). Assume that T is ergodic and let ϕ:X → G be
a cocycle with values in an Abelian locally compact second countable group G.
Let (qn)n>1 be a rigidity time for T . Suppose that (ϕ(qn))∗µ → ν weakly on
G∞ = G ∪ {∞}. Then supp(ν) ⊂ E∞(ϕ).

Assume that G is an Abelian locally compact second countable group that
contains no non-trivial compact subgroup and let G = {Rg}g∈G be a Borel ac-
tion of this group on a Borel space (Y,C) (we always suppose that such a space
is standard that is, up to isomorphism, Y is a Polish space, while C stands for
the σ-algebra of Borel sets) meaning that the map G × Y 3 (g, y) 7→ Rgy ∈ Y
is measurable. If now ν is a probability measure invariant for the action of G
then the notions defined in the previous section for Z-actions have their natural
extensions to corresponding notions for actions of G on (Y,C, ν) (see also [45]).
In Chapter 1 a definition of mildly mixing action is given (see Definition 1.5.2).
An equivalent condition for mild mixing is the following (in the case when G con-
tains no non-trivial compact subgroup): the action G is mildly mixing if for each
non-trivial factor A ⊂ C of G the representation g 7→ URg ∈ U(L2(Y/A,A, ν))
(URgf = f ◦ Rg for f ∈ L2(Y/A,A, ν)) is faithful and its image is closed. For
other conditions, equivalent to mild mixing, see [76], [24], [90], [63]. In particular,
for Z- (or R-) actions, mild mixing is equivalent to the lack of nontrivial rigid
factors.

3.2. Self-joinings of Rokhlin cocycles extensions for regular cocycles

By the circle we will mean T = [0, 1) with addition modulo 1. Given t ∈ R
by {t} we will denote its fractional part. Given an irrational α let [0 : a0, a1, . . . ]
denote the continued fraction expansion of α (see e.g. [49]). We say that α has
bounded partial quotients if the sequence (an)n>1 is bounded. We will denote
by (qn)n≥1 the sequence of denominators of α, that is q0 = 1, q1 = a1 and
qn+1 = an+1qn + qn−1, n ≥ 2. We will make use of the following result of
C. Kraaikamp and P. Liardet (see also [59]).

Theorem 3.2.1 ([54]). If α has bounded partial quotients then:

(a) for each real β /∈ Qα + Q the set of accumulation points in T of
({qnβ})n>1 is infinite;

(b) for each real β /∈ Zα+Z there exists 0 < c < 1 in the set of accumulation
points in T of ({qnβ})n>1.

The following well known result follows from the classical Koksma inequality
(e.g. [57]) and elementary properties of denominators of α.
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Proposition 3.2.2. If T :T → T is given by Tx = x + α, f :T → R has
bounded variation and

∫
T f(t) dt = 0 then |f (qn)(t)| 6 2 Var(f) for each t ∈ T

and each n > 1.

Closed subgroups of Rn are described in [77, Chapter II]. It follows that if
E ⊂ R2 is a closed subgroup then it has one of the following forms:

(3.1)

(a) E = {t→v : t ∈ R}, where
→
v ∈ R2,

(b) E = {n→v 1 +m
→
v 2 : n,m ∈ Z}, where

→
v 1,
→
v 2 ∈ R2,

(c) E = {t→v 1 + k
→
v 2 : t ∈ R, k ∈ Z}, where

→
v 1,
→
v 2 ∈ R2,

(d) E = R2.

Note that subgroups of the form (c) are cocompact whenever
→
v 2 6= 0.

Let G = {Rg}g∈G be a weakly mixing action of G on (Y,C, ν), where G is
Abelian locally compact second countable group. Given H ⊂ G × G a closed
subgroup satisfying

(3.2) π1(H) = G = π2(H),

where πi(g1, g2) = gi, i = 1, 2, we denote by M(Y × Y,C ⊗ C;H) the set of all
probability measures ρ on C⊗C that are Rg1 ×Rg2 -invariant for all (g1, g2) ∈ H
and such that ρ(C × Y ) = ρ(Y × C) = ν(C) for all C ∈ C. If ρ ∈ M(Y × Y,
C ⊗ C;H) and ρ =

∫
ργ dP (γ) denotes the H-ergodic decomposition of ρ, then

ν( · ) =
∫
ργ( · × Y ) dP (γ) and in view of (3.2), for P -a.e. γ, ργ( · × Y ) is G-in-

variant. Since ν is an extreme point in the simplex of all G-invariant measures,
ργ ∈M(Y × Y,C⊗ C;H) for P -a.e. γ. It easily follows that M(Y × Y,C⊗ C;H)
is a simplex whose set of extreme points coincides with Me(Y × Y,C⊗C;H) the
set of ergodic members of M(Y × Y,C⊗ C;H).

In what follows we will keep in mind Remark A.3.17. Moreover, we will use
the notion of spectral disjointness.

Definition 3.2.3. Let G be a locally compact group, Γ1 = {γ1
g : g ∈ G}

and Γ2 = {γ2
g : g ∈ G} be two actions of G on a probability Lebesgue spaces

(X1,B1, µ1) and (X2,B2, µ2) respectively. We say that the actions Γ1 and Γ2

are spectrally disjoint, if the maximal spectral types of Γ1 and Γ2 are mutually
singular.

The relations between spectral disjointness and disjointness in the Fursten-
berg sense (see Definition 1.3.3) is given in the following lemma that is a stra-
ightforward generalization of [42, Theorem 2.1].

Lemma 3.2.4. Let G be a locally compact group, Γ1 = {γ1
g : g ∈ G}

and Γ2 = {γ2
g : g ∈ G} be two actions of G on a probability Lebesgue spaces

(X1,B1, µ1) and (X2,B2, µ2), respectively. If Γ1 and Γ2 are spectrally disjoint
then they are disjoint in the Furstenberg sense.
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A role of our assumption of weak mixing of the G-action G = {Rg}g∈G is
easily seen in the following.

Proposition 3.2.5. An ergodic G-action is weakly mixing if and only if for
each sub-action H of a closed subgroup H ⊂ G×G satisfying (3.2), the H-action
is still ergodic.

Proof. The proof we will present was done by F. Parreau. Let p: Ĝ× Ĝ→ Ĥ

be the dual homomorphism corresponding to the natural embedding of H in
G×G. Denote

Γ = H⊥ = {(γ1, γ2) ∈ Ĝ× Ĝ : (γ1, γ2)(H) = 1}.

In view of (3.2),

(3.3) Γ ∩ Ĝ× {1} = Γ ∩ {1} × Ĝ = {(1, 1)}.

The maximal spectral type of the product action G ⊗ G equals τ × τ , where τ
stands for the maximal spectral type of G. Since G is weakly mixing, τ = δ0 + τc,
where τc is a continuous measure on Ĝ and τc is the maximal spectral type of
the unitary action of G on the space L2

0(Y,C, ν) of zero mean functions. Now, the
maximal spectral type of the product action G ⊗ G on L2

0(Y × Y,C ⊗ C, ν × ν)
equals

δ0 × τc + τc × δ0 + τc × τc.
Since the maximal spectral type of H on any G⊗G-invariant subspace of L2

0(Y ×Y,
C ⊗ C, ν × ν) is the image via p of the maximal spectral type of G × G on that
space, all we need to show is that the measures

p∗(δ0 × τc), p∗(τc × δ0), p∗(τc × τc)

are singular with respect to δ0. However, directly from (3.3) it follows that for
each γ ∈ Ĝ,

Γ ∩ Ĝ× {γ} = Γ ∩ {γ} × Ĝ has at most one element.

Now, if σ is any finite Borel measure on Ĝ, then

p∗(τc × σ)({0}) = (τc × σ)(Γ) =
∫
Ĝ

τc(Γ ∩ Ĝ× {γ}) dσ(γ) = 0,

so the result easily follows. �

The following proposition describes the simplex M(Y × Y,C⊗ C;H) in some
cases.

Proposition 3.2.6.

(a) M(Y × Y,C⊗ C;G×G) = {ν × ν}.
(b) M(Y × Y,C⊗ C;H) = {ν × ν} whenever H is cocompact.
(c) M(Y × Y,C⊗ C; ∆G) = J(G).
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Proof. (a) This is a standard argument using spectral disjointness of the
trivial identity G-action and any ergodic G-action (see Lemma 3.2.4).

(b) Assume that ρ0 ∈Me(Y × Y,C⊗ C;H). Then for each (g1, g2) ∈ G×G,
(Rg1 ×Rg2)∗ρ0 ∈M(Y × Y,C⊗ C;H). We put

(3.4) ρ =
∫

(G×G)/H
(Rg1 ×Rg2)∗ρ0 d((g1, g2)H).

Then ρ is a well defined G×G-invariant measure, hence ρ = ν×ν. We look at the
decomposition (3.4) as a decomposition of an H-invariant measure ν×ν which is
H-ergodic by Proposition 3.2.5. Since in this decomposition all measures are in
M(Y ×Y,C⊗C;H), by extremality, (Rg1 ×Rg2)∗ρ0 is one and the same measure
a.e. and therefore ρ0 = ν × ν.

(c) This part is obvious. �

Assume that T : (X,B, µ) → (X,B, µ) is an ergodic automorphism and let
ϕ:X → G be a cocycle. Throughout we suppose that the G-action G = {Rg}g∈G
is weakly mixing. Assume that H is a closed subgroup of G. Furthermore, assume
that ψ:X → H is a cocycle cohomologous to ϕ, i.e. for some measurable f :X →
G, ϕ = f − fT + ψ. Consider the corresponding Rokhlin cocycle extensions
Tϕ,G:X × Y → X × Y and Tψ,G:X × Y → X × Y , defined by Tϕ,G(x, y) =
(Tx,Rϕ(x)(y)), Tψ,G(x, y) = (Tx,Rψ(x)(y)). Then

(3.5) Tϕ,G and Tψ,G are relatively isomorphic,

that is, there exists an isomorphism which is the identity on B× Y . Indeed, the
map X×Y 3 (x, y) 7→ (x,Rf(x)(y)) ∈ X×Y establishes a relative isomorphism.

Proposition 3.2.7. Assume that ϕ is regular but is not a coboundary. As-
sume that G is mildly mixing. Then Tϕ,G is ergodic.

Proof. In view of (3.5), one has to note only that for any closed subgroup
H ⊂ G, H 6= {0}, the corresponding action H is ergodic. �

Remark 3.2.8. The fact above is clearly false whenever G is compact. The
reason is that in such a case G acts on itself by translations and for no proper
closed subgroup H the action of H by translations on G remains ergodic.

Given λ ∈ Je(T ) denote by J(Tϕ,G;λ) the set of self-joinings of Tϕ,G whose
restriction to B⊗B equals λ. Given a cocycle ϕ:X → G and λ ∈ Je(T ), consider
the cocycle ϕ× ϕ = (ϕ× ϕ)λ, where

(ϕ× ϕ)(x1, x2) = (ϕ(x1), ϕ(x2)) ∈ G×G.

It is considered as a cocycle for the Z-action given by (T × T, λ). Let Hλ ⊂
G × G be the group of essential values of (ϕ × ϕ)λ, i.e. Hλ = E((ϕ × ϕ)λ).
Denote by Hλ the corresponding to Hλ subaction of the product G × G-action
{Rg1 ×Rg2}g1,g2∈G.
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Theorem 3.2.9. Let ϕ:X → G be an ergodic cocycle. Assume that (ϕ×ϕ)λ
is regular. Then there exists a measurable f = (f1, f2):X ×X → G×G (defined
λ-a.e.) such that the map Λf given by

X × Y ×X × Y 3 (x1, y1, x2, y2)

7→ (x1, x2, Rf1(x1) ×Rf2(x2)(y1, y2)) ∈ X ×X × Y × Y

establishes an affine isomorphism of

J(Tϕ,G;λ) and λ⊗M(Y × Y,C⊗ C;Hλ)

:= {λ× ρ : ρ ∈M(Y × Y,C⊗ C;Hλ)}.

More precisely, there exists θ:X×X → Hλ an ergodic cocycle for (T ×T, λ) such
that for each λ̃ ∈ J(Tϕ,G;λ), Λf establishes an isomorphism of (Tϕ,G × Tϕ,G, λ̃)
and ((T × T )θ,Hλ

, λ× ρ), where λ× ρ = (Λf )∗(λ̃).

Proof. Since (ϕ × ϕ)λ is regular, there exists a measurable function f :X ×
X → G×G and an ergodic cocycle θ:X ×X → Hλ (both maps defined λ-a.e.)
such that

(ϕ× ϕ)(x1, x2) = f(x1, x2)− f(Tx1, Tx2) + θ(x1, x2) λ− a.e.

It then follows from Proposition 1.4.11 that Hλ has dense projections.
Assume that λ̃ ∈ Je(Tϕ,G;λ). If by λ̃1 we denote the image of λ̃ via the map

Λf then clearly the commutation relation

Λf (Tϕ,G × Tϕ,G) = (T × T )θ,Hλ
Λf

gives rise to a measure-theoretic isomorphism of (Tϕ,G × Tϕ,G, λ̃) and ((T ×
T )θ,Hλ

, λ̃1). However θ is ergodic and the projection of λ̃1 on X×X equals λ, so
by the relative unique ergodicity property (Proposition 1.5.6), λ̃1 = λ×ρ, where
ρ is Hλ-invariant and ergodic.

Furthermore, the maps

X × Y 3 (xi, yi)
si7−→ (xi, Rfi(xi)(yi)) ∈ X × Y, i = 1, 2,

have the property that (si)∗(µ × ν) = µ × ν. It follows that the projections of
ρ on Y are equal to ν and therefore ρ ∈ Me(Y × Y,C ⊗ C;Hλ). Since for each
ρ ∈M(Y × Y,C⊗ C;Hλ), (Λ−1

f )∗λ× ρ ∈ J(Tϕ,G;λ), the result follows. �

Remark 3.2.10. The above proof tells us that the isomorphism Λf of
(Tϕ,G × Tϕ,G, λ̃) and ((T × T )

θ,Hλ
, (Λf )∗(λ̃)) is “relative” over Tϕ,G in the sense

that
Λf (B⊗ C×X × Y ) = B×X ⊗ C× Y

and the action of ((T ×T )θ,Hλ
, (Λf )∗(λ̃)) restricted to (B×X⊗C×Y ) is isomor-

phic to Tϕ,G. It follows that the relative properties of the two automorphisms
over Tϕ,G are the same.
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We will now study some particular cases of λ for which (ϕ × ϕ)λ is indeed
regular.

Corollary 3.2.11 (relative self-joinings). If ϕ:X → G is ergodic then

Je(Tϕ,G; ∆X) = ∆X × Je(G)

up to permutation of coordinates.

Proof. We have H∆X
= ∆G, f = (0, 0) and (ϕ× ϕ)∆X

is regular. It follows
that, up to permutation of coordinates, the map Λf is the identity, and we apply
Theorem 3.2.9. �

The corollary above allows us to give a list of relative factors of Tϕ,G, that
is all factors that contain B × Y . The result below generalizes the well known
compact group extension case.

Corollary 3.2.12. Assume that ϕ:X → G is ergodic. Let B×Y ⊂ Ã ⊂ B⊗C
be a factor of Tϕ,G. Then there exists D ⊂ C that is a G-factor and Ã = B⊗D.

Proof. It follows from Corollary 3.2.11 that

µ× ν ×
Ã
µ× ν =

∫
Je(G)

∆X × ρ dP (ρ).

Hence this relative product is invariant under IdX ×Rg× IdX ×Rg which means
that Ã is invariant for the action {IdX × Rg}g∈G. Since B × Y ⊂ Ã, we obtain
a measurable family for {Qx}x∈X of partitions Qx of Y such that {{x}×Qx}x∈X
generates Ã. Let Cx ⊂ C denote the σ-algebra generated by Qx. Since Ã is
IdX ×Rg-invariant, Cx is a G-factor. But Ã is also Tϕ,G-invariant, so Rϕ(x)Qx =
QTx for a.e. x ∈ X and therefore the map x 7→ L2(Cx) is T -invariant. Since
the map x 7→ E( · |Cx) is measurable, Qx = const for a.e. x ∈ X and the result
follows. �

The following corollary generalizes Glasner’s results of Section 2 from [32].

Corollary 3.2.13 (relative simplicity). If G is additionally 2-fold simple
then Tϕ,G is relatively 2-fold simple, that is the only ergodic self-joining of Tϕ,G
that projects onto ∆X is either a graph or the relatively independent extension
of ∆X .

Proof. Take λ̃ ∈ Je(Tϕ,G; ∆X). If λ̃ is not the relative product then λ̃ =
∆X × νW where W ∈ C(G). Then clearly λ̃ = (µ× ν)Id×W . �

Now we consider a more general situation of an ergodic self-joining of Tϕ,G
whose projection on X ×X equals µS for some S ∈ C(T ).
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Denote by M(Tϕ×ϕ◦S,G×G;µ) the set of all probability Tϕ×ϕ◦S,G×G-invariant
measures on B⊗C⊗C whose restrictions to B equal µ (here ϕ×ϕ◦S:X → G×G,
(ϕ× ϕ ◦ S)(x) = (ϕ(x), ϕ(Sx))). Then the map Λ given by

X × Y ×X × Y 3 (x, y1, Sx, y2) 7→ (x, y1, y2) ∈ X × Y × Y

establishes an affine isomorphism of J(Tϕ,G;µS) and M(Tϕ×ϕ◦S,G×G;µ). More
precisely, for each λ̃ ∈ J(Tϕ,G;µS), Λ establishes an isomorphism of (Tϕ,G ×
Tϕ,G, λ̃) and (Tϕ×ϕ◦S,G×G, (Λ)∗(λ̃)). Moreover, this isomorphism is the identity
on the first two coordinates, so it is relative with respect to Tϕ,G. Therefore, in
what follows we will identify J(Tϕ,G;µS) with M(Tϕ×ϕ◦S,G×G, µ).

Assume now that additionally ϕ × ϕ ◦ S:X → G × G is regular. From the
above it follows that in Theorem 3.2.9 with no loss of generality we can replace
J(Tϕ,G;µS) by M(Tϕ×ϕ◦S,G×G;µ) and if λ̃ ∈M(Tϕ×ϕ◦S,G×G, µ) then by applying
Remark 3.2.10 we obtain that the relative properties of (Tϕ×ϕ◦S,G×G, λ̃) and
((T × T )θ,HµS

, (Λf )∗(λ̃)) over Tϕ,G are the same. In particular, we obtain the
following.

Proposition 3.2.14. Assume that ϕ:X → G is an ergodic cocycle, S ∈
C(T ) and ϕ× ϕ ◦ S:X → G×G is regular, say

(ϕ,ϕ ◦ S) = (f1 ◦ T, f2 ◦ T )− (f1, f2) + θ,

where θ:X → HµS . Let λ̃ ∈M(Tϕ×ϕ◦S,G×G;µ). Then

(a) λ̃ is ergodic if and only if (Λf )∗(λ̃) is ergodic;
(b) λ̃ is one point extension of Tϕ,G (that is, λ̃ is a graph) if and only if

(Λf )∗(λ̃) is one point extension of Tϕ,G;
(c) λ̃ = µ× ν × ν if and only if (Λf )∗(λ̃) = µS × ν × ν;
(d) (Tϕ,G × Tϕ,G, λ̃)→ Tϕ,G is relatively weakly mixing if and only if

((T × T )θ,HµS
, (Λf )∗(λ̃))→ Tϕ,G

is relatively weakly mixing.

In general we do not know whether or not given an ergodic cocycle ϕ, is
ϕ×ϕ◦S for each S ∈ C(T ) regular (see next section for examples of ϕ for which
the answer is positive), but obviously we have the following.

Remark 3.2.15. The cocycle (ϕ× ϕ)λ is a regular cocycle when λ = µTk .
Indeed, in such a case (ϕ×ϕ)λ is cohomologous to (ϕ×ϕ)∆X

since clearly ϕ◦T k
is T -cohomologous to ϕ (ϕ ◦ T k = ϕ+ ϕ(k) ◦ T − ϕ(k)).

We will also need the following.
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Lemma 3.2.16. Assume that G is weakly mixing and ϕ is ergodic. Let D ⊂ C

be a G-factor. Then Tϕ,G is relatively weakly mixing over B⊗D if and only if G
is relatively weakly mixing action over D.

Proof. First notice that directly from the definition of conditional expecta-
tion if D ⊂ C then (up to permutation of coordinates)

µ× ν ×B⊗D µ× ν = ∆X × ν ×D ν.

It follows that the relative product Tϕ,G ×B⊗D Tϕ,G over the Tϕ,G-factor B⊗D

is isomorphic to Tϕ×ϕ,{Rg×Rg}g∈G|C⊗DC
, where ϕ×ϕ:X → G×G, (ϕ×ϕ)(x) =

(ϕ(x), ϕ(x)).
Since (ϕ,ϕ):X → ∆G is ergodic, Tϕ×ϕ,{Rg×Rg}g∈G|C⊗DC

is ergodic if and only
if the diagonal ∆G-action on C⊗D C is ergodic itself (see Proposition 1.5.6). �

3.3. Cocycles over irrational rotations

In this section we put X = T = [0, 1) and we consider Tx = x+α (mod 1) an
irrational rotation on X. By µ we denote Lebesgue measure on T. Throughout
this section α is assumed to have bounded partial quotients.

3.3.1. A real-valued ergodic cocycle ϕ for which ϕ×ϕ ◦ S is regular
for each S ∈ C(T ). We will consider the real cocycle ϕ(x) = {x} − 1/2. Let
(qn)n≥1 be the sequence of denominators of α. Assume that β ∈ [0, 1) and that

{qnkβ}
k→∞−−−→ c ∈ [0, 1).

Consider the sequence (νk)k≥1 of probability measures on R2 defined by

νk := ((ϕ× ϕ ◦ S)(qnk ))∗µ,

where Sx = x+ β (mod 1). Since

∀
x,y∈[0,1)

|ϕ(qn)(x)− ϕ(qn)(y)| ≤ 4 Varϕ = 4

and
∫
X
ϕdµ = 0, Im(ϕ×ϕ◦S)(qn) ⊂ [−4, 4]×[−4, 4]. It follows that we can select

a subsequence from the sequence (νk)k≥1 that converges weakly to a probability
measure ν (which is also concentrated on the above square). No harm arises if

we assume that νk
k→∞−−−→ ν.

We will now show in what kind of subsets of R2 the support of ν is contained.
To this end let us verify that

ϕ(qn)(x) = qnx+
qn(qn − 1)

2
α− qn

2
+M(x), where M(x) ∈ Z.

It follows that ϕ(qn)(x+ β) = ϕ(qn)(x) + qnβ+M(x+ β)−M(x) if x+ β < 1 or
ϕ(qn)({x+ β}) = ϕ(qn)(x) + (qnβ − qn) +M({x+ β})−M(x) if 1 ≤ x+ β < 2.
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Consider now the image of measure (ϕ(qnk ) × ϕ(qnk ) ◦ S)∗µ via

F :R× R→ T, F (x, y) = e2πi(y−x)

that is, we send νk to the circle. However F ◦ (ϕ × ϕ ◦ S)(qnk )(x) = e2πiqnkβ ,
whence F∗νk is the Dirac measure concentrated at e2πiqnkβ . Since νk → ν weakly,
F∗νk → F∗ν (since all these measures are concentrated on a bounded subset
of R2). Since F∗νk = δ

e
2πiqnkβ and e2πiqnkβ → e2πic, F∗ν = δe2πic . It follows that

supp ν ⊂ {(x, y) ∈ R2 : e2πi(y−x) = e2πic} = {(x, y) ∈ R2 : y − x− c ∈ Z}.

Lemma 3.3.1. If α has bounded partial quotients then the cocycle ϕ×ϕ ◦S
is ergodic for each β ∈ [0, 1) satisfying β /∈ Qα+ Q.

Proof. In view of Proposition 3.1.2, supp(ν) ⊂ E(ϕ× ϕ ◦ S). It follows from
[69] that each accumulation point of the sequence ((ϕ(qn))∗µ)n≥1 is an absolutely
continuous measure (more precisely, it is a measure whose image via exp is
Lebesgue measure on the circle). Thus the support of ν which is contained in the
union of lines of the form y = x− c− k (with parameter k ∈ Z) has “absolutely
continuous” projections on both coordinates.

Due to Theorem 3.2.1(a), if α has bounded partial quotients then for each
β /∈ Qα+Q, the set of accumulation points of the sequence ({qnβ})n≥1 is infinite.

Since the projections of ν are absolutely continuous and the number of c ∈
[0, 1) under consideration is infinite, E(ϕ× ϕ ◦ S) cannot be of the form (a)–(c)
(see (3.1)). It follows that E(ϕ× ϕ ◦ S) = R2 and thus ϕ× ϕ ◦ S is ergodic. �

Lemma 3.3.2. If α has bounded partial quotients and β ∈ (Qα+Q)\(Zα+Z)
then E(ϕ× ϕ ◦ S) is cocompact. In particular, ϕ× ϕ ◦ S is a regular cocycle.

Proof. It follows from Theorem 3.2.1(b) that there exists c ∈ (0, 1) and a sub-

sequence (qnk)k≥1 such that {qnkβ}
k→∞−−−→ c. As in the proof of Lemma 3.3.1 we

get that there are uncountably many essential values of ϕ × ϕ ◦ S in the union
of the straight lines y = x − c − k (k as before is an integer-valued parameter).
It directly follows that the group E(ϕ × ϕ ◦ S) is either of the form (c) or (d),
hence cocompact. �

Lemma 3.3.3. For each α and β ∈ Zα the cocycle ϕ×ϕ◦S is cohomologous
to ϕ× ϕ. In particular, it is regular.

Proof. For each n ∈ Z we simply have ϕ×ϕ◦Tn−ϕ×ϕ = 0×ϕ(n)◦T−0×ϕ(n).
The cocycle ϕ × ϕ is ergodic as a cocycle taking values in the subgroup ∆R =
{(t, t) : t ∈ R} since ϕ was ergodic. �

Collecting the results contained in Lemmas 3.3.1–3.3.3 we have proved the
following.
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Theorem 3.3.4. If α has bounded partial quotients and β ∈ [0, 1) then
ϕ × ϕ ◦ S is a regular cocycle. Moreover, for each S ∈ C(T ), E(ϕ × ϕ ◦ S) is
either cocompact or equals ∆R.

3.3.2. An integer-valued ergodic cocycle ϕ such that ϕ × ϕ ◦ S is
regular for each S ∈ C(T ). In this subsection will prove that there are cocycles
ϕ:X → Z over irrational rotations such that:

(A) ϕ is ergodic,
(B) ∀

S∈C(T )
ϕ× ϕ ◦ S → Z× Z is regular,

(C) ∀
S∈C(T )

ϕ× ϕ ◦ S → Z× Z is not ergodic.

Let G = {(m,n) ∈ Z2 : m− n is even}. Then:

• G is a subgroup of Z2,
• G has index 2 in Z2; in particular G is cocompact,
• G is generated by {(1, 1), (1,−1)},
• ∆Z ⊂ G.

Assume that ϕ:X → Z,

ϕ(x) =
{

1 x ∈ [0, 1/2),

−1 x ∈ [1/2, 1).

The fact that ϕ is ergodic has been shown in [1].
For each β ∈ [0, 1), Im(ϕ× ϕ ◦ S) ⊂ G, where Sx = x+ β; therefore ϕ× ϕ ◦

S:X → Z× Z cannot be ergodic as E(ϕ× ϕ ◦ S) ⊂ G.

Theorem 3.3.5. There exists an uncountable set Σ ⊂ [0, 1) of irrational
numbers such that for each α ∈ Σ, ϕ× ϕ ◦ S is regular for each S ∈ C(T ) and:

E(ϕ× ϕ ◦ S) ⊂ G for all β 6∈ Z ∪ {1/2},
E(ϕ× ϕ ◦ S) = ∆Z for all β ∈ Zα,

E(ϕ× ϕ ◦ S) = ∆̃Z if β = 1/2, where ∆̃Z = {(n,−n) : n ∈ Z}.

Proof. The proof of Theorem 3.3.5 will be done in several steps. First of all
we define the set Σ.

A number α is in Σ if the following conditions are satisfied:

(i) α is irrational with bounded partial quotients;
(ii) |α− pn/qn| ≤ 1/3q2

n for each n ≥ 1;
(iii) qn is odd for each n ≥ n0;
(iv) infinitely many of pn are odd, and infinitely many are even.

It is clear that Σ is uncountable.
Fix α ∈ Σ. Assume that β ∈ [0, 1), Sx = x + β. Suppose that (qnk)k≥1 is

a subsequence of the sequence of denominators of α for which

{qnkβ}
k→∞−−−→ c with 0 < c < 1.
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We have

qnk

(
β − rk

qnk

)
k→∞−−−→ c, where rk = [qnkβ].

Hence for ε > 0 (ε� c) and k large enough,

(c− ε) 1
qnk

< β − rk
qnk

< (c+ ε)
1
qnk

,

�0 [ ]
1

rk
qnk

(c+ ε) 1
qnk

(c− ε) 1
qnk rk+1

qnk

β belongs to this interval

Figure 3.1

equivalently (see Figure 3.1)

β ∈
(
rk
qnk

+ (c− ε) 1
qnk

,
rk
qnk

+ (c+ ε)
1
qnk

)
.

Case 1. 0 < c < 1/2. We assume additionally

(3.6) nk are even for k ≥ k0

(for such nk we have α > pnk/qnk). We fix δ > 0 such that

δ < 1/2− c,(3.7)

δ < 1/6.(3.8)

Choose 0 < δ′ < (1/2− c)− δ and then ε� c so that

0 < ε <
1

100

(
1
2
− c− δ − δ′

)
.

For each k large enough (k ≥ k1 and k1 will be specified by the argument below)
define

A
(i)
k =

[
i

qnk
,
i

qnk
+ δ

1
qnk

)
, i = 0, . . . , qnk − 1.

For each j = 0, . . . , qnk −1, we have j/(3q2
nk

) ≤ 1/(3qnk), so in view of (3.8),

the interval T jA(i)
k

(3.9) is contained in an interval[
s

qnk
,
s

qnk
+

1
2
· 1
qnk

)
and the map {0, . . . , qnk − 1} 3 j 7→ s ∈ {0, . . . , qnk} is 1–1
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i+1
qnk
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qnk

s+1
qnk

A
(i)
k T jA

(i)
k

Figure 3.2

(see Figure 3.2).
In view of the inequality (3.7), the interval SA(i)

k is contained in an interval[
s̃

qnk
,
s̃

qnk
+

1
2
· 1
qnk

)
(see Figure 3.3).

�
[

)

) [ ∣∣∣∣ [ )

∣∣∣∣ )i
qnk

i+1
qnk

s̃
qnk

s̃+1
qnk

A
(i)
k SA

(i)
k

s̃
qnk

+ (c− ε) 1
qnk

s̃
qnk

+ (c+ ε) 1
qnk

+ δ · 1
qnk

s̃
qnk

+ 1
2 ·

1
qnk

Figure 3.3

For each j = 0, . . . , qnk − 1, the interval T jSA(i)
k

(3.10) is contained in an interval[
t

qnk
,
t

qnk
+

1
2
· 1
qnk

)
and the map {0, . . . , qnk − 1} 3 j 7→ s ∈ {0, . . . , qnk} is 1–1.

For each i ∈ {0, 1, . . . , qnk − 1}, define

bk(i) = j ⇔ T jSA
(i)
k ⊂

[
1
2
− 1

2
· 1
qnk

,
1
2

+
1
2
· 1
qnk

)
(note that since qnk is odd, the last interval equals [r′/qnk , (r

′ + 1)/qnk), where
r′ = qnk/2− 1/2). By (3.10), the function bk is well defined on {0, . . . , qnk − 1}
with values in {0, . . . qnk − 1}. In fact

(3.11) bk is a bijection.



74 Mieczys law K. Mentzen

Indeed, if j = bk(i1) = bk(i2), then the intervals T jSA(i1)
k , T jSA(i2)

k are both
contained in an interval of length 1/qnk , it follows that A(i1)

k and A
(i2)
k are con-

tained in an interval of length 1/qnk which is an obvious contradiction.
We say that i ∈ {0, . . . , qnk} is good if 0 ≤ bk(i) ≤ 3δ′qnk . In view of (3.11),

(3.12) card{i = 0, . . . , qnk − 1 : i is good} ≥ δ′qnk .

We will show that

(3.13) if i is good, x ∈ A(i)
k then (ϕ(qnk )(x), ϕ(qnk )(x+ β)) = (1, 1).

Indeed, ϕ(qnk )(x) = 1 follows directly from (3.9) (and this is true for each i =
0, . . . , qnk − 1). We have

T bk(i)(x+ β) ∈
[

1
2
− 1

2
· 1
qnk

,
1
2

+
1
2
· 1
qnk

)
and the distance between T bk(i)(x+ β) and 1/2− 1/(2qnk) is estimated by (see
Figure 3.3)

(c+ ε)
1
qnk

+ δ · 1
qnk

+
bk(i)
3q2
nk

≤ (c+ ε+ δ + δ′) · 1
qnk

<
1
2
· 1
qnk

(by our choice of ε, and for k large enough), so ϕ(qnk )(x+ β) = 1.
It follows from (3.12) and (3.13) that

µ{x ∈ [0, 1) : (ϕ(qnk )(x), ϕ(qnk )(x+ β)) = (1, 1)} ≥ δ · δ′

for each k sufficiently large, so

(3.14) (1, 1) ∈ E(ϕ× ϕ ◦ S).

We will now show that (1,−1) ∈ E(ϕ×ϕ ◦ S). We have assumed that α has
bounded partial quotients, so for some C > 0,∣∣∣∣α− pn

qn

∣∣∣∣ ≥ 1
Cq2

n

for all n ≥ 1. Since (ii) holds, for some subsequence (qnkl )l≥1 we have

q2
nkl

∣∣∣∣α− pnkl
qnkl

∣∣∣∣ l→∞−−−→ 1
D
,

where D ≥ 3. But the nkl ’s are still even, so without loss of generality we simply
assume that

(3.15) q2
nk

∣∣∣∣α− pnk
qnk

∣∣∣∣ k→∞−−−→ 1
D
.

Fix

(3.16) 0 < δ′′ < min
(
c

2
,

1
2
− 1
D
,

1
D

)
.
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Let 0 < ε < δ′′/100. For k sufficiently large and i = 0, . . . , qnk − 1 put

B
(i)
k =

[
i

qnk
+
(

1
2
− 1
D

)
1
qnk
− δ′′

qnk
,
i

qnk
+
(

1
2
− 1
D

)
1
qnk
− ε 1

qnk

)
(see Figure 3.4).
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i
qnk

B
(i)
k

6 δ′′ · 1
qnk

i+1
qnk

ε · 1
qnk

+ 1
D ·

1
qnk

i
qnk

+ 1
2 ·

1
qnk

Figure 3.4

Then, for every k large enough we have: for each j = 0, . . . , qnk − 1, for the
interval T jB(i)

k

(3.17) (3.9) holds.

The interval SB(i)
k is contained in an interval [s/qnk , s/qnk + 1/qnk) and for each

j = 0, . . . , qnk − 1, for the interval T jSB(i)
k ,

(3.18) (3.10) holds.

It follows that the formula

ck(i) = j ⇔ T jSB
(i)
k ⊂

[
1
2
− 1

2
· 1
qnk

,
1
2

+
1
2
· 1
qnk

)
defines a bijection ck: {0, . . . , qnk} → {0, . . . , qnk}. Notice that in view of (3.16),
ST qnk−1B

(i)
k is contained in an interval of the form [u/qnk , (u+ 1)/qnk). In fact

it is contained in the right half of that interval and more precisely, using (3.15),
the distance of ST qnk−1B

(i)
k from u/qnk + 1/(2qnk) is at least c/(3qnk) (for k

large enough) – see Figure 3.5.
It now follows from (3.15) that the interval ST qnk−jB(i)

k will be contained in
the right half of an [uj/qnk , (uj + 1)/qnk) whenever

j

(
α− pnk

qnk

)
<
c

3
· 1
qnk

,

and thus, using (ii), for all j ∈ {0, . . . , qnk − 1} satisfying

0 < j < cqnk .

We say that i ∈ {0, . . . , qnk − 1} is good if ck(i) = qnk − j with 0 < j < cqnk .
The number of good i’s is at least cqnk .



76 Mieczys law K. Mentzen

�
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)
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k
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2 ·

1
qnk

ST qnk−1

(ε+ 1
D ) 1

qnk

> c
3

1
qnk∣∣∣∣ ∣∣∣∣ [ )

)

Figure 3.5. T qnk−1 shifts B(i)k close to 1/qnk + (1/2) · (1/qnk ), while S
shifts T qnk−1B

(i)
k into the right half of [u/qnk , (u+ 1)/qnk ).

It follows from (3.17), (3.18) and the above discussion that

µ{x ∈ [0, 1) : (ϕ(qnk )(x), ϕ(qnk )(x+ β)) = (1,−1)} ≥ c(δ′′ − ε),

so (1,−1) ∈ E(ϕ× ϕ ◦ S).
In order to conclude Case 1 we have to consider the situation when nk is odd

for all k large enough. First put

C
(i)
k =

[
i

qnk
+

1
2
· 1
qnk
− δ1 ·

1
qnk

,
i

qnk
+

1
2
· 1
qnk

)
(see Figure 3.6).
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Figure 3.6
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By consideration similar to those used before, it follows that (1,−1) ∈ E(ϕ×
ϕ ◦ S). If we put

D
(i)
k =

[
i

qnk
+ (1− c− ε) 1

qnk
− δ2 ·

1
qnk

,
i

qnk
+ (1− c− ε) 1

qnk

)
then similar arguments show that also (−1, 1) ∈ E(ϕ× ϕ ◦ S) (see Figure 3.7).

�S

| | | ) )

| | | ) )

(c+ ε) 1
qnk

δ2
1
qnk

ε 1
qnk

Figure 3.7

Case 2. 1/2 < c < 1. We replace β by −β (that is S by S−1) and by Case 1
we obtain

(3.19) (1, 1), (1,−1) ∈ E(ϕ× ϕ ◦ S−1)

because {qn(−β)} → −c (and −c = 1 − c, 0 < 1 − c < 1/2). In fact, to obtain
(3.19) we have

((ϕ× ϕ ◦ S−1)(qnk ))∗µ→ ν

and ν{(1,−1)} > 0. In other words, there exists a κ > 0 such that for k large
enough,

∃
Yk⊂[0,1), µ(Yk)≥κ

∀
x∈Yk

(ϕ(qnk )(x), ϕ(qnk )(S−1x)) = (1,−1).

Put Y ′k := S−1Yk. For x ∈ Y ′k we have

ϕ(qnk )(x) = −1, ϕ(qnk )(Sx) = 1

for all k large enough. It follows that for any limit measure ν′ of the distributions
((ϕ×ϕ◦S)(qnk ))∗µ we have ν′{(−1, 1)} ≥ κ and therefore (−1, 1) ∈ E(ϕ×ϕ◦S).
We show similarly that (1, 1) ∈ E(ϕ× ϕ ◦ S), so finally E(ϕ× ϕ ◦ S) = G.

Case 3. c = 1/2. It is clear that the method described in Case 1 (and Case 2)
gives (1,−1) ∈ E(ϕ× ϕ ◦ S).

Case 4. c = 0. In this case one shows (by the method of Cases 1 and 2) that
(1, 1) ∈ E(ϕ× ϕ ◦ S).

Conclusion of Cases 1–4:

(3.20) If c 6= 0, 1/2 belongs to the set of accumulation points of the sequence
Aα(β) = {{qnβ} : n ≥ 1} then E(ϕ× ϕ ◦ S) = G,
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in particular

(3.21) if β 6∈ Qα+ Q, then E(ϕ× ϕ ◦ S) = G

(indeed, in this case the setAα(β) has infinitely many limit points). Furthermore,

(3.22) if {0, 1/2} is contained in the set of limit points of Aα(β), then

E(ϕ× ϕ ◦ S) = G.

Case 5. β = 1/2. In this case ϕ◦S = −ϕ (Sx = x+1/2) and Im(ϕ×ϕ◦S) ⊂
∆̃Z, and since 1/2 belongs to the set of accumulation points of Aα(β) (in view
of (iii)), (1,−1) ∈ E(ϕ× ϕ ◦ S), so ϕ× ϕ ◦ S is ergodic as cocycle taking values
in ∆̃Z.

Case 6. β = 1/2l, l ≥ 2 (also β = i/2l with i odd). Because of (iii), qn =
2q̃n + 1 and

qnβ =
q̃n

2l−1 +
1
2l
.

Since the set of accumulation points of {{q̃n/2l−1} : n ≥ n0} is contained in
{i/2l−1 : i = 0, . . . , 2l−1},

(3.23) ∃
c 6=0,1/2

c belongs to the set of accumulation points of Aα(β),

so by (3.20), E(ϕ× ϕ ◦ S) = G.

Case 7. β = u/v, v 6= 2l. It follows v = 2lw, where w ≥ 3 is odd. The set
of accumulation points of Aα(β) is contained in {i/(2lw) : i = 0, . . . , 2lw − 1}.
But w cannot divide all denominators qn, n ≥ n0, because two consecutive
denominators are relatively prime. Thus (3.23) also holds.

Case 8. β = (1/2l)α, l ≥ 2 (and β = (1/2l)α+ 1/2). First note that∣∣∣∣qn α2l − pn
2l

∣∣∣∣ =
qn
2l

∣∣∣∣α− pn
qn

∣∣∣∣ ≤ 1
2l
· 1

3qn
,

so the set of accumulation points of Aα(β) is the same as that of {pn/2l : n ≥ 1}
and we are in the situation of Case 6 by (iv).

Case 9. β = (u/v)α with u, v relatively prime, v 6= 2l, l ≥ 1 (and β =
(u/v)α + 1/2). This reduces to the study of the set of accumulation points of
{pn · u/v : n ≥ 1} and a reasoning as in Case 7 applies.

Case 10. β = α/2 (and β = α/2 + 1/2). In this case, we consider {pn · 1/2 :
n ≥ 1} (and {(pn + qn) · 1/2 : n ≥ 1}) and due to (iv), both 0 and 1/2 are in the
set of accumulation points of Aα(β); then we apply (3.22).

If none of the above cases holds then it remains to consider the following:

Case 11. β = (u/v)α+ s/v, where

• (u, v, s) = 1,
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• 0 ≤ u, s < v,
• v ≥ 3.

We study the set of accumulation points of{
upn + sqn

v
: n ≥ 1

}
which is contained in {i/v : i = 0, . . . , v − 1}. If the only accumulation points
are 0 or 1/2, then

∃
N
∀

n≥N
∃

kn∈Z
2upn + 2sqn = knv.

Hence for n ≥ N we have

v

(
kn
kn+1

)
=
(

pn qn
pn+1 qn+1

)(
2v
2s

)
where

det
[
pn qn
pn+1 qn+1

]
= 1 or − 1.

It follows that

v

(
pn qn
pn+1 qn+1

)−1(
kn
kn+1

)
=
(

2u
2s

)
.

Since
( pn qn
pn+1 qn+1

)−1
is integer-valued, v divides 2u and 2s. However, v ≥ 3, so

we obtain a contradiction. Hence (3.23) must hold in this case.
The proof of Theorem 3.3.5 is complete. �

3.4. Semisimple automorphisms

In this section we return to a general study of automorphisms of the form
Tϕ,G, i.e. to Rokhlin cocycle extensions.

We prove a theorem giving rise to new classes of semisimple automorphisms.

Theorem 3.4.1. Let G = {Rg}g∈G be a mildly mixing action of G. Assume
that T is an irrational rotation and ϕ:X → G is an ergodic cocycle such that for
each S ∈ C(T ), the cocycle ϕ× ϕ ◦ S:X → G is regular. Assume moreover that
for each S ∈ C(T ), E(ϕ× ϕ ◦ S) is either cocompact or equals ∆G.

(a) If G is 2-fold simple then each ergodic self-joining of Tϕ,G is either
a graph or the relatively independent extension of a graph joining of
T . Moreover, Tϕ,G is semisimple.

(b) If G is semisimple then Tϕ,G is semisimple.

Proof. (a) Take λ̃ ∈ Je(Tϕ,G). Hence, for some S ∈ C(T ), λ̃ is an extension
of µS and therefore (see the discussion before Proposition 3.2.14) we can assume
that λ̃ ∈Me(Tϕ×ϕ◦S,G×G).
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Assume first that ϕ × ϕ ◦ S is ergodic as a G2-cocycle. The corresponding
G × G-action {Rg1 × Rg2}g1,g2∈G is uniquely ergodic in the sense of Proposi-
tion 3.2.6(a). By Theorem 3.2.9 and Proposition 3.2.14(c), λ̃ = µ × ν × ν. In
view of Proposition 3.2.14(d), it remains to show that the extension

(Tϕ×ϕ◦S,G×G, λ̃)→ Tϕ,G

is relatively weakly mixing. But if we put W = Tϕ,G and we consider the cocycle
ϕ ◦ S as ϕ ◦ S:X × Y → G (that is as a cocycle for W ) then Tϕ×ϕ◦S,G×G and
Wϕ◦S,G are relatively isomorphic (over the common factor Tϕ,G) and moreover
Wϕ◦S,G is relatively weakly mixing over the base W because the G-action is
mildly mixing and Wϕ◦S,G is ergodic (see Proposition 1.5.5(a)).

Consider now a more general case: E(ϕ × ϕ ◦ S) = H is a proper subgroup
of G×G. Then the extension

(Tϕ×ϕ◦S,G×G, µ× ν × ν)→ Tϕ,G

is relatively weakly mixing if and only if so is

(Tθ,G, µ× ν × ν)→ Tϕ,G,

where θ is an ergodic cocycle with values in H cohomologous to ϕ× ϕ ◦ S.
Suppose that additionally H is cocompact. Then, in sense of Proposi-

tion 3.2.6(b), the corresponding H-action is still uniquely ergodic. Hence λ̃ =
µ × ν × ν and therefore the same argument as in the previous case shows that
(Tϕ×ϕ◦S,G×G, λ̃) is relatively weakly mixing over Tϕ,G.

It remains to consider the case H = ∆G. It follows λ̃ = µ × ρ (recall that
we still identify λ̃ with an element of Me(Tϕ×ϕ◦S,G×G)), where ρ ∈ Je(G). If
ρ = ν×ν then we are in the situation already considered. Otherwise ρ is a graph
and by Proposition 3.2.14(b), so must be λ̃.

(b) The proof is along the same lines as the one of (a) except the case of
H = ∆G. We have to show that the extension

(Tθ,∆G
, µ× ρ)→ Tθ,{(Rg,Rg)g∈G}

is relatively weakly mixing. As usual we consider Tϕ,G as a factor of the system
Tθ,{(Rg,Rg)g∈G} “sitting” on the first two coordinates (note that as a σ-algebra
it is equal to B ⊗ C × Y ). By considering θ, D = C × Y and ρ, we are in the
situation of Lemma 3.2.16. Because G is semisimple and ρ ∈ Je(G), (C ⊗ C, ρ)
is relatively weakly mixing over D, whence (Tϕ×ϕ◦S,G×G, λ̃) is relatively weakly
mixing over Tϕ,G and the result follows. �

Remark 3.4.2. It is now easy to describe the smallest natural family (see
Definition 2.4.1) of the semisimple automorphisms arising from Theorem 3.4.1.
Indeed, such a family consists of all factors of Tϕ,G relative to which Tϕ,G is
weakly mixing . First of all, note that T is a maximal distal factor of Tϕ,G.
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It follows that if A is a factor relative to which Tϕ,G is weakly mixing then A

contains the “first coordinate”. We then apply Corollary 3.2.12. We find that
the factors Tϕ,G relative to which Tϕ,G is weakly mixing are of the form B⊗D,
where D is a G-factor. If D is non-trivial then it is determined by {Id} × K,
which is a compact subgroup of C(Tϕ,G), and and it follows that Tϕ,G is not
relatively weakly mixing over B ⊗ D unless D = C. We have shown that the
smallest natural family equals {T, Tϕ,G}.

3.5. Final remarks

The examples of semisimple automorphisms given by Theorem 3.4.1 are
weakly mixing extensions of rotations and each such example is disjoint from
any weakly mixing automorphism (see Proposition 1.5.5 and Proposition 1.5.7).
There are Gaussian actions that are mildly mixing and semisimple (see [68]). By
looking at the proof of Theorem 3.4.1, it is clear that the mild mixing assumption
can be replaced by being Gaussian semisimple.

If we consider extensions Tϕ,G of irrational rotations in which we have G = Z
and ϕ is given by Theorem 3.3.5 then one more assumption on {Rn}n∈Z has to
be added. It is is caused by the fact that ∆̃Z appears as the group of essential
values of ϕ×ϕ ◦S for some S ∈ C(T ). It gives rise to study J(R,R−1). In order
to obtain Theorem 3.4.1 it is sufficient to assume that the Z-action R satisfies
either

(i) R ⊥ R−1 (see [45] for the case of MSJ), or
(ii) R is isomorphic to R−1 (which is always the case whenever Gaussian

actions are considered).

In Theorem 3.2.9 we deal with self-joinings of order 2. It is clear however that
the same results hold for self-joinings of higher degrees. Given n ≥ 2 denote by
Jn(Tϕ,G) the set of n-self-joinings of Tϕ,G. Then Corollary 3.2.11 yields to the
following.

Proposition 3.5.1. If ϕ:X → G is ergodic then the map

(x1, y1, . . . , xn, yn)
Λn0−−−→ (x1, . . . , xn, y1, . . . , yn)

is an affine isomorphism of Jn(Tϕ,G; ∆X) and {∆X × ρ : ρ ∈ Jn(G)}.

In [45] the following problem is formulated: Is it true that for each ergodic
zero entropy automorphism W : (Z,E, κ) → (Z,E, κ), if ρ ∈ J3(W ) is pairwise
independent then ρ = κ × κ × κ? (The problem is open in the weakly mixing
case.) An affirmative answer would imply that each 2–fold mixing automorphism
is 3-fold mixing (the latter being Rokhlin’s well known open problem). We have
been unable to answer Junco–Rudolph’s question. However, the method of the
present paper gives rise to the negative answer to the relative version of their
problem. Indeed, let T be an ergodic rotation, ϕ:X → Z an ergodic cocycle
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and R a Bernoulli automorphism. It is well known that there exists ρ ∈ Je3 (R)
which is pairwise independent but it is not the product measure ν × ν × ν. By
the above proposition, (Λ3

0)−1(µ × ρ) is an ergodic element of J3(Tϕ,G) (here
Tϕ,G(x, y) = (Tx,Rϕ(x)(y))) which is relatively pairwise independent, but is
different from (Λ3

0)−1(µ × (ν × ν × ν)). Moreover, Tϕ,G being disjoint from the
class of weakly mixing transformations, the entropy of Tϕ,G equals zero and hence
also the relative entropy of Tϕ,G over T equals zero.



CHAPTER 4

NATURAL FAMILIES OF FACTORS
IN TOPOLOGICAL DYNAMICS

4.1. General backgrounds

We recall the basic notation and results of the universal theory of topological
dynamics (see Section 1.8 for details). As usual βZ denotes the Čech–Stone
compactification of Z, I a fixed arbitrary minimal left ideal of the semigroup βZ
(replacing the customary M), J the set of idempotents in I, u a fixed arbitrary
element of J , and G = uI the maximal subgroup of I corresponding to u. The
semigroup βZ acts on every compact flow (Z, T ), and Orb(z) = {pz : p ∈ βZ}
for z ∈ Z. A necessary and sufficient condition for z to be almost periodic is that
vz = z for some v ∈ J . Thus JZ is the collection of all almost periodic points in
Z. When z is almost periodic then Orb(z) = {pz : p ∈ I}.

Given a minimal flow (Z, T ), we shall always choose a distinguished point
z0 in Z, such that uz0 = z0. Our convention is that under a homomorphism
a distinguished point goes to a distinguished point. When (Z, z0, T ) is such a
pointed minimal flow, its Ellis group G(Z, z0) is defined by G(Z) = G(Z, z0) =
{α ∈ G : αz0 = z0}. The set G is equipped with a compact T1 topology, called
the τ -topology, with respect to which, all groups of the form G(Z, z0) are closed.
For a given set A ⊂ Z we denote by A

τ
the τ -closure of A.

If we have a family {(Zσ, zσ)}σ∈Σ of pointed minimal flows we choose x0 ∈∏
σ∈Σ Zσ, x0(σ) = zσ, and set∨

σ∈Σ

(Zσ, zσ) = (Orb(x0), x0)

(see (1.18)). Observe that
∨
σ∈Σ(Zσ, zσ) is minimal and

G

( ∨
σ∈Σ

(Zσ, zσ)
)

=
⋂
σ∈Σ

G(Zσ, zσ).

83
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For every τ -closed subgroup F of G we let

F ′ :=
⋂
{V τ

: V is τ -open neighbourhood of u in F}

(see Definition 1.8.12). Then F ′ is a τ -closed normal subgroup of F characte-
rized as the smallest τ -closed subgroup H of F such that F/H is a compact
Hausdorff topological group (see Proposition 1.8.13). One can iterate this ope-
ration to obtain the (possibly transfinite) sequence of “derived” groups F ′′ =
(F ′)′, . . . , Fα+1 = (Fα)′, . . . , where for a limit ordinal α, Fα =

⋂
{F β : β < α}.

For some ordinal η this process stabilizes (i.e. F η+1 = F η), and we denote
F∞ = F η.

For a pointed minimal distal flow (X,x0, T ), X = Gx0 and the family of
pointed factors (X,x0, T ) π−→ (Y, y0, T ) is in 1–1 correspondence with the family
of τ -closed subgroups F ⊃ A, where A = G(X,x0) and F = G(Y, y0).

In terms of Ellis groups, a minimal extension (X,T ) π−→ (Y, T ) is proximal
if and only if G(X,x0) = G(Y, y0). It is isometric if nd only if it is distal and
G(Y, y0)′ ⊂ G(X,x0); if moreover G(X,x0) C G(Y, y0), then π is a group extension
(see Proposition 1.8.6).

If {Ai} is any collection of τ -closed subgroups of G, we let
∨
Ai be the

smallest τ -closed subgroup of G containing all the Ai’s.
In Section 4.2 we will need the following lemma.

Lemma 4.1.1 ([30, Lemma 3]). In the diagram of homomorphisms of com-
pact minimal flows

X
σ //

π

��

Z

ρ
~~~~
~~
~~
~~

Y

suppose π and ρ are regular, σ is proximal, and X is metrizable. Then the topolo-
gical groups Γπ = {ψ ∈ Aut(X) : π ◦ ψ = π} and Γρ = {ψ ∈ Aut(Z) : ρ ◦ ψ = ρ}
are isomorphic.

Lemma 4.1.2 ([93, Lemma 2.2.4]). Suppose that π:X → Y and θ:Y → Z

are homomorphisms of compact minimal flows. If π is regular and θ is proximal
then θ ◦ π:X → Z is regular.

Proof. Suppose (x, x′) ∈ X×Y is an almost periodic point satisfying θ(π(x))
= θ(π(x′)). As θ is proximal, the pair (π(x), π(x′)) is a proximal pair. On the
other hand, (π(x), π(x′)) is an almost periodic pair in Y ×Y , hence π(x) = π(x′).
Since π is regular, there exists S ∈ Aut(X) such that S(x) = S(x′). �

We also have the following.

Theorem 4.1.3 ([30, Theorem 2]). Let X π−→ Y be a regular homomor-
phism of minimal flows; then each of the homomorphisms onto Y of the flows
Xν , Yν , Zν , ν ≤ η, constructed in the canonical PI-tower for π is regular.
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The following theorem is a part of [27, Theorem 2.1].

Theorem 4.1.4. Let X
φ−→ Y be a RIC-extension. Then there exists the

maximal isometric extension Z
ψ−→ Y such that the diagram

X //

φ

��

Z

ψ
~~~~
~~
~~
~~

Y

commutes.

Theorem 4.1.5 ([30, Theorem 3]). Let (X,T ) be a metrizable minimal flow
and X

π−→ Y a regular RIC homomorphism. Let X ω−→ Z
κ−→ Y , π = κ ◦ ω,

where Z is the largest equicontinuous extension of Y under π. Then ω is RIC
and weakly mixing, and κ is a group homomorphism. In particular, when X is
regular, the homomorphism X

ω−→ Z of X onto its largest equicontinuous factor
is RIC and weakly mixing and Z is a compact group rotation.

4.2. A natural family of factors defined by minimal joinings

In this section we introduce definition of a natural family of factors (factor
relations) for a minimal flow using so named minimal joinings, and prove some
basic facts.

Definition 4.2.1. Let T be a homeomorphism of a compact metric space
(X, d). We will consider the Z-flow (X,T ). The set of all minimal subsets of (X×
X,T×T ) we denote by M2(X,T ). We call the elements of M2(X,T ) the minimal
joinings of (X,T ).

The simplest examples of minimal flows are minimal rotations on compact
metrizable monothetic groups. If X is such a group and {xn0 : n ∈ Z} = X, then
the map T (x) = x0x is a minimal homeomorphism. In this case we can easily
describe the centralizer of (X,T ): S ∈ C(X,T ) if and only if there is an a ∈ X
such that S(x) = ax, x ∈ X. Actually, more is true:

M ∈M2(X,T )⇔ ∃
S∈C(X,T )

M = Graph(S) = {(x, S(x)) : x ∈ X}.

A minimal rotation is an example of a distal flow.
Given two minimal flows (Xi, Ti), and two factor relations Ri on Xi, i = 1, 2,

the relation Ri in X1 × X2 is defined by ((x1, x2), (y1, y2)) ∈ Ri if and only
if (xi, yi) ∈ Ri. The equivalence classes of Ri are of the form [x]R1 × X2 and
X1 × [x]R2 respectively.

Lemma 4.2.2. Let M ⊂ X1 × X2 be a minimal set and Ri, i = 1, 2, be
two factor relations on Xi with natural homomorphisms πi respectively. Then
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(R1)M = (R2)M if and only if there exists an isomorphism S: (X1)R1 → (X2)R2
such that

(4.1) (π1 × π2)(M) = Graph(S).

Proof. When (R1)M = (R2)M and the projections of M into both coordina-
tes are onto, for each x1 ∈ X1 there exists an x2 ∈ X2 with

([x1]R1 ×X2) ∩M = (X1 × [x2]R2) ∩M.

Define S by setting S([x1]R1) = [x2]R2 . Clearly the map S is well defined,
Graph(S) is closed hence compact, therefore S is continuous. Since Graph(S) ⊂
M and M is minimal, (4.1) holds. Clearly, S is a bijection. Now take x1, x2, x′2,
so that

(4.2) ([x1]R1 ×X2) ∩M = (X1 × [x2]R2) ∩M

and

(4.3) ([T1(x1)]R1 ×X2) ∩M = (X1 × [x′2]R2) ∩M.

We have (T2)R2 ◦ S([x1]R1) = [T2(x2)]R2 and S ◦ (T1)R1([x1]R1) = [x′2]R2 . If we
act by T1 × T2 on (4.2) and use (4.3), we get

[T2(x2)]R2 = [x
′

2]R2 .

Thus S is an isomorphism.
Suppose now that S: (X1)R1 → (X2)R2 is an isomorphism satisfying (4.1).

Take (x1, x2) ∈ ([x1]R1 ×X2) ∩M . Then (π1 × π2)(x1, x2) = ([x1]R1 , [x2]R2) ∈
Graph(S). We get [x2]R2 = S([x1]R1), and therefore (x1, x2) ∈ (X1×S([x1]R1))∩
M . By symmetry of arguments (R1)M = (R2)M and the proof is finished. �

Take any minimal set M ⊂ X1 × X2. We will show that there exist two
smallest factor relations Pi(M) on Xi respectively, such that

(4.4) (P 1(M))M = (P 2(M))M .

Indeed, let (R1
σ, R

2
σ), σ ∈ Σ, be the family of all pairs of factor relations satisfying

(R1
σ)M = (R2

σ)M .

Put
Pi(M) =

⋂
σ∈Σ

Riσ, i = 1, 2.

It is clear that Pi(M) satisfy (4.4) since every equivalence class [x]Pi(M) is an
intersection of all equivalence classes [x]R1σ and [x]R2σ , respectively. There are
other equivalent ways of defining Pi(M). Note that Pi(M) is the smallest fac-
tor relation containing M ◦ M−1 for i = 1 and M−1 ◦ M for i = 2 (here
M−1 = {(x, y) ∈ X2 × X1 : (y, x) ∈ M). Finally, we can also define Pi(M)
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using subalgebras of C(Xi). Consider two subalgebras Ci ⊂ C(M), i = 1, 2, defi-
ned by

Ci = {h ∈ C(M) : h depends only on the i-th coordinate}.

The intersection C1 ∩ C2 can be considered as a subalgebra of C(X1), in such a
case we denote it by C1(M), or as a subalgebra of C(X2), then it is denoted by
C2(M). It is not difficult to see that Pi(M) = R(Ci(M)), i = 1, 2.

Now, let (X,T ) be a minimal flow. Assume that a family N of factor relations
satisfies the following conditions.

(N-1) ∆X ∈ N;
(N-2) {Rλ}λ∈Λ ⊂ N⇒

∨
λ∈ΛRλ ∈ N.

Definition 4.2.3. A family N of factor relations satisfying (N-1) and (N-2)
is said to be natural if it in addition satisfies the following conditions:

(N-3) ∀
M∈M2(X,T )

Pi(M) ∈ N, i = 1, 2;

(N-4) ∀
R,R1, R2∈N

∀
S:XR1→XR2

an isomorphism

R1 ⊂ R⇒ (S × S)(R) ∈ N,

where (x′1, x
′
2) ∈ (S × S)(R) if and only if [x′i]R2 = S[xi]R1 , i = 1, 2, for some

(x1, x2) ∈ R.

Definition 4.2.4. For any family of factor relations N satisfying (N-1) and
(N-2) and for each factor relation R there exists the biggest factor relation R̃ ∈ N

with R̃ ⊂ R. When N is a natural family we will call R̃ the natural core of R.
The corresponding factor map π:XR̃ → XR is the natural cover of XR.

Remark 4.2.5. Given a natural family of factor relations N for X,
∨
N

is the largest element of N (or the least factor in the corresponding family of
factors).

Remark 4.2.6. If we take the intersection of all natural families of factor
relations for X, we get the smallest natural family of factor relations.

It is possible to characterize natural family in an alternative way.

Proposition 4.2.7. Let N be a family of factor relations satisfying (N-1)
and (N-2). Then N is natural if and only if for every factor relations R1, R2 and
each M ∈ M2(X,T ) satisfying (πR1 × πR2)(M) = Graph(S) for some isomor-
phism S:XR1 → XR2 we have (πR̃1 × πR̃2)(M) = Graph(S̃) for some isomor-

phism S̃:XR̃1
→ XR̃2

.

Proof. Suppose that N is natural. Denote πi = πRi and π̃i = πR̃i for
i = 1, 2. Assume that M ∈ M2(X,T ) and (π1 × π2)(M) = Graph(S) for
some isomorphism S:XR1 → XR2 . By (N-3), Ri ⊃ R̃i ⊃ Pi(M) ∈ N. Let
S:XP1(M) → XP2(M) be the isomorphism given by Lemma 4.2.2. It remains to
show that S acting on XR̃1

is an isomorphism between XR̃1
and XR̃2

. By (N-4),
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(S × S)(R̃1) ∈ N hence (S × S)(R̃1) ⊂ R̃2. Thus R̃1 ⊂ (S × S)−1(R̃2). But,
again by (N-4), (S × S)−1(R̃2) ∈ N and therefore R̃1 ⊃ (S × S)−1(R̃2). We con-
clude that (S × S)(R̃1) = R̃2. The required isomorphism S̃ is just S considered
on XR̃1

.
In order to prove the converse take any M ∈M2(X,T ). Using Lemma 4.2.2

we get that there exists an isomorphism S:XP1(M) → XP2(M) with (πP1(M) ×
πP2(M))(M) = Graph(S). Then for some isomorphism S̃:XP1(M)∼ → XP2(M)∼

satisfying p̃2 ◦ S̃ = S ◦ p̃1, where p̃i, i = 1, 2, denote the corresponding ho-
momorphisms from XPi(M)∼ onto XPi(M), we have (πP1(M)∼ × πP2(M)∼)(M) =
Graph(S̃). But Pi(M) are the smallest with such a property, therefore

Pi(M) = Pi(M)∼ ∈ N.

Now take Ri ∈ N, i = 1, 2, and an isomorphism S:XR1 → XR2 . Take M ∈
M2(X,T ) satisfying (4.1) (any minimal set in {(x1, x2) ∈ X × X:πR2(x2) =
SπR1(x1)}). Assume that R1 ⊂ R ∈ N. By S′:XR → X(S×S)(R) denote
the isomorphism S considered on the equivalence classes of R. Then (πR×
π(S×S)(R))(M) = Graph(S′). Therefore (πR̃ × π((S×S)(R))∼)(M) = Graph(S̃′),
where S̃′ is an isomorphism between XR̃ and X((S×S)(R))∼ . Since R̃ = R, we get
S̃′ = S′, but this forces (S × S)(R) = ((S × S)(R))∼ ∈ N. �

Corollary 4.2.8. Let us suppose that (X,T ) is a minimal flow with the pro-
perty that for each two factor relations Ri, i = 1, 2, if (XR1 , TR1) is isomorphic
to (XR2 , TR2), then R1 = R2. Then

N =
{∨
i∈I

P1(Mi) : {Mi}i∈I ⊂M2(X,T )
}

is a natural family of factor relations for (X,T ).

Proof. Clearly N satisfies conditions (N-1) and (N-2). Now, let M ∈M2(X,T )
andR1,R2 be two factor relations onX. Suppose thatM induces an isomorphism
S:XR1 → XR2 , hence R1 = R2. By definition of N, Pi(M) ⊂ R̃i ⊂ Ri, where
R̃i is the N-core of Ri. Let S:XP1(M) → XP2(M) be an isomorphism given by
Lemma 4.2.2. Consider S on the equivalence classes of R̃1 and denote it by S̃.
Since R1 = R2, also R̃1 = R̃2 and (S̃ × S̃)R̃1 = R̃1 = R̃2 so that S̃ is the
required isomorphism between XR̃1

and XR̃2
. By Proposition 4.2.7, the family

N is natural. �

Definition 4.2.9. A minimal flow (X,T ) is called regular if for every almost
periodic point (x, y) ∈ X ×X there exists S ∈ Aut(X,T ) such that y = S(x).

As a corollary from Proposition 4.2.7, we obtain the following result, which
is an analog of the one in the measure-theoretic context (see [44]).
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Theorem 4.2.10. Let N be a natural family of factor relations for a minimal
flow (X,T ). For each factor relation R on X the homomorphism π:XR̃ → XR

is regular. Furthermore if π is distal, it is a group extension.

Proof. Take x̃i ∈ XR̃, i = 1, 2 with π(x̃i) = x ∈ XR, where (x̃1, x̃2) is almost
periodic. Let M = Orb(x̃1, x̃2) ∈ M2(XR̃, TR̃). Clearly (π × π)(M) = ∆XR =
Graph(IdXR). Proposition 4.2.7 yields S̃ ∈ Aut(XR̃, TR̃) with M = Graph(S̃).
Therefore S̃(x̃1) = x̃2. Thus π is regular. The second part of the proof follows
immediately from Theorem 1.7.6. �

Since any factor of a distal flow is distal, we have the following.

Corollary 4.2.11. Let N be a natural family of factor relations for a mini-
mal distal flow (X,T ). Then for each factor relation R on X the homomorphism
π:XR̃ → XR is a group extension.

Lemma 4.2.12. Let (X,T ) be a minimal flow. Let R1, R2, K be factor
relations on X. Assume that M ∈ B2(X,T ). If M induces isomorphisms
S:XR1 → XR2 and S:XK → XK , then M induces an isomorphism between
XR1∩K and XR2∩K .

Proof. Take x ∈ X and define S̃([x]R1∩K) = S([x]R1) ∩ S([x]K). All we
need to show is that S̃ is indeed a map from XR1∩K to XR2∩K . Assume that
S([x]R1) = [y]R2 and S([x]K) = [y]K . Since M ∈ B2(X,T ), there exists ỹ ∈ X
such that (x, ỹ) ∈ M . Since M induces S and S, we have [y]R2 = [ỹ]R2 and
[y]K = [ỹ]K . Therefore S̃([x]R1∩K) = [ỹ]R2 ∩ [ỹ]K = [ỹ]R2∩K . �

Lemma4.2.13. Let K be a factor relation of a minimal flow (X,T ). If XK

is regular then

N = {R : R is a factor relation on X and R ⊂ K}

is a natural family of factor relations.

Proof. Obviously, N satisfies (N-1) and (N-2) of Definition 4.2.3. Now, if R
is a factor relation on X, then the N-core of R is equal to R ∩K. To finish the
proof take two factor relations R1, R2 on X and M ∈ M2(X,T ) which induces
an isomorphism S:XR1 → XR2 . Since M must induce an isomorphism of XK

with itself, by Lemma 4.2.12, M induces an isomorphism S′:XR1∩K → XR2∩K .
Clearly S ◦ p1 = p2 ◦ S′, where pi denotes the homomorphism XRi∩K → XRi ,
for i = 1, 2. In view of Proposition 4.2.7, N is natural. �

Proposition 4.2.14. Let (X,T ) be a minimal flow.

(a) There exists the greatest regular factor Y of X.
(b) The factor Y is the least member of the smallest natural family of factors

of X.
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Proof. (a) Let X1 and X2 be two regular factors of X, corresponding to the
factor relations R1 and R2. Let Y = X1 ∨X2 be the factor corresponding to the
factor relation R1 ∩R2. Then Y is isomorphic to the subflow Orb(x1, x2) of the
product flow X1×X2, where (x1, x2) is some almost periodic point in X1×X2. To
show that Y is regular we examine an almost periodic point ((z1, z2), (w1, w2)) ∈
Y ×Y . Now (zi, wi) is almost periodic point of Xi×Xi, i = 1, 2, so by regularity
of Xi, there exist φi ∈ Aut(Xi), i = 1, 2 with φi(zi) = wi. Let φ:Y → X1 ×X2

be defined by φ(u, v) = (φ1(u), φ2(v)). Clearly φ(Y ) is a minimal subset of the
flow X1 ×X2 and since φ(z1, z2) = (w1, w2) ∈ Y , we conclude that φ:Y → Y is
an automorphism of Y , and Y is a regular flow. The same argument works for a
joining of any family of regular factors. Therefore Y =

∨
Xν is a regular factor

of X, where {Xν} is the collection of all regular factors of X.
(b) Let K be the factor relation corresponding to Y . Since the family N

defined in Lemma 4.2.13 contains only factor relation contained in K, it remains
to show that K ∈ N for every natural family N. Let π:X

K̃
→ XK be the natural

cover with respect to the smallest natural family of factors of X. By regularity
of Y , for an almost periodic point (ỹ1, ỹ2) ∈ Ỹ × Ỹ (Ỹ = X

K̃
), there exists

φ ∈ Aut(Y ) with y2 = φ(y1), where yi = π(ỹi). In view of Proposition 4.2.7,
there exists an automorphism φ̃ ∈ Aut(Ỹ ) satisfying π◦ φ̃ = φ◦π. Put ỹ = φ̃(ỹ1),
then

π(ỹ) = π(φ̃(ỹ1)) = φ(π(ỹ1)) = φ(y1) = y2 = π(ỹ2).

Thus (π × π)(ỹ1, ỹ2) = (π × π)(ỹ1, ỹ) = (y1, y2) and (ỹ1, ỹ2), (ỹ1, ỹ) are almost
periodic. Assume that v, w ∈ J (J is the set of all idempotents in the fixed
minimal ideal I, see page 83) with v(ỹ1, ỹ) = (ỹ1, ỹ), w(ỹ1, ỹ2) = (ỹ1, ỹ2) and put
ỹ0 = vỹ2. Now, since

π(ỹ) = π(vỹ) = vπ(ỹ) = vπ(ỹ2) = π(vỹ2) = π(ỹ0)

and (ỹ, ỹ0) is an almost periodic point (v(ỹ, ỹ0) = (ỹ, ỹ0)), by Theorem 4.2.10 we
obtain that ỹ0 = ψ̃(ỹ) for some ψ̃ ∈ Aut(Ỹ ). Finally, since wv = w,

ỹ2 = wỹ2 = wvỹ2 = wỹ0 = wψ̃(ỹ) = wψ̃ ◦ φ̃(ỹ1) = ψ̃ ◦ φ̃(wỹ1) = ψ̃ ◦ φ̃(ỹ1),

so X
K̃

is regular and the proof is complete. �

4.3. A natural family of factors defined by B-joinings

Now we modify our definition of natural family to obtain a stronger result
about natural covers. Using this we will be able to identify the least element in
this new natural family as the Kronecker factor, i.e. the maximal equicontinuous
factor.

Definition 4.3.1. We say that a closed, invariant set N ⊂ X is a B-set, if
it is point transitive and it has a dense set of almost periodic points. The family
of B-sets of X ×X we denote by B2(X,T ) and call them B-joinings.
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Definition 4.3.2. Let (X,T ) be a minimal flow. We say that a family N of
factors of (X,T ) is B-natural, if it satisfies the conditions (N-1), (N-2), (N-4),
and moreover

(NB-3) ∀
N∈B2(X,T )

Pi(N) ∈ N, i = 1, 2;

In other words, in the original definition of natural family one replaces the
minimal joinings M ∈ M2(X,T ) by joinings N ∈ B2(X,T ). Notice that if a
family is B-natural, it is natural, therefore all assertions we made for natural
family (except of Proposition 4.2.14) remain valid for B-natural family, and
that for PI flows, natural families coincide with B-natural ones. We denote the
B-natural core of the factor relation R by R̃.

Lemma 4.3.3. Let π:X → Y be a regular homomorphism of minimal flows.
Let Γπ be the group of automorphisms S of X satisfying π ◦ S = π. If Γπ is
compact then the homomorphism ω:X/Γπ → Y is proximal.

Proof. Put Z = X/Γπ. Denote the corresponding homomorphism from X to
Z by κ, (hence for every x ∈ X, κ(x) = Γπx and ω(κ(x)) = π(x)). Take x ∈ X
with ux = x and put z = κ(x), y = π(x). Denote B = G(Y, y) and F = G(Z, z).
All we have to show is that B ⊂ F .

Take β ∈ B, hence π(βx) = βπ(x) = π(x). Since (x, βx) is almost periodic
(u(x, βx) = (x, βx)), by regularity of π, there exists S ∈ Aut(X) such that
S(x) = βx. We have π(x) = π(βx) = π(S(x)), hence, by minimality of X,
π ◦S = π and S ∈ Γπ. Therefore we have βz = βκ(x) = κ(βx) = κ(S(x)) = κ(x)
and β ∈ F . �

Theorem 4.3.4. Let (X,T ) be a compact minimal flow, N a B-natural fa-
mily of factors for (X,T ). Then for any factor relation R the homomorphism
π:XR̃ → XR decomposes as π = ω◦κ, XR̃

κ−→ Z
ω−→ XR; where ω is a proximal

extension and κ is a group extension.

Proof. Let us denote Y = XR, Ỹ = XR̃. Consider the shadow diagram

X

π̃
��

Ỹ

π

��

(Ỹ )∗θ∗oo

π∗

��

Y Y ∗
θ

oo

(Ỹ )∗
η∗
//

π∗

��

Z∗

ρ∗
}}zz
zz
zz
zz
z

Y ∗

Figure 4.1 Figure 4.2
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of the homomorphism π (see Figure 4.1). By construction π∗ is RIC. By The-
orem 4.2.10 the homomorphism π is regular. First we show that π∗ is also regular.
Recall that we have denoted by I some minimal ideal in βZ, by u an idempotent
from I and UG = uI being a group. Choose ỹ0 ∈ Ỹ , y0 ∈ Y and y∗0 ∈ Y ∗ with
uỹ0 = ỹ0, uy0 = y0, uy∗0 = y∗0 , and such that π(ỹ0) = y0, θ(y∗0) = y0. We may as-
sume that (Ỹ )∗ = Ỹ ∨ Y ∗ = Orb(ỹ0, y

∗
0), and θ∗ and π∗ are the projections onto

the first and the second coordinate respectively (see Theorem 1.8.15 and (1.19)).
Take an almost periodic point ((ỹ1, y

∗), (ỹ2, y
∗)) ∈ Rπ∗ , then clearly (ỹ1, ỹ2) is

an almost periodic point in Rπ. As π is regular, there exists an S ∈ Aut(Ỹ )
such that S(ỹ1) = ỹ2. Now observe that S× IdY ∗ ∈ Aut((Ỹ )∗). Indeed, denoting
S(ỹ0) = αỹ0 for some α ∈ G (as S(ỹ0) = S(uỹ0)) = uS(ỹ0) = uαỹ0) we get
α ∈ G(Y, y0) = G(Y ∗, y∗0) since π ◦ S = π. It follows that for each q ∈ I we have

(S × IdY ∗)(q(ỹ0, y
∗
0)) =

(
S(qỹ0), qy∗0

)
= (qαỹ0, qαy

∗
0) = qα(ỹ0, y

∗
0) ∈ Orb(ỹ0, y

∗
0),

i.e. S × IdY ∗ ∈ Aut((Ỹ )∗) and π∗ is regular.
Now use Theorem 4.1.4 to construct the diagram shown at Figure 4.2, where

ρ∗ is the maximal isometric extension of Y ∗ under (Ỹ )∗. By Theorem 4.1.5,
ρ∗ is a group extension and η∗ is RIC and weakly mixing. In particular then,
Rη∗ ∈ B2((Ỹ )∗). Since the image of a B-set under a homomorphism is again
a B-set, we conclude that Ñ = (θ∗ × θ∗)(Rη∗) ∈ B2(Ỹ ). Let

L =
{
L ⊂ X ×X : L is closed, invariant and (π̃ × π̃)(L) = Ñ

}
.

Let N be a minimal element in L. We will show that N ∈ B2(X). Indeed, let ñ be
a transitive point in Ñ and let n ∈ N satisfy (π̃ × π̃)(n) = ñ. Then Orb(n) ⊂ N
and Orb(n) ∈ L. Since N is minimal, Orb(n) = N . Let M be the set of all
almost periodic points in N . Since each almost periodic points of Ñ is an image
via π̃ × π̃ of some almost periodic point in N , we have

Ñ = (π̃ × π̃)(M) ⊂ (π̃ × π̃)(M),

so (π̃ × π̃)(M) = Ñ , hence M ∈ L.
Again by minimality of N , M = N and hence N ∈ B2(X). By the com-

mutative nature of our diagrams it follows that (π ◦ π̃ × π ◦ π̃)(N) = ∆Y and
we conclude that Ñ = (π̃ × π̃)(N) = Graph(S̃) for some S̃ ∈ Aut(Ỹ , T ) and
in particular Ñ is minimal. However as ∆Ỹ ⊂ Ñ , we have Ñ = ∆Ỹ . Thus
Ñ = (θ∗ × θ∗)(Rη∗) = ∆Ỹ . Since θ∗ is a proximal extension, we conclude that
∆(Ỹ )∗ is the only minimal subset in Rη∗ . As η∗ is RIC – hence Rη∗ is a B-
set – this implies that Rη∗ = ∆(Ỹ )∗ , i.e. η∗ is an isomorphism and it follows
that π∗ is a group extension. By Lemma 4.1.2, θ ◦ π∗ is regular, hence in view
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of Lemma 4.1.1, the group Γπ of automorphisms σ of Ỹ satisfying π ◦ σ = π

is topologically isomorphic with the group Γθ◦π∗ of automorphisms of (Ỹ )∗; the
latter is a compact group and so we put Z = Ỹ /Γπ and let

Ỹ
κ //

π

��

Z

ω
����
��
��
��

Y

be the diagram with the corresponding quotient maps. Now, applying Lem-
ma 4.3.3 we get that ω is proximal. This completes the proof of the theorem. �

We call the maximal equicontinuous factor of a flow the Kronecker factor.

Proposition 4.3.5.

(a) The Kronecker factor, Y , of a minimal flow (X,T ) is B-natural, for
every B-natural family of factors.

(b) The Kronecker factor is the least member of the smallest B-natural fa-
mily of factors of X.

Proof. (a) By Theorem 4.3.4 we have Ỹ κ−→ Z
ω−→ Y , where κ is a K-exten-

sion (K ⊂ Aut(Ỹ ) is compact) and ω is proximal. Put π = ω◦κ. Let S:Y → Y be
an automorphism of Y and let S̃: Ỹ → Ỹ be a lift of S to an automorphism of Ỹ
(use the B-version of Proposition 4.2.7). Then for ỹ ∈ Ỹ and k ∈ K, (S̃ỹ, S̃(ỹk))
is an almost periodic point in Ỹ × Ỹ , so that also (κ×κ)(S̃ỹ, S̃(ỹk)) is an almost
periodic point of Z × Z. On the other hand,

ω(κ(S̃(ỹk))) = π(S̃(ỹk)) = Sπ(ỹk) = Sπ(ỹ) = π(S̃ỹ) = ω(κ(S̃ỹ)),

and it follows that κ(S̃(ỹk)) and κ(S̃ỹ) are also proximal points in Z. Therefore
κ(S̃(ỹk)) = κ(S̃ỹ) and we can define Ŝ:Z → Z unambiguously by Ŝ(κỹ) =
κ(S̃ỹ). Since ω is a proximal extension, it follows that over every minimal set
in Y × Y there exists a unique minimal set in Z × Z, so that our observation
above yields an isomorphism of Aut(Y ) onto Aut(Z). By Lemma 4.1.1this is
a topological isomorphism and since Aut(Y ) = Y is a compact group, so is
Aut(Z). We find that Z/Aut(Z) is a factor of Z which is necessarily a proximal
flow. Finally, since a proximal minimal flow is a one point flow, we have Aut(Z)
acting transitively on Z and conclude that ω is 1–1.

Therefore π is a K-extension and we can finish the proof as follows. Take
ỹ1, ỹ2 ∈ Ỹ and put π(ỹi) = yi. We know that Sy1 = y2 for some S ∈ Aut(Y ).
Let S̃ ∈ Aut(Ỹ ) with π ◦ S̃ = S ◦π. Then π(ỹ2) = Sy1 = π(S̃ỹ1) and there exists
k ∈ K such that (S̃ỹ1)k = ỹ2. Therefore the group Aut(Ỹ ) acts transitively on
Ỹ and by Theorem 1.7.5, Ỹ is an equicontinuous factor. Thus Y = Ỹ , which
finishes the proof of (a).
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(b) Since a B-set in a Kronecker system is necessarily minimal, we see that
the proof of Lemma 4.2.13implies that the family of factor relations {R : R ⊂ K}
is B-natural. Now conclude as in the proof of Proposition 4.2.14 (b). �

Example 4.3.6. Take (X,T ) to be the minimal Chacon transformation.
Then (X,T ) is a regular flow and also a prime flow (i.e. has no nontrivial factors),
and it follows that the smallest natural family of factors for (X,T ) is N = {X}.
In contrast, the smallest B-natural family of factors (as well as the smallest
measure theoretical one) is NB = {X,point}. If we take Y = X × Z, where
Z is an irrational rotation, then we still have N = {Y }, but NB = {Y,Z}.
In general, the Kronecker factor is the least member of the smallest natural
family of factors for (X,T ) if an onlu if it is also the largest regular factor of
X. Comparing Propositions 4.2.14 and 4.3.5 and recalling that for PI-flows the
notion of natural coincide with the notion of B-natural, we conclude that for
PI-flows, and in particular for distal flows, the Kronecker factor and the largest
regular factor coincide.

Example 4.3.7. As established in Chapter 2, in the measure theoretical
case the map Ỹ → Y is always a group extension. A direct corollary of this is
that the Pinsker factor (i.e. the largest zero-entropy factor) is always natural.
It turns out that the minimal flow constructed in [9] serves also as an example
of a regular, weakly mixing flow (X,T ) of positive entropy with natural and
B-natural families {X} and {X,point} respectively, with the property that its
maximal zero entropy factor X → Z is neither a natural nor a B-natural factor.

Problem 4.3.8. Find a nontrivial example of a minimal flow (X,T ) all of
whose factors belong to the smallest family of natural factors. Also a B-flow all
of whose factors belong to the smallest family of B-natural factors.

4.4. Group extensions of minimal rotations

In this section we describe an example of a natural family for a group exten-
sion of minimal rotation. The proof we present here involves, in some sense, only
the basic methods.

First we show how to reduce an arbitrary group extension of minimal ro-
tation to a minimal flow (Section 4.4.1). Then we describe minimal subsets in
the Cartesian square of such a flow (Section 4.4.2) and using this we construct
a natural family of factors (Section 4.4.3).

4.4.1. Minimal subsets of group extensions of minimal rotations. In
what follows we let (X,T ) be a minimal rotation. We will study properties of
a group extension (X,T ) (not necessarily minimal) of (X,T ).

Suppose that (X,T ) is a G-extension of (X,T ). Recall that G is a compact (in
the topology of uniform convergence) subgroup of Aut(X,T ). Let M ⊂ X be T -
minimal. Denote by π:X → X the factor homomorphism given by π(x) = [x]G.
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Because T is minimal, π(M) = X. Put

H = {g ∈ G : g(M) = M}.

Clearly, H is a closed subgroup of G. Observe that if g ∈ G, then g(M) is
minimal, hence either g(M) = M or g(M) ∩M = ∅. Therefore

g ∈ H if and only if ∃
x∈M

g(x) ∈M.

For x ∈ X put
Mx = {g ∈ G: g−1(x) ∈M}.

Mx is not empty because π(M) = X i.e. each [x]G contains at least one element
of M (GM = X and each minimal subset of X is of the form g(M)). We also
have

Lemma 4.4.1. For each x ∈ X there exists a g = gx ∈ G such that

Mx = gH.

Proof. Fix x ∈ X. Take g ∈Mx. We will show that Mx = gH. Assume that
g′ ∈ Mx. Then g′

−1(x) ∈ M and g−1(x) ∈ M . Thus g−1g′(g′−1(x)) = g−1(x) ∈
M . This and (4.5)imply that g−1g′ ∈ H and therefore g′ ∈ gH.

On the other hand if h ∈ H then it is clear that (gh)−1(x) = h−1g−1(x) ∈M .
Thus gh ∈Mx. �

By Lemma 4.4.1, there exists a map β:X → G/H given by

(4.6) β(x) = Mx = gxH.

Here G/H is understood as the homogeneous space of right cosets since H is
not necessarily normal. In what follows we will consider the quotient topology
on G/H. The map β has the following obvious properties:

β(g(x)) = gβ(x), g ∈ G,(4.7)

β−1(gH) = gM, g ∈ G,(4.8)

β is constant on each minimal subset of X.(4.9)

Let M(X) denote the set of all minimal subsets of X. Let 2X be the space
of non–empty, closed subset of X with the topology induced by the Hausdorff
metric (see Chapter 1for definition). Recall that as X is compact, so is 2X .

Lemma 4.4.2. If gn → g in G, then gnM → gM in 2X .

Proof. Suppose that gn → g. Take a sequence {mn}n≥1 of elements from M .
Choosing a subsequence if necessary we may assume that mn → m, for some
m ∈M . Then gnmn → gm, which implies that gnM → gM . �

From this lemma it follows that M(X) is closed in 2X and on M(X) we will
consider the topology induced from 2X .
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Lemma 4.4.3. The map β:M(X)→ G/H is a continuous bijection.

Proof. By (4.9), β is well defined, and by (4.9)and (4.7), it is 1–1. It follows
from (4.8)that β is onto.

Now suppose that gnM → gM and β(gnM) = gnH → g′H. Choosing a
subsequence we can assume that gn → g′h for some h ∈ H. By Lemma 4.4.2 we
have that gnM → g′hM = g′M , then gM = g′M . Therefore β(gnM) → g′H =
β(g′M) = β(gM). �

Define a metric d̃ on M(X) setting

d̃(gM, g′M) = d(β(gM), β(g′M)) = d(gH, g′H),

where d is the quotient metric on G/H induced by an invariant metric on G. As
a corollary of the above consideration we have the following.

Proposition 4.4.4. The metric d̃ is equivalent to the Hausdorff metric on
M(X) and β: (M(X), d̃)→ (G/H, d) is an isometry.

Put T̂ = T |M . Note that H ⊂ Aut(T̂ ).

Theorem 4.4.5. T̂ is an H-extension of T .

Proof. It is enough to show that TG is isomorphic to T̂H . Let ψ:MH → XG

be given by the formula ψ([x]H) = [x]G. First we will show that ψ is one-to-one.
If x, y ∈ M and [x]G = [y]G, then y = g(x) for some g ∈ G. This implies g ∈ H
(use (4.5)) and consequently [x]H = [y]H .

Now take [y]G ∈ XG. Because π(M) = X, there is an x ∈ M such that
[x]G = [y]G. This implies that ψ is a bijection.

The continuity of ψ is obvious because [x]H ⊂ [x]G, x ∈ M . Since MH is
compact, ψ is a homeomorphism. Next,

ψ ◦ T̂H([x]H) = ψ([Tx]H) = [Tx]G,

TG ◦ ψ([x]H) = TG([x]G) = [Tx]G.

Thus T̂H is isomorphic to TG and the proof is complete. �

4.4.2. Minimal subsets of Cartesian squares of minimal group ex-
tensions of rotations. Assume that (X,T ) is a minimal G-extension of a
rotation (X,T ) by a homomorphism π. Consider (X × X,T × T ). Take M ∈
M2(X,T ). Clearly, the projection of M onto the first and onto the second co-
ordinate is just X. Besides (π × π)(M) = Graph(S) for some S ∈ Aut(X).
Obviously (Graph(S), T × T ) is isomorphic to (X,T ). Observe that if W =
(π×π)−1(Graph(S)) and if τ :W → X is given by τ(x, y) = π(x), then τ is a ho-
momorphism and τ−1(x) is a G×G-orbit of an (x, y) ∈ τ−1(x). Thus (W,T ×T )
is a free G×G-extension of (X,T ) and we can apply results of Section 4.4.1.
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Put H = {(g, g′) ∈ G × G : (g, g′)(M) = M}. By results of Section 4.4.1,
M(W ) with the topology induced by the Hausdorff metric is homeomorphic to
(G×G)/H. Now, we will examine the structure of the group H.

Denote by πi:G×G→ G the projection πi(g1, g2) = gi, i = 1, 2. Then

(4.10) πi(H) = G, i = 1, 2.

Indeed, fix g ∈ G and (x, x′) ∈M . Put x = π(x), x′ = π(x′). There exists x′′ ∈ X
such that (gx, x′′) ∈M . Since π(gx) = π(x) = x, π(x′′) = x′. Thus x′′ = g′x′ for
some g′ ∈ G and we have (gx, g′x′) = (g, g′)(x, x′) ∈M . This implies (g, g′) ∈ H,
hence π1(H) = G. Similarly, π2(H) = G.

Put

H1 = {g ∈ G : (g, e) ∈ H}, H2 = {g ∈ G : (e, g) ∈ H}.

Fix h1 ∈ H1. Given g ∈ G, by (4.10), we can find j ∈ G so that (g, j) ∈ H, hence
(gh1, j) ∈ H. Since (g−1, j−1) ∈ H, (gh1g

−1, e) ∈ H. Consequently,

(4.11) H1 and H2 are normal closed subgroups of G.

Besides we have

(4.12) if (g1, g2), (g′1, g2) ∈ H then g′1g
−1
1 ∈ H1,

and

(4.13) if (g1, g2), (g1, g
′
2) ∈ H then g′2g

−1
2 ∈ H2,

besides

(4.14) (g1, g2) ∈ H iff g1H1 × g2H2 ⊂ H.

Define ξ by
ξ(gH1) = π2((gH1 ×G) ∩H).

Now, (4.11)–(4.14) imply directly that

Lemma 4.4.6. The map ξ establishes an isomorphism of topological groups
between G/H1 and G/H2 and moreover

H =
⋃
g∈G

gH1 × ξ(gH1).

Let us define a map S:XH1 → 2X by

S([x]H1) = Π2(([x]H1 ×X) ∩M),

where Π2:X ×X → X denotes the projection onto the second coordinate.
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Proposition 4.4.7.

M =
⋃
x∈X

[x]H1 × S([x]H1),

moreover S establishes an isomorphism between XH1 and XH2 .

Proof. First, we show that S is a map between XH1 and XH2 . Take (x, y) ∈
([x]H1 × X) ∩M . We show that S([x]H1) = [y]H2 . To this end take another y′

with (x, y′) ∈ ([x]H1 ×X) ∩M . Obviously

(π × π)(x, y) = (π × π)(x, y′) = [x]G × S([x]G),

where Graph(S) = (π × π)(M). From the proof of Theorem 4.4.5 we deduce
that there exists (g1, g2) ∈ H such that (g1, g2)(x, y) = (x, y′). Thus g1 = e

and g2 ∈ H2. This forces S([x]H1) ⊂ [y]H2 . The opposite inclusion is obvious.
Then S is obviously a bijection that commutes with T (considered on XH1 and
XH2 respectively). Since M is compact and Graph(S) is equal to the natural
projection of M to XH1 ×XH2 , S is continuous, hence it is an isomorphism of
flows. �

4.4.3. Natural family of factors for minimal group extensions of
rotations. Now we are in a position to construct a natural family of factors for
(X,T ). Put

N = {RF ⊂ X ×X : F is closed normal subgroup of G}.

Proposition 4.4.8. The family N is a natural family of factor relations for
(X,T ).

Proof. First, ∆X = R{e} ∈ N. Then notice that if RFi ∈ N, i ∈ I, then∨
i∈I

RFi = RF ,

where F is the closed subgroup generated by the union of the groups Fi, i ∈ I.
Since F is normal, the condition (N-2) of the definition of natural family is
satisfied.

Now take M ∈M2(X,T ). From Proposition 4.4.7 we get that Pi(M) = RHi ,
where Hi are defined in Section 4.4.2for M . Thus Pi(M) ∈ N and condition
(N-3) is fulfilled.

To prove (N-4) take RFi ∈ N, i = 1, 2, an isomorphism S:XRF1
→ XRF2

and
RF1 ⊂ RF ∈ N. Assume that M ∈M2(X,T ) is such that the natural projection
of it onto XRF1

×XRF2
is equal to Graph(S). Lemma 4.4.6 yields a topological

group isomorphism ξ:G/F1 → G/F2. Now consider S acting on the equivalence
classes of RF . By the form of S, (S × S)(RF ) = Rξ(F/F1) and since ξ(F/F1) is
a normal subgroup of G/F2, the condition (N-4) is also satisfied. �
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Corollary 4.4.9. For any factor (XR, TR) of (X,T ) there exists a largest
closed normal subgroup F of G such that

π: (XF , TF )→ (XR, TR),

(where π denotes the corresponding homomorphism) is a group extension.

Proof. The group F is defined by taking the natural core RF of R. By Co-
rollary 4.2.11, π is a group extension. �

It is not difficult to observe (see Figure 4.3), that π is a Γπ-extension, where
Γπ = {S ∈ Aut(X) : π ◦ S = π}.

X
G-ext. //
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F -ext.
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CC

CC
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G/F -ext.

>>}}}}}}}}
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Figure 4.3.





CHAPTER 5

REAL COCYCLE EXTENSIONS OF MINIMAL ROTATIONS

In this chapter we prove that for each minimal rotation T :X → X on a com-
pact Hausdorff space and each topological cocycle φ:X → R either φ is a topolo-
gical coboundary or Tϕ is topologically ergodic or the partition into orbits is the
decomposition of Tφ into minimal components. As an application, we generalize
a result by E. Glasner and show that if (St)t∈R is a minimal topologically weakly
mixing flow then whenever φ is universally ergodic the map

X × Y 3 (x, y) 7→ (Tx, Sφ(x)(y)) ∈ X × Y

is not PI but is disjoint from all minimal topologically weakly mixing systems.

5.1. Existence of almost periodic points

Following [7, p. 11], if x is an almost periodic point in a locally compact flow,
then Orb(x) is a compact minimal set. To see this take a compact neighbourhood
U of x and let A = {n ∈ Z : Tnx ∈ U}. Since x is almost periodic, the dwelling set
D(x, U) is relatively dense, that is for some N ∈ N, A∪(A+1)∪. . .∪(A+N) = Z.
Thus Orb(x) =

⋃N
i=0{Tn+ix : n ∈ A} ⊂ U ∪ TU ∪ . . . ∪ TNU , that is compact,

so Orb(x) is compact.
Now we will study locally compact group extensions of compact minimal

flows.

Proposition 5.1.1. Let (X,T ) be a minimal compact flow, G a locally com-
pact group, ϕ:X → G a continuous map. Assume that there is an almost periodic
point in (X ×G,Tϕ). Then there exists a compact subgroup H of G and a con-
tinuous map f :X → G/H such that

f(Tx) = ϕ(x)f(x) for all x ∈ X.

Proof. Let (x̃, g̃) ∈ X × G be an almost periodic point, and denote M =
Orb(x̃, g̃). Then M is minimal, compact and it projects onto X.

101
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Let H = {g ∈ G : Mg = M}. Clearly H is a group. For x ∈ X denote
Mx = {g ∈ G : (x, g) ∈ M}, Hx = {h ∈ G : Mxh = Mx}. Obviously H ⊂ Hx

for each x ∈ X. Conversely, if h ∈ Hx then M ∩ Mh is nonempty because
Mx ⊂ M ∩Mh. Minimality of M gives M = Mh, so h ∈ H. Thus H = Hx for
each x ∈ X. Now we will show that

(5.1) ∀
x∈X

∀
g0∈Mx

Mx = g0H.

Indeed, fix x ∈ X, g0 ∈Mx. Now, if h ∈ H, then (x, b0) ∈M and (x, g0h) ∈M ,
so g0h ∈ Mx. On the other hand, if g ∈ Mx, then (x, g) ∈ M and (x, g) =
(x, g0)g−10 g ∈ Mg−10 g. Thus M ∩Mg−10 g 6= ∅, hence g−10 g ∈ H. Therefore g =
g0(g−10 g) ∈ g0H and (5.1) is proved.

Since each Mx is compact, so is H. Equip G/H = {gH : g ∈ G} with the
quotient topology. Define f :X → G/H by

f(x) = Mx.

To prove that f is continuous take an open set Ũ ⊂ G/H. Then Ũ = UH

for some open set U ⊂ G. Clearly f−1(UH) = πX((X × UH) ∩ M), where
πX :X × G → X is the projection. Assume that xi 6∈ f−1(Ũ), xi → x0, where
(xi)i∈I is a net. Then (xi, gi) ∈ M for some gi ∈ f(xi). Choose a convergent
subnet (xj , gj)→ (x0, g) ∈M (M is compact). Since xi 6∈ πX((X × UH) ∩M),
giH 6∈ Ũ . Thus gH 6∈ Ũ and x0 6∈ f−1(Ũ). This proves that f−1(Ũ) is open.

The equality f(Tx) = ϕ(x)f(x) is clear. �

Remark 5.1.2. If G has no nontrivial compact subgroups (e.g. G = Rn,
G = Zn), then the above proposition says that ϕ is a coboundary. In particular, if
G = R we obtain the classical Gottschalk–Hedlund result ([40, Theorem 14.11]).

5.2. Essential values of a cocycle

In this section we will quickly adapt Schmidt’s methods [89] of essential values
for measurable cocycles to the continuous case. Assume that (X,T ) is a compact
flow. Let G be a locally compact group with the unit element e. By G∞ we
denote the Aleksandroff compactification of G: G∞ = G ∪ {∞}. In further we
extend the group operation from the group G onto the set G∞ by g · ∞ = ∞
for all g ∈ G∞. In this way the operation G∞ ×G∞ 3 (g1, g2) → g1g2 ∈ G∞ is
continuous.

Definition 5.2.1. Let ϕ:X → G be a cocycle. We say that r ∈ G∞ is an
essential value of ϕ if for each nonempty open U ⊂ X and each neighbourhood
V of r there exists N ∈ Z such that

(5.2) U ∩ T−NU ∩ {x ∈ X : ϕ(N)(x) ∈ V } 6= ∅.

The set of all essential values of ϕ will be denoted by E∞(ϕ). Put also E(ϕ) =
E∞(ϕ) ∩G.
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Proposition 5.2.2. The sets E∞(ϕ) and E(ϕ) have the following proper-
ties:

(a) E(ϕ) is a closed subgroup of G.
(b) If G is Abelian and ψ(x) = (ξ(Tx))−1ϕ(x)ξ(x), where ψ, ξ:X → G are

continuous maps, then E∞(ϕ) = E∞(ψ).

Proof. (a) Since ϕ(0) ≡ e, e ∈ E(ϕ). Assume g ∈ E(ϕ). To show that g−1 ∈
E(ϕ) take nonempty open sets U ⊂ X and g−1 ∈ V ⊂ G. Then g ∈ V −1. Since
g ∈ E(ϕ), there exists an integer N such that U ∩ T−NU ∩ (ϕ(N))−1(V −1) 6= ∅.
For x ∈ U ∩ T−NU ∩ (ϕ(N))−1(V −1) we will show that y = TNx ∈ U ∩ TNU ∩
(ϕ(−N))−1(V ). Clearly y ∈ U ∩ TNU . Next x ∈ (ϕ(N))−1(V −1) if and only
if (ϕ(N)(x))−1 ∈ V . The cocycle condition yields e = ϕ(−N)(TNx)ϕ(N)(x) so
ϕ(−N)(y) = (ϕ(N)(x))−1 ∈ V . Thus y ∈ U ∩ TNU ∩ (ϕ(−N))−1(V ) and g−1 ∈
E(ϕ) follows.

Assume now that g, h ∈ E(ϕ). Let U ⊂ X and V ⊂ G be open, nonempty
and such that gh ∈ V . There are open sets V1, V2 ⊂ G such that g ∈ V1, h ∈ V2,
V1V2 ⊂ V . Since g, h ∈ E(ϕ), there exist integers N1, N2 such that

U1 = U ∩ T−N1U ∩ (ϕ(N1))−1(V1) and U2 = U1 ∩ T−N2U1 ∩ (ϕ(N2))−1(V2)

are nonempty. We will show that U2 ⊂ U ∩ T−N1−N2U ∩ (ϕ(N1+N2))−1(V ).
Assume that x ∈ U2. Then x ∈ U1 ⊂ U . Since x ∈ T−N2U1 ⊂ T−N2(T−N1U),
x ∈ T−N1−N2U , so x ∈ U ∩ T−N1−N2U . Since x ∈ U2, ϕ(N2)(x) ∈ V2 and
TN2(x) ∈ U1. Thus ϕ(N1)(TN2x) ∈ V1, and we have

ϕ(N1+N2)(x) = ϕ(N1)(TN2x)ϕ(N2)(x) ∈ V1V2 ⊂ V.

Therefore E(ϕ) is a group. The fact that E(ϕ) is closed follows directly from
definition.

(b) We will show that E∞(ϕ) ⊂ E∞(ψ). Because G is Abelian,

ψ(N)(x) = (ξ(TNx))−1ϕ(N)(x)ξ(x) = ϕ(N)(x)ξ(x)(ξ(TNx))−1.

Assume that r ∈ E∞(ϕ). Let U ⊂ X, V ⊂ G be nonempty open sets with
r ∈ V . Find open sets V0, V1 ⊂ G such that r ∈ V1, e ∈ V0, V1V0 ⊂ V . Let
W ⊂ U be an open nonempty set satisfying ξ(x)ξ(y)−1 ∈ V0 for all x, y ∈ W .
Now it follows from r ∈ E∞(ϕ) that there exist an integer N and x0 ∈ X such
that x0 ∈ W ∩ T−NW ∩ {x ∈ X : ϕ(N)(x) ∈ V1}. Then x0 ∈ U ∩ T−NU and
ψ(N)(x0) = ϕ(N)(x0)ξ(x0)(ξ(TNx0))−1 ∈ V1V0 ⊂ V .

By symmetry we have E∞(ϕ) = E∞(ψ). �

Proposition 5.2.3. Assume that (X,T ) is topologically ergodic. Then (X×
G,Tϕ) is topologically ergodic if and only if E(ϕ) = G.

Proof. Assume that (X × G,Tϕ) is topologically ergodic. Suppose that
g ∈ G, U ⊂ X and V ⊂ G are open nonempty sets such that g ∈ V . Fix
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open nonempty sets V0, V1 ⊂ G satisfying V1V
−1
0 ⊂ V . Since (X × G,Tϕ) is

topologically ergodic, D(U × V0, U × V1) 6= ∅ and we can find an integer N ,
x0 ∈ X, g0 ∈ G satisfying (x0, g0) ∈ U ×V0∩T−Nϕ (U ×V1). Then x0 = TNx1 for
some x1 ∈ U , g0 ∈ ϕ(N)(x1)V1, in particular x0 ∈ TNU . Thus x0 ∈ U ∩ TNU .
Since g0 ∈ ϕ(N)(x1)V1, there exists g1 ∈ V1 such that g0 = ϕ(N)(T−Nx0)g1 =
(ϕ(−N)(x0))−1g1. This implies ϕ(−N)(x0) = g1g

−1
0 ∈ V1V

−1
0 ⊂ V and x0 ∈

(ϕ(−N))−1(V ). Thus g ∈ E(ϕ).
Assume now that E(ϕ) = G. Let U1, U2 ⊂ X, V1, V2 ⊂ G be nonempty open

sets. We will show that D(U1 × V1, U2 × V2) 6= ∅. First find nonempty open sets
Ṽ1 ⊂ V1 and W ⊂ G such that WṼ1 ⊂ V2. Because T is topologically ergodic,
there exists an integer n such that U1 ∩ T−nU2 6= ∅. There are nonempty open
sets U ⊂ U1 ∩ T−nU2 and V ⊂ G such that Tnϕ (U × V ) ⊂ U2 × W . Since
E(ϕ) = G, we can find an integer N such that Y = U ∩ T−NU ∩ (ϕ(N))−1(V )
is nonempty. We will show that Y × Ṽ1 ⊂ (U1 × V1) ∩ T−n−Nϕ (U2 × V2). Take

(y, g) ∈ Y × Ṽ1. Then y ∈ U ⊂ U1 ∩ T−nU2, g ∈ Ṽ1 ⊂ V1, hence (y, g) ∈
U1 × V1. We have Tn+Nϕ (y, g) = (Tn+Ny, ϕ(n+N)(y)g). Since y ∈ Y , TNy ∈ U
and Tn+Ny ∈ U2. Moreover, ϕ(N)(y) ∈ V and ϕ(n)(TNy)v ∈ W for each v ∈ V ,
so ϕ(n)(TNy)ϕ(N)(y) ∈W . Thus

ϕ(n+N)(y)g = (ϕ(n)(TNy)ϕ(N)(y))g ∈WṼ1 ⊂ V2.

We have shown that Tn+Nϕ (y, g) = (Tn+Ny, ϕ(n+N)(y)g) ∈ U2 × V2. �

Remark 5.2.4. It follows from Proposition 5.2.3 and [89, Section 3] that
whenever a continuous cocycle is ergodic with respect to a measure which is
positive on open sets, then it is topologically ergodic. In particular continuous
cocycles from [82], [69] and [21] are topologically ergodic.

From now on we will assume that G is Abelian with the group operations
written additively.

Proposition 5.2.5. Let (X,T ) be topologically ergodic, ϕ:X → G a cocycle.
Assume that K ⊂ G is compact and K ∩ E(ϕ) = ∅. Then for each nonempty
open U ⊂ X there exists a nonempty open set V ⊂ U satisfying⋃

n∈Z
(V ∩ T−nV ∩ {x : ϕ(n)(x) ∈ K}) = ∅.

Proof. For each r ∈ K we can find an open neighbourhood Mr of zero in G

and an open set Ur ⊂ X such that

(5.3)
⋃
n∈Z

(Ur ∩ T−nUr ∩ {x : ϕ(n)(x) ∈ r +Mr}) = ∅.

LetNr be a symmetric open neighbourhood of zero inG satisfyingNr+Nr ⊂Mr.
By compactness of K there exist r1, . . . , rm ∈ K such that

(r1 +Nr1) ∪ (r2 +Nr2) ∪ . . . ∪ (rm +Nrm) ⊃ K.
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Now, let U ⊂ X be a nonempty open set. Put U0 = U . We will construct an
open set U1 ⊂ U0 such that if x, Tnx ∈ U1, then ϕ(n)(x) 6∈ r1 + Nr1 . Since T is
topologically ergodic, Ur1 ∩ Tn0U0 6= ∅ for some n0. Denote Ũ = U0 ∩ T−n0Ur1 .
Then Ũ ⊂ U0, Tn0Ũ ⊂ Ur1 . Because the map f(x, y) = ϕ(n0)(x) − ϕ(n0)(y) is
continuous and it satisfies f(x, x) = 0 for all x ∈ X, the set f−1(Nr1) is open,
nonempty and (Ũ × Ũ) ∩ f−1(Nr1) 6= ∅. Thus there exists a nonempty open
U1 ⊂ Ũ such that U1 × U1 ⊂ f−1(Nr1), i.e.

(5.4) ϕ(n0)(x)− ϕ(n0)(y) ∈ Nr1 for x, y ∈ U1.

By (5.4), if x, Tnx ∈ U1, then ϕ(n0)(x) − ϕ(n0)(Tnx) ∈ Nr1 which implies
Tn0x, Tn+n0x ∈ Ur1 . In view of (5.3), ϕ(n)(Tn0x) 6∈ r1 + Mr1 . Because
ϕ(n)(Tn0x) = ϕ(n)(x) + (ϕ(n0)(Tnx)− ϕ(n0)(x)), ϕ(n)(x) 6∈ r1 +Nr1 .

We iterate this procedure for (U1, Nr2), . . . , (Um−1, Nrm) to obtain open
sets U ⊃ U1 ⊃ . . . ⊃ Um such that ϕ(n)(x) 6∈

⋃k
i=1(ri + Nri) for x, Tnx ∈ Uk,

k = 1, . . . ,m. Put V = Um. Then⋃
n∈Z

(V ∩ T−nV ∩ {x : ϕ(n)(x) ∈ K}) = ∅

and the proposition is proved. �

In the following lemma we assume that the flow (X,T ) is minimal. For A ⊂ G
and k > 1 denote kA = A+ . . .+A︸ ︷︷ ︸

k times

, and 0A = {0}.

Lemma 5.2.6. Let ϕ:X → G be a cocycle, where (X,T ) is a compact mi-
nimal flow and G is a locally compact Abelian group.

(a) If ∞ 6∈ E∞(ϕ), then there exists a compact set C ⊂ G such that
ϕ(n)(x) ∈ C for all x ∈ X, n ∈ Z.

(b) If E(ϕ) = {0} and there exists a compact C ⊂ G such that ϕ(n)(x) ∈ C
for all x ∈ X, n ∈ Z, then ϕ is a coboundary.

Proof. (a) If∞ 6∈ E∞(ϕ), then there exist an open set U ⊂ X and a compact
K ⊂ G such that

(5.5) ∀
n∈Z

U ∩ T−nU ∩ {x ∈ X : ϕ(n)(x) 6∈ K} = ∅.

Since (X,T ) is compact and minimal, there exists a positive integer N such that⋃N−1
i=0 T−iU = X. For 0 6 i, j < N denote

Ki,j = iϕ(X) +K + jϕ(X).

Clearly each Ki,j is a compact subset of G. Define C ⊂ G by

C =
N−1⋃
i=0

N−1⋃
j=0

Ki,j ∪
N−1⋃
i=0

N−1⋃
j=0

(−Ki,j) ∪
N−1⋃
i=0

iϕ(X) ∪
N−1⋃
i=0

i
(
− ϕ(X)

)
.
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Then C is compact.
Assume that x ∈ X, n ∈ Z, n > N . Consider the sequence

x, Tx, . . . , T i−1x, T ix, . . . , Tn−j−1x, Tn−jx, . . . , Tn−1x,

where i is the smallest nonnegative integer such that T ix ∈ U , and j is the
smallest nonnegative integer such that Tn−jx 6∈ U . Then Tn−j−i−1(T ix) =
Tn−j−1x ∈ U , and by (8.17), ϕ(n−j−i−1)(T ix) ∈ K. Thus

ϕ(n)(x) = ϕ(i)(x) + ϕ(n−j−i−1)(T ix) + ϕ(j)(Tn−j−1x) ∈ Ki,j ⊂ C.

If n 6 −N then ϕ(n)(x) = −ϕ(−n)(Tnx) ∈ −Ki,j ⊂ C for some i, j.
(b) Since ϕ(n)(x) ∈ C, x ∈ X, n ∈ Z, there exists a compact Tϕ-invariant

subset of X × G. This implies that there exists a compact Tϕ-minimal subset
M ⊂ X × G. It follows from πX(M) = X that

⋃
g∈G(M + g) = X × G. Hence

all points (x, g) ∈ X ×G are almost periodic.
Given a compact minimal set M ⊂ X ×G let

H(M) = {g ∈ G : M + g = M}.

Clearly H(M) is a closed subgroup of G. Now, fix a compact minimal M0 and
let H = H(M0). If M is another minimal subset of X ×G then M = M0+ g for
some g ∈ G and it is easy to see that H(M) = H for all minimal M ⊂ X × G.
We intend to prove that H = {0}. To this end suppose H 6= {0} and choose
g0 ∈ H, g0 6= 0. There exists a compact neighbourhood K of g0 such that 0 6∈ K.
If follows from Proposition 5.2.5 that we can find an open nonempty U ⊂ X

satisfying

(5.6) ∀
n∈Z

x ∈ U ∩ T−nU ⇒ ϕ(n)(x) 6∈ K.

If x0 ∈ U then (x0, g0) = (x0, 0) + g0 ∈ Orb(x0, 0), so there exists a sequence
(ni)i>1 such that Tniϕ (x0, 0) → (x0, g0). Thus Tnix0 → x0, ϕ(ni)(x0) → g0 and
there exists i0 such that Tnix0 ∈ U for all i > i0. Hence for i > i0 we have
x0 ∈ U ∩T−niU and, by (8.18), ϕ(ni)(x0) 6∈ K. This gives rise to a contradiction
because ϕ(ni)(x0)→ g0.

Therefore H = {0} and M is a graph of some continuous ξ:X → G. Since
M is Tϕ-invariant, ϕ(x) = ξ(Tx)− ξ(x), x ∈ X, so ϕ is a coboundary. �

Proposition 5.2.7. Let ϕ:X → G be a cocycle, where (X,T ) is a compact
minimal flow and G is a locally compact Abelian group. Then E∞(ϕ) = {0} iff
ϕ is a coboundary.

Proof. If E∞(ϕ) = {0}, then by Lemma 5.2.6 ϕ is a coboundary. Conversely,
if ϕ = f ◦T−f for some continuous f , then taking an open neighbourhood V ⊂ G
of zero and an open U ⊂ X such that x′, x′′ ∈ U implies f(x′)−f(x′′) ∈ V we get
that whenever U ∩ T−nU 6= ∅, then f(Tnx)− f(x) ∈ V for each x ∈ U ∩ T−nU .
Therefore E∞(ϕ) = {0}. �
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Due to this proposition we can define (similarly to [89]) the notion of quasi
regular cocycle.

Definition 5.2.8. Let (X,T ) be a minimal flow, G a locally compact Abe-
lian group and ϕ:X → G a cocycle. We say that ϕ is quasi regular if the cocycle
ϕ∗:X → G/E(ϕ) given by ϕ∗(x) = ϕ(x) +E(ϕ) satisfies E∞(ϕ∗) = {0}, that is
ϕ∗ is a G/E(ϕ) coboundary.

5.3. Characterization of essential values
for minimal rotations

Let X be a compact metric monothetic group, Tx = ax, where {an : n ∈ Z}
is dense in X. It follows that T is minimal. Assume that G is a locally compact
Abelian group and ϕ:X → G is a cocycle.

Proposition 5.3.1. Assume g ∈ G∞. Then g ∈ E∞(ϕ) if and only if there
exists a rigidity time (nt)t>1 and a sequence (xt)t>1 of elements of X such that
ϕ(nt)(xt)→ g.

Proof. Assume that g ∈ E∞(ϕ). Choose a sequence of open sets X ⊃ W1 ⊃
W2 ⊃ . . . with

⋂
tWt = {e}. There are open symmetric sets Ut ⊂ X, t > 1, such

that U1 ⊃ U2 ⊃ . . . and UtU−1t ⊂Wt, t > 1. Choose open sets G∞ ⊃ V1 ⊃ V2 ⊃
. . . with

⋂
t Vt = {g}. Then there exist integers nt and xt ∈ X, t > 1, such that

xt ∈ Ut ∩ T−ntUt ∩ {x : ϕ(nt)(x) ∈ Vt}.

Therefore xt ∈ Ut and Tntxt = antxt ∈ Ut for t > 1, which implies ant =
antxtx

−1
t ∈ UtU−1t ⊂ Wt. Since

⋂
Wt = {e}, ant → e, i.e. Tnt → id uniformly.

Moreover, ϕ(nt)(xt) ∈ Vt, t > 1, which forces ϕ(nt)(xt)
t→∞−−−→ g.

Assume now that ϕ(nt)(xt)
t→∞−−−→ g ∈ G∞, where xt ∈ X, t > 1, and (nt)t>1

is a rigidity time for T . Let U be a nonempty open subset of X and V ⊂ G∞ a
neighbourhood of g. We will show that for some t the following holds:

(5.7) U ∩ T−ntU ∩ {x : ϕ(nt)(x) ∈ V } 6= ∅.

Let W be a nonempty open set satisfying W ⊂W ⊂ U . As Tnt → Id uniformly,

(5.8) ∃
t1
∀

t>t1
W ⊂ U ∩ T−ntU.

Since T is minimal,

(5.9) ∃
k>0

∀
x∈X

{x, Tx, . . . , T k−1x} ∩W 6= ∅.

Find open sets 0 ∈ V0 ⊂ G and g ∈ V1 ⊂ G∞ such that kV0 + V1 ⊂ V . Then

(5.10)
∃
t2
∀

t>t2
ϕ(nt)(xt) ∈ V1,

∃
t3
∀

t>t3
∀

x∈X
ϕ(Tntx)− ϕ(x) ∈ V0.
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Take t > max{t1, t2, t3}. By (5.9), T ixt ∈ W for some i, 0 6 i < k. Then
T ixt ∈ U and, by (5.8), Tnt(T ixt) ∈ U . By virtue of (5.10) we have

ϕ(nt)(T ixt) = ϕ(nt)(xt) + (ϕ(nt)(T ixt)− ϕ(nt)(xt))

= ϕ(nt)(xt) +
i−1∑
m=0

(ϕ(Tnt+mxt)− ϕ(Tmxt))

∈ ϕ(nt)(xt) + iV0 ⊂ V1 + kV0 ⊂ V.

Thus T ixt ∈ U , Tnt(T ixt) ∈ U , ϕ(nt)(T ixt) ∈ V and this completes the proof.�

Remark 5.3.2. It follows from Proposition 5.3.1, that if (nt)t>1 is a rigidity
time for T , then all cluster points in the Vietoris topology on 2G∞ of the net
ϕ(nt)(X), t > 1 are subsets of E∞(ϕ).

5.4. Classification of continuous real cocycles
over minimal rotations

During this section we will assume that G = R, X is a compact metric
monothetic group, T :X → X, Tx = ax, where {an : n ∈ Z} is dense in X.
Thus (X,T ) is strictly ergodic, i.e. it is minimal and Haar measure µ is its
unique probability invariant measure. In particular, for each continuous function
f :X → R,

(5.11)
1
N

N−1∑
n=0

f ◦ Tn →
∫
X

f dµ uniformly on X.

For a continuous function f :X → R set

‖f‖ = sup{|f(x)| : x ∈ X}.

Lemma 5.4.1. If ϕ:X → R is a cocycle and
∫
X
ϕdµ 6= 0, then E∞(ϕ) =

{0,∞}.

Proof. Assume that
∫
X
ϕdµ = c 6= 0. By (5.11),

1
N

N−1∑
n=0

ϕ ◦ Tn =
1
n
ϕ(n) →

∫
X

ϕdµ = c uniformly on X.

Thus |ϕ(n)| → +∞ uniformly. In particular, for each sequence (xt)t>1 of elements
of X, |ϕ(n)(xt)| → +∞, so, in view of Proposition 5.3.1, E(ϕ) = {0}. Choosing
any rigidity time (nt)t>1 and any x ∈ X we get that |ϕ(nt)(x)| → +∞, so
∞ ∈ E∞(ϕ). �

Remark 5.4.2. It follows that if
∫
X
ϕdµ 6= 0, then each orbit in X × R is

closed, hence minimal. Thus X × R is a disjoint union of closed orbits.
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Lemma 5.4.3. If ϕ:X → R is a cocycle and ϕ(nt) → 0 uniformly for each
rigidity time (nt)t>1, then E∞(ϕ) = {0} and there exists a continuous function
ξ:X → R such that ϕ(x) = ξ(Tx)− ξ(x), x ∈ X.

Proof. Choose any rigidity time (nt)t≥1 and any sequence (xt)t>1 from X.
Then ϕ(nt)(xt) → 0. By Proposition 5.3.1, E∞(ϕ) = {0}. The rest follows from
Proposition 5.2.7. �

Proposition 5.4.4. If ϕ:X → R is a coboundary, then the sets

Γr = {(x, ξ(x) + r) : x ∈ X}, r ∈ R,

are compact and minimal; thus each point in X×R is almost periodic and X×R
is a union of minimal sets. �

Lemma 5.4.5. Let ϕ:X → R be a cocycle satisfying
∫
X
ϕdµ = 0. If there

exist a c > 0 and a rigidity time (nt)t>1 such that ‖ϕ(nt)‖ > c for all t > 1, then
E(ϕ) = R.

Proof. Passing to a subsequence of (nt)t>1 and replacing ϕ by−ϕ if necessary
we may assume that

∀
t>1

sup{ϕ(nt)(x) : x ∈ X} > c.

Take r ∈ R, r ∈ (0, c). We will show, that r ∈ E(ϕ). Choose ε > 0 such that
(r−2ε, r+2ε) ⊂ (0, c) and find δ > 0 for which if d(x, x′) < δ then |ϕ(x)−ϕ(x′)| <
ε. There exists t such that d(Tntx, x) < δ for each x ∈ X. Find y, z ∈ X satisfying
ϕ(nt)(y) < 0, ϕ(nt)(z) > c. Then there exists a positive integer k such that
ϕ(nt)(T ky) > c−ε > r+ε. Because |ϕ(nt)(Tx)−ϕ(nt)(x)| = |ϕ(Tntx)−ϕ(x)| < ε

for each x ∈ X, so for each 0 < i < k, |ϕ(nt)(T iy)−ϕ(nt)(T i−1y)| < ε. Therefore
we can find 0 < i < k such that ϕ(nt)(T iy) ∈ (r − ε, r + ε). Thus r ∈ E(ϕ). By
Proposition 5.2.2, E(ϕ) = R. �

It follows from Proposition 5.2.3, Lemmas 5.4.1, 5.4.3, 5.4.5, Remarks 5.4.2
and 5.4.4 that the following theorem holds.

Theorem 5.4.6. Let T be a minimal rotation on a compact metric mono-
thetic group X, ϕ:X → R a continuous cocycle. Then either Tϕ is topologically
ergodic or X × R is a union of closed orbits or ϕ is a coboundary.

Remark 5.4.7. Theorem 5.4.6 is strictly related to a G. Atkinson’s result
[6, Theorem 1]. Atkinson’s theorem is formulated for a rotation on a multi-
dimensional torus, and for a cocycle with values in Rm. Taking m = 1, as we
have assumed in this chapter, Atkinson’s theorem gives a part of Theorem 5.4.6
for the first and for the third case.

Directly from Theorem 5.4.6 we obtain the following.
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Corollary 5.4.8. If T is a minimal rotation and ϕ:X → Z is a cocycle with
zero mean then ϕ is a coboundary.

Collecting results of Remark 5.4.2, Proposition 5.4.4 and Theorem 5.4.6 we
get the following.

Corollary 5.4.9. Let T be a minimal rotation on a compact metric mono-
thetic group X equipped with a probability Haar measure µ, ϕ:X → R a conti-
nuous map.

If
∫
X
ϕdµ 6= 0, then E∞(ϕ) = {0,∞} and each point in X×R is wandering.

If
∫
X
ϕdµ = 0, then ϕ is either topologically ergodic (with E(ϕ) = R) or

a coboundary (with E∞(ϕ) = {0}).

In Section 5.5 we will show that such a simple classification of real cocycles
is no longer true if a rotation T is replaced by a general strictly ergodic flow.

Remark 5.4.10. Let (X,T ) be a minimal flow and G be either Z or R.
Consider the Banach space C(X,G) of all continuous functions φ:X → G with
the supremum norm. Let C0(X,G) be a (closed) subspace of C(X,G) consisting
of these φ for which

∫
X
φdλ = 0 for all T -invariant Borel probability measures λ

on X. Denote by E(X,G) the set of all topologically ergodic cocycles φ:X → G.
It follows from [46, Proposition 9.12] that coboundaries form a dense subset of
C0(X,G). Therefore if C0(X,G) contains at least one topologically ergodic co-
cycle then the set E(X,G)∩C0(X,G) is dense in C0(X,G). In general, E(X,G)
is not contained in C0(X,G). However if (X,T ) is a minimal rotation, the inclu-
sion E(X,G) ⊂ C0(X,G) holds. Assume now that T is a minimal rotation and
E(X,G) 6= ∅. For each m > 0 set

Cm = {φ ∈ C0(X,G) : ‖φ(n)‖ 6 m for all n ∈ Z}.

Then Cm is closed and, since E(X,G) ⊂ C0(X,G) \Cm, Cm has empty interior,
so it is nowhere dense in C0(X,G). By Gottschalk–Hedlund Theorem [40, The-
orem 14.11], Cm consists solely of coboundaries. It follows from Theorem 5.4.6
that

E(X,G) =
∞⋂
m=1

Ccm

is a Gδ dense subset of C0(X,G).

5.5. Zero-time cocycle for Morse shifts

In contrast with Corollary 5.4.8, below, we will give examples of integer-
valued cocycles with E∞(ϕ) = {0,∞} and

∫
X
ϕ = 0. They will be considered

over so called Morse shifts introduced in [47] (we will recall the definition below).
Morse shifts are subshifts of the full shift ({0, 1}Z, T ), they are minimal and
monoergodic. For details we refer to [58].
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By blocks we will mean finite sequences of zeros and ones, in notation B =
b0 . . . bn−1, where bi ∈ {0, 1}. The number |B| = n we will call the length of B. If
B = b0 . . . bk−1 is a block and i ∈ {0, 1}, then set B + i = (b0 + i) . . . (bk−1 + i),
where the summation bj + i, i = 0, . . . , k − 1, is taken modulo 2. In particular
denote B̃ = B + 1, the “mirror” of B. For blocks B = b0 . . . bk−1 and C =
c0 . . . cl−1 put

B × C = (B + c0)(B + c1) . . . (B + cl−1).

If x ∈ {0, 1}Z, x = . . . x−3x−2x−1x0x1x2x3 . . . , then for integers k 6 n denote
x[k, n] = xkxk+1 . . . xn. For B = b0 . . . bk−1 and for 0 6 i 6 j 6 k − 1 denote
B[i, j] = bibi+1 . . . bj . Given block B define

[B] = {x ∈ {0, 1}Z : x[0, |B| − 1] = B}.

Now let A = a0 . . . an−1 be a block satisfying A[0] = a0 = 0. Additionally
we will assume that A is neither of the form 010101 . . . 010 nor 00 . . . 0. Define
a sequence Ct, t > 1, of blocks by

C1 = A, Ct+1 = Ct ×A, t = 1, 2, . . .

Then |Ct| = nt, t > 1 and Ct+s[0, nt− 1] = Ct for t, s > 1. Thus the intersection⋂
t>1[Ct] ⊂ {0, 1}Z is a nonempty closed set. Choosing any y ∈

⋂
t>1[Ct] we can

find x0 ∈ Orb(y) satisfying

either x0[−nt, nt − 1] = CtCt, t > 1

or x0[−nt, nt − 1] = C̃tCt, t > 1.

Put
X = Orb(x0).

Then (X,T ) is a Morse shift. Take x ∈ X. Then for all t > 1, x is an infinite
concatenation of Ct and C̃t and this structure is unique in the following meaning:
there exists a unique sequence of integers (pt(x))t>1 such that

−nt 6 pt(x) < 0, t > 1,

x[knt + pt(x), knt + pt(x) + nt − 1] = Ct or C̃t for all k ∈ Z

(see [58]). Moreover, a Morse shift is recognizable in the sense that there exists
a positive integer L, called a recognizability constant, such that for each x ∈ X
and for each t > 1, if x[p, p + Lnt − 1] = (Ct + i1)(Ct + i2) . . . (Ct + iL), then
p = pt(x) + knt for some integer k.

Let {0, 1}∗ be the set of all blocks. Define ψ: {0, 1}∗ → Z by

ψ(B) =
|B|−1∑
i=0

(−1)B[i].
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Then

ψ(BC) = ψ(B) + ψ(C), ψ(B̃) = −ψ(B), ψ(B × C) = ψ(B)ψ(C).

Let ϕ:X → Z be defined by the formula

ϕ(x) = (−1)x[0], x ∈ X.

The cocycle corresponding to ϕ is called the zero-time cocycle. Note that ϕ(k)(x)
= ψ(x[0, k − 1]) for k > 1 and

∫
X
ϕdµ = 0.

We will show the following.

Proposition 5.5.1.

(a) If ψ(A) = 0, then ϕ is a coboundary.
(b) If |ψ(A)| = 1, then Tϕ is topologically ergodic.
(c) If |ψ(A)| > 2, then E∞(ϕ) = {0,∞}. In particular, ϕ is not quasi

regular.

Proof. (a) Clearly ψ(Ã) = 0 and if x ∈ X, k > 0, then

x[0, k − 1] = (A[r, n− 1] + i0)(A+ i1) . . . (A+ il−1)(A[0, s] + il),

where 0 < r 6 n− 1, 0 6 s < n− 1. Thus

|ϕ(k)(x)| = |ψ(x[0, k − 1])| = |ψ(A[r, n− 1] + i0) + ψ(A[0, r] + il)| < 2n.

Since ϕ(−k)(x) = −ϕ(k)(T−kx) for k > 0, the cocycle ϕ(·) is bounded on Z×X,
so ϕ is a coboundary.

(b) First assume that ψ(A) = 1. Then ψ(Ct) = 1, ψ(C̃t) = −1, t > 1. We
will show that either 1 ∈ E(ϕ) or −1 ∈ E(ϕ). It follows from ψ(A) = 1 and
A 6= 0101 . . . 010, that either

(5.12) ∃
06k<n−1

ψ(A[0, k]) = 1, A[k + 1] = 0,

or

(5.13) ∃
0<k<n−1

ψ(A[0, k]) = −1, A[k + 1] = 0.

Indeed, by looking at ψ(A[0, i]), i = 0, . . . , n− 1, we get that either there exists
j > 0 with ψ(A[0, j]) = 2 or there exists j > 0 with ψ(A[0, j]) = −1. In the
first case, choosing the smallest j with this property we get ψ(A[0, j − 1]) = 1,
A[j] = 0. In the second case, choosing the last j with this property we get
ψ(A[0, j]) = −1, A[j + 1] = 0. Now, take any nonempty open set U ⊂ X. There
exists t > 1 such that T p[Ct + i] ⊂ U for some 0 6 p < nt, i ∈ {0, 1}. Let
B = (A× . . .× A)× (Ct + i), where in the definition of B the number of A’s is
such that |A× . . .×A| > L, L is the recognizability constant. Then B starts with
the block Ct + i (recall that A starts with 0) and hence T p[B] ⊂ T p[Ct + i] ⊂ U .
Actually we know more, namely, for each x ∈ T p[B] we have pt(x) = pt+1(x) = p
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(because of the recognizability property). Suppose (5.12) is valid and take x ∈
T p[B]. ThenT kn

t

x ∈ T p[Ct + i] ⊂ U and

ϕ(kn
t)(x) = ψ(x[0, knt − 1]) = 1.

Thus we have proved that 1 ∈ E(ϕ), so E(ϕ) = Z.
The case (5.13) is similar and gives ϕ(kn

t)(x) = −1, thus E(ϕ) = Z.
If ψ(A) = −1, then we can either repeat our previous considerations or

observe that the block A×A defines the same system X as A and ψ(A×A) = 1.
Thus E(ϕ) = Z.

It follows from Proposition 5.2.3 that Tϕ is topologically ergodic.
(c) Fix a positive integer M and given an open nonempty set U ⊂ X find

x ∈ U and t > M with T ptx ∈ [Ct + i] ⊂ T ptU , where (pt)t>1 is the sequence
defining the unique structure of Ct’s and C̃t’s on x. Find k > 0 such that x[pt +
knt, pt + (k + 1)nt − 1] = Ct + i. Since |ψ(A)| > 2 and ψ(Ct) = ±ψ(A)t, the
number ψ(A)t divides ϕ(k)(x). Clearly |ψ(A)t| > t > M . Thus ∞ ∈ E∞(ϕ).
To show that E(ϕ) = {0}, suppose that there is a positive m ∈ E(ϕ). Fix t

satisfying |ψ(A)|t > m. Let U = [Ct+s], where sn > L (L is the recognizability
constant for X). There is k such that U ∩ T−kU ∩ {x : ϕ(k)(x) = m} 6= ∅. By
the recognizability, nt divides k. Thus ϕ(k)(x) is of the form ϕ(k)(x) = l|ψ(A)|t
for some l ∈ Z. Since |ψ(A)|t > m > 0, ϕ(k)(x) 6= m, a contradiction. Thus
E(ϕ) = {0}. �

According to a private letter from A. Forrest ([20]), he proved the following
theorem.

Suppose that (X,T ) is minimal Cantor and that ϕ:X → Z is a cocycle such
that its mean with respect to every T -invariant measure equals zero. Then either

(i) ϕ is a coboundary or
(ii) ϕ is topologically ergodic or
(iii) E∞(ϕ) = {0,∞} or
(iv) ϕ is cohomologous to a cocycle nψ for some n > 1 with ψ:X → Z

topologically ergodic.

5.6. An application – a disjointness theorem

Assume that G is a locally compact group acting continuously on a compact
Hausdorff space Y , G×Y 3 (g, y)→ g(y) ∈ Y ; thus all g’s are homeomorphisms.
Then the pair (Y,G) is said to be a G-flow. A subset D ⊂ Y is called G-minimal,
if D is closed, G-invariant (gD = D for all g ∈ G) and the only proper subset of
D with these properties is the empty set. A G-flow (Y,G) is G-minimal if Y is
G-minimal.
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Now, let (X,T ) be a compact minimal Z-flow, G a locally compact group
acting on a compact Hausdorff space Y , ϕ:X → G a cocycle. Define a home-
omorphism T̃ϕ:X × Y → X × Y by the formula

T̃ϕ(x, y) = (Tx, ϕ(x)(y)).

We will explore Z-flows of the form (X × Y, T̃ϕ).

Proposition 5.6.1. Let (X,T ) be a compact minimal flow, G a locally com-
pact group acting on a compact Hausdorff space Y , ϕ:X → G a cocycle such that
Tϕ is point transitive.

(a) If M ⊂ X × Y is T̃ϕ-minimal, then there exists a compact G-invariant
Y0 ⊂ Y such that M = X × Y0. Moreover (Y0, G) is point transitive.

(b) If the G-flow (Y,G) is minimal, then T̃ϕ is also minimal.
(c) If the G-flow (Y,G) is point transitive then T̃ϕ is also point transitive.

Proof. (a) If (x0, g0) has dense orbit in X × G, then also (x0, e) has dense
orbit in X ×G, where e is the unit element of G. Since X is minimal and X ×Y
is compact, the projection πX :X ×Y → X maps M onto X, πX(M) = X. Find
y0 ∈ Y such that (x0, y0) ∈M . Define

D = {(x, g) ∈ X ×G : (x, g(y0)) ∈M}.

Then (x0, e) ∈ D, D is closed and Tϕ-invariant, so D = X ×G. Put

Y0 = G(y0),

where G(y0) = {g(y0) : g ∈ G}. Since D = X × G, X × G(y0) ⊂ M . Clearly
X ×G(y0) is T̃ϕ-invariant, hence the minimality of M yields X × Y0 = M .

(b) In this case Y0 = G(y0) = Y .
(c) Assume that (x0, e) has dense orbit in X × G and that y0 ∈ Y has

dense orbit in Y i.e. G(y0) = Y . We will show that (x0, y0) has dense orbit in
X × Y (for T̃ϕ). Take any nonempty open sets U ⊂ X, V ⊂ Y . There exists
a nonempty open W ⊂ G such that g ∈ W implies g(y0) ∈ V . We can find
n ∈ Z with Tnϕ (x0, e) ∈ U ×W . Then Tnx0 ∈ U , ϕ(n)(x0) ∈W and T̃nϕ (x0, y0) =
(Tnx0, ϕ(n)(x0)(y0)) ∈ U × V . �

Recall that two compact flows (X1, T1) and (X2, T2) are disjoint, if the only
nonempty closed T1 × T2-invariant subset D ⊂ X1 ×X2 satisfying πi(D) = X1,
where πi(x1, x2) = xi, i = 1, 2, is just X1 × X2. In such a case we will write
T1 ⊥ T2.

Proposition 5.6.2. Assume that (X,T ) and (Z, S) are compact minimal
Z-flows such that T ⊥ S. Let G be an Abelian locally compact group acting on
a compact Hausdorff space Y in such a way that the G-flow (Y,G) is minimal.
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Let ϕ:X → G be a Z-cocycle such that Tϕ × S is point transitive. Then T̃ϕ × S
is point transitive and T̃ϕ ⊥ S.

Proof. Let (x0, g0, z0) be a point with dense orbit in (X ×G)×Z. Then also
((x0, e), z0) has dense orbit in (X × G) × Z. Assume that D ⊂ (X × Y ) × Z
is a closed, T̃ϕ × S-invariant set with πX×Y (D) = X × Y , πZ(D) = Z. Let
D̃ = πX×Z(D). Then πX(D̃) = X, πZ(D̃) = Z. Clearly D̃ is closed and T ×
S-invariant. From T ⊥ S we get D̃ = X × Z, which implies (x0, z0) ∈ D̃,
and therefore there exists y ∈ Y with (x0, y, z0) ∈ D. Define F = Fy: (X ×
G) × Z → (X × Y ) × Z by F (x, g, z) = (x, g(y), z). Since the G-flow (Y,G) is
minimal, F ((X × G) × Z) is dense in (X × Y ) × Z. Moreover, F ◦ (Tϕ × S) =
(T̃ϕ × S) ◦ F and therefore, for each (x, g, z) ∈ (X × G) × Z, F (Orb(x, g, z)) =
Orb(F (x, g, z)). Thus F (x0, e, z0) has dense orbit in (X×Y )×Z, (X×Y )×Z =
Orb(F (x0, e, z0)) = Orb(x0, e(y), z0) = Orb(x0, y, z0), which implies that T̃ϕ×S
is point transitive. Since (x0, y, z0) ∈ D, D = (X × Y )× Z and T̃ϕ ⊥ S. �

Definition 5.6.3. Let (X,T ) be a compact minimal flow. A cocycle ϕ:X →
R is called universally ergodic, if for each compact flow (Y, S) such that T ×S is
topologically ergodic, the flow Tϕ × S is also topologically ergodic.

We will now show the existence of universally ergodic cocycles over irrational
rotations.

Let T = {x ∈ C : |x| = 1} be the unit circle on the complex plane, T :T→ T,
Tx = exp(2πiα)x, where α is irrational. Denote by dx the probability Haar
measure on T.

Lemma 5.6.4. Let ϕ:T → R be a cocycle such that
∫
T ϕdx = 0 and let

(nt)t>1 be a sequence of integers.

(a) If ∃
c>0
∀
t>1

sup{ϕ(nt)(x) : x ∈ T} > c then

∀
0<r<c

∃
(xt)t>1

∀
t>1

ϕ(nt)(xt) = r.

(b) If ∃
c<0
∀
t>1

inf{ϕ(nt)(x) : x ∈ T} < c then

∀
c<r<0

∃
(xt)t>1

∀
t>1

ϕ(nt)(xt) = r.

Proof. We will prove only the first statement. Take 0 < r < c and denote
ε = (c − r)/2. Since

∫
T ϕdx = 0, there exists a sequence (yt)t>1 such that

ϕ(nt)(yt) =
∫
T ϕ
(nt) dx = 0, t > 1. By assumption, we can find a sequence

(zt)t>1 such that ϕ(nt)(zt) > r + ε. By continuity of ϕ(nt), t > 1, there exists
a sequence (xt)t>1 satisfying ϕ(nt)(xt) = r, t > 1. �
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Proposition 5.6.5. Let T :T → T be an irrational rotation, ϕ:T → R a
cocycle. If ∫

T
ϕ(x) dx = 0 and ∃

c>0
∀
n>1
‖ϕ(n)‖ > c,

then ϕ is universally ergodic.

Proof. Let (Y, S) be a compact flow such that T ×S is topologically ergodic.
Define ϕ̃:T × Y → R by the formula ϕ̃(x, y) = ϕ(x). Then Tϕ × S is clearly
isomorphic to (T × S)ϕ̃. We will show that E(ϕ̃) = R.

Let U ⊂ T and V ⊂ Y be nonempty open sets. Consider a sequence of open
sets U ⊃ U1 ⊃ U2 ⊃ . . . such that

⋂
t Ut is a one point set. Since T × S is

topologically ergodic, for each t there is nt satisfying

(Ut × V ) ∩ (T × S)−nt(Ut × V ) 6= ∅.

Then (nt)t>1 is a rigidity time for T . Moreover

∀
t

(U × V ) ∩ (T × S)−nt(U × V ) 6= ∅.

Replacing ϕ by −ϕ and passing to a subsequence if necessary we may assume
that

∀
t>1

sup{ϕ(nt)(x) : x ∈ T} > c.

Now choose any r ∈ (0, c). By Lemma 5.6.4, there exists a sequence (xt)t>1 such
that

∀
t>1

ϕ(nt)(xt) = r.

Fix an arbitrary ε > 0. We will show that

(U × V ) ∩ (T × S)−nt(U × V ) ∩ {(x, y) : |ϕ̃(nt)(x, y)− r| < ε} 6= ∅.

Let W ⊂W ⊂ U be a nonempty open set. Then

∃
t1
∀

t>t1
W ⊂ U ∩ T−ntU,

and since T is minimal,

∃
k>0

∀
x∈T
{x, Tx, , . . . , T k−1x} ∩W 6= ∅.

Furthermore

∃
t2
∀

t>t2
∀
x∈T
|ϕ(Tntx)− ϕ(x)| < ε

k
.
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Take t > t0 = max{t1, t2}. Denote yt = T ixt ∈ W , where 0 6 i < k. Then
yt ∈ U ∩ T−ntU . Moreover

|ϕ(nt)(yt)− r| = |ϕ(nt)(yt)− ϕ(nt)(xt)|

=
∣∣∣∣ i−1∑
m=0

ϕ(Tm+ntxt)− ϕ(Tmxt)
∣∣∣∣

6
i−1∑
m=0

|ϕ(Tm+ntxt)− ϕ(Tmxt)| < ε.

Therefore ϕ̃(nt)(yt, z) ∈ (r−ε, r+ε) for each z ∈ Y . Now choose zt ∈ V ∩S−ntV .
Then

(yt, zt) ∈ (U × V ) ∩ (T × S)−nt(U × V ) ∩ {(x, y) : |ϕ̃(nt)(x, y)− r| < ε},

which completes the proof. �

Now we will argue that cocycles satisfying assumptions of Proposition 5.6.5
do exist. Suppose that ϕ:T → R is a cocycle for Tx = exp(2πiα)x with zero
mean. Moreover suppose that the condition

(5.14) ‖ϕ(n)‖ > c > 0 for all n > 1

is not valid. It follows that there exists an increasing sequence (kn)n>1 of posi-
tive integers with ϕ(kn) → 0 uniformly, so exp(2πiϕ(kn)) → 1 uniformly. Con-
sider an operator Vϕ:L2(T, dx) → L2(T, dx) given by the formula VϕF (x) =
exp(2πiϕ(x))F (Tx). Then clearly V kϕF (x) = exp(2πiϕ(k)(x))F (T kx). Taking
F ≡ 1 we get

σ̂[k] = 〈V kϕ 1, 1〉 =
∫
T

exp(2πiϕ(k)(x)) dx.

It follows that if the condition (5.14) is not satisfied, then there exists a spectral
measure σ of the operator Vϕ which is a Dirichlet measure: σ̂[kn]→ σ(T) for some
sequence (kn). If for instance the maximal spectral type of Vϕ is a Rajchman
measure then (5.14) holds. In particular (5.14) holds if the maximal spectral
type of Vϕ is Lebesgue measure. Examples of continuous functions ϕ for which
the maximal spectral type of Vϕ is Lebesgue can be found in [11], [43], [69].
Because each f ∈ L1(T) is cohomologous to a continuous function [53], also
many Anzai cocycles determines ϕ ∈ C(T) satisfying (5.14). M. Lemaczyk has
recently proved [62] that if a special flow with a function f over rotation is
mixing then the function f0 = f −

∫
f satisfies |f (n)0 | → ∞ in measure. It follows

that there is a continuous function ϕ in the cohomology class of f0 such that
‖ϕ(n)‖C(T) →∞.

In what follows we will briefly describe notions of RIC and PI flows. For more
details we refer to [28] or [97].
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Recall that a flow (Z, S) is topologically weakly mixing, if the product flow
(Z × Z, S × S) is topologically ergodic. It is well known that all minimal rota-
tions are disjoint from all weakly mixing minimal flows [22]. For a factor map
π: (Z, S) → (X,T ) denote Rπ = {(z1, z2) : π(z1) = π(z2)}. The map π is called
weakly mixing, if the flow (Rπ, S × S) is topologically ergodic. If Z is minimal
then π is said to be relatively incontractible, RIC for short, whenever all proximal
minimal extensions of X are disjoint from π. For π which is RIC there exists
a commutative diagram

Z

π

��

π̃

��
@@

@@
@@

@@

X̃

ρ
��~~
~~
~~
~~

X

where ρ is the largest equicontinuous extension of X that is a factor of Z. The
above decomposition π = ρπ̃ we will call a RIC-decomposition of π. For any
minimal flow (Z, S) one can construct a diagram called the canonical PI-tower.
This diagram is presented at Figure 5.1.

Z

��

Z1
θ̃1oo

π1

~~||
||
||
||

π̃1

��

Z2
θ̃2oo

π2

~~||
||
||
||

π̃2

��

· · ·oo Z∞oo

π∞

��

∗ X1
θ1

oo Y1ρ1
oo X2

θ2

oo Y2ρ2
oo · · ·oo Y∞oo

Figure 5.1

In the picture all θi, θ̃i are proximal, all πi are RIC and all decompositions πi =
ρiπ̃i are the RIC-decompositions. If the map π∞ is an isomorphism, then (Z, S)
is called a PI-flow. If π:Z → X, where (X,T ) is a rotation, is RIC and weakly
mixing then X is the maximal equicontinuous factor of Z and the canonical
PI-tower has the form shown at Figure 5.2.

Z

��

Z
Idoo

π

~~}}
}}
}}
}}

π

��

∗ Xoo X
Id
oo

Figure 5.2

In such a case Z is not PI provided π is not an isomorphism.
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Theorem 5.6.6. Let (X,T ) be a minimal rotation, ϕ:X → R a universally
ergodic cocycle, (Y,R) a compact minimal R-flow. Then T̃ϕ ⊥ S for each weakly
mixing compact minimal flow (Z, S). If additionally (Y,R) is weakly mixing and
Y is metric then T̃ϕ is not PI.

Proof. Let (Z, S) be a weakly mixing compact minimal flow. Then T ⊥ S

and, by assumption, Tϕ × S is topologically ergodic hence point transitive. By
Proposition 5.6.2, T̃ϕ ⊥ S.

Now assume that the R-flow (Y,R) is weakly mixing. First we will show that
the extension π: (X × Y, T̃ϕ) → (X,T ), where π(x, y) = x, is weakly mixing.
Denote

Rπ = {(x, y, x, y′) : x ∈ X, y, y′ ∈ Y } u X × Y × Y.
It suffices to show that the flow (Rπ, T̃ϕ×ϕ) is point transitive, where

T̃ϕ×ϕ(x, y, y′) = (Tx, ϕ(x)(y), ϕ(x)(y′)).

Since (Y,G) is weakly mixing, (Y × Y,G) is point transitive (Y is metric). The
cocycle ϕ × ϕ:X → ∆R = {(r, r) : r ∈ R} is clearly topologically ergodic.
By Proposition 5.6.1, T̃ϕ×ϕ:Rπ → Rπ is point transitive, thus the extension
π: (X × Y, T̃ϕ) → (X,T ) is weakly mixing. It follows from [28, Proposition 2.1]
that π is RIC. In particular (X,T ) is the maximal equicontinuous factor of T̃ϕ.
Thus the canonical PI tower for π is reduced to X ×Y π−→ Y , so T̃ϕ is not PI.�

Denote by W the class of all compact minimal weakly mixing flows and by W⊥

the class of all compact minimal flows, which are disjoint from all flows belonging
to W. Following [38] we say that a compact minimal flow (X,T ) is a multiplier of
the class of topological systems disjoint from weakly mixing, if for each compact
minimal flow (Z, S) ∈ W⊥ and for each minimal subset M ⊂ X × Z, the flow
(M,T × S) is in W⊥. Recall that an extension π: (Y,G) → (Y1, G) is regular if
for each almost periodic pair (y1, y2) ∈ Y × Y satisfying π(y1) = π(y2) there
exists a homeomorphism S:Y → Y such that S ◦ g = g ◦S for all g ∈ G (we call
such an S an automorphism of (Y,G)) and satisfying S(y1) = y2. A flow (Y,G)
is regular if treated as an extension of the one point flow (∗, G) it is regular.

Assume now that (Y,R) is regular and let T̃ϕ:X × Y → X × Y satisfy the
assumptions of Theorem 5.6.6, i.e. ϕ:X → R is a universally ergodic cocycle
over a minimal rotation (X,T ) and (Y,R) is a compact minimal R-flow. Thus
(X × Y, T̃ϕ) ∈W⊥. Let R:Z → Z be a homeomorphism of a compact Hausdorff
space such that the flow (Z,R) is minimal. Assume that (Z,R) is in W⊥. Let
M ⊂ (X×Y )×Z be a minimal subset. We will show that (M, T̃ϕ×R) is in W⊥

giving explicite a family of examples of multipliers of W⊥, precising a result of
E. Glasner and B. Weiss, [38].

First observe that the extension (X × Y, T̃ϕ) → (X,T ) is regular. Indeed, if(
(x, y1), (x, y2)

)
is an almost periodic element in

(
(X × Y )× (X × Y ), T̃ϕ× T̃ϕ

)
,



120 Mieczys law K. Mentzen

then for some nontrivial sequence of integers (T̃niϕ × T̃niϕ )
(
(x, y1), (x, y2)

)
→(

(x, y1), (x, y2)
)
, hence ϕ(ni)(x)(y1) → y1, ϕ(ni)(x)(y2) → y2 and (y1, y2) is al-

most periodic in (Y ×Y,R). Since (Y,R) is regular, there is an automorphism of
(Y,R) such that S(y1) = y2. Define S̃:X × Y → X × Y by S̃(x, y) = (x, S(y)).
Clearly S̃(x, y1) = (x, y2). Thus the extension (X × Y, T̃ϕ) → (X,T ) is regular
and we can apply Proposition 4.1 in [38]. Since rotations are multipliers of the
class of topological systems disjoint from weakly mixing, so is T̃ϕ.



CHAPTER 6

ESSENTIAL VALUES OF TOPOLOGICAL COCYCLES
OVER MINIMAL ROTATIONS

In this chapter a theory of essential values of cocycles over minimal rotations
with values in locally compact Abelian groups, especially Rm will be developed.
We will give some criteria for such cocycles to be conservative and describe the
group of essential values of such ones.

6.1. Essential values of a cocycle

The following proposition is a topological version of a similar one from [69].

Proposition 6.1.1. Let (X,T ) be a flow. Assume that G,H are locally com-
pact Abelian groups and let π:G→ H be a continuous group homomorphism. If
ϕ:X → G is a continuous map, then

π(E(ϕ)) ⊂ E(π ◦ ϕ).

Proof. Let h ∈ π(E(ϕ)), then h = π(g) for some g ∈ E(ϕ). Fix any open
U ⊂ X and an open neighbourhood V of h = π(g) in H. Then π−1(V ) is an
open neighbourhood of g in G and there exists an integer N such that

U ∩ T−NU ∩ {x ∈ X : ϕ(N)(x) ∈ π−1(V )} 6= ∅.

Using the identity (π ◦ ϕ)(N) = π ◦ ϕ(N) we have

U ∩ T−NU ∩ {x ∈ X : (π ◦ ϕ)(N)(x) ∈ V }
= U ∩ T−NU ∩ {x ∈ X : ϕ(N)(x) ∈ π−1(V )} 6= ∅,

and therefore h ∈ E(π ◦ ϕ). Since E(π ◦ ϕ) is closed, the result follows. �

121
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Proposition 6.1.2. Assume that (X,T ) is a topological flow, G a locally
compact Abelian group, ϕ:X → G a continuous map, H ⊂ E(ϕ) a closed sub-
group. Let ϕH :X → G/H, ϕH(x) = ϕ(x) +H. Then E(ϕH) = E(ϕ)/H.

Proof. By Proposition 6.1.1, E(ϕ)/H ⊂ E(ϕH). To prove the converse choose
g +H ∈ E(ϕH). We will show that g ∈ E(ϕ). Take an open set U ⊂ X and an
open neighbourhood V of zero in G. Let V0 ⊂ G be such an open neighbourhood
of zero that V0 + V0 ⊂ V . Since g + H ∈ E(ϕH), there exist an integer N and
x0 ∈ X such that

x0 ∈ U ∩ T−NU ∩ {x ∈ X : ϕ(N)H (x) ∈ g +H + V0}.

Then ϕ(N)(x0) = g + h+ v0 for some h ∈ H, v0 ∈ V0. Denote

W = U ∩ T−NU ∩ {x ∈ X : ϕ(N)(x) ∈ g + h+ V0}.

Clearly W is an open subset of X, x0 ∈ W , so W 6= ∅. Since −h ∈ H ⊂ E(ϕ),
there exists an integer M such that

W ∩ T−MW ∩ {x ∈ X : ϕ(M)(x) ∈ −h+ V0} 6= ∅.

We will show that each x from the above intersection is in

U ∩ T−N−MU ∩ {x ∈ X : ϕ(N+M)(x) ∈ g + V }.

Since x ∈W∩T−MW , x ∈ U∩T−N−MU . Moreover, ϕ(N+M)(x) = ϕ(N)(TMx)+
ϕ(M)(x) and ϕ(M)(x) ∈ −h+V0. On the other hand TMx ∈W , so ϕ(N)(TMx) ∈
g + h+ V0. Thus

ϕ(N+M)(x) = ϕ(N)(TMx) + ϕ(M)(x) ∈ g + h+ V0 − h+ V0

= g + V0 + V0 ⊂ g + V

and the result follows. �

Definition 6.1.3. Let (X,T ) be a flow, G a locally compact Abelian group,
ϕ:X → G a continuous map. We say that the cocycle ϕ is regular if there exists
a continuous map f :X → G such that all values of the cocycle ψ = ϕ+f ◦T −f
are in E(ϕ).

From Proposition 6.1.2 we have the following corollary.

Corollary 6.1.4. Assume that (X,T ) is a flow, G a locally compact Abelian
group and ϕ:X → G a continuous cocycle. Let ϕ̃:X → G/E(ϕ) be given by
ϕ̃(x) = ϕ(x) + E(ϕ). Then E(ϕ̃) = {0}. If additionally ϕ is regular, then also
E∞(ϕ̃) = {0}.

Proof. The first assertion follows from Proposition 6.1.2. If ϕ is regular then
ϕ = ψ+ f − f ◦T , where ψ:X → E(ϕ). Therefore ϕ̃ = ψ̃+ f̃ − f̃ ◦T = f̃ − f̃ ◦T
is a coboundary as ψ̃ = 0. By Proposition 5.2.7, E∞(ϕ̃) = {0}. �
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Theorem 6.1.5. Let (X,T ) be a topologically ergodic flow, G a locally com-
pact Abelian group, ϕ:X → G a regular cocycle. Then (X × G,Tϕ) is a disjo-
int union of topologically ergodic subflows, each of them isomorphic to (X ×
E(ϕ), Tψ), where ψ:X → E(ϕ), ψ = ϕ+ f ◦ T − f .

Proof. For each g ∈ G define a map Jg:X × E(ϕ)→ X ×G by setting

Jg(x, v) = (x, v + g − f(x)).

We will show that the following conditions hold:

(a) Tψ is topologically ergodic.
(b) Each Jg is a homeomorphic embedding and JgTψ = TϕJg.
(c) Jg(X × E(ϕ)) is a closed and Tϕ-invariant subset of X × G for each

g ∈ G.
(d) Jg(X × E(ϕ)) = Jh(X × E(ϕ)) if and only if g − h ∈ E(ϕ).
(e) Jg(X × E(ϕ)) ∩ Jh(X × E(ϕ)) = ∅ if and only if g − h 6∈ E(ϕ).

ad (a). Assume that v ∈ E(ϕ) and let U ⊂ X be an non-empty open set,
V, V1 ⊂ E(ϕ) open neighbourhoods of zero with V1 + V1 ⊂ V . Fix an open
U1 ⊂ U such that x′, x′′ ∈ U1 implies f(x′) − f(x′′) ∈ V1. Then there exists an
integer n such that

W = U1 ∩ T−nU1 ∩ {x ∈ X : ϕ(n)(x) ∈ v + V1} 6= ∅.

We will show that

W ⊂ U ∩ T−nU ∩ {x ∈ X : ψ(n)(x) ∈ v + V }.

Take x ∈W , then x, Tnx ∈ U1 ⊂ U , so f(Tnx)− f(x) ∈ V1. Thus

ψ(n)(x) = ϕ(n)(x) + f(Tnx)− f(x) ∈ v + V1 + V1 ⊂ v + V.

We have proved that v ∈ E(ψ) which implies E(ψ) = E(ϕ) and therefore Tψ is
topologically ergodic.

ad (b). The equality JgTψ = TϕJg and continuity of Jg is clear. Since
(Jg)−1: Jg(X × E(ϕ)) → X × E(ϕ) is given by the formula (Jg)−1(x, h) =
(x, h− g + f(x)), (Jg)−1 is continuous.

ad (c). Since JgTψ = TϕJg, Jg(X × E(ϕ)) is Tϕ-invariant. To show that
Jg(X×E(ϕ)) is closed assume that (Jg(xi, vi))i∈I is a convergent net of elements
of Jg(X × E(ϕ)), Jg(xi, vi) = (xi, vi + g − f(xi)) → (x, h). Then xi → x,
vi + g − f(xi) → h. As f is continuous, f(xi) → f(x) and therefore vi →
h − g + f(x). Since E(ϕ) is a closed subgroup of G, h − g + f(x) ∈ E(ϕ) and
(x, h) = Jg(x, h− g + f(x)), so Jg(X × E(ϕ)) is closed.

ad (d). If g − h ∈ E(ϕ) and (x, v) ∈ X × E(ϕ), then

Jg(x, v) = (x, v + g − f(x)) = (x, v + (g − h) + h− f(x)) = Jh(x, v + g − h),
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thus Jg(X×E(ϕ)) ⊂ Jh(X×E(ϕ)). By symmetry of arguments, Jg(X×E(ϕ)) =
Jh(X × E(ϕ)). Conversely, if Jg(X × E(ϕ)) = Jh(X × E(ϕ)) then Jg(x, 0) ∈
Jh(X × E(ϕ)) i.e. (x, g − f(x)) = (x, v + h − f(x)) for some v ∈ E(ϕ), hence
g − h = v ∈ E(ϕ).

ad (e). Suppose (x, v) ∈ Jg(X×E(ϕ))∩Jg(X×E(ϕ)). Then (x, v) = (x, u+
g− f(x)) = (x,w+h− f(x)) for some u,w ∈ E(ϕ), hence g−h = w−u ∈ E(ϕ)
and, by (c), g − h ∈ E(ϕ). The opposite implication is clear in view of (c) and
(d) is proved.

It follows from (a)–(e) that {Jg(X × E(ϕ) : g ∈ G} is a family of pair-wise
disjoint Tϕ-invariant subsets of X ×G. Clearly these subsets cover whole X ×G
and all Jg’s are homeomorphisms satisfying JgTψ = TϕJg, so each Jg(X×E(ϕ))
is topologically ergodic. �

Remark 6.1.6. If G a locally compact Abelian group, then there exists a
closed-open subgroup H of G, that is a direct sum of a compact group and Rm
(see for instance [77, Theorem 25]). If additionally G has no compact subgroups,
then H = Rm. Because Rm is a divisible group, G is a direct sum of Rm and
G/Rm. Note that the latter group is always discrete.

Lemma 6.1.7. Let (X,T ) be a compact flow and ϕ:X → Rm a cocycle. If for
some unbounded sequence (nt)t>1 of integers, the sequence

(
ϕ(nt)

)
n>1 converges

uniformly to a constant a ∈ Rm, then a = 0.

Proof. Let µ be a probability T -invariant measure on X. Then clearly∫
X
ϕ(nt) dµ → a as t → ∞. Because

∫
X
ϕ(nt) dx = nt

∫
X
ϕdx, nt

∫
X
ϕdx → a.

This implies a = 0. �

The following lemma will be essentially helpful in proof of the very important
Lemma 6.2.4.

Lemma 6.1.8. Let (X,T ) be a compact flow and G a locally compact Abe-
lian group with no non-trivial compact subgroup. Assume that ϕ:X → G is
continuous. If ϕ(nt) → g ∈ G uniformly for some unbounded sequence of integers
(nt)t>1, then g = 0.

Proof. Let G = Rm ⊕ D, where D is a discrete group without compact
subgroups. Denote ϕ = ϕ1 + ϕ2, where ϕ1:X → Rm, ϕ2:X → D. Then
ϕ(k) = ϕ

(k)
1 + ϕ

(k)
2 for any integer k and therefore ϕ

(nt)
1 → g1, ϕ

(nt)
2 → g2,

where g = g1 + g2, g1 ∈ Rm, g2 ∈ D. By Lemma 6.1.7, g1 = 0. Consider now
ϕ2:X → D. For the converse suppose g2 6= 0. We have ϕ(nt)2 → g2 uniformly.
Since D is discrete, ϕ(nt)2 ≡ g2 for t large enough. Fix such a t. For k > 1 we can
find integers s = sk, r = rk such that nt+k = snt + r. Then applying s times
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the cocycle equality ψ(m+n) = ψ(m) ◦ Tn + ψ(n) we get

g2 =ϕ
(nt+k)
2 = ϕ

(snt+r)
2

=ϕ
(nt)
2 ◦ T (s−1)nt+r + ϕ

(nt)
2 ◦ T (s−2)nt+r + . . .+ ϕ

(nt)
2 ◦ T r + ϕ

(r)
2

= sg2 + ϕ
(r)
2 .

Because r is just the remainder of the division by nt, there exist only finitely
many values of r and therefore the set of values of all ϕ(r)2 , r = 0, 1, . . . , nt,
is bounded. On the other hand, the group D has no compact subgroups and
therefore sg2 →∞, which gives a contradiction and the lemma is proved. �

Lemma 6.1.9. Let v ∈ Rm, v 6= 0. There exists an open bounded set V ,
Rm ⊃ V 3 v, such that for each bounded set A ⊂ Rn there exists a positive
integer p > 0 satisfying the following condition:

If s1, s2 ∈ N, s2 > 3s1 + p, then A ∩ (s2V − s1V ) = ∅.

Proof. Let V be an open ball with center in v and of radius r = ‖v‖/2. Then
we have

sup{‖x‖ : x ∈ V } =
3
2
‖v‖, inf{‖x‖ : x ∈ V } =

1
2
‖v‖.

Let A ⊂ Rm be a bounded set. Denote M = sup{‖x‖ : x ∈ A}. Choose p

satisfying (1/2)‖v‖·p > M . Now, let s1, s2 be such integers that s2 > 3s1+p. We
will show that A∩ (s2V − s1V ) = ∅. To do this take v1, . . . , vs2 , u1, . . . , us1 ∈ V .
Then v1/s2 + . . .+ vs2/s2 ∈ V and we have

‖v1 + . . . + vs2 − u1 − . . .− us1‖ > ‖v1 + . . .+ vs2‖ − ‖u1 + . . .+ us1‖

= s2‖
1
s2
v1 + . . .+

1
s2
vs2‖ − ‖u1 + . . .+ us1‖

> s2 ·
1
2
‖v‖ − ‖u1‖ − . . .− ‖vs1‖

> s2 ·
1
2
‖v‖ − s1 ·

3
2
‖v‖ = (s2 − 3s1) ·

1
2
‖v‖ > p · 1

2
‖v‖ > M.

Thus v1+. . .+vs2−u1−. . .−us1 cannot belong to A and the proof is complete.�

Lemma 6.1.10. Let (X,T ) be a compact flow, G a locally compact Abelian
group, G0 = K ⊕ Rm an open subgroup of G with K compact. Assume that
ϕ:X → G is a continuous map. If ϕ(nt) → g ∈ G0 uniformly for some increasing
(decreasing) sequence (nt)t>1 of integers, then g ∈ K.

Proof. Let g = k+v, where k ∈ K, v ∈ Rm. Assume that v 6= 0. Then we can
find an open bounded set V , v ∈ V ⊂ Rm, satisfying Lemma 6.1.9. Let U ⊂ K

be an open neighbourhood of k. There exists a t0 > 0 such that

(6.1) ϕ(nt)(X) ⊂ U ⊕ V.
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for any t > t0. Fix t > t0 and take l > 0. Then nt+l = slnt+rl, where 0 6 rl < nt.
Moreover, by the cocycle equation, for each x ∈ X

ϕ(nt+l)(x) = ϕ(nt)(T (sl−1)nt+rlx) + ϕ(nt)(T (sl−2)nt+rlx)

+ . . .+ ϕ(nt)(T rlx) + ϕ(rl)(x),

and by (6.1),

ϕ(nt+l)(x) ∈ U ⊕ V, ϕ(nt+l)(x) ∈ sl(U ⊕ V ) + ϕ(rl)(x).

Because rl takes only finitely many values, so does ϕ(rl)(x), l > 1. Therefore we
can find 0 < l1 < l2 such that l2 − 3l1 > p0, where p0 is given by Lemma 6.1.9
for A = V − V , and rl1 = rl2 . Then

ϕ(nt+l1)(x) ∈ sl1(U ⊕ V ) + ϕ(rl1 )(x),

ϕ(nt+l2)(x) ∈ sl2(U ⊕ V ) + ϕ(rl2 )(x).

This implies

ϕ(nt+l2)(x)− ϕ(nt+l1)(x) ∈ sl2(U ⊕ V )− sl1(U ⊕ V )

and therefore
(V − V ) ∩ (sl2V − sl1V ) 6= ∅,

which contradicts Lemma 6.1.9. Thus v = 0 and g ∈ K. �

Lemma 6.1.11. Let (X,T ) be a compact flow, G a locally compact Abelian
group, G0 = K ⊕ Rm an open subgroup of G with K compact, ϕ:X → G a
continuous map. Assume that (nt)t>1 is an increasing (decreasing) sequence of
integers such that ϕ(nt) → g ∈ G uniformly. Then rg ∈ K for some non-zero
integer r.

Proof. Let ϕ:X → G/G0, ϕ(x) = ϕ(x)+G0. Then ϕ(nt) → g+G0 uniformly.
Since G/G0 is discrete, ϕ(nt)(X) = {g + G0} for t large enough. Fix such a t,
then for each l = 1, 2, . . . , nt+l = slnt+ rl, 0 6 rl < nt. By the cocycle equation,

ϕ(nt+l)(x) = ϕ(nt)(T (sl−1)nt+rlx) + ϕ(nt)(T (sl−2)nt+rlx)

+ . . .+ ϕ(nt)(T rlx) + ϕ(rl)(x),

hence
g +G = sl(g +G0) + ϕ(rl)(x), l = 1, 2, 3, . . .

Choose l1 < l2 such that rl1 = rl2 . Then 0 = (sl2 − sl1)(g+G0), so (sl2 − sl1)g ∈
G0. Denote r = sl2 − sl1 > 0. Let ψ:X → G, ψ(x) = rϕ(x), x ∈ X. Then
ψ(nt) = rϕ(nt) → rg ∈ G0 uniformly. By Lemma 6.1.10, rg ∈ K. �

Definition 6.1.12. If A,B are topological spaces, π:A → B a continuous
map with π(A) = B, then a continuous map s:B → A is called a continuous
selector for π if s satisfies π(s(y)) = y for all y ∈ B.
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Lemma 6.1.13. Let (X,T ) be a flow, G a locally compact Abelian group,
ϕ:X → G a continuous map. Let ϕ̃:X → G/E(ϕ), ϕ̃(x) = ϕ(x) + E(ϕ). If
E∞(ϕ̃) = {0} and there exists a continuous selector for the natural quotient map
G→ G/E(ϕ), then ϕ is regular.

Proof. Let s be a selector for the quotient map G→ G/E(ϕ). Since E∞(ϕ) =
{0}, ϕ̃ is a coboundary (Proposition 5.2.7), ϕ̃ = f̃ ◦T−f̃ , where f̃ :X → G/E(ϕ).
Define f :X → G by f(x) = s(f̃(x)). Then ϕ(x) − f(Tx) + f(x) = ϕ(x) −
s(f̃(Tx)) + s(f̃(x)) ∈ E(ϕ) and ϕ is regular. �

Remark 6.1.14. In the following cases the natural quotient maps G →
G/H, where G, H ⊂ G are topological Abelian groups, admit continuous selec-
tors:

(a) G/H is a discrete group;
(b) H = Rm for some integer m > 0.

6.2. The groups of essential values
for extensions of minimal rotations

In this section we will concentrate on the following situation: T :X → X is
a minimal rotation, X a compact metric monothetic group, G a locally compact
Abelian group.

Lemma 6.2.1. Let T be a minimal rotation on a compact metric monothetic
group X, D a discrete Abelian group, ϕ:X → D a continuous map. If (nt)t>1 is
a rigidity time for T then

∃
t0
∀

t>t0
∃
dt
∀

x∈X
ϕ(nt)(x) = dt

i.e. each ϕ(nt) is a constant function for t large enough.

Proof. Let (nt)t>1 be a rigidity time for T . Then Tnt → Id uniformly. Since
ϕ is continuous and D is discrete, there exists a t0 such that ϕ(Tntx) = ϕ(x) for
all t > t0 and each x ∈ X. Fix x0 ∈ X and t > t0. Then ϕ(nt)(T i+1x0) −
ϕ(nt)(T ix0) = ϕ(Tnt+ix0) − ϕ(T ix0) = 0 for all i ∈ Z, so ϕ(nt)(T ix0) =
ϕ(nt)(T i+1x0), i ∈ Z. It follows from the minimality of T that ϕ(nt) = const =
dt ∈ D. �

The characterization below of essential values can be found in [65].

Proposition 6.2.2. Let T be a minimal rotation on a compact metric mono-
thetic group X, G a locally compact Abelian group, ϕ:X → G a continuous map.
Assume that 0 6= g ∈ G∞. Then g ∈ E∞(ϕ) if and only if there exists a rigidity
time (nt)t>1 and a sequence (xt)t>1 of elements of X such that ϕ(nt)(xt)→ g.
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Proposition 6.2.3. Let T be a minimal rotation on a compact metric mo-
nothetic group X, G a locally compact Abelian group, ϕ:X → G a continuous
map. Let H ⊂ G be a closed subgroup such that H/E(ϕ) ∩ H is compact. Put
ϕH :X → G/H, ϕH(x) = ϕ(x) + H. Then E(ϕH) is naturally isomorphic to
E(ϕ)/E(ϕ) ∩H. Moreover, ∞ ∈ E∞(ϕH) if and only if ∞ ∈ E∞(ϕE(ϕ)∩H).

Proof. Let H0 = E(ϕ)∩H and let π:G/H0 → G/H be the natural quotient
map. We will show that π restricted to E(ϕ)/H0 is a group isomorphism of
E(ϕ)/H0 and E(ϕH). Suppose first that g+H0 ∈ E(ϕ)+H0, then g ∈ E(ϕ) and,
by Proposition 6.2.2, there exists a rigidity time (nt)t>1 and a sequence (xt)t>1 of
elements of X such that ϕ(nt)(xt)→ g. Then ϕ(nt)(xt)+H → g+H = π(g+H0)
and π(g +H0) ∈ E(ϕH). Now, let g ∈ E(ϕ) and π(g +H0) = g +H = H. Then
g ∈ H so g ∈ E(ϕ) ∩H = H0. Thus π is one-to-one on E(ϕ)/H0. To show that
π(E(ϕ)/H0) = E(ϕH) take g + H ∈ E(ϕH). Then ϕ(nt)(xt) + H → g + H for
some rigidity time (nt)t>1 and a sequence (xt)t>1 of elements of X. Let V be a
neighbourhood of g +H in G/H with V being compact. Since the kernel H/H0
of π is compact, π−1(V ) ⊂ G/H0 is compact as well. Therefore there exists a
converging subsequence

(
ϕ(nst )(xst)+H0

)
t>1 of the sequence

(
ϕ(nt)(xt)+H0

)
t>1,

ϕ(nst )(xst) +H0 → g0+H0 ∈ G/H0. By Proposition 6.2.2, g0+H0 ∈ E(ϕH0) =
E(ϕ)/H0 (Proposition 6.1.2). Since g0 + H = g + H, g + H = π(g0 + H0) with
g0+H0 ∈ E(ϕ)/H0, π restricted to E(ϕ)/H0 is onto E(ϕH). Collecting results we
get that E(ϕH) is naturally isomorphic to E(ϕ)/E(ϕ)∩H and the first assertion
is proved.

We will show the second assertion. Assume that ∞ ∈ E∞(ϕH0). Then
ϕ(nt)(xt) + H0 → ∞ for some rigidity time (nt)t>1 and xt ∈ X, t > 1. Now,
if (ht)t>1 is an arbitrary sequence of elements of H, then, as H/H0 is com-
pact, we may assume that (ht + H0)t>1 converges, ht + H0 → h + H0. Then
ϕ(nt)(xt)+ht+H0 → h+∞ =∞. Since (ht)t>1 was arbitrary, ϕ(nt)(xt)+H →∞,
hence ∞ ∈ E∞(ϕH). Conversely, if ∞ ∈ E∞(ϕH) then ϕ(nt)(xt) + H → ∞ for
some rigidity time (nt)t>1 and xt ∈ X, t > 1, hence ϕ(nt)(xt) + H0 → ∞ and
∞ ∈ E∞(ϕH0). �

Lemma 6.2.4. Let T be a minimal rotation on a compact metric monothetic
group X, G a locally compact Abelian group with no non-trivial compact subgroup,
ϕ:X → G a continuous map. If E(ϕ) 6= {0}, then no point in E(ϕ) is isolated.

Proof. Assume that 0 6= g ∈ G is an isolated element of E(ϕ). By Pro-
position 6.2.2, g = limt→∞ ϕ(nt)(xt), where (nt)t>1 is a rigidity time for T ,
xt ∈ X, t > 1. It follows from Lemma 6.1.8 that ϕ(nt) 6→ g uniformly. As g
is isolated, there exists an open set 0 ∈ V ⊂ G such that V is compact and
E(ϕ) ∩ [g + (V + V )] = {g}. Moreover, we may assume that

(6.2) ∀
t>1

∃
z∈X

ϕ(nt)(z) 6∈ g + (V + V ).
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Find an open symmetric set V1, 0 ∈ V1 ⊂ G, such that V1 + V1 ⊂ V and put

K = g + (V \ V1).

Clearly K is a compact set, K ∩E(ϕ) = ∅. By Proposition 5.2.5, there exists an
open non-empty set U ⊂ X such that

(6.3) ∀
n∈Z

U ∩ T−nU ∩ {x ∈ X : ϕ(n) ∈ K} = ∅.

Let d be an invariant metric on X. Fix x0 ∈ U and δ > 0 such that the ball with
center in x0 and of radius 2δ is included in U , and the following condition

d(x, x′) < δ ⇒ ϕ(x)− ϕ(x′) ∈ V1

is valid. Let B be the ball with center in x0 and of radius δ/2. Then B with its
(3/2)δ-neighbourhood is included in U . Let M be such a positive integer that

(6.4) ∀
x∈X

∃
06i6M−1

T ix ∈ B.

Such an M exists as T is minimal.
Let W ⊂ G be such an open symmetric neighbourhood of zero that M ·W ⊂

V1. Fix a t satisfying

∀
x∈X

ϕ(Tntx)− ϕ(x) ∈W,(6.5)

∀
x∈X

d(Tntx, x) < δ,(6.6)

ϕ(nt)(xt) ∈ g +W.(6.7)

Let z be given by (6.2) for the fixed t. Since the positive part of the orbit
of xt is dense in X ({Tnxt : n > 1} = X), there exists a positive l such that
ϕ(nt)(T lxt) − ϕ(nt)(z) ∈ V1. Then ϕ(nt)(T lxt) 6∈ g + V . Let k be the smallest
positive integer such that ϕ(nt)(T kxt) 6∈ g+V . Then ϕ(nt)(T k−1xt) ∈ g+V . For
each i we have

(6.8) ϕ(nt)(T k−i+1xt)− ϕ(nt)(T k−ixt) = ϕ(Tnt+k−ixt)− ϕ(T k−i) ∈W

by (6.5).
Now observe that k > M . Indeed, if this is not the case then

ϕ(nt)(T kxt)− ϕ(nt)(xt) =
k−1∑
j=0

[ϕ(nt)(T j+1xt)− ϕ(nt)(T jxt)]

=
k−1∑
j=0

[
ϕ(T jxt)− ϕ(Tnt+jxt)

]
∈ k ·W ⊂M ·W ⊂ V1

by (6.8). Then, by (6.7),

ϕ(nt)(T kxt) ∈ ϕ(nt)(xt) + V1 ⊂ g +W + V1 ⊂ g + V1 + V1 ⊂ g + V,
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which is impossible because of the choice of k. Therefore k > M .
Consider now the points T k−ixt, i = 1, . . . ,M . Since k > M , all differences

k − i, i = 1, . . . ,M , are positive and ϕ(nt)(T k−ixt) ∈ g + V , i = 1, . . . ,M . By
(6.4), at least one of these T k−ixt is in B, say T k−jxt ∈ B. Put y = T k−jxt. We
will show that

y ∈ U ∩ T−ntU ∩ {x ∈ X : ϕ(nt) ∈ K},
which will give a contradiction to (6.3). By our choice of y, y ∈ B ⊂ U . By (6.6),
d(Tnty, y) < δ so Tnty belongs to the δ-neighbourhood of B. By definition of δ,
Tnty ∈ U i.e. y ∈ T−nty. To finish the proof observe that ϕ(nt)(y) 6∈ g + V1.
Indeed, y = T k−jxt, where j 6M . By (6.8),

ϕ(nt)(y)− ϕ(nt)(T kxt) = ϕ(nt)(T k−jxt)− ϕ(nt)(T kxt) ∈ j ·W ⊂M ·W ⊂ V1,

so ϕ(nt)(T kxt) ∈ ϕ(nt)(y) + V1.
If ϕ(nt)(y) ∈ g+V1 then ϕ(nt)(T kxt) ∈ g+V1+V1 ⊂ g+V , that is not true.

Thus ϕ(nt)(y) 6∈ g + V1, ϕ(nt)(y) ∈ g + V , so

ϕ(nt)(y) ∈ g + (V \ V1) ⊂ g + (V \ V1) = K,

which finishes the proof. �

Now we are in a position to formulate a theorem describing all possible groups
of essential values for cocycles ϕ:X → G over minimal rotations in the case when
G has no compact subgroups. By Remark 6.1.6, such a group is a direct sum
of Rm and a discrete group.

Remark 6.2.5. If G is a closed subgroup of Rm, then, by [77, Theorem 6],
G is of the form

G = Zw1 ⊕ . . .⊕ Zwl ⊕ Rv1 ⊕ . . .⊕ Rvk,

where w1, . . . , wl, v1, . . . , vk ∈ Rm are linearly independent vectors.

Theorem 6.2.6. Assume that T is a minimal rotation on a compact me-
tric monothetic group X, G a locally compact Abelian group without compact
subgroups. If ϕ:X → G is a continuous map then E(ϕ) is a linear subspace of
Rm ⊂ G.

Proof. First we will show that E(ϕ) ⊂ Rm, where Rm ⊂ G is an open
subgroup of G. To do this we will use Proposition 6.1.2 for H = E(ϕ) ∩ Rm.
Since G/Rm is discrete, so is E(ϕ)/H. By Lemma 6.2.4, E(ϕ) = H ⊂ Rm and,
by Remark 6.2.5,

E(ϕ) = Zw1 ⊕ . . .⊕ Zwl ⊕ Rv1 ⊕ . . .⊕ Rvk

for some linearly independent vectors w1, . . . , wl, v1, . . . , vk, l + k 6 m.
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Now apply Proposition 6.1.2 for H = Rv1 ⊕ . . . ⊕ Rvk to get that E(ϕ̃) =
Zw1⊕ . . .⊕Zwl, i.e. that E(ϕ̃) turns out to be a discrete group. By Lemma 6.2.4,
l = 0 and E(ϕ) = Rv1 ⊕ . . .⊕ Rvk is a linear subspace of Rm. �

6.3. Atkinson’s theorem and regularity of cylinder flows

In the main theorem in [6, Theorem 1] a condition for a conservative cylinder
flow over a minimal rotation on a torus to be point transitive is given. We will
generalize this theorem for cylinder flows being extension of any minimal rota-
tion on a compact monothetic metric group. In Atkinson’s proof the fact that
torus is a connected space was used. In our proof we will omit this property using
a method of “short steps”, introduced in Chapter 5 in the proof of Proposition
5.3.1. Nevertheless, both our proof of Proposition 6.3.7 and of the lemmas proce-
eding this theorem are modifications of the ones in [6]. After showing Proposition
6.3.7 we will use it to prove Theorem 6.3.8 giving several conditions equivalent
to conservativity.

We start with a version of [6, Lemma 4]. The differences are that a torus
is replaced with any minimal rotation and a sphere {v ∈ Rm : ‖v‖ = r} by a
ring K(a, b) = {v ∈ Rm : a 6 ‖v‖ 6 b}, where ‖ · ‖ denotes a norm in Rm. Our
assumption that E(ϕ) = {0} is not essential in view of Theorem 6.2.6.

Lemma 6.3.1. Let T be a minimal rotation on a compact metric monothetic
group X, ϕ:X → Rm a continuous map such that E(ϕ) = {0}. Then for any po-
sitive real numbers a < b there exists a positive δ = δ(a, b) such that if d(Tn, Id) <
δ then either ϕ(n)(X) ⊂ B(0, a) or ϕ(n)(X) ⊂ B(0, b)

c
= X × Rm \B(0, b).

Proof. For any x0 ∈ X and i = 1, 2, 3, . . . let

Ai(x0) = {ϕ(n)(x) : x ∈ B(x0, i−1), d(Tn, Id) < i−1},

A(x0) =
∞⋂
i=1

Ai(x0).

By virtue of Proposition 5.3.1, A(x0) ⊂ E(ϕ), so either A(x0) = ∅ or A(x0) =
{0}. In particular, if we put

K(a, b) = {v ∈ Rm : a 6 ‖v‖ 6 b} = B(0, b) \B(0, a),

then A(x0) ∩K(a, b) = ∅ i.e.

∞⋂
i=1

[Ai(x0) ∩K(a, b)] = ∅.

Since A1(x0) ⊃ A2(x0) ⊃ A3(x0) ⊃ . . . and K(a, b) is a compact set, some of
the sets Ai(x0) ∩K(a, b) must be empty. Let Aj ∩K(a, b) = ∅. In particular

{ϕ(n)(x) : x ∈ B(x0, j−1), d(Tn, Id) < j−1} ∩K(a, b) = ∅.
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This is true for each x0 ∈ X, because

X =
⋃
x∈X

B(x, i−1x ),

where for each x ∈ X, {ϕ(n)(y) : y ∈ B(x, i−1x ), d(Tn, Id) < i−1x } ∩K(a, b) = ∅.
Since X is compact, there are points x1, . . . , xk and integers i1, . . . , ik such that

X =
k⋃
j=1

B(xj , i−1j )

and for each j = 1, . . . , k,

{ϕ(n)(y) : y ∈ B(xj , i−1j ), d(Tn, Id) < i−1j } ∩K(a, b) = ∅.

The map ϕ is uniformly continuous, thus there exists a δ1 > 0 such that for any
x′, x′′ ∈ X, if d(x′, x′′) < δ1 then ‖ϕ(x′)− ϕ(x′′)‖ < b− a. Let

δ = δ(a, b) = min{δ1, i−11 , . . . , i−1k }.

Then {ϕ(n)(y) : y ∈ B(xj , i−1j ), d(Tn, Id) < δ}∩K(a, b) = ∅, j = 1, . . . , k. Since
the balls B(xj , i−1j ), j = 1, . . . , k, cover whole X, for each x ∈ X and for each n
satisfying d(Tn, Id) < δ we have ϕ(n)(x) 6∈ K(a, b).

Now fix n satisfying d(Tn, Id) < δ and assume that ‖ϕ(n)(x)‖ < a for some
x ∈ X. Then for any integer j,

ϕ(n)(T j+1x)− ϕ(n)(T jx) = ϕ(Tn+jx)− ϕ(T jx) = ϕ(Tn(T j+1x))− ϕ(T jx).

Since d(Tn, Id) < δ, d(Tn(T jx), T jx) < δ, hence

‖ϕ(Tn(T j+1x))− ϕ(T jx)‖ < b− a,

and therefore ‖ϕ(n)(T j+1x)−ϕ(n)(T jx)‖ < b−a. This means that the distances
between consecutive points of the sequence (ϕ(n)(T jx))j∈Z are less than b − a.
As none of these points is in K(a, b) and ‖ϕ(n)(x)‖ < a, all ϕ(n)(T jx), j ∈ Z,
are in B(0, a). As ϕ(n) is a continuous map, ϕ(n)(X) ⊂ B(0, a). �

The next lemma is a version of [6, Theorem 2] for m = 1 only, however for
an arbitrary minimal rotation on a compact monothetic group. Moreover, we
formulate our lemma as a necessary and sufficient condition and do not assume
that the map ϕ has bounded variation. In Theorem 6.3.8 we will prove such
a result for any m.

Lemma 6.3.2. Let T be a minimal rotation on a compact metric monothetic
group X, ϕ:X → R be a continuous map. Then Tϕ is conservative if nd only if∫
X
ϕdµ = 0, where µ is the normalized Haar measure on X.

Proof. Assume that
∫
X
ϕdµ 6= 0, for instance that

∫
X
ϕdµ > 0. We will show

that some point in X × R is wandering. Fix an arbitrary x ∈ X; we will show
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that the point (x, 0) ∈ X × R is wandering for Tϕ. Since (1/n)ϕ(n) →
∫
X
ϕdµ

uniformly,

(6.9) ∃
n0>0

∀
n>n0

∀
y∈X

ϕ(n)(y) > 1.

Find an open set U ⊂ X such that x ∈ U and the sets T iU , 0 6 i 6 n0,
are pair-wise disjoint. Let V = (−1/3, 1/3) ⊂ R. We will show that the sets
Tnϕ (U×V ), n > 0, are pair-wise disjoint. Suppose this is not the case and denote
by k a positive integer satisfying

(U × V ) ∩ T kϕ(U × V ) 6= ∅.

Then U ∩ T kU 6= ∅, so k > n0. Moreover, there exist v, v′ ∈ V and x′ ∈ U such
that v = ϕ(k)(x′) + v′, equivalently, ϕ(k)(x′) = v − v′. It follows from (6.9), that
ϕ(k)(x′) > 1. On the other hand v− v′ < 1/3− (−1/3) = 2/3 < 1, which gives a
contradiction. Thus the sets Tnϕ (U × V ), n > 0, are pair-wise disjoint, so (x, 0)
is a wandering point for Tϕ. We have proved that Tϕ is not conservative.

Assume now that
∫
X
ϕdµ = 0. Then ϕ is either a coboundary or ergodic

(Corollary 5.4.9). If ϕ is a coboundary, X × R is a union of compact minimal
sets, in particular each point of X × R is almost periodic. Such points can not
be wandering, so Tϕ is conservative. In the later case (ϕ is ergodic), Tϕ is point
transitive – there exists a point (x0, r0) with dense orbit. Let U ⊂ X ×R be any
non-empty open set. Without loosing generality we may assume that (x0, r0) ∈
U . Then, because X × R is a perfect set, Tnϕ (x0, r0) ∈ U for some n 6= 0, thus
U ∩ TnϕU 6= ∅. Since U was arbitrary, Tϕ is conservative. �

To make this chapter self-contained we will give proofs of the next three
lemmas, that are generalizations of [6, Lemma 5, Lemma 6, Lemma 7] to the
case of any minimal rotation on a compact metric monothetic group, despite, by
virtue of Lemma 6.3.1, the original proofs work also in this case.

Lemma 6.3.3. Let T be a minimal rotation on a compact metric monothetic
group X, ϕ:X → Rm a continuous map such that E(ϕ) = {0}, (nt)t>1 a sequence
of integers. The following conditions are equivalent:

(a) For all (x, v) ∈ X × Rm the sequence (Tntϕ (x, v))t>1 converges.
(b) For some (x0, v0) ∈ X × Rm the sequence (Tntϕ (x0, v0))t>1 converges.
(c) The sequence of functions (ϕ(nt))t>1 converges uniformly and (Tnt)t>1

converges.

Proof. The implications from (a) to (b) and from (c) to (a) are clear. Suppose
that (b) is true, then the sequences (ϕ(nt)(x0))t>1 and (Tntx0)t>1 converge. In
particular, they are Cauchy sequences. Now fix ε > 0 and, using Lemma 6.3.1,
find δ = δ(ε, 2ε). Let N be such that for i, j > N the following equalities hold:

‖ϕni(x0)− ϕ(nj)(x0)‖ < ε, d(Tnix0, Tnjx0) < δ.
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Since d(Tnix0, Tnjx0) = d(Tni−nj , Id) and, by the cocycle identity, ϕ(ni)(x0)−
ϕ(ni)(x0) = ϕ(ni−nj)(Tnjx0),

‖ϕ(ni−nj)(Tnjx0)‖ < ε, d(Tni−nj , Id) < ε, i, j > N.

By virtue of Lemma 6.3.1, ϕ(ni−nj)(X) ⊂ B(0, ε) for i, j > N . This implies that
the sequence (ϕ(nt))t>1 is uniformly Cauchy, therefore uniformly convergent. �

Lemma 6.3.4. Let T be a minimal rotation on a compact metric monothetic
group X, ϕ:X → Rm a continuous map such that E(ϕ) = {0}. Then every orbit
closure under Tϕ is minimal.

Proof. Let (x, r) ∈ Orb(x0, v0), then Tniϕ (x0, v0)→ (x, v), that means Tnix0
→ x and ϕ(ni)(x0) + v0 → v. Since T is a rotation, there exists an a ∈ X

such that Tz = az for all z ∈ X. Now, Tnix0 = anix0 → x, so ani → xx−10 ,
hence a−ni → x0x

−1, which is equivalent to T−nix = a−nix → x0. We will
prove that ϕ(−ni)(x) + v → v0 which implies that T−niϕ (x, v) → (x0, v0). As
Tniϕ (x0, v0)→ (x, v), Tniϕ (x0, 0)→ (x, v−v0). By virtue of Lemma 6.3.3, ϕni → h

uniformly for some continuous function h:X → Rm. By the cocycle identity, 0 =
ϕ(ni−ni)(x) = ϕ(ni)(T−nix) + ϕ(−ni)(x) and the fact that ϕ(ni) → h uniformly,
T−nix→ x0 and h(x0) = limϕ(ni)(x0) = v − v0 we have

‖ϕ(−ni)(x)−(v0−v)‖ = ‖−ϕ(ni)(T−nix)−(v0−v)‖ = ‖ϕ(ni)(T−nix)−(v−v0)‖

6 ‖ϕ(ni)(T−ni)− h(T−nix)‖+ ‖h(T−nix)− (v − v0)‖
i→∞−−−→ 0.

Thus

T−niϕ (x, v) = (T−nix, ϕ(−ni)(x) + v) i→∞−−−→ (x0, v0 − v + v) = (x0, v0).

We have proved that if (x, v) ∈ Orb(x0, v0) then (x0, v0) ∈ Orb(x, v), hence
Orb(x, v) = Orb(x0, v0), so each orbit closure is minimal. �

Lemma 6.3.5. Let T be a minimal rotation on a compact metric monothe-
tic group X, ϕ:X → Rm a continuous map such that E(ϕ) = {0} and Tϕ is
conservative. Then ϕ is a coboundary.

Proof. By [40, Theorem 7.24], the set of all recurrent points in X × Rm is
residual, in particular non-empty. Let (x0, v0) ∈ X × Rm be a recurrent point.
Then there exist sequences of integers kt → −∞ and nt → +∞ such that
T ktϕ (x0, v0) → (x0, v0) and Tntϕ (x0, v0) → (x0, v0). Thus T kt → Id, Tnt → Id
uniformly and ϕ(kt)(x0) → 0, ϕ(nt)(x0) → 0. By Lemma 6.3.3, the sequences
of functions (ϕ(kt))t>1 and (ϕ(nt))t>1 are uniformly convergent. By virtue of
Lemma 6.3.1, both ϕ(kt) → 0 and ϕ(nt) → 0 uniformly and therefore T ktϕ → Id,
Tntϕ → Id uniformly. In particular each point (x, v) ∈ X × Rm is recurrent
under Tϕ. It follows from Lemma 6.3.4 that X × Rm is a (disjoint) union of
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minimal sets. By virtue of [40, Theorem 7.05], each point in X × Rm is almost
periodic. Denoting ϕ = (ϕ1, . . . ϕm) we get the following property.

(6.10) For each i = 1, . . . ,m, all points (x, v) ∈ X × R are almost periodic
under Tϕi .

Since Tϕ is conservative, all Tϕi ’s are conservative. By Lemma 6.3.2,
∫
X
ϕi dµ =

0, i = 1, . . . ,m. Then for each i = 1, . . . ,m, either ϕi is a coboundary or Tϕi
is point transitive. Suppose that some Tϕi is point transitive and (x0, v0) ∈
X × R has dense orbit under Tϕi . Then (x0, v0) cannot be almost periodic,
which is a contradiction with (6.10). Thus all ϕi’s are coboundaries, hence also
ϕ is a coboundary. �

Now we are able to exhibit a key property of conservative cocycles.

Proposition 6.3.6. Let T be a minimal rotation on a compact metric mono-
thetic group X, ϕ:X → Rm a continuous map such that Tϕ is conservative. Then
there exits a basis of Rm such that ϕ = (ϕ1, . . . , ϕm), E(ϕ) = E(ϕ1, . . . , ϕk) =
Rk and (ϕk+1, . . . , ϕm) is a coboundary.

Proof. If Tϕ is point transitive then E(ϕ) = Rm and the assertions of this
proposition easily follow. Assume that Tϕ is not point transitive. Then, by vir-
tue of Theorem 6.2.6, E(ϕ) is a k-dimensional linear subspace of Rm, and, by
Proposition 5.2.3, k < m. Changing a basis of Rm if necessary we may assume
that ϕ = (ϕ1, . . . , ϕm) and E(ϕ) = E(ϕ1, . . . , ϕk) = Rk. By virtue of Pro-
position 6.1.2, E(ϕk+1, . . . , ϕm) = {0}. By Lemma 6.3.5, (ϕk+1, . . . , ϕm) is a
coboundary. �

Now we are in a position to generalize [6, Theorem 1] to any minimal rotation
on a compact metric monothetic group.

Proposition 6.3.7. Let T be a minimal rotation on a compact metric mo-
nothetic group X, ϕ:X → Rm a continuous map such that Tϕ is conservative.
Then Tϕ is not point transitive if and only if there exist non-zero linear func-
tional L:Rm → R and continuous function f :X → R satisfying the functional
equation

(6.11) L ◦ ϕ+ f − f ◦ T = 0.

Proof. Assume that Tϕ is not point transitive. By Propositions 6.3.6 and
5.2.3 we may assume that ϕ = (ϕ1, . . . , ϕm), E(ϕ) = E(ϕ1, . . . , ϕk) = Rk and
(ϕk+1, . . . , ϕk) is a coboundary, where k < m.

Let g = (gk+1, . . . , gm):X → Rm−k be such a continuous function that
(ϕk+1, . . . , ϕm) = (gk+1 ◦T, . . . , gm ◦T )− (gk+1, . . . , gm). Define L:Rm → R by
L(v1, . . . , vm) = vm. Let f :X → R, f(x) = gm(x). Then clearly L ◦ ϕ+ f − f ◦
T = 0 and the necessity is proved.
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To prove the sufficiency suppose that Tϕ is point transitive and L ◦ ϕ+ f −
f ◦ T = 0 for a non-zero linear functional L:Rm → R and a continuous function
f :X → R. By virtue of Proposition 6.1.1, L(E(ϕ)) ⊂ E(L ◦ ϕ). Since L 6= 0,
L(E(ϕ)) = L(Rm) = R, so E(L ◦ϕ) = R and TL◦ϕ is point transitive, hence not
a coboundary, which finishes the proof. �

In [6] a sufficient condition for Tϕ to be conservative, where ϕ is a cocycle de-
fined on the one-dimensional torus, with values in Rm, is given ([6, Theorem 2]).
The next theorem contains a generalization of the one from [6]. Note that our
theorem is formulated as a sufficient and necessary condition.

Theorem 6.3.8. Let T be a minimal rotation on a compact metric mono-
thetic group X, ϕ:X → Rm be a continuous map. Then the following conditions
are equivalent:

(a) Tϕ is conservative.
(b) ϕ is regular.
(c) If ϕ̃:X → Rm/E(ϕ) is given by ϕ̃(x) = ϕ(x)+E(ϕ), then E∞(ϕ̃) = {0}.
(d)

∫
X
ϕdµ = 0, where µ is the normalized Haar measure on X.

Proof. Assume that (a) is true, i.e. Tϕ is conservative. We will show that
ϕ is regular. Clearly, if Tϕ is point transitive then ϕ is regular. Suppose Tϕ is
not point transitive. By virtue of Propositions 5.2.3 and 6.3.6 we may assume
that ϕ = (ϕ1, . . . , ϕm), E(ϕ) = E(ϕ1, . . . , ϕk) = Rk, k < m, (ϕk+1, . . . , ϕm) is
a coboundary i.e. ϕj = fj ◦ T − fj for some continuous functions fj :X → R,
j = k + 1, . . . ,m. Define f :X → Rm by

f(x) = (0, . . . , 0, fk+1(x), . . . , fm(x)).

Then ψ = ϕ+ f − f ◦ T :X → E(ϕ) and ϕ is regular.
The implication from (b) to (c) is a part of Corollary 6.1.4.
Assume now that the condition (c) is true. Suppose for the contrary that∫

X
ϕdµ 6= 0. Then, denoting ϕ = (ϕ1, . . . , ϕm) we may assume that for instance∫

X
ϕ1 dµ > 0. Since ϕ(n)1 /n →

∫
X
ϕ1 dµ uniformly, ϕ(nt)1 → +∞ uniformly for

each rigidity time (nt)t>1, hence E∞(ϕ) = {0,∞} and E(ϕ) = {0}. In particular
E∞(ϕ̃) = {0,∞}, which is a contradiction.

Assume now that (d) is true; we will show (a). If
∫
X
ϕdµ = 0, then∫

X
ϕi dµ = 0, i = 1, . . . ,m. Changing a basis of Rm if necessary we may

assume that ϕk+1, . . . , ϕm are coboundaries and T(ϕ1,... ,ϕk) is point transitive.
Then T(ϕ1,... ,ϕk,ϕk+1,... ,ϕm) is isomorphic to T(ϕ1,... ,ϕk,0,... ,0) (as homeomorphims
of X × Rm). By virtue of Theorem 6.1.5, the flow (X × Rm, T(ϕ1,... ,ϕk,0,... ,0)) is
a disjoint union of point transitive subflows, where each of them is isomorphic
to (X × Rk, T(ϕ1,... ,ϕk)). The space X × Rk is perfect and the flow T(ϕ1,... ,ϕk) is
point transitive, hence conservative and so is Tϕ. �
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Corollary 6.3.9. Let T be a minimal rotation on a compact metric mono-
thetic group X, ϕ:X → Rm be a continuous map. Then the following conditions
are equivalent:

(a) Tϕ is not conservative.
(b) ϕ is not regular.
(c) E∞(ϕ̃) = {0,∞}.
(d)

∫
X
ϕdµ 6= 0, where µ is the normalized Haar measure on X.

(e) E∞(ϕ) = {0,∞}
(f) All points in X × Rn are Tϕ-wandering.

Proof. Equivalence of (a), (b), (c) and (d) is clear because of Theorem 6.3.8.
Since ϕ(n)/n→

∫
X
ϕdµ uniformly, (f) is a consequence of (d). If (f) is true then

obviously also (e) is true (Proposition 6.2.2) and (e) implies (c). �

6.4. A more general case

Lemma 6.4.1. Let T be a minimal rotation on a compact metric monothetic
group X, D is a discrete group, ϕ:X → D a continuous map. Moreover, let
ϕ̃:X → D/E(ϕ), ϕ̃(x) = ϕ(x) + E(ϕ). Then:

(a) If d ∈ D∞, d 6= 0 then d ∈ E∞(ϕ) if and only if ϕ(nt) → d uniformly
for some rigidity time (nt)t>1.

(b) If d ∈ E(ϕ) then d has finite order, i.e. rd = 0 for some non-zero inte-
ger r. In particular, if D possesses no compact subgroups then E(ϕ) =
{0}.

(c) E(ϕ) is a finite group.
(d) ∞ ∈ E∞(ϕ̃) if and only if ∞ ∈ E∞(ϕ).
(e) E∞(ϕ) ⊂ D if and only if there exist a rigidity time (nt)t>1 and a d ∈ D

such that ϕ(nt) ≡ d for all t > 1.
(f) ϕ is regular if and only if E∞(ϕ) 6= {0,∞}.
(g) Either E∞(ϕ) = {0,∞} or E∞(ϕ) ⊂ D.

Proof. (a) This is a straightforward consequence of Proposition 5.3.1 and of
Lemma 6.2.1 as D is discrete.

(b) Let d ∈ E(ϕ), d 6= 0. Then by (a), ϕ(nt) → d uniformly for some rigidity
time (nt)t>1, so, by virtue of Lemma 6.1.11, d has finite order.

(c) Assume E(ϕ) 6= {0} and fix 0 6= d0 ∈ E(ϕ). It follows from (a) that
ϕ(nt) ≡ d0 for some rigidity time (nt)t>1. Let n = n1. Consider now any 0 6= d ∈
E(ϕ). Then, by (a), d ≡ ϕ(mt) for some rigidity time (mt)t>1. Let mt = stn+rt,
0 6 rt < n, t > 1. Then, by the cocycle identity, for any x ∈ X,

d = ϕ(mt)(x) = ϕ(stn+rt)(x) =
st−1∑
i=0

ϕ(n)(T in+rtx) + ϕ(rt)(x) = std0 + ϕ(rt)(x).
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By (b), the set D0 = {sd0 + ϕ(r)(x) : s ∈ Z, 0 6 r < n, x ∈ X} is finite. Clearly
d ∈ D0. As d was arbitrary, E(ϕ) ⊂ D0 ∪ {0} and therefore E(ϕ) is finite.

(d) Observe that as E(ϕ) is finite, ϕ̃(nt) → ∞ uniformly for some rigidity
time (nt)t>1 if and only if ϕ(nt) → ∞ uniformly, so ∞ ∈ E∞(ϕ̃) if and only if
∞ ∈ E∞(ϕ).

(e) Assume first that E∞(ϕ) ⊂ D i.e. ∞ 6∈ E∞(ϕ). If E∞(ϕ) = {0}, then ϕ

is a coboundary (Proposition 5.2.7) and therefore ϕ(nt) → 0 uniformly for each
rigidity time (nt)t>1 and we are done. If E∞(ϕ) 6= {0} then also E(ϕ) 6= {0}
and, by (a), ϕ(nt) → d uniformly for some rigidity time (nt)t>1, where d is an
element of E(ϕ). Then ϕ(nt) ≡ d for t large enough and we may assume that
ϕ(nt) ≡ d for all t.

Assume now that ϕ(nt) ≡ d, t > 1, for some rigidity time (nt)t>1. In such
a case ϕ(−nt) ≡ −d ∈ E(ϕ), t > 1 and therefore we may assume that n1 > 0.
Let n = n1 and suppose that ∞ ∈ E∞(ϕ). Then, by (a), ϕ(mt) → ∞ uniformly
for some rigidity time (mt)t>1. Let mt = stn + rt, 0 6 rt < n, t > 1. Then
ϕ(mt) ∈ D0 for all t > 1, where D0 is the finite set defined in the proof of (c). In
particular ϕ(mt) 6→ ∞, a contradiction. Thus ∞ 6∈ E∞(ϕ).

(f) Assume that ϕ is regular and suppose for the contrary that E∞(ϕ) =
{0,∞}. Then E(ϕ) = {0}, hence E∞(ϕ̃) = {0,∞} and we have got a contradic-
tion with Corollary 6.1.4. Thus E∞(ϕ) 6= {0,∞}.

Assume now that E∞(ϕ) 6= {0,∞}. Then either ∞ 6∈ E∞(ϕ) or E(ϕ) 6=
{0}. Consider the first case. Then E∞(ϕ̃) = {0} and there exists a continuous
selector for the natural quotient map D → D/E(ϕ) (Remark 6.1.14). By virtue of
Lemma 6.1.13, ϕ is regular. Consider now the second case. Let 0 6= d ∈ E(ϕ). It
follows from (a) that ϕ(nt) ≡ d for some rigidity time (nt)t>1. By (e),∞ 6∈ E∞(ϕ)
and by (d),∞ 6∈ E∞(ϕ̃). As D/E(ϕ) is discrete, there exists a continuous selector
for the quotient map D → D/E(ϕ) and, by Lemma 6.1.13, ϕ is regular.

(g) If ∞ ∈ E∞(ϕ) then, by (e), E(ϕ) = {0}. �

Lemma 6.4.2. Let T be a minimal rotation on a compact metric monothetic
group X, D a discrete group, ϕd:X → D, ϕr:X → Rm be continuous maps.

(a) If ϕd+ϕr:X → D⊕Rm is regular then both ϕd and ϕr are also regular.
(b) If ϕd and ϕr are regular then there exists a subgroup D0 ⊂ D such that

E(ϕd + ϕr) = D0 ⊕ E(ϕr).

Proof. (a) Suppose that ϕd+ϕr is regular, then ψ = ϕd+ϕr+f ◦T−f :X →
E(ϕd+ϕr) for some continuous f :X → D⊕Rm. Write f = fd+fr, ψ = ψd+ψr,
where ψd:X → E(ϕd), ψr:X → E(ϕr), because E(ϕd + ϕr) ⊂ E(ϕd) ⊕ E(ϕr).
Therefore both ϕd and ϕr are regular.

(b) Assume now that ϕd and ϕr are regular, then we may assume that
E(ϕd) = D with D finite and E(ϕr) = Rm. Suppose that v ∈ E(ϕd). Then,
by Proposition 5.3.1, ϕ(nt)r (xt) → v for some rigidity time (nt)t>1. As E(ϕd)
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is discrete, we may assume that ϕ(nt)d ≡ const for each individual t large eno-
ugh, and, since E(ϕd) is finite (Lemma 6.4.1(c)), passing to a subsequence of
the sequence (nt)t>1 if necessary, ϕ(nt)d ≡ d, t > 1, for some d ∈ E(ϕd).
Thus d + v ∈ E(ϕd + ϕr). We have shoved that for each v ∈ E(ϕr) there
exists a d ∈ E(ϕd) such that d + v ∈ E(ϕd + ϕr). Let M be such a posi-
tive integer that Md = 0 for all d ∈ E(ϕd). Take v ∈ E(ϕr) = Rm, then
also v/m ∈ E(ϕr), and find d ∈ E(ϕd) such that d + v/M ∈ E(ϕd + ϕr).
Then M(d + v/m) = v ∈ E(ϕd + ϕr) which implies E(ϕr) ⊂ E(ϕd + ϕr). Let
D0 = D ∩ E(ϕd + ϕr), then E(ϕd + ϕr) = D0 ⊕ E(ϕr) and lemma is proved. �

Theorem 6.4.3. Let T be a minimal rotation on a compact metric mono-
thetic group X, G a locally compact Abelian group such that Rm ⊂ G is an open
subgroup, ϕ:X → G, a continuous map. Then there exist a finite group D0 and
a linear subspace V ⊂ Rm such that E(ϕ) = D0 ⊕ V .

Proof. Since Rm ⊂ G is an open subgroup, G = D⊕Rm, where D is a discrete
Abelian group. Put ϕ = ϕd+ϕr, where ϕd:X → D, ϕr:X → Rm. Observe that if
either E∞(ϕd) = {0,∞} or E∞(ϕr) = {0,∞} then E∞(ϕ) = {0,∞}. Indeed, in
the first case, by Lemma 6.4.1(e), ϕ(nt)d (xt) → ∞ for each rigidity time (nt)t>1
and xt ∈ X, t > 1 and therefore E∞(ϕ) = {0,∞}. In the second case, by
Corollary 6.3.9, all points in X×Rm are Tϕr -wandering, hence E∞(ϕ) = {0,∞}.

If E∞(ϕ) = {0,∞} then theorem is true with D0 = {0}, V = {0}. Assume
that E∞(ϕ) 6= {0,∞}. Then E∞(ϕd) 6= {0,∞} and E∞(ϕr) 6= {0,∞}. By virtue
of Theorem 6.3.8, ϕr is regular and, by Lemma 6.4.1, ϕd is regular. It follows
from Lemma 6.4.2 that E(ϕ) = D0 ⊕ E(ϕr), where D0 is a finite subgroup of
D. By virtue of Theorem 6.2.6, V = E(ϕr) is a linear subspace of Rm, which
finishes the proof. �

Theorem 6.4.4. Let T be a minimal rotation on a compact metric mo-
nothetic group X, G a locally compact Abelian group such that Rm ⊂ G is
an open subgroup, and ϕ:X → G a continuous map. Let ϕ̃:X → G/E(ϕ),
ϕ̃(x) = ϕ(x) + E(ϕ). Then the following conditions are equivalent:

(a) E∞(ϕ̃) = {0}.
(b) ϕ is regular.
(c) Tϕ is conservative.

Proof. Since Rm is a divisible group, G = D ⊕ Rm, where D is a discrete
group, D = G/Rm. Thus ϕ = ϕd + ϕr, where ϕd:X → D, ϕr:X → Rm.
Moreover, E(ϕ) = E(ϕd + ϕr) ⊂ E(ϕd)⊕ E(ϕr).

(a)⇒(b). First we will show that both ϕd and ϕr are regular. ϕr is regular
by Corollary 6.3.9. If E(ϕ) = {0}, then ϕ = ϕd + ϕr is a coboundary and
so are both ϕd and ϕr. Assume that E(ϕ) 6= {0}. Then ϕ(nt)(xt) → d + v

for some rigidity time (nt)t>1 and xt ∈ X, t > 1, where 0 6= d + v ∈ E(ϕ).
Consequently ϕ

(nt)
d (xt) → d and we may assume that ϕ(nt)(xt) ≡ d, t > 1.
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By virtue of Lemma 6.4.1(e)–(f), ϕd is regular. We have shoved that when (a)
is true then both ϕd and ϕr are regular. It follows from Theorem 6.4.3 that
there exist a finite subgroup D0 ⊂ D and a linear subspace V ⊂ Rm such that
E(ϕ) = D0 ⊕ V . Changing a basis of Rm if necessary we may assume that
V = Rk for some 0 6 k 6 m. Then G/E(ϕ) = (D/D0) ⊕ Rm−k. Observe that
there exist a continuous selector s for the quotient map G→ G/E(ϕ). By virtue
of Lemma 6.1.13, ϕ = ϕd + ϕr is regular.

(b)⇒(c). Suppose ϕ = ϕd + ϕr is regular. By virtue of Lemma 6.4.2 we
may assume that both Tϕd and Tϕr are topologically ergodic (then E(ϕd) = D,
E(ϕr) = Rm), E(ϕ) = D0 ⊕ Rm for some subgroup D0 ⊂ D, ϕ:X → D0 ⊕ Rm,
and that Tϕ:X ×E(ϕ)→ X ×E(ϕ) is point transitive. Since either D0 ⊕Rm is
a perfect space (m > 0) or D0 ⊕ Rm is finite (m = 0), Tϕ is conservative.

(c)⇒(a). Suppose Tϕ is conservative. If U ⊂ X, V ⊂ Rm are open non-empty
sets, d ∈ D, then the dwelling sets satisfy

D(U × ({d} ⊕ V ), U × ({d} ⊕ V )) ⊂ D(U × {d}, U × {d}) ∩D(U × V,U × V )

so both Tϕd and Tϕr are conservative. By virtue of Theorem 6.3.8, E∞(ϕ̃r) = {0}.
Suppose for the contrary that E∞(ϕ̃) = {0,∞}. Then ϕ̃(nt)(xt)→∞ ∈ G∞ i.e.
ϕ
(nt)
d (xt) + dt + ϕ

(nt)
r (xt) + vt → ∞ for each dt + vt ∈ E(ϕ). Since D is finite,

ϕ
(nt)
r (xt) + vt →∞ for any sequence (vt)t>1 of elements from Rm, equivalently,

ϕ̃
(nt)
r (xt) → ∞ and ∞ ∈ E∞(ϕ̃r), a contradiction. Thus E∞(ϕ) = {0} and the

proof is complete. �



CHAPTER 7

CYLINDER COCYCLE EXTENSIONS OF ROTATIONS

In this chapter we will concentrate on the following situation. The flows
(X,T ) will be minimal rotations on compact metric monothetic groups, G = R
or G = Rm for some positive integer m. In such cases the group E(ϕ) of essential
values of ϕ is a linear subspace of Rm (Theorem 6.2.6), and, whenever ϕ has
zero mean, ϕ is regular (Theorem 6.3.8). In particular, for ϕ:X → R there is
a trichotomy:

(a) either
∫
X
ϕdµ 6= 0 – then Tϕ is transient: all orbits are discrete;

(b) or Tϕ is point transitive;
(c) or ϕ is a coboundary.

Let us recall now the Denjoy–Koksma inequality. For the definition of discre-
pancy and for the proof of Theorem 7.0.1 below we refer to [57].

Theorem 7.0.1 ([57, Theorem 5.1, Chapter 2]). Let ϕ be a function of
bounded variation on [0, 1] and x1, . . . , xN ∈ [0, 1). Then∣∣∣∣ 1

N

N∑
n=1

ϕ(xn)−
∫ 1

0
ϕ(t) dt

∣∣∣∣ ≤ Var(ϕ)D∗N ,

where D∗N denotes a discrepancy of the sequence {x1, . . . , xN}.

We use this theorem in the particular case when
∫ 1

0 ϕ(t) dt = 0, xn =
x + nα mod 1 (α is irrational), N = qk, where (qk)k≥1 is the sequence of the
denominators of the continued fraction expansion of α. Since, in such a case, the
inequality D∗qk ≤ 1/qk+1/qk+1 holds (see e.g. [57, (3.17), Chapter 2]), we obtain
the following estimation

(7.1) ‖ϕ(qk)‖ ≤ 2 Var(ϕ),

(here, as well as in the sequel, ‖ · ‖ denotes the supremum norm in the space of
bounded variation functions) that we will use in proof of Theorem 7.1.4 below.

141
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7.1. The problem of minimality for cylinder extensions
of minimal rotations on a circle

In this section we will use the following standard notations. Let T be the
unit circle on the complex plane with its natural topological group structure;
we will often identify T with the interval [0, 1) mod 1. Then denote by CBV (T)
the Banach space of continuous real functions on T with bounded variation:
ψ ∈ CBV (T) if and only if ψ is continuous and Var(ψ) < ∞. Let CBV0(T) be
the subspace of CBV (T) consisting of all functions of zero mean with respect
to the Lebesgue measure on T. Note, that if ‖ · ‖ denotes the supremum norm
on the space C(T), then the norm Var on CBV0(T) satisfies ‖ψ‖ ≤ Var(ψ), in
particular the usual norm ‖ · ‖ + Var( · ) on CBV (T) is equivalent on CBV0(T)
to Var( · ). Let AC0(T) be the subspace of CBV0(T) of all absolutely continuous
functions of zero mean.

The following theorem was essentially proved by A. S. Besicovitch in [8].
Although in [8] it is considered the case of X = T, it is an immediate observation
that Besicovitch used only compactness of T. We repeat the proof of Besicovitch
in our general situation for the chpter to be more self-contained.

Theorem 7.1.1 ([8]). Let (X,T ) be a compact metric flow, ϕ:X → R a con-
tinuous map. Then Tϕ:X × R→ X × R is not minimal.

Proof. We may assume that (X,T ) is minimal and Tϕ is point transitive. Let
(x0, 0) ∈ X × R be a transitive point for Tϕ, i.e. Orb(x0, 0) = X × R. By [40,
Theorem 9.23] we may assume that (x0, 0) is extensively transitive that means
both positive and negative semi-orbits of (x0, 0) are dense in X × R:

{Tnϕ (x0, 0) : n ≥ 0} = X × R, {Tnϕ (x0, 0) : n ≤ 0} = X × R.

Thus we are able to find three sequences of integers (mj)j≥1, (nj)n≥1, (sj)j≥1

such that mj < sj < nj , j ≥ 1, and

ϕ(mj)(x0) < −j, ϕ(nj)(x0) < −j, ϕ(sj)(x0) > j, j ≥ 1.

As ϕ is continuous and X is compact,

(7.2) mj − sj → −∞, nj − sj →∞.

We may assume that

(7.3) ϕ(sj)(x0) = max{ϕ(n)(x0) : mj ≤ n ≤ nj}, j ≥ 1.

Consider the points

(xnj , r
n
j ) = T sj+nϕ (x0,−ϕ(sj)(x0)) = (T sj+nx0, ϕ

(sj+n)(x0)− ϕ(sj)(x0))

= (T sj+nx0, ϕ
(n)(T sjx0)), n ∈ Z, j ≥ 1.
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Then, for mj − sj ≤ n ≤ nj − sj , j ≥ 1, we have

(7.4) r0
j = 0, Tϕ(xnj , r

n
j ) = (xn+1

j , rn+1
j ).

Take a convergent subsequence x0
jk
→ x̃. Then, by (7.4), for each n ∈ Z the

subsequence

(xnjk , r
n
jk

) = (xnjk , ϕ
(n)(T sjkx0)) = Tnϕ (x0

jk
, 0), k ≥ 1

is also convergent, (xnjk , r
n
jk

) → (Tnx̃, ϕ(n)(x̃)). By (7.2), for each given integer
n the inequalities mjk − sjk < n < njk − sjk hold for k large enough, hence, by
(7.4) and by (7.3), ϕ(n)(x̃) ≤ 0. In particular for each (x, r) ∈ Orb(x̃, 0) we have
r ≤ 0, therefore Orb(x̃, 0) is not dense in X × R. �

Corollary 7.1.2. Let (X,T ) be a compact metric flow, ϕ:X → Rm a con-
tinuous map. Then Tϕ:X × Rm → X × Rm is not minimal.

Proof. Let ϕ = (ϕ1, . . . , ϕm):X → Rm be a continuous map. By the above
there exists a point x̃ ∈ X such that the orbit of (x̃, 0) via Tϕ1 is not dense
in X × R, hence the orbit of (x̃, 0, . . . , 0) via Tϕ is not dense in X × Rm. In
particular Tϕ is not minimal. �

Our next aim is to show that no continuous bounded variation cocycle on T
admits minimal subsets (Theorem 7.1.4). The method of the proof of this theorem
is similar to the proof of [56, Proposition 2] of Krygin’s paper on the Poincaré
sets for smooth cocycles – the vertical sections of limits sets in T× R. Together
with Lemma 7.1.3 below some ideas of Krygin’s proof of [56, Proposition 2], after
modifications, will give the proof of our result.

Lemma 7.1.3. Let (X,T ) be a minimal rotation on a compact metric mo-
nothetic group, ϕ:X → Rm a continuous map. Suppose M ⊂ X × Rm to be
Tϕ-minimal set. Denote Mx = ({x} × Rm) ∩M . Then cardMx ≤ 1 for every
x ∈ X.

Proof. First consider the case m = 1. If Tϕ is not point transitive, then
either it is a coboundary or Tϕ is transient. In the first case M is a graph of
some continuous function f :X → R (see [64, Proposition 5.1]), in the second
one M is equal to orbit via Tϕ of some point (see [64, Remark 4]). In both cases
cardMx ≤ 1. Thus we may assume that Tϕ is point transitive.

Observe that as T is minimal, the set D = {x ∈ X : Mx 6= ∅} is dense in X.
Put H = {r ∈ R : M + r = M} (here M + r = {(x, s + r) : (x, s) ∈ M}). It is
easy to see that H is a closed subgroup. Similarly as in [36, Lemma 3.1] or [93,
Lemma 2.6.1] we see that if Mx 6= ∅ then Mx = r+H for every r ∈ R such that
(x, r) ∈M .

First assume that H = R. Then for x ∈ D we have Mx = R that implies
M = X × R, a contradiction with Theorem 7.1.1.
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Now let H = aZ. Take a Tϕ-transitive point (x, 0) ∈ X × R. Find a se-
quence xi ∈ D, i ≥ 1, that converges to x, and numbers ri ∈ R such that
(xi, ri) ∈ M . Since H = aZ, the numbers ri may be chosen from [0, a), thus
by passing to a subsequence, if necessary, we may assume that points (xi, ri)
converge to (x, r) ∈M . But (x, r) is a transitive point, a contradiction.

It remains the case H = {0} that gives the result.
Suppose now m is arbitrary. For any linear functional L:Rm → R define

a factor map L̃:X × Rm → X × R setting L̃(x, r) = (x, L(r)). Then the set
NL = L̃(M) is minimal and cardNL

x ≤ 1 for each x ∈ X. Suppose r, s ∈ Mx,
r = (r1, . . . , rm), s = (s1, . . . , sm). Fix i, 1 ≤ i ≤ m, and take L = pi, the
projection onto ith coordinate. Then p̃i(x, r) = (x, ri) ∈ Npi

x and p̃i(x, s) =
(x, si) ∈ Npi

x , hence ri = si. We have shown r = s and the result follows. �

Theorem 7.1.4. Let T be a minimal rotation on T. If ϕ ∈ CBV0(T) and ϕ
is not coboundary then Tϕ has no minimal subsets.

Proof. Identify T with [0, 1) mod 1 and let Tx = x+α mod 1, where α is an
irrational number. Let (qn)n≥1 be the sequence of denominators in the continued
fraction expansion of α.

Let us assume that M ⊂ T × R is a Tϕ-minimal set and (x, 0) ∈ M .
By Lemma 7.1.3 we find δ > 0 and ε > 0 such that the positive semi-orbit
{(Tϕ)n(x, 0) : n > 0} of (x, 0) intersects neither B− = (x − δ, x + δ) × (−ε −
2 Var(ϕ),−ε) nor B+ = (x− δ, x+ δ)× (ε, ε+ 2 Var(ϕ)).

There exists an interval I ⊂ (x− δ, x+ δ) with x ∈ I, and a positive integer
n such that every point of the orbit of x under T has the first return time to
I equal either to qn or to qn+1. Now, by (7.1), we have |ϕ(l)(x)| ≤ ε whenever
T lx ∈ I, l > 0 since the positive semi-orbit of (x, 0) does not intersect B− ∪B+.
Moreover, the set {l > 0 : T lϕ(x, 0) ∈ I × [−ε, ε]} ⊂ N has bounded gaps, thus
the positive semi-orbit of (x, 0) is bounded. Therefore, by [40, Theorem 14.11],
ϕ is a coboundary. We have got a contradiction. �

Remark 7.1.5. In [91] E. A. Sidorov constructs for each irrational rotation
on T point transitive cocycle without discrete orbits (recall that a discrete orbit
is always a minimal set). Below, using rather standard methods, we generalize
this showing that over every irrational rotation there exists a cocycle without
minimal sets.

On the other hand A. S. Besicovitch [8] constructs a particular irrational
rotation and a point transitive cocycle that admits a discrete orbit. There rema-
ins an open problem whether there exist point transitive cylinder cocycles with
minimal sets other than discrete orbits.

Now we will show the following lemma.

Lemma 7.1.6. For every minimal rotation T on T there exists ϕ ∈ AC0(T)
that is point transitive.
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Proof. Assume that T is a minimal rotation on T, Tx = x+α, such that all
ϕ ∈ AC0(T) are coboundaries, i.e. for every ϕ ∈ AC0(T) there exists gϕ ∈ C(T)
such that ϕ = gϕ − gϕ ◦ T . By minimality of T we may assume that gϕ is a
zero mean function. We have obtained a well defined linear map CBV0(T) ⊃
AC0(T) 3 ϕ 7−→ gϕ ∈ C0(T). For the purpose of this proof we consider the
space AC0(T) with the variation norm Var. With this norm the map ϕ 7−→ gϕ is
continuous by the Closed Graph Theorem. Thus there is a constant M ≥ 0 such
that

(7.5) ‖gϕ‖ ≤M ·Var(ϕ)

for every ϕ ∈ AC0(T). However, we will see that there exists a sequence (PN )N≥0

of real polynomials on T such that

(7.6) lim
N→∞

‖PN‖
Var(PN − PN ◦ T )

=∞

(what will give a contradiction to (7.5)). To see this consider

PN (x) =
N∑

n=−N
ane

2πinx, N ≥ 0,

such that an = a−n for n ≥ 0, an = 0 for n 6= qk, aqk > 0 (here (qk)k≥1 is the
sequence of denominators of the continued fraction expansion of α), and

(7.7) lim
N→∞

∑
qk≤N aqk

(
∑
qk≤N a

2
qk

)1/2
=∞.

We have
P ′N − P ′N ◦ T = 4πi

∑
qk≤N

qkaqk(1− e2πiqkα)e2πiqkx.

Since |1 − e2πiqkα| ≤ ‖qkα‖ and qk‖qkα‖ ≤ 1 (here ‖β‖ denotes the distance of
the number β from the set of integers), we have

(7.8) Var(PN − PN ◦ T ) = ‖P ′N − P ′N ◦ T‖L1

≤ ‖P ′N − P ′N ◦ T‖L2 ≤ const ·
( ∑
qk≤N

a2
qk

)1/2

.

Now, the equality ‖PN‖ = 2
∑
aqk (recall that ‖·‖ denotes the supremum norm),

(7.8), and the assumption (7.7) imply (7.6). We obtained a contradiction with
(7.5) and we are done. �

For more general results on the existence of point transitive cocycles over
irrational rotations see [70, Theorem 3 and 6].

Remark 7.1.7. Consider a linear map C0(T) 3 f Φ7−→ f − f ◦ T ∈ C0(T).
Assume for a moment that Φ(C0(T)) ⊂ CBV0(T). Then, by the Closed Graph
Theorem, the map Φ:C0(T)→ CBV0(T) is continuous. Thus there is a constant
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M > 0 such that Var(f − f ◦ T ) ≤ M‖f‖ for all f ∈ C0(T). On the other hand
it is not difficult to find f ∈ C0(T) with ‖f‖ = 1 and arbitrary large variation
of f − f ◦ T , which is a contradiction. This rather standard consideration shows
the following.

Lemma 7.1.8. For every minimal rotation T on T there exists f ∈ C0(T)
such that f − f ◦ T is not of bounded variation.

Theorem 7.1.4 together with Remarks 7.1.5 and 7.1.7 show that there are
also unbounded variation cocycles without minimal sets.

7.2. The problem of minimality
for cylinder extensions of adding machines

Let r = (rn)n≥1 be a sequence of integers such that rn ≥ 2, n ≥ 1. Set
λ0 = 1, λn = r1 · . . . · rn, n ≥ 1. Let

(7.9) Z(r) =
{ ∞∑
n=0

anλn : an ∈ {0, . . . , rn+1 − 1}
}

be the compact group of r-adic numbers with the product topology induced from∏∞
n=0{0, . . . , rn − 1}. This topology may be defined by the metric d(

∑
anλn,∑

bnλn) = 1/λm, where m = min{n : an 6= bn}.
For m ≥ 1 and 0 ≤ k < λm define the sets Wm

k = [a0 a1 . . . am−1] by

(7.10) Wm
k =

{
x ∈ Z(r) : x =

∞∑
n=0

xnλn, xi = ai, i = 0, . . . ,m− 1
}
,

where ai ∈ {0, . . . , ri+1− 1} are such that
∑m
i=1 aiλi = k. Let Wm = {Wm

0 , . . . ,

Wm
λm−1}. Clearly the sets Wm

k are closed-open and
⋃
Wm = Z(r). Let µ denote

the normalized Haar measure on Z(r). Observe that diam(Wm
k ) = µ(Wm

k ) =
1/λm. We define a homeomorphism T :Z(r)→ Z(r) setting Tx = x+1 obtaining
a minimal rotation on a compact metric monothetic group Z(r). Then the metric
d defined above as well as the measure µ are T -invariant. Moreover TWm

k =
Wm
k+1, where k + 1 is taken mod λm. The flow (Z(r), T ) is called an adding

machine.
Denote by C(Z(r)) the space (algebra) of all continuous real functions on

Z(r). Equip C(Z(r)) with the topology of uniform convergence. Observe that
each real function that is constant on elements of some Wm is continuous.

Definition 7.2.1. We say that ϕ ∈ C(Z(r)) has bounded variation if

Var(ϕ) := sup
m≥0

Vm(ϕ) <∞, where Vm(ϕ) =
λm−1∑
k=0

(max
Wm
k

ϕ−min
Wm
k

ϕ).
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The family of such functions we denote by CBV (Z(r)), and as usual, CBV0(Z(r))
stands for the subfamily of CBV (Z(r)) consisting of all functions with zero mean
with respect µ.

Remark 7.2.2. Let (X, d) be a compact metric space and ϕ:X → R be a
continuous function. Recall that a function Mϕ = M :R+ → R defined by

M(h) = sup
d(x,y)≤h

|ϕ(x)− ϕ(y)|

is called a continuity modulus of ϕ. Now let us take X = Z(r) and consider
a family of functions ϕ ∈ C(Z(r)) such that Mϕ(1/λk) = O(1/λk) (i.e. the
sequence (λkMϕ(1/λk))k≥1 is bounded). Since obviously

Vm(ϕ) ≤ λmM(1/λm),

this family is contained in CBV (X); actually this inclusion may be strict in
general.

We intend to prove that a point transitive bounded variation cocycle over an
adding machine does not admit minimal subset. Such a cocycle is construc-
ted in Example 7.3.2. We start with a lemma, that contains a kind of the
Denjoy–Koksma inequality for cocycles over adding machines.

Lemma 7.2.3. Let ϕ ∈ CBV (Z(r)). Then, for every x ∈ Z(r),∣∣∣∣ 1
λm

ϕ(λm)(x)−
∫
Z(r)

ϕ(t) dt
∣∣∣∣ ≤ 1

λm
Var(ϕ).

Proof. Fixing m ≥ 1 and x ∈ Z(r) we may assume that x ∈ Wm
0 . Then we

have ∣∣∣∣ϕ(λm)(x)− λm
∫
Z(r)

ϕ(t) dt
∣∣∣∣ ≤ λm−1∑

k=0

∣∣∣∣ϕ(T kx)− λm
∫
Wm
k

ϕ(t) dt
∣∣∣∣

≤
λm−1∑
k=0

λm

∫
Wm
k

|ϕ(T kx)− ϕ(t)| dt

≤
λm−1∑
k=0

λm

∫
Wm
k

(max
Wm
k

ϕ−min
Wm
k

ϕ) dt = Vm(ϕ) ≤ Var(ϕ). �

In case of ϕ ∈ CBV0(X) the inequality from Lemma 7.2.3 takes the form

(7.11) ‖ϕ(λm)‖ ≤ Var(ϕ).

Theorem 7.2.4. Let (X,T ) be an adding machine. If ϕ ∈ CBV0(X) and ϕ
is not a coboundary then Tϕ admits no minimal subsets.

Proof. The proof is similar to the proof of Theorem 7.1.4. We consider the
rigidity time (λm)m≥1 instead of (qk)k≥1 and use (7.11) instead of (7.1). The
interval I is replaced by one of the levels of Wn for appropriate n. �
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7.3. Existence of point transitive cocycles
over compact monothetic groups

Our next aim is to show that all minimal rotations on compact infinite metri-
zable monothetic groups admit point transitive real cocycles. W. H. Gottschalk
and G. A. Hedlund [40] have developed a theory of real cocycles over minimal
rotations on connected and locally connected monothetic groups. However also
rotations on disconnected monothetic groups may admit point transitive cocyc-
les.

Example 7.3.1. Let X = Z2 × [0, 1) and T (i, x) = (i + 1, x + α), where
the addition on the first coordinate is taken mod 2 while the addition on the
second coordinate is taken mod 1. Take a continuous function ϕ: [0, 1)→ R and
define ϕ̃:X → R by ϕ̃(i, x) = ϕ(x). Assume ϕ̃ to be coboundary, i.e. there
exists a continuous g̃:X → R with ϕ̃(i, x) = g̃(i + 1, x + α) − g̃(i, x). Defining
g: [0, 1)→ R by g(x) = (g̃(0, x) + g̃(1, x))/2 we have

g(x+ α)− g(x) =
1
2

(ϕ̃(1, x) + ϕ̃(0, x)) = ϕ(x).

Now, taking a point transitive cocycle ϕ on ([0, 1), α) we get, by the construc-
tion above, a point transitive cocycle ϕ̃ over a disconnected, locally connected
monothetic group.

Notice that in the example above, g is an integral of g̃ with respect to the nor-
malized Haar measure on the kernel of the projection onto the second coordinate.
This simple observation gives rise to Lemma 7.3.3

Now we show that also adding machines, that are not locally connected,
admits point transitive cocycles.

Example 7.3.2. Let X = Z(r) and T be a minimal rotation on X. Put

χs

( ∞∑
n=0

anλn

)
= exp

(
2πi
∑s−1
n=0 anλn
λs

)
.

Observe that (the character group) X̂ = {χls : s ≥ 1, 0 ≤ l ≤ λs − 1}. Define
ϕ:X → R by

ϕ(x) =
∞∑
s=1

ϕs =
∞∑
s=1

χs + χ−1
s

λs
.

Clearly ϕ ∈ C0(X). Assume that ϕ is a coboundary, ϕ = g ◦ T − g for some
g ∈ C0(X). Represent g =

∑
s≥1

∑
0<t<λs as,tχ

t
s. For s ≥ 1 we have

as,t =


1

λs(exp(2πi/λs)− 1)
if t = 1,

0 if 1 < t < λs − 1,
1

λs(exp(−2πi/λs)− 1)
if t = λs − 1.
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Simple calculations show that

|as,1| = |as,λs−1| =
1

2λs sin(π/λs)
≥ 1

2π
,

which is impossible. Therefore ϕ is a point transitive cocycle over the adding
machine. It turns out that ϕ ∈ CBV0(X). To see this observe first that χs,
hence also ϕs, is constant on the levels of Wt for t ≥ s. Moreover, ϕs takes on
levels of Ws the values 2 cos(2πl/λs)/λs, 0 ≤ l < λs, as χs takes the values
exp(2πil/λs), 0 ≤ l < λs. Therefore

max
Wm
k

ϕ−min
Wm
k

ϕ ≤
∑
s>m

(
max
Wm
k

ϕs −min
Wm
k

ϕs
)
≤
∑
s>m

4
λs

for m ≥ 1. Thus

Vm(ϕ) =
λm−1∑
j=0

(
max
Wm
k

ϕ−min
Wm
k

ϕ
)
≤ 4

∑
s>m

λm
λs

<
8

rm+1
≤ 4.

Consequently
Var(ϕ) = sup

m≥1
Vm(ϕ) ≤ 4

and ϕ has bounded variation.
We intend to prove that each minimal rotation on a compact metric mono-

thetic group admits a point transitive real cocycle (Theorem 7.3.6). Moreover,
for each m ≥ 1 and for each linear subspace V ⊂ Rm there exists a continuous
cocycle with range in Rm such that E(ϕ) = V (Corollary 7.3.7). To get these
results we proceed as follows.

Lemma 7.3.3. Let π:X → Y be a continuous group epimorphism of com-
pact metric monothetic groups. Let T :X → X, Tx = x + α, S:Y → Y ,
Sy = y+β, where β = π(α), be minimal rotations. Then for any point transitive
cocycle ϕ:Y → R the cocycle ϕ̃:X → R defined by ϕ̃(x) = ϕ(π(x)) is also point
transitive.

Proof. Assume that ϕ:Y →R is a point transitive cocycle. Then
∫
ϕdµY =0,

hence
∫
ϕ̃ dµX = 0, where µX and µY denote the normalized Haar measures on

X and Y , respectively. By [64, Theorem 1], either Tϕ̃ is point transitive or ϕ̃ is a
coboundary. Assume ϕ̃:X → R, ϕ̃ = ϕ ◦ π to be a coboundary over the rotation
by α ∈ X, i.e. there exists a continuous g̃:X → R with ϕ̃(x) = g̃(x+ α)− g̃(x).
Denote K = kerπ and identify Y with X/K; then β = α+K. Define a continuous
function g:Y → R by g(x+K) =

∫
K
g̃(x+ k) dk. We have

g(x+ α+K)− g(x+K) =
∫
K

(g̃(x+ α+ k)− g̃(x+ k)) dk

=
∫
K

ϕ̃(x+ k) dk =
∫
K

ϕ(x+K) dk = ϕ(x+K).
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Thus we have shown ϕ to be a coboundary over the rotation by β, which is a
contradiction. �

In the following theorem we generalize Lemma 7.3.3.

Theorem 7.3.4. Let π:X → Y be a continuous group epimorphism of com-
pact metric monothetic groups, and let T :X → X, S:Y → Y , where π ◦ T =
S ◦ π, be minimal rotations. Then E(ϕ) = E(ϕ ◦ π) for each continuous cocycle
ϕ:Y → Rm.

Proof. If ϕ is transient, then clearly ϕ ◦ π is also transient. Suppose Sϕ is
conservative, hence regular (see [72, Theorem 4.9]). Let L:Rm → R be linear.
By [72, Theorem 3.5], both E(ϕ) and E(ϕ◦π) are linear subspaces of Rm. Then,
by [74, Proposition 3.1],

E(L ◦ ϕ) = L(E(ϕ)), E(L ◦ ϕ ◦ π) = L(E(ϕ ◦ π)).

By Lemma 7.3.3, E(L ◦ ϕ) = E(L ◦ ϕ ◦ π) so L(E(ϕ)) = L(E(ϕ ◦ π)). As L is
arbitrary, E(ϕ) = E(ϕ ◦ π). �

Remark 7.3.5. Define ϕ: [0, 1)→ R setting

ϕ(x) =
∞∑
k=1

1
qk

cos 2πqkx =
1
2

∑
k≥1

1
q2
k

(e2πiqkx + e−2πiqkx)

(by Euler’s formula). Since
∑

1/qk converges, ϕ is a well defined continuous
(and zero mean) function. We will show that ϕ is point transitive (compare [40,
14.14]). Suppose for the contrary that ϕ is a coboundary, i.e. ϕ = g − g ◦ T
for some continuous function g. Let an =

∫
T g(x)e−2πnix dx, n ∈ Z. By Lebes-

gue–Riemann Lemma lim an = 0. Simple calculations show that

1
2
· 1
qk

= a±qk(1− e±2πiqkα), k ≥ 1,

an = 0, n 6= ±qk, k ≥ 1.

However |e2πiqkα − 1| < 8/qk+1 and it follows that

16|aqk | =
8
qk
· 1
|e2πiqkα − 1|

>
qk+1

qk
≥ 1,

which gives a contradiction. Thus the cocycle ϕ is not a coboundary, hence ϕ is
point transitive.

Using the point transitive cocycle ϕ we have defined above one may construct
for any m a point transitive cocycle ϕ̃:T→ Rm. To see this consider m pair-wise
disjoint subsequences (ck,j)k≥1, j = 1, . . . ,m of the sequence (qk)k≥1 such that
no of the sequences ((1/ck,j)|e2πick,jα − 1|)k≥1, j = 1, . . . ,m, is convergent.
Setting

ϕj(x) =
∑
k≥1

1
ck,j

cos 2πck,jx, j = 1, . . . ,m
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we get that no non-zero combination b1ϕ1 + . . . + bmϕm is a coboundary. By
Atkinson’s theorem ([6, Theorem 1] or [72, Proposition 4.8]), the cocycle ϕ̃ =
(ϕ1, . . . , ϕm) is point transitive.

Using Example 7.3.2, Lemma 7.3.3 and Remark 7.3.5 we get the following.

Theorem 7.3.6. Assume that X is an infinite compact metric monothetic
group. Let T :X → X be a minimal rotation on X. Then (X,T ) admits a point
transitive real cocycle.

Remark 7.3.5 allows us to give a slight generalization of Theorem 7.3.6.

Corollary 7.3.7. Assume that X is an infinite compact metric monothetic
group. Let T :X → X be a minimal rotation. Then for each integer m ≥ 1 and
for each linear subspace V ⊂ Rm there exists a continuous cocycle ϕ:X → Rm
such that E(ϕ) = V .

Proof. Take a linear subspace V ⊂ Rm. Let ψ = (ϕ1, . . . , ϕm):X → Rm
be a point transitive cocycle. If dimV = 0, then each coboundary is good
for us. Suppose dimV = k > 0. Denote e1, . . . , em to be the standard base
of Rm. Without loosing of generality we may assume that V is generated by
e1, . . . , ek. Indeed, by [72, Theorem 4.9], all zero mean cocycles with values
in Rm are regular, and application of [74, Proposition 3.1] finishes the argumen-
tation. Let φ = (ϕ1, . . . , ϕk, 0, . . . , 0). Again by [74, Proposition 3.1], we have
that E(ϕ) = V . �





CHAPTER 8

SOME APPLICATIONS OF GROUPS OF ESSENTIAL VALUES
OF COCYCLES IN TOPOLOGICAL DYNAMICS

8.1. Preliminaries

8.1.1. Measure-theoretic context. It is easy to observe that if G is Abe-
lian and ϕ is cohomologous to ψ, then E(ϕ) = E(ψ). This fails when G is not
Abelian, nevertheless A. Danilenko has shown that in measure-theoretic ergodic
theory groups of essential values of cocycles have the following property.

Theorem 8.1.1 ([13, Proposition 1.1]). If the cocycles ϕ and ψ are regu-
lar and cohomologous, then the groups E(ϕ) and E(ψ) are conjugate in G, i.e.
E(ψ) = g−1E(ϕ)g for some g ∈ G.

In Section 8.2 we will give an example that in topological dynamics The-
orem 8.1.1 is not true if we omit the assumption of regularity (Example 8.2.3).
This a topological version of the result of [5].

In measure-theoretic ergodic theory regular cocycles are characterized by
Proposition 1.4.10 saying that a cocycle ϕ : X → G, where G is a locally com-
pact Abelian group, is regular if and only if E∞(ϕ̃) = {0}, where ϕ̃:X → G/E(ϕ)
is defined by by ϕ̃(x) = ϕ(x)E(ϕ). Clearly, always E∞(ϕ̃) ⊂ {0,∞}. The equ-
ivalence in Proposition 1.4.10 is shown making use of Proposition 1.4.7(b) and
of the existence of a measurable selector for the quotient map G → G/E(ϕ).
In the topological case continuous selectors may not exist. We will show that
Proposition 1.4.10 is not true in topological dynamics – see Proposition 8.2.2.

Assume now that (Y,C, ν) is a standard probability space. Consider the set
Aut(Y,C, ν) of all automorphisms of (Y,C, ν). Then considering the map

Aut(Y,C, ν) 3 S 7→ US :L2(Y,C, ν)→ L2(Y,C, ν), US(f) = f ◦ S

we may see Aut(Y,C, ν) as a closed subset of the group U(L2(Y,C, ν)) of unitary
operators on L2(Y,C, ν) in the strong operator topology. With this topology the
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set Aut(Y,C, ν) is a Polish space. Given a locally compact group G, its repre-
sentation Γ = {γg : g ∈ G} and a measurable cocycle ϕ:X → G we may consi-
der the Rokhlin cocycle extension Tϕ,Γ defined by Tϕ,Γ(x, y) = (Tx, γϕ(x)(y))
– see (2). For cohomologous cocycles ϕ and ψ, ψ(x) = (f(Tx))−1ϕ(x)f(x),
the corresponding skew products Tϕ,Γ and Tψ,Γ are isomorphic via the map
(x, y) 7→ (x, f(x)−1(y)). A complete description of all invertible elements from
the centralizer of the automorphism Tϕ,Γ for a locally compact second countable
group G is given in the following.

Proposition 8.1.2 ([63, Proposition 5]). Let T : (X,B, µ)→ (X,B, µ) be an
ergodic automorphism of a probability standard space, (Y,C, ν) a probability stan-
dard space, Γ a closed locally compact second countable subgroup of Aut(Y,C, ν).
Let ϕ:X → G be an ergodic cocycle. Then each invertible element R̃ of C(Tϕ,Γ)
is of the form

R̃(x, y) = (Rx, f(x) ◦W (y)),

where R ∈ C(T ), f :X → G is measurable and W ∈ Aut(Y,C, ν) normalizes the
group Γ in Aut(Y,C, ν).

We will give analogous characterization of invertible elements of C(Tϕ,Γ) in
topological dynamics context (see Theorem 8.3.10).

8.1.2. Topological dynamics context. Assume that G is a locally com-
pact group with the unit element e, X a compact Hausdorff space and let
Γ = {γg : g ∈ G} be a left continuous action of G on X, i.e. there is a con-
tinuous map γ:G×X → X satisfying the following conditions:

γ(e, x) = x, for all x ∈ X,(8.1)

γ(g1g2, x) = γ(g1, γ(g2, x)) for all g1, g2 ∈ G, x ∈ X.(8.2)

As usual we denote γ(g, · ) = γg. In what follows we will assume that all actions
of topological group we consider are effective, i.e. γg = IdX implies g = e.

For an Abelian group G, cohomologous cocycles have the same essential
values (see Proposition 5.2.2(b)):

Proposition 8.1.3. Let (X,T ) be a compact flow, G a locally compact Abe-
lian group. If ϕ, ξ:X → G are continuous maps, then

E∞(ϕ) = E∞((ξ ◦ T )−1ϕξ).

This is not true when G is not Abelian, even for the groups of essential values
– see Example 8.2.3.

For regular cocycle ϕ the following equality E(ϕ̃) = {0} holds (see Corol-
lary 6.1.4), where ϕ̃(x) = ϕ(x)E(ϕ) ∈ G/E(ϕ). In measure-theoretic case the
equality E(ϕ̃) = {0} is equivalent to regularity of ϕ. Proposition 8.2.2 shows
that this is not true in topological dynamics.
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8.2. Counterexamples in topological dynamics

First we present a simple example of an extension T̃ → T of topological flows
such that T̃ is not of the form (1) (see page 7).

Example 8.2.1. Let T be the unit circle represented as the interval [0, 1).
Consider T̃ :T → T, T̃ x = x + α (mod 1), where α is irrational. Then T =
T̃ 2:T → T, Tx = x + 2α (mod 1), is a factor of T̃ with two-point fibers. It is
easy to check that T̃ and T are not isomorphic. Clearly T̃ is not isomorphic to
any skew product (T× Y, Tψ) with continuous ψ:T→ Hom(Y, Y ).

The following proposition defines a family of topological counterexamples for
valid in ergodic theory Proposition 1.4.10.

Proposition 8.2.2. Assume that (X,T ) is a compact metric minimal flow,
ϕ:X → Rm an ergodic cocycle. Define

T :X × Rm/Zm → X × Rm/Zm,
T (x, g + Zm) = (Tx, ϕ(x) + g + Zm).

Let ψ:X × Rm/Zm → Rm, ψ(x, g + Zm) = ϕ(x). Then E(ψ) = Zm, E∞(ψ̃) =
{0}, where ψ̃:X×Rm/Zm → Rm/E(ψ) = Rm/Zm, ψ̃(x, g+Zm) = ψ(x, g+Zm)+
Zm, and ψ is not regular. If moreover (X,T ) is distal, then (X ×Rm/Zm, T ) is
minimal.

Proof. Clearly T is topologically ergodic. If moreover T is distal, T is also
distal. Thus T is minimal provided T is distal. Let us compute E(ψ). Let g0 ∈
E(ψ), g0 6= 0. Then for any nonempty open sets U ⊂ X, W ⊂ Rm/Zm, g0 ∈
V ⊂ Rm, we can find an n ∈ Z such that

(U ×W ) ∩ T−n(U ×W ) ∩ {(x, g + Zm): ψ(n)(x, gZm) ∈ V } 6= ∅.

Now, if (x, g+Zm) belongs to the set above, then ψ(n)(x, g+Zm) ∈ V , x, Tnx ∈
U , g + Zm, ϕ(n)(x) + g + Zm ∈W , ϕ(n)(x) ∈ V . Consider the sequences

U = U1 ⊃ U2 ⊃ . . . , W = W1 ⊃W2 ⊃ . . . , V = V1 ⊃ V2 ⊃ . . .

of open sets with⋂
n>1

Ui = {x},
⋂
i>1

Wi = {g + Zm},
⋂
i>1

Vi = {g0}.

Thus we can choose xi ∈ Ui with xi, Tnixi → x, gi +Zm, ϕ(ni)(xi) + gi +Zm →
g + Zm, ϕ(ni)(xi)→ g0. This implies ϕ(ni)(xi) + Zm → Zm, so g0 ∈ Zm.

Suppose now that h ∈ Zm. Take nonempty open sets U ⊂ X, W ⊂ Rm/Zm,
and fix h ∈ V ⊂ Rm. Find open sets h ∈ V0 ⊂ V and W0 ⊂ W such that
V0+W0 ⊂W . As ϕ is ergodic, there exists n ∈ Z such that the set U∩T−1U∩{x :
ϕ(n)(x) ∈ V0} is non-empty, say z belongs to it.
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Let w0 + Zm ∈ W0. Then z, Tnz ∈ U , w0 + Zm ∈ W , ϕ(n)(z) + w0 + Zm ∈
V0 +W0 ⊂W and ϕ(n)(z) ∈ V0 ⊂ V . Thus

(z, w0 + Zm) ∈ (U ×W ) ∩ T̃−n(U ×W ) ∩ {ψ(n) ∈ V } and h ∈ E(ψ).

We have shown that E(ψ) = Zm.
Now, if ψ were regular, ψ would have the form

ϕ(x) = ψ(x, g + Zm) = F (x, g + Zm)− F ◦ T (x, g + Zm) + χ(x, g + Zm),

where χ:X × Rm/Zm → Zm. Integrating both sides of the above equation over
Rm/Zm with respect to the normalized Haar measure we get

ϕ(x) = f(x)− f(Tx) + χ0(x),

where χ0(x) takes its values in Zm (since Rm/Zm is connected), which is impos-
sible as ϕ is ergodic. Thus ψ is not regular.

Now observe that since Rm/Zm is compact, ∞ 6∈ E∞(ψ̃). �

It follows from Theorem 6.3.8 that each zero mean cocycle defined on a mi-
nimal rotation on a compact monothetic metric group and with values in Rm,
is regular. Taking in Proposition 8.2.2 a minimal rotation on a circle as (X,T )
with topologically ergodic continuous ϕ:T → R we get that the compact flow
(T×R/Z, T̃ ) is minimal and distal. Moreover, this flow admits a non-regular real
cocycle ψ with E∞(ψ̃) = {0}. This shows that the theory of topological cocycles
is more complex than this theory in measure-theoretic context.

Below we will present an example of two cohomologous cocycles with values
in (non-abelian) group SL(2,R) such that their groups of essential values are
not conjugate.

Example 8.2.3. Let X = {0, 1}Z be the set of all 0–1 bisequences with
product topology. For x ∈ X denote by x[n] the nth coordinate of x and let
x[n,m] = x[n]x[n+ 1] . . . x[m] for m > n. The product topology on X is defined
by the metric

d(x, y) =
(
1 + min{|n| : x[n] 6= y[n]}

)−1
.

Let T :X → X be left side shift, Tx[n] = x[n+ 1]. Then the flow (X,T ) is topo-
logically ergodic. Define f :X → Z, f(x) = (−1)x[0]. Clearly f is continuous and
has zero mean with respect to the Bernoulli probability measure (1/2, 1/2) on X.
Now we will show that f is ergodic i.e. Tf :X×Z→ X×Z is point transitive. To do
this take an arbitrary positive integer m and fix B = a−ma−m+1 . . . a0a1 . . . am,
where all ai are either zero or one. Let U = {x ∈ X : x[−m,m] = B}. Set
n = 4m+ 3. Denote B̃ = ã−m . . . ãm, where ã = 1− a for a ∈ {0, 1}. Choose an
x0 ∈ X satisfying

x0[−m,m] = B, x0[m+ 1, 3m+ 1] = B̃,

x0[3m+ 2] = 0, x0[3m+ 3, 5m+ 3] = B.
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Then x0 ∈ U , Tnx0 ∈ U . We also have

f (n)(x0) =
4m+2∑
i=0

(−1)x0[i]

=
m∑
i=0

(−1)x0[i] +
3m+1∑
i=m+1

(−1)x0[i] + (−1)x0[3m+2] +
4m+3∑
i=3m+3

(−1)x0[i]

=
m∑
i=0

(−1)ai +
m∑

i=−m
(−1)1−ai + 1 +

−1∑
i=−m

(−1)ai = 1.

As U was arbitrary, we conclude that 1 ∈ E(f). Since E(f) is a group and f is
integer-valued, E(f) = Z. By Proposition 5.2.3, f is ergodic.

Now we define a continuous map ϕ:X → SL(2,R) setting

ϕ(x) =
[

1 f(x)
0 1

]
.

Then clearly

E(ϕ) =
{[

1 n

0 1

]
: n ∈ Z

}
.

Define a continuous map ξ:X → SL(2,R) by

ξ(x) =


[

1 0

0 1

]
if x[0] = 0,[

1 0

−1 1

]
if x[0] = 1.

Let ψ:X → SL(2,R) be defined by

ψ(x) = (ξ(Tx))−1ϕ(x)ξ(x).

We will show that E(ψ) is trivial, hence not conjugate to E(ϕ). To prove this
take

[
a b

c d

]
∈ E(ψ). Then for each x ∈ X there exists a sequence (ni)i>1 of

integers and a sequence (xi)i>1 such that

xi → x, Tnixi → x, ψ(ni)(xi)→
[
a b

c d

]
.

Suppose first that x[0] = 0, we may assume that xi[0] = Tni [0] = 0 for all i > 1.
Then

ψ(ni)(xi) = (ξ(Tnixi)−1ϕ(xi)ξ(xi)

=ϕ(ni)(xi) =
[

1 f (ni)(xi)
0 1

]
→
[
a b

c d

]
that means c = 0, a = 1, d = 1, i.e.

[
a b

c d

]
=
[ 1 b

0 1

]
.
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Assume now that x[0] = 1. Then we may assume that xi[0] = Tni [0] = 1 for
all i > 1. Then

ψ(ni)(xi) = ξ(Tnixi)−1ϕ(xi)ξ(xi)

=
[

1 0
1 1

]
·
[

1 ϕ(ni)(xi)
0 1

]
·
[

1 0
−1 1

]
=
[

1 0
1 1

]
·
[

1− ϕ(ni)(xi) ϕ(ni)(xi)
−1 1

]
=
[

1− ϕ(ni)(xi) ϕ(ni)(xi)
−ϕ(ni)(xi) 1 + ϕ(ni)(xi)

]
→
[

1 b

0 1

]
.

Therefore ϕ(ni)(xi)→ 0 and b = 0.

8.3. Isomorphisms of Rokhlin cocycle extensions
of point transitive flows

The following proposition is a topological version of Proposition 1.4.11.

Proposition 8.3.1. Let (X,T ) be a Z-flow. Assume that G, H are locally
compact Abelian groups and let π:G→ H be a continuous group homomorphism.
If ϕ:X → G is a continuous map, then

π(E(ϕ)) ⊂ E(π ◦ ϕ).

If additionally ϕ is regular, then

π(E(ϕ)) = E(π ◦ ϕ).

Proof. The inclusion is clear. Assume now that ϕ is regular, that means
ϕ = (f ◦ T )−1ψf , where f :X → G, ψ:X → E(ϕ) are continuous maps. Let
g ∈ E(π ◦ ϕ). To prove that g ∈ π(E(ϕ)), fix an open neighbourhood V of the
unit element in H. We will show that (gV ) ∩ π(E(ϕ)) 6= ∅. Let V0 be an open
symmetric neighbourhood of the unit element in H such that V0V0 ⊂ V . Take
an open U ⊂ X such that x, y ∈ U implies π(f(y)−1)π(f(x)) ∈ V0. Now, as
g ∈ E(π ◦ ϕ), there exists n such that the set U ∩ T−nU ∩ {π ◦ ϕ(n) ∈ gV0} is
nonempty, say x belongs to it. Then x ∈ U , Tnx ∈ U , and, by our assumption,
π(f(Tnx)−1)π(f(x)) ∈ V0. Moreover

gV0 3 π ◦ ϕ(n)(x) = π(f(Tnx)−1)π(f(x))π ◦ ψ(n)(x)

and we get

π ◦ ψ(n)(x) ∈ gV0V0 ⊂ gV and π ◦ ψ(n)(x) ∈ π(E(ϕ)),

which finishes the proof. �
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Theorem 8.3.2. Let (X,T ) be a compact metric point transitive flow, G
a locally compact second countable Abelian group, Y a compact metric space,
Γ = {γg : g ∈ G} an effective left continuous actions of G on Y , ϕ:X → G

a continuous map such that Tϕ is point transitive. Assume moreover that Γ ⊂
Hom(Y, Y ) is a closed subgroup. Let Ŝ ∈ C(Tϕ,Γ) be an invertible extension of
some S ∈ C(T ). Then there exist: p ∈ Hom(Y, Y ), a topological group automor-
phism v:G→ G and a continuous map ψ:X → G such that

(8.3) Ŝ(x, y) = (Sx, γψ(x) ◦ p(y)),

and p satisfies

(8.4) γv(g) = p ◦ γg ◦ p−1, g ∈ G.

Proof. Let Ŝ(x, y) = (Sx, κ(x, y)), where κ:X×Y → Y is a continuous map.
Because Ŝ commutes with Tϕ,Γ, we have

(8.5) γϕ(Sx)κ(x, y) = κ(Tx, γϕ(x)(y)).

For x ∈ X let κx:Y → Y , κx(y) = κ(x, y). Then (8.5) may be written as

(8.6) γϕ(Sx) ◦ κx = κTx ◦ γϕ(x).

Consider now the map

X 3 x 7→ κx ∈ Hom(Y, Y ).

We will show that the map above is continuous. Take ε > 0. Find δ1 > 0
such that d((x, y), (x′, y′)) < δ1 implies both d(Ŝ(x, y), Ŝ(x′, y′)) < ε/2 and
d(Ŝ−1(x, y), Ŝ−1(x′, y′)) < ε/2. Now, find δ > 0 such that δ < δ1 and if d(x, x′) <
δ then d(Sx, Sx′) < δ1. Now assume that d(x′, x) < δ. Then

d(κx, κx′) = sup
y∈Y

d(κx(y), κx′(y)) + sup
y∈Y

d(κ−1
x (y), κ−1

x′ (y))

≤ sup
y∈Y

d(Ŝ(x, y), Ŝ(x′, y)) + sup
y∈Y

d(Ŝ−1(x, y), Ŝ−1(x′, y)) < ε.

Define a (continuous) map F :X × G → Hom(Y, Y ) by F (x, g) = κx ◦ γg.
Then, by (8.6), F ◦ Tϕ(x, g) = κTx ◦ γϕ(x) ◦ γg = γϕ(Sx) ◦ F (x, g). Considering
the identity

(8.7) F ◦ Tϕ(X, g) = γϕ(Sx) ◦ F (x, g)

in the quotient space Hom(Y, Y ) \ Γ of left cosets of Γ in Hom(Y, Y ) we get
ΓF ◦ Tϕ(x, g) = ΓF (x, g). As Tϕ is topologically ergodic, the map ΓF :X →
Hom(Y, Y ) \ Γ is constant, ΓF (x, y) = Γp for some p ∈ Hom(Y, Y ). This means
that

(8.8) F (x, g) = γψ(x,g) ◦ p,
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where ψ:X ×G→ G is a continuous map. By (8.7) we have

γϕ(Sx) = γψ(Tx,ϕ(x)g)·ψ(x,g)−1

which gives

(8.9) ϕ(Sx) = ψ ◦ Tϕ(x, g) · ψ(x, g)−1.

Now, for arbitrary h ∈ G consider a map Ah:X × G → G, Ah(x, g) =
ψ(x, gh)ψ(x, g)−1. Then, by (8.9),

Ah ◦ Tϕ(x, g) =ψ(Tx, ϕ(x)gh)ψ(Tx, ϕ(x)g)−1

= (ψ(Tx, ϕ(x)gh)ψ(x, gh)−1)

· (ψ(x, gh)ψ(x, g)−1)(ψ(x, g)ψ(Tx, ϕ(x)g))

=ϕ(Sx)Ah(x, g)ϕ(Sx)−1 = Ah(x, g).

Since Tϕ is topologically ergodic, Ah is constant:

(8.10) ψ(x, gh)ψ(x, g)−1 = v(h), where v:G→ G.

Clearly v is a continuous group homomorphism. In particular

v(h) = ψ(x, h)ψ(x, e)−1

i.e.

(8.11) ψ(x, h) = v(h)ψ(x, e) = v(h)ψ(x).

By (8.8), κx = γψ(x) ◦ γv(g) ◦ p ◦ γ−1
g and κx does not depend on g, so γv(g)pγ

−1
g

also does not depend on g. In particular, taking g = e we get

(8.12) γv(g)pγ
−1
g = p and κx = γψ(x) ◦ p.

Therefore S̃(x, y) = (Sx, γψ(x) ◦ p(y)). By (8.12), γv(g) = p ◦ γg ◦ p−1.
To finish the proof observe that as the action Γ is effective, v is a mono-

morphism. It remains to show that v is onto. By virtue of (8.9) and (8.11) we
have

ϕ(Sx) = ψ(Tx, ϕ(x))ψ(x, e)−1 = v(ϕ(x)ψ(Tx)ψ(x)−1.

Thus we have obtained

(8.13) (ϕ,ϕ ◦ S) = (ϕ, v ◦ ϕ) · (e, ψ ◦ T · ψ−1),

an equation giving that the cocycle ϕ × ϕ ◦ S:X → G × G is cohomologous
to ϕ × v ◦ ϕ. In particular we have equality of the groups of essential values:
E(ϕ× ϕ ◦ S) = E(ϕ× v ◦ ϕ). On the other hand, it is easy to see that

E(v ◦ ϕ) = v(G), E(ϕ× v ◦ ϕ) = {(g, v(g)) : g ∈ G} = ∆v
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and the cocycle ϕ × v ◦ ϕ takes all values in the group ∆v. Thus the cocycle
ϕ× ϕ ◦ S is regular and, by Proposition 8.3.1,

G = E(π2 ◦ (ϕ× ϕ ◦ S)) = E(π2 ◦ (ϕ× v ◦ ϕ)) = E(v ◦ ϕ) = v(G)

i.e. v(G) is dense in G.
If G is compact, then v(G) is a closed subset of g, hence v(G) = G. If G is

connected, then G = Rm ⊕ K, where K is compact group. In such a case, as
v is a monomorphism, v(Rm) = Rm and v(K) = K, so v(G) = v(Rm ⊕ K) =
Rm⊕K = G. IfG is an arbitrary locally compact Abelian group, thenG possesses
an open subgroup of the form Rm⊕K for some compact group K. Then clearly
v(Rm ⊕K) = Rm ⊕K. As G/Rm ⊕K is discrete, v(G/Rm ⊕K) = G/Rm ⊕K
(since v(G) = G) and therefore v is onto and the result follows. �

If Γ ⊂ Hom(Y, Y ) is closed and acts effectively, then the following corollary
from the proof of Theorem 8.3.2 holds.

Corollary 8.3.3. If S ∈ C(T ) can be lifted to an invertible Ŝ ∈ C(Tϕ,Γ),
then the cocycle ϕ×ϕ ◦S is regular and E(ϕ×ϕ ◦S) = ∆v for some topological
group automorphism v of G. In particular, both projections of E(ϕ× ϕ ◦ S) are
equal to G.

In view of Theorem 8.3.2 observe, that if the actions of Γ on Y is not uni-
formly rigid, i.e. γgn 6→ Id uniformly for any sequence G 3 gn → ∞ (see e.g.
[37] for this and other related notions of rigidity in topological dynamics), then
Γ ⊂ Hom(Y, Y ) is closed. Indeed, if Γ is not closed in Hom(Y, Y ), then γgn →
γ 6∈ Γ. As γ 6∈ Γ, we have gn →∞. Therefore γ−1

gn = γ−gn → γ−1 6∈ Γ. Taking a
subsequence gkn such that hn = gn − gkn →∞ we get γhn = γgnγ

−1
gkn
→ IdY , so

the action of Γ on Y is uniformly rigid.
In general, for an element S of C(T ) that can be lifted to an Ŝ ∈ C(Tϕ,Γ),

the following lemma is true.

Lemma 8.3.4. Let (X,T ) be a Z-flow, G a locally compact Abelian group,
and ϕ:X → G a cocycle. Let Γ ⊂ Hom(Y, Y ) be a continuous representation of G,
where Y is a compact Hausdorff space. If S ∈ C(T ) can be lifted to a Ŝ ∈ C(Tϕ,Γ)
and the cocycle ϕ × ϕ ◦ S is regular, then both projections of E(ϕ × ϕ ◦ S) are
dense in G.

Proof. If πi:G×G→ G denotes the projection onto the ith coordinate, then,
by Proposition 8.3.1, πi(E(ϕ× ϕ ◦ S)) = E(π(ϕ × ϕ ◦ S)) = E(ϕ) = G, which
finishes the proof. �

The requirement of full projections of the group of essential values of the
cocycle ϕ× ϕ ◦ S has the following algebraic interpretation.
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Lemma 8.3.5. Assume that (G, e) is a group and H ⊂ G × G a subgroup.
Consider the natural action of G×G on (G×G)/H given by

((g̃1, g̃2), (g1, g2)H) 7→ (g̃1g1, g̃2g2)H.

Then the natural action of {e} × G on (G × G)/H is transitive if and only if
the projection of H on the first coordinate is equal to G. Similarly, the natural
action of G× {e} on (G×G)/H is transitive if and only if the projection of H
on the second coordinate is equal to G.

Proof. Assume that the action of {e} ×G on (G×G)/H is transitive. Then

(8.14) {(e, g)H : g ∈ G} = (G×G)/H.

Given a g1 ∈ G, we will find a g2 ∈ G such that (g1, g2) ∈ H. In view of (8.14),
there exists a g ∈ G such that (e, g)H = (g1, e)H. In particular (g1, e) = (h1, gh2)
for some (h1, h2) ∈ H, so (g1, gh2) = (g1, g2) ∈ H.

Conversely, assume that the projection of H on the first coordinate is equal
to G. Fix (g1, g2) ∈ G × G. By assumption, there exists an h ∈ G such that
(g1, h) ∈ H. Let g = g2h

−1. Then (e, g)H = (e, g)(g1, h)H = (g1, g2)H and we
are done. �

Motivated by Corollary 8.3.3, Lemma 8.3.4 and Lemma 8.3.5, we will weaken
the assumption of Theorem 8.3.2 by skipping the requirement that Γ is closed
in Hom(Y, Y ), and replacing it by regularity of ϕ× ϕ ◦ S and full projections of
E(ϕ×ϕ◦S) in G (Theorem 8.3.8). These two conditions are indeed weaker than
the requirement that Γ be closed. For instance, if G = Z and Γ = {γn : n ∈ Z}
⊂ Hom(T,T), where T denotes the unit circle, and γn(y) = y + nα mod 1 for
some irrational α, then clearly Γ is not closed in Hom(T,T). On the other hand,
for any extension ÎdX of IdX , the group E(ϕ×ϕ ◦ Id) = E(ϕ×ϕ) = ∆Z has full
projections and the cocycle ϕ× ϕ ◦ Id is regular.

In our considerations we need a generalization of Proposition 5.6.1. First,
following [72] we define the notion of relatively minimal extensions of topological
flows. We say, that if π:X → Y is a factor map of topological flows, then Y

is a relatively minimal extension of X if for each closed and invariant Y0 ⊂ Y

satisfying π(Y0) = X, we have Y0 = Y .

Proposition 8.3.6. Let (X,T ) be a point transitive flow, G a locally com-
pact Abelian group, ϕ:X → G a continuous map such that Tϕ is point transitive.
Let Y be a compact Hausdorff space and Γ = {γg : g ∈ G} a left continuous
action of G on Y .

If M ⊂ X × Y is a Tϕ,Γ-invariant closed set that is a relatively minimal
extension of X via the natural projection, then there exists a closed set Y0 ⊂ Y

such that M = X × Y0. Moreover, the G-flow (Y0,Γ) is point transitive.

Proof. By assumptions of this proposition, we can find an x0 ∈ X such that
Orb(x0, e) = X × G. Since M is an extension of X via the natural projection,
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there exists a y0 ∈ Y such that (x0, y0) ∈M . Put D = {(x, g) : (x, γg(y0)) ∈M}.
Clearly (x0, e) ∈ D, D is closed and Tϕ,Γ-invariant, hence D = X ×G. Let

Y0 = OrbΓ(y0) = {γg(y0) : g ∈ G}.

Since D = X×G, X×Y0 ⊂M . By assumption of this proposition, the extension
ΠX :M → X is relatively minimal, therefore M = X × Y0. �

The proposition below is a topological counterpart of Theorem 3.2.9.

Proposition 8.3.7. Let (X,T ) be a compact point transitive flow, G a lo-
cally compact Abelian group, Y , Z compact Hausdorff spaces, Γ = {γg : g ∈ G},
Λ = {λg : g ∈ G} left effective continuous actions of G on Y and Z respec-
tively, ϕ:X → G a continuous map such that Tϕ is point transitive. Assume
that M ⊂ (X × Y )× (X × Z) is a Tϕ,Γ × Tϕ,Λ-invariant closed set that is point
transitive and the extension πX×X :M → πX×X(M) = M0 is relatively minimal.
Assume moreover that the restriction (ϕ × ϕ)M0 of ϕ × ϕ to M0 is regular i.e.
there exist functions f1, f2:M0 → G×G, η1, η2:M0 → E((ϕ× ϕ)M0) such that

(ϕ(x1), ϕ(x2)) = (f1(x1, x2), f2(x1, x2))

− (f1(Tx1, Tx2), f2(Tx1, Tx2)) + (η1(x1, x2), η2(x1, x2))

for all (x1, x2) ∈M0.
Then there exists a compact E((ϕ×ϕ)M0)-invariant set A ⊂ Y ×Z such that

the map J :M →M0 × (Y × Z) given by

J(x1, y, x2, z) = (x1, x2, γf1(x1,x2)(y), λf2(x1,x2)(z))

is an isomorphism of (M,Tϕ,Γ × Tϕ,Λ) and (M0 × A, (T × T )(θ1,θ2),H), where
H = {(γg1 , λg2) : (g1, g2) ∈ E

(
(ϕ,ϕ)M0

)
}.

Proof. Clearly J ◦ (Tϕ,Γ × Tϕ,Λ) = (T × T )(θ1,θ2),H ◦ J on M . Thus J :M →
J(M) is an isomorphism and, by [73, Proposition 2.3], J(M) is a relatively
minimal extension of M0. By virtue of Proposition 8.3.6, there exists a closed
set Y0 ⊂ Y such that M = X × A and the E((ϕ,ϕ)M0)-flow (A,H) is point
transitive. �

Theorem 8.3.8. Let (X,T ) be a compact point transitive flow, G a locally
compact Abelian group, Y,Z compact Hausdorff spaces, Γ = {γg : g ∈ G},
Λ = {λg : g ∈ G} left effective continuous actions of G on Y and Z respectively,
ϕ:X → G a continuous map such that Tϕ is point transitive. Assume that Ŝ:X×
Y → X × Z is an isomorphism of (X × Y, Tϕ,Γ) and (X × Z, Tϕ,Λ), that is an
extension of some S ∈ C(T ). Assume moreover, that the cocycle ϕ × ϕ ◦ S is
regular and that both projections of E(ϕ× ϕ ◦ S) are equal to G.

Then there exist: a homeomorphism p:Y → Z, a topological group automor-
phism v:G→ G and a continuous map ψ:X → G such that

(8.15) Ŝ(x, y) = (Sx, λψ(x) ◦ p(y)),
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and p satisfies

(8.16) p ◦ γg(y) = λv(g) ◦ p(y), g ∈ G, y ∈ Y.

Proof. By Proposition 8.3.7, J(∆Ŝ) = ∆S ×A and A ⊂ Y ×Z is a compact,
H-invariant set, where H = {(γg1 , λg2) : (g1, g2) ∈ E(ϕ× ϕ ◦ S)}. Therefore

(8.17) Ŝ(x, y) = (Sx, κ(x, y))

for some continuous map γ:X × Y → Z.
First we define the topological group automorphism v:G → G. To do this

take (g, g1), (g, g2) ∈ E(ϕ × ϕ ◦ S). Since A is H-invariant, for each y ∈ Y we
have λg1 ◦ κ(x, y) = κ(x, γg(y)) = λg2 ◦ κ(x, y), and therefore λg1g−12 = IdZ , i.e.
g1 = g2. This implies that there exists a map v:G→ G such that

(8.18) E(ϕ× ϕ ◦ S) = {(g, v(g)) : g ∈ G} = ∆v.

As E(ϕ × ϕ ◦ S) is a group, v is a group homomorphism. By the assumption
that both projections of E(ϕ × ϕ ◦ S) are equal to G, v is onto. In particular
v is continuous. Since Ŝ is an isomorphism, in a similar way we show that if
(g1, g), (g2, g) ∈ E(ϕ × ϕ ◦ S), then g1 = g2, i.e. v is a topological group auto-
morphism.

Because the cocycle ϕ×ϕ◦S is regular, there exist functions f1, f2, θ:X → G

such that

ϕ = f1 · (f1 ◦ T )−1 · θ,(8.19)

ϕ ◦ S = f2 · (f2 ◦ T )−1 · (v ◦ θ).(8.20)

Now we are able to prove the existence of the map p:Y → Z. More precisely, we
will show that

(8.21) A = {(y, p(y)) : y ∈ Y } and λv(g) ◦ p = p ◦ γg, g ∈ G.

Indeed, as J(∆Ŝ) = ∆S×A, the set A is a graph of some continuous map p:Y →
Z. As Ŝ is an isomorphism, p is a homeomorphism. To prove that λv(g)◦p = p◦γg
fix (x, y) ∈ X×Y and denote y = λ−1

f1(x)y. Then (γf1(x)y, lf2(x)κ(x, y)) ∈ A, hence

p(y) = λf2(x)κ(x, γ−1
f1(x)y), equivalently

(8.22) κ(x, γ−1
f1(x)y) = λ−1

f2(x)p(y).

Since A is ∆v-invariant, for each g ∈ G we have

(γg ◦ γf1(x)y, λv(g) ◦ λf2(x) ◦ κ(x, y)) ∈ A,

i.e.
λv(g) ◦ λf2(x) ◦ κ(x, γ−1

f1(x)y) = p(γg ◦ γf1(x)y) = p ◦ γg(y).

By (8.22), λv(g) ◦ p(y) = p ◦ γg(y) and (8.21) is proved.



Chapter 8. Applications of Essential Values 165

To finish the proof let (γf1(x)y, λf2(x)κ(x, y)) ∈ A. By (8.21),

λf2(x) ◦ κ(x, y) = p ◦ γf1(x)(y) = λv(f1(x)) ◦ p(y),

hence
κ(x, y) = λ−1

f2(x) ◦ λv(f1(x)) ◦ p(y).

Denote ψ(x) = v(f1(x))f2(x)−1. Then λψ(x) = λ−1
f2(x) ◦ λv(f1(x)) and

Ŝ(x, y) = (Sx, κ(x, y)) = (Sx, λψ(x) ◦ p(y))

and the proof is complete. �

Since the isomorphism Ŝ from Theorem 8.3.8 satisfies Ŝ ◦ Tϕ,Γ = Tϕ,Λ ◦ Ŝ,
κ(Tx, γϕ(x)(y)) = λϕ(Sx) ◦ κ(x, y). By Theorem 8.3.8,

λψ(Tx) ◦ λv(ϕ(x)) ◦ p(y) = λψ(Tx) ◦ p ◦ γϕ(y)(y) = λψ(Sx) ◦ λψ(x) ◦ p(y),

hence
ψ ◦ T · v ◦ ϕ = ϕ ◦ S · ψ

and we have the following

Corollary 8.3.9. Under the assumptions of Theorem 8.3.8, the cocycles ϕ◦S
and v ◦ ϕ are cohomologous.

Directly from Theorem 8.3.8 we get the following description of the elements
of the centralizer C(Tϕ,Γ).

Theorem 8.3.10. Let (X,T ) be a compact minimal flow, G a locally com-
pact Abelian group, Y a compact Hausdorff space, Γ = {γg : g ∈ G} a left action
of G on Y , ϕ:X → G a continuous map such that Tϕ is point transitive.

If Ŝ ∈ C(Tϕ,Γ) is such an invertible extension of S ∈ C(T ) that the cocycle
ϕ × ϕ ◦ S is regular and that both projections of E(ϕ × ϕ ◦ S) are equal to G,
then there exist: a homeomorphism p:Y → Y , topological group automorphism
v:G→ G and a continuous map ψ:X → G such that

(8.23) Ŝ(x, y) = (Sx, γψ(x) ◦ p(y)) and p ◦ γg = γv(g) ◦ p, g ∈ G.

Corollary 8.3.11. If, under assumptions of Theorem 8.3.10, Ŝ ∈ C(Tϕ,Γ)
is invertible, then p normalizes Γ in Hom(Y, Y ).

Corollary 8.3.12. If Îd ∈ C(Tϕ,Γ) is an extension of the identity map
on X, then Îd(x, y) = (x, p(y)), where p ∈ Hom(Y, Y ) ∩ C(K).

Proof. In this case E(ϕ×ϕ) = ∆G, hence the cocycle ϕ×ϕ is regular, f1 =
f2 ≡ 0, v = IdG and γg ◦p = p◦γg, g ∈ G. Thus ψ ≡ 0 and Îd(x, y) = (x, p(y)).�

If Ŝ:X × Y → X × Z is a factor map of flows, where (X,T ) is a minimal
rotation, then the set ΠX×X(∆Ŝ) ⊂ X ×X is minimal, so ΠX×X(∆Ŝ) = ∆S for
some S ∈ C(T ).
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Theorem 8.3.13. Let T be a minimal rotation on a compact metric mono-
thetic group X, Γ = {γg : g ∈ Rm} a left continuous action of Rm on a compact
metric space Y , ϕ:X → Rm a continuous map such that Tϕ is point transitive.
If Ŝ ∈ C(Tϕ,K) is invertible, then there exist: S ∈ C(T ), p ∈ Hom(Y, Y ), topolo-
gical group automorphism v:Rm → Rm and a continuous map ψ:X → Rm such
that

Ŝ(x, y) = (Sx, γψ(x) ◦ p(y))

and p ◦ γg = γv(g) ◦ p, g ∈ Rm.

Proof. Clearly Ŝ is an extension of some S ∈ C(T ). ϕ is ergodic, so by
[mentzen, Theorem 4.9], ϕ×ϕ◦S is regular and E(ϕ×ϕ◦S) is a linear subspace
of Rm × Rm. As in the proof of Theorem 8.3.8 we deduce that E(ϕ × ϕ ◦ S)
has dense both projections on Rm, hence the projections are equal to Rm. An
application of Theorem 8.3.8 finishes the proof. �

8.4. A remark on some recent results

In 2005 G. Greschonig and U. Haböck in [41] completely solved the problem of
cohomological invariancy of the sets of essential values in the case of non-abelian
groups. They changed a little bit the topological version of the Schmidt’s defini-
tion of the set of essential values (called in [41] an essential range) passing from
a global notion to a notion depending on a point in the base. In Abelian case
both definitions coincide – the group of essential values does not depend on the
point. In non-abelian case this is not true. G. Greschonig and U. Haböck found
an exact topological version of the measure-theoretical notion of regularity of
a cocycle. The definition of regular cocycles from this dissertation is essentially
stronger than the G. Greschonig and U. Haböck’s one: all regular cocycles in
sense of this chapter are regular in the sense of G. Greschonig and U. Haböck,
not vice versa.



APPENDIX A

LEBESGUE SPACES AND THEIR PROPERTIES

The following chapter is based on [12], [85] and on [98].

A.1. Point and set maps of measure spaces

Let X be a non-empty set, A a σ-algebra of subsets of X and µ a measure
on A. Then we will call (X,A, µ) a measure space. If additionally µ(A) = 1, then
(X,A, µ) is called a probability measure space.

Let (X,A, µ) and (Y,B, ν) be two measure spaces. A map f :X → Y is called
measurable if f−1(B) ∈ A for each B ∈ B. Such an f is said to be a measure
preserving map if µ(f−1(B)) = ν(B) for all B ∈ B.

Definition A.1.1. Let (X,A, µ) and (Y,B, ν) be two measure spaces. We
say that (Y,B, ν) is a factor of (X,A, µ) if there exist X ′ ∈ A, Y ′ ∈ B with
µ(X \X ′) = 0, ν(Y \ Y ′) = 0 and a measure-preserving map f :X ′ → Y ′.

Definition A.1.2. Two measure spaces (X,A, µ) and (Y,B, ν) are said to
be isomorphic if there exist X ′ ∈ A, Y ′ ∈ B with µ(X \X ′) = 0, ν(Y \ Y ′) = 0
and a measure-preserving bijective map f :X ′ → Y ′. The map f will be called an
isomorphism of the measure spaces (X,A, µ) and (Y,B, ν). In the case (Y,B, ν) =
(X,A, µ) such an isomorphism will be called an automorphism of (X,A, µ), and
the measure µ is said to be an invariant measure for the automorphism f .

For a given measure space (X,A, µ) we define a Boolean σ-algebra Ã by
the following way. Let ∼ be an equivalent relation on A defined by A1 ∼ A2 if
and only if µ(A14A2) = 0, where 4 denotes the symmetric difference of sets:
A14A2 = (A1\A2)∪(A2\A1). Let Ã = A/ ∼. Then Ã is a Boolean σ-algebra. If
additionally (X,A, µ) is a probability measure space then the Boolean σ-algebra
Ã enjoys a structure of a metric space with the distance ρ defined by ρ(Ã1, Ã2) =
µ(A14A2).

167
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If (Y,B, ν) is a factor of (X,A, µ) with the factor map f , then f−1(B) is a
sub-σ-algebra of A and the map f−1: B̃ → f−1(B)∼ ⊂ Ã is a bijection. If f is an
isomorphism then f−1(B)∼ = Ã.

Definition A.1.3. Given measure spaces (X,A, µ) and (Y,B, ν) we say that
the Boolean σ-algebra B̃ is a factor of the Boolean σ-algebra Ã if there exists an
isometric map of metric spaces F : B̃ → Ã satisfying F (∅̃) = ∅̃. If the map F is
additionally onto, then F is called an isomorphism, the σ-algebras A and B are
said to be isomorphic and the measure spaces (X,A, µ) and (Y,B, ν) are said to
be conjugate.

Clearly, if the measure spaces (X,A, µ) and (Y,B, ν) are isomorphic via a
map f :X ′ → Y ′, X ′ ⊂ X, Y ′ ⊂ Y , where µ(X \ X ′) = 0, ν(Y \ Y ′) = 0,
then they are also conjugate via F = f−1: B̃ → Ã; not vice versa. However, the
converse is true under some natural assumptions.

Theorem A.1.4 ([85], [98]). Let X1, X2 be complete separable metric spa-
ces, let B(X1),B(X2) be their σ-algebras of Borel subsets and let m1,m2 be
probability measures on B(X1),B(X2). Let Φ: B̃(X2) → B̃(X1) be an isomor-
phism of Boolean σ-algebras. Then there exist M1 ∈ B(X1), M2 ∈ B(X2) with
m1(M1) = m2(M2) = 1 and an invertible measure-preserving transformation
φ:M1 → M2 such that Φ(B̃) = (φ−1(B ∩M2))∼ for each B ∈ B(X2). If ψ is
any other isomorphism from (X1,B(X1),m1) to (X2,B(X2),m2) which induces
Φ, then m1({x ∈ X1 : φ(x) 6= ψ(x)}) = 0.

A.2. Probability Lebesgue spaces

Definition A.2.1. A probability measure space (X,A, µ) is a Lebesgue
space if it is isomorphic to a probability space that is a disjoint union of a counta-
ble (or finite) number of points {x1, x2, x3, . . . } each of positive measure, and the
space ([0, s],L([0, s]), λ), where L([0, s]) is the σ-algebra of Lebesgue measurable
subsets of the interval [0, s] and λ is Lebesgue measure. Here s = 1 −

∑
n pn,

where pn is the measure of the point yn.

An wide class of Lebesgue spaces is provided by the following theorem.

Theorem A.2.2 ([85], [98]). Let X be a complete separable metric space, let
B(X) be its σ-algebra of Borel sets and let m be a probability measure on B(X)
with m({x}) = 0 for each set {x} consisting of a single point x ∈ X. Let
([0, 1],B([0, 1]), λ) denote the closed unit interval with its σ-algebra of Borel sets
and Lebesgue measure λ. Then the measure spaces (X,B(X),m), ([0, 1],B([0, 1]),
λ) are isomorphic. If (X,Bm(X), m) denotes the completion of (X,B(X),m)
then (X,Bm(X),m) is isomorphic to ([0, 1],L([0, 1]), λ), where L([0, 1]) is the
σ-algebra of Lebesgue measurable sets on [0, 1].
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Clearly Theorem A.1.4 is true for Lebesgue spaces (i.e. set maps are always
induced by point maps).

Following Rokhlin ([84]) we introduce the notion of a measurable partition
of a Lebesgue space.

Definition A.2.3. Let (X,A, µ) be a Lebesgue space. A family of measu-
rable sets P = {Pγ : γ ∈ Γ} is called a partition of (X,A, µ) if all Pγ ∈ P are
measurable, pair-wise disjoint and µ(X \

⋃
P) = 0.

Definition A.2.4. Let (X,A, µ) be a Lebesgue space. A partition P = {Pγ :
γ ∈ Γ} of (X,A, µ) is said to be measurable if there exists a countable family D
of measurable sets, each of them being a union of elements of P, such that for
any two distinct A,B ∈ P there exists a set D ∈ D such that exactly one among
A,B is included in D.

We will often call a (measurable) partition of a Lebesgue space (X,A, µ)
shortly a (measurable) partition of X. Clearly each finite partition of a Lebesgue
space is measurable. For a measurable partition P of a Lebesgue space (X,A, µ)
the space X/P = {A ∈ A : A ∈ P} is a Lebesgue space as well.

Definition A.2.5. Let P be a measurable partition of a Lebesgue space
(X,A, µ). By a canonical system of conditional measures with respect to the
partition P we understand a system {µC : C ∈ P} of measures satisfying the
following conditions:

(a) Each measure µC is defined on a σ-algebra AC of subsets of the set C,
where BC = {A ∩ C : A ∈ A}.

(b) The measure space (C,AC , µC) is a Lebesgue space.
(c) For any A ∈ A the function C 7→ µC(A ∩ C) is measurable on X/P,

and

µ(A) =
∫
X/P

µC(A ∩ C) dµ.

The following theorem characterizes measurable partitions.

Theorem A.2.6 ([84]). A partition of a Lebesgue space is measurable if and
only if there exists a canonical system of conditional measures with respect to this
partition. Such a system is unique up to set of measure zero.

A.3. Spectral theory of unitary operators

The contents of this section is borrowed from [81].

Definition A.3.1. A sequence (rn)n∈Z of complex numbers is said to be
positive definite if

N∑
n,m=0

rn−manam ≥ 0
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for all sequences (an)n∈N of complex numbers and all non-negative integers N .

The most important example of a positive definite sequence contains the
following lemma.

Lemma A.3.2. If U is a unitary operator on a Hilbert space (H, 〈 · , · 〉) and
x ∈ H, then the sequence rn = 〈Unx, x〉 for n ∈ Z is positive definite.

Proof. Let (an)n∈N be a sequence of complex numbers. Then for nonnegative
integer N we have

(A.1) 0 ≤
〈 N∑
n=0

anU
nx,

N∑
m=0

amU
mx

〉
=

N∑
n,m=0

〈Un−mx, x〉anam,

so the sequence (rn)n∈Z is positive definite. �

Theorem A.3.3 ([Herglotz]). If (rn)n∈Z is a positive definite sequence then
there is a unique finite non-negative measure µ on T = {z : |z| = 1} (or on [0, 1))
such that

rn =
∫
T
zn dµ =

∫ 1
0

exp(2πinx) dµ, n ∈ Z.

Conversely, if µ is a non-negative measure on T then the sequence rn =
∫
T z

n dµ,
n ∈ Z, is a positive definite sequence.

Proof. Directly from the definition of a positive definite sequence we get
that r0 ≥ 0. Now fix a complex λ, and a positive integer n. Taking the sequence
(am)m≥0 given by a0 = 1, an = λ and am = 0 for other m for N = n we get that

0 ≤
n∑

k,m≤n

rk−makam = (1 + |λ|2)r0 + rnλ+ r−nλ.

Hence rnλ+ r−nλ is real for all complex λ, which implies that r−n = rn, n ≥ 0.
Now, for fixed n, let λ = θrn. Then we get that

(1 + |θ|2|rn|2)r0 + θ|rn|2 + θ|rn|2 ≥ 0

for all complex θ. For real θ we have a quadratic in θ which is never negative.
The (non-positive) discriminant of this quadratic shows that |rn| ≤ r0 for all n.
In particular, the sequence (rn)n∈Z is bounded. Unless r0 = 0 (then all rn’s are
zero), without loss of generality we may assume r0 = 1. Let 0 < s < 1, then
positive definiteness yields

fs(z) =
∞∑

n,m=0

rn−ms
n+mzm−n ≥ 0

for all complex z with |z| = 1. Because

fs(z) =
∞∑

n=−∞
rnz
−n

∞∑
m=0

s|n|+2m =
∞∑

n=−∞
rnz
−ns|n|

1
1− s2

,
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we get ∫
T
fs(z)z−n dz =

r−ns
|n|

1− s2
.

Define µs by
dµs
dz

= (1− s2)fs(z) ≥ 0

so that ∫
T
z−n dµs = r−ns

|n|, µs(T) = r0 = 1.

Choose a sequence (0, 1) 3 sm → 1, then
∫
T z
−k dµsm → r−k for all k ∈ Z. Hence∫

T p(z) dµsm converges as m→∞ for all polynomials p(z). Since the polynomials
are dense in the space C(T) of all continuous complex functions on the circle, we
see that

∫
T f(z) dµsm converges for all f ∈ C(T) to, say, J(f). But dµs/dz ≥ 0

implies J(f) ≥ 0 when f ≥ 0 and therefore J(f) =
∫
T d dµ for some probability

µ on T. We conclude that∫
T
z−k dµ = lim

m→∞

∫
T
z−k dµsm = r−k

and the existence part of the theorem is complete.
The measure µ such that

∫
T z

k dµ = rk is unique since
∫
T z

k dµ =
∫
T z

k dν

for all k ∈ Z implies µ ≡ ν.
If µ is a probability measure on T and rn =

∫
T z

k dµ, k ∈ Z, then

N∑
n,m=0

rn−manam =
N∑

n,m=0

anam

∫
T
zn−m dµ =

∫
T

∣∣∣∣ N∑
n=0

anz
n

∣∣∣∣2 dµ ≥ 0.

Thus the sequence (rn)n∈Z is positive definite. �

Theorem A.3.4 (Wiener). Let m be a finite Borel measure defined on the
circle K. If H is a closed subspace of L2(K,m) which is invariant with respect
to the unitary operator V (f)(z) = zf(z) (i.e. V H = H) then

H = χBL
2(K,m) = {f ∈ l2(K,m) : f = 0 on Bc}

for some Borel subset B.

Proof. Let 1 = k + h, where k ∈ H⊥, h ∈ H. Then k ⊥ V nh for all n i.e.∫
K k(z)·h(z)zn dm = 0, n ∈ Z. Therefore k(z)h(z) = 0 and 1 = |k|+|h|m-almost

everywhere. Since k, h have disjoint “supports” (k = χAk, h = χAch), |k| = 1
on A and |h| = 1 on Ac m-almost everywhere. But 1 = k + h implies k = 1 on
A and h = 1 on Ac. In other words 1 = χA + χAc is the decomposition of 1
with respect to H⊥, H. hence znχAc(z) ∈ H for n ∈ Z and we conclude that
χAcL

2(T,m) ⊂ H, χAL2(T,m) ⊂ H⊥ i.e. χAcL2(T,m) = H. �
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Definition A.3.5. For i = 1, 2 let Ui be unitary operator of Hilbert space
Hi. The operators U1, U2 are said to be unitarily (or spectrally) equivalent if
there exists an isometry W of H1 onto H2 such that WU1 = U2W . In this case
we write U1 ' U2.

Let U be a unitary operator on the Hilbert space H. For x ∈ H let Z(x)
denote the cyclic subspace generated by x which is the closure of the linear span
of {Unx : n ∈ Z}.

Lemma A.3.6. The restriction U |Z(x) is spectrally equivalent to the opera-
tor Vx:L2(T, x̃) → L2(T, x̃) defined by (Vxf)(z) = zf(z), where x̃ denotes the
spectral measure of x, i.e. such that 〈Unx, x〉 =

∫
T z

n dx̃ for all n ∈ Z.

Proof. Define W (Unx) = zn ∈ L2(T, x̃), then W is an isometry on {Unx :
n ∈ Z} since 〈Umx, Unx〉 =

∫
T z

mz−n dx̃. Hence W extends to an isometry of
Z(x) onto L2(T, x̃). Clearly WU = VxW ; thus U is spectrally equivalent to Vx.�

Lemma A.3.7. U |Z(x) is spectrally equivalent to U |Z(y) if and only if the
spectral measures x̃ and ỹ are equivalent.

Proof. Suppose WVx = VyW for some isometry W and write f(z) = W (1),
then WV nx 1 = Vyf , i.e. W (zn) = f(z)zn. Hence W is the multiplication operator
g 7→ fg and if B ⊂ T is a Borel set then χB in L2(T, x̃) has the same norm as
fχB in L2(T, ỹ), i.e. x̃(B) =

∫
B
|f |2 dỹ. Therefore x̃ is absolutely continuous

with respect to ỹ, x̃� ỹ. A similar argument shows that ỹ � x̃; and hence x̃ is
equivalent to ỹ.

Conversely, if x̃ is equivalent to ỹ, then define W :L2(T, x̃) → L2(T, ỹ) by
Wg = g · (dx̃/dỹ)1/2. W is an isometry and WVx = VyW . �

Lemma A.3.8. If x ∈ H and µ� x̃ is a finite non-negative Borel measure
on T then there exists y ∈ Z(x) with ỹ = µ.

Proof. It suffices to show the existence of f ∈ L2(T, x̃) with f̃ = µ. Let
f = (dµ/dx̃)1/2, then f satisfies

〈V nx f, f〉 =
∫
T
zn
dµ

dx̃
=
∫
T
zn dµ =

∫
T
zn df̃

for all n ∈ Z, i.e. µ = f̃ . �

Lemma A.3.9. If x, y ∈ Z(z) and Z(x) ⊥ Z(y) then x̃ ⊥ ỹ. If in addition
z = x+ y then Z(z) = Z(x)⊕ Z(y).

Proof. It suffices to show that if f, g ∈ L2(T, z̃) and Z(f) ⊥ Z(g) then f̃ ⊥ g̃.
By Wiener’s theorem we get Z(f) = χA · L2(T, z̃) and Z(g) = χB · L2(T, z̃),
and orthogonality ensures that z̃(A ∩ B) = 0. Since

∫
T z

n df̃ = 〈V nz f, f〉 =∫
T z

n|f |2 dz̃, df̃ = |f |2 dz̃, dg̃ = |g|2 dz̃ and we get that f̃ ⊥ g̃. If we assume now
that z = x+ y then 1 = f + g and Z(1) = L2(T, z̃) = Z(f) + Z(g). �
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Lemma A.3.10. If y ∈ Z(x) then ỹ � x̃ with equivalence holding when and
only when Z(y) = Z(x).

Proof. Map Z(x) to L2(T, x̃) by sending Unx to zn and let f denote the
image of y. We will show that f̃ � x̃ with equivalence holding if and only if
Z(f) = Z(1) with respect to Vx. But

∫
T z

n df̃ = 〈V nz f, f〉 =
∫
T z

n|f |2 dz̃, hence
df̃ = |f |2 dz̃ � dx̃. If Z(y) = Z(x) then U |Z(y) ' U |Z(x) and we have seen
that x̃ is equivalent to ỹ. If Z(y) is a proper subspace of Z(x) then Z(f) is a
proper subspace of L2(T, x̃) invariant under Vx. By Wiener’s theorem Z(f) =
χBL

2(T, x̃), where x̃(B) < x̃(T) and hence x̃(Bc) > 0, f̃(Bc) = 0 i.e. ỹ and x̃

are not equivalent. �

Lemma A.3.11. If x̃ ⊥ ỹ then Z(x) ⊥ Z(y).

Proof. Write y = y0 + y1 with y1 ∈ Z(x), y0 ⊥ Z(x) so that Z(y0) ⊥ Z(x).
As 〈Uny, y〉 = 〈Uny0, y0〉 + 〈Uny1, y1〉 we get

∫
T z

n dỹ =
∫
T z

n dỹ0 +
∫
T z

n dỹ1.
Hence ỹ = ỹ0 + ỹ1 ⊥ x̃. But y1 ∈ Z(x) implies ỹ1 � x̃. Therefore ỹ1 = 0 and
hence Z(x) ⊥ Z(y). �

Lemma A.3.12. If x̃ ⊥ ỹ then x̃+ y = x̃+ ỹ and Z(x+ y) = Z(x)⊕Z(y).

Proof. By Lemma A.3.11, Z(x) ⊥ Z(y), hence

〈Un(x+ y), x+ y〉 = 〈Unx, x〉+ 〈Uny, y〉,

i.e. ∫
T
zn d ˜(x+ y) =

∫
T
zn dx̃+

∫
T
zn dỹ

so that x̃+ y = x̃+ ỹ. Now dx̃/d ˜(x+ y) ∈ L2(T, ˜(x+ y)) so that for ε > 0 there
exists a polynomial p(z, z−1) with∫

T

∣∣∣∣ dx̃

d ˜(x+ y)
− p(z, z−1)

∣∣∣∣2 d ˜(x+ y) < ε.

Hence

‖x− p(U,U−1)(x+ y)‖2

= 〈x, x〉 − 2 Re〈x, p(U,U−1)(x+ y)〉+ ‖p(U,U−1)(x+ y)‖2

=
∫
T

1 dx̃− 2 Re〈x, p(U,U−1)(x+ y)〉+
∫
T
|p(z, z−1)|2 d ˜(x+ y)

=
∫
T

1 dx̃− 2 Re
∫
T
p(z, z−1) dx̃+

∫
T
|p(z, z−1)|2 d ˜(x+ y)

=
∫
T

1 dx̃−
∫
T

dx̃

d ˜(x+ y)
dx̃+

∫
T

∣∣∣∣ dx̃

d ˜(x+ y)
− p(z, z−1)

∣∣∣∣2 d ˜(x+ y)

=
∫
T

∣∣∣∣ dx̃

d ˜(x+ y)
− p(z, z−1)

∣∣∣∣2 d ˜(x+ y) < ε.
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Since ε > 0 is arbitrary x ∈ Z(x+ y). In the same way y ∈ Z(x+ y). Therefore
Z(x)⊕ Z(y) ⊂ Z(x+ y). The opposite inclusion is clear. �

Definition A.3.13. A cyclic space Z(x) is said to be maximal if it is con-
tained in no larger cyclic subspace. In such a case x̃ is called a maximal spectral
type.

Clearly Z(x) is a maximal cyclic space if and only if x̃� ỹ for all y ∈ H.

Lemma A.3.14. If U is a unitary operator of a separable Hilbert space H,
then there exists a maximal cyclic subspace. Moreover, each x ∈ H is contained
in some maximal cyclic space.

Proof. Apply Kuratowski–Zorn’s lemma to all cyclic subspaces containing x.�

Lemma A.3.15. If Ui are unitary operators on Hi, i = 1, 2, such that
U1 ' U2 and U |Z(x) ' U2|Z(y) then U1|Z(x)⊥ ' U2|Z(y)⊥ .

Proof. The lemma can be transferred to one space. Then we get a new for-
mulation: if U |Z(x) ' U |Z(y) then U |Z(x)⊥ ' U |Z(y)⊥ . It suffices to show that

U |Z(x)+Z(y) 	 Z(x) ' U |Z(x)+Z(y) 	 Z(y)

since U |Z(x)+Z(y) ' U |Z(x)+Z(y). In other words we may assume that

Z(x) + Z(y) = H.

Let y = y0+ y1, y0 ⊥ Z(x), y1 ∈ Z(x); then H = Z(x)⊕Z(y0). Indeed, suppose
z ⊥ Z(x) ⊕ Z(y0), then z ⊥ Z(y1) ⊕ Z(y0), thus z ⊥ Z(y), and consequently
z = 0 because Z(x) + Z(y) = H. By the symmetry of arguments we get that
there x0, y0 such that

H = Z(x)⊕ Z(y0) = Z(y)⊕ Z(x0)

and all we have to prove is that x̃0 is equivalent to ỹ0. By assumptions of this
lemma we have that x̃ ≡ ỹ and x̃+ ỹ0 ≡ ỹ+ x̃0. Suppose that ỹ0 is not equivalent
to x̃0. Then there is a nonzero positive measure ν satisfying ν � x̃ ≡ ỹ, ν � ỹ0,
ν ⊥ x̃0 (decompose simply ỹ0 = ν+µ, where ν ⊥ x̃0, µ� x̃0). We find z1 ∈ Z(x),
z2 ∈ Z(y0) with z̃1 = ν = z̃2. Then necessarily Z(z1) ⊥ Z(x0), Z(z2) ⊥ Z(x0)
and z1, z2 ∈ Z(y). Thus we get Z(z1)⊕Z(z2) ⊂ Z(y) that forces ν = z̃1 ⊥ z̃2 = ν.
Hence ν = 0 and we are done. �

As a simple consequence of the lemmas above we have the following.

Theorem A.3.16. If U is a unitary operator on a separable Hilbert space
H then H can be decomposed into an orthogonal sum of cyclic spaces H =⊕

n≥1 Z(xn) with x̃1 � x̃2 � · · · .

Remark A.3.17. A similar theory can be built for a more general case.
Let G be a locally compact second countable group. Denote by Ĝ the dual
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group, i.e. Ĝ is the group of all continuous group homomorphisms defined on
G and with range in the circle T. We consider Ĝ as a topological group with
the compact-open topology. Suppose that G acts as a group of automorphisms
on a probability Lebesgue space (X,B, µ), G ×X 3 (g, x) 7→ γg(x) ∈ X. Then
we may consider the group {Ug : g ∈ BG} of unitary operators on L2(X,B, µ),
where Ug(f) = f ◦ γg for f ∈ L2(X,B, µ). In this situation Theorem A.3.16 is
still valid.





APPENDIX B

TOPOLOGICAL TOPICS

B.1. Uniform structures

In this section we recall the notion of uniform space. We will use terminology
and notations from [48, Chapter 6].

Let X be a nonempty set. We will deal with relations on X i.e. with nonempty
subsets of the Cartesian product X ×X. If U is such a relation then by U−1 we
denote the relation

U−1 = {(y, x) ∈ X ×X : (x, y) ∈ U}.

Obviously this operation is involutory in the sense that (U−1)−1 = U . If U−1 = U

then U is called symmetric. If U and V are relations, then the composition U ◦V
is defined by

U ◦ V = {(x, z) ∈ X ×X : ∃
y∈X

(x, y) ∈ U, (y, z) ∈ V }.

Composition is associative, that is, U ◦ (V ◦W ) = (U ◦ V ) ◦W , and it is always
true that (U ◦ V )−1 = V −1 ◦ U−1. Not that in general U ◦ V need not be equal
to V ◦ U . The set

∆X = ∆ = {(x, x) : x ∈ X}
is called the identity relation, or the diagonal. For each subset A ⊂ X and each
relation U ⊂ X ×X define

UA = {y ∈ X : ∃
x∈A

(x, y) ∈ U}.

For x ∈ X denote Ux = U{x}. For each relations U, V on X and each set A ⊂ X
the following holds: (U ◦ V )A = UVA .

Definition B.1.1. A non–void family U of relations on X that satisfies the
following conditions

(a) if U ∈ U and U ⊂ V ⊂ X ×X, then V ∈ U;
(b) if U, V ∈ U, then U ∩ V ∈ U;

177
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(c) if U ∈ U, then U−1 ∈ U;
(d) if U ∈ U, then there exists V ∈ U such that V ◦ V ⊂ U ;
(e)
⋂
U = ∆.

is called a uniformity on X. If U is a uniformity on X, then the pair (X,U) is
said to be a uniform space.

Definition B.1.2. Let (X,U) be a uniform space. The family

T = {T ⊂ X : ∀
x∈X

∃
U∈U

Ux ⊂ T}

is called the uniform topology.

Simple calculations show that the uniform topology is a topology. Actually
we have more.

Theorem B.1.3 ([48, Corollary 6.17]). The uniform topology is a Tycho-
noff topology. Conversely, for each Tychonoff topology T on X there exists a
uniformity U on X such that T is the uniform topology defined by U.

B.2. The Čech–Stone compactification
of a discrete topological group

In this section we briefly describe the Čech–Stone compactification of a di-
screte topological group, paying special attention on a semitopological semigroup
structure of this compactification we are able to endow it with. We start with
the general notions and facts. The reader can find more information on compac-
tifications of a topological spaces in [48, Chapter 5], the following is based on.

Definition B.2.1. Let X be a topological space. By a compactification of X
we mean a pair (f, Y ), where Y is a compact Hausdorff space and f :X → Y is
a homeomorphism of X onto a dense subspace of Y .

The class of all compactifications of X may be endowed with a relation that
turns out to be a partial order (see Theorem B.2.2 below). Namely, we say that
(f, Y ) = (g, Z) if and only if there is a continuous map h:X → Z that is onto
and satisfies h ◦ f = g. Equivalently (f, Y ) = (g, Z) if and only if the function
g ◦ f−1: f(X) → Z has a continuous extension h which carries Y onto Z. If
the function h can be taken to be a homeomorphism, then (f, Y ) and (g, Z) are
said to be topologically equivalent. In this case both the relations (f, Y ) = (g, Z)
and (g, Z) = (f, Y ) hold, for h−1 is a continuous map of Z onto Y such that
f = h−1 ◦ g.

Theorem B.2.2 ([48, Theorem 22]). The collection of all compactifications
of a topological space is partially ordered by =.
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We intend to find a maximal with respect to = compactification of a given
space. In order to do this, for a given topological space X denote

F (X) = {γ : X → [0, 1] : γ is continuous}.

By Tychonoff theorem, the Tychonoff cube [0, 1]F (X) is a compact Hausdorff
space. Consider the evaluation map e:X → [0, 1]F (X), e(x) = (f(x))f∈F (X).
Directly from the definition of the product topology we get that the evaluation
map e is continuous. If moreover X is a Tychonoff space then the evaluation
map e is also open.

Definition B.2.3. Let X be a Tychonoff space. Then the pair (e, e(X)) is
called the Čech–Stone compactification of X.

Denote β(X) = e(X), βX = (e, β(X)).

We intend to show that each continuous map on a Tychonoff space X with
range in a compact Hausdorff space can be extended to a continuous map on the
Čech–Stone compactification of X. We start with a lemma that directly follows
from the definition of the product topology.

Lemma B.2.4. Let A and B be two nonempty sets. If f :A → B and
f∗: [0, 1]B → [0, 1]A is defined by f∗(y) = y ◦ f for all y ∈ [0, 1]B, then f∗

is continuous.

Theorem B.2.5 (Čech–Stone, see e.g. [48, Theorem 5.24]). If X is a Ty-
chonoff space, Y a compact Hausdorff space, and f :X → Y is a continuous
function, then there exists a continuous extension f̃ :βX → Y of f i.e. f̃ satis-
fies f̃ |e(X) = f ◦ e−1.

Proof. Given f define f∗:F (Y )→ F (X) by letting f∗(a) = a◦f . Then, define
f∗: [0, 1]F (X) → [0, 1]F (Y ) by letting f∗(q) = q ◦ f∗. Let e be the evaluation map
of X into [0, 1]F (X) and let ε be the evaluation map of Y into [0, 1]F (Y ) (see the
diagram below).

β(X) ⊂ [0, 1]F (X)
f∗
// [0, 1]F (Y ) ⊃ β(Y )

X

e

OO

f
// Y

ε

OO

The map e is a homeomorphism of X and e(X), and the map ε is a ho-
meomorphism of Y onto β(Y ) because Y is a compact Hausdorff space. By
Lemma B.2.4, the map f∗ is continuous. We will prove that ε−1 ◦ f∗ is the requ-
ired continuous extension of f ◦ e−1. To do this we will show that f∗ ◦ e = ε ◦ f .
Let x ∈ X, h ∈ F (Y ), then (f∗ ◦ e)(x)(h) = (e(x) ◦ f∗)(h) = e(x)(h ◦ f) =
h ◦ f(x) = ε(f(x))(h) = (ε ◦ f)(x)(h) because of the definitions of f∗, f∗, e and
ε respectively. The theorem follows. �
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It follows from Theorem B.2.5 that the Čech–Stone compactification βX is
the largest Hausdorff compactification in the class of Tychonoff spaces. In par-
ticular βX is unique up to topological equivalence. It also follows that the com-
pactification βX is uniquely defined by the extension property of Theorem B.2.5.

Suppose now that T is an abstract group. Endow T with the discrete to-
pology and consider the Čech–Stone compactification βT of T . We shall now
describe, following [27], the algebraic structure of a semitopological semigroup
on βT . For a fixed t ∈ T consider the map T 3 s 7→ ts ∈ T ⊂ βT (as T
is homeomorphically embedded in βT ). By Theorem B.2.5, this map can be
extended to a continuous map βT 3 p 7→ tp ∈ βT . Next, consider, for a fixed
p ∈ βT , the map T 3 t 7→ tp ∈ βT . This again can be extended to a continuous
map βT 3 q 7→ qp ∈ βT . This gives a semigroup structure on βT . This semigroup
is semi semitopological in the sense that the multiplication defined above is
continuous from the left.

A subset E of βT is called a left ideal, if (βT )E ⊂ E. By Kuratowski–Zorn’s
lemma, βT always contains minimal (with respect to inclusion) ideals.

Lemma B.2.6. Each minimal left ideal of the semigroup βT is a closed set.

Proof. Let M ⊂ βT be a minimal left ideal. Then (βT )M = M . We will
show, that TM = βTM . Let q ∈ βT , m ∈ M . Let (gi)i∈I be a net of elements

of T that converges to q, ti
i−→ q in βT . Then tim

i−→ qm, so qm ∈ TM . Thus
TM = M and lemma is proved. �

From now on we will deal only with left minimal ideals of βT and we will
refer to them as minimal ideals.

An element p ∈ βT that satisfies p2 = p is called an idempotent.

Lemma B.2.7. Let E be a compact Hausdorff topological space provided
with a semigroup structure such that the maps y 7→ yx are continuous, for all
x ∈ E. Then there exists an idempotent in E.

Proof. Let S be the collection of all closed nonempty subsets S of E with
the property S2 = {s1s2 : s1, ss ∈ S} ⊂ S. As E ∈ S, S is nonempty. By
Kuratowski–Zorn’s lemma there exists a minimal (under inclusion) element in
S, say S0. If x ∈ S0 then S0x is closed, nonempty and (S0x)(S0x) ⊂ S30x ⊂ S0x.
Hence S0x ∈ S and since S0x ⊂ S0 it follows that S0x = S0.

Let S = {y ∈ S0 : yx = x}, then S is closed non-empty and clearly S2 ⊂
S ⊂ S0. Hence S = S0, and x2 = x is an idempotent. �

Proposition B.2.8. Let M be a minimal ideal of βT , and let J be the set
of idempotents in M . Then:

(a) J 6= ∅.
(b) If v ∈ J and p ∈M then pv = p.
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(c) For each v ∈ J , the set vM = {p ∈ M : vp = p} is a subgroup of M
with identity element v. The map p 7→ wp is a group isomorphism of
vM onto wm for every idempotent w ∈ J .

(d) The collection {vM : v ∈ J} is a partition of M .

Proof. (a) follows from Lemma B.2.7.
(b) Since Mv is a minimal ideal that is contained in M , Mv = M . If p ∈M

then there exists q ∈M such that qv = p. Now pv = (qv)v = qv2 = qv = p.
(c) The only group property we have to show is that each element of vM

has an inverse in vM . Let p ∈ vM then, as in (b), Mp = M . Hence there exists
q ∈M such that qp = v. Also Mq = M and there exists r ∈M such that rq = v.
Now p = vp = rqp = rv = r and vp = qpq = qrq = qv = q. Thus q ∈ vM and
qp = pq = v i.e. p has an inverse in vM . Denote q = p−1.

Now we will prove that the map vM 3 p 7→ wp ∈ wM is an isomorphism.
Observe that (wp−1)(wp) = wp−1p = wv = w. Thus wp−1 = (wp)−1, also
w(pq) = (wp)wq and v(wp) = vp = p.

(d) If p ∈ M then Mp = M . Hence the set A = {q ∈ M : qp = p} is closed
and nonempty, and A2 ⊂ A. By Lemma B.2.7 there is an idempotent w ∈ A, and
thus p ∈ wM , i.e. M =

⋃
{vM : v ∈ J}. If p ∈ vM ∩ wM then w = pp−1 = v,

hence the union is disjoint. �

Corollary B.2.9. Let M be a minimal ideal of βT , and let J be the set
of idempotents in M . Choose u ∈ J and denote G = uM . Then every element
p of M has unique representation p = vα for v ∈ J and α ∈ G. Moreover
p−1 = vα−1.

Lemma B.2.10. Let L and M be minimal ideals in βT . Let v ∈ M be an
idempotent. Then there exists a unique idempotent v′ ∈ L such that vv′ = v′ and
v′v = v.

Proof. Let v ∈ M be an idempotent, then Lv = M and by Lemma B.2.7
we conclude that the set {q ∈ L : qv = v} contains an idempotent v′. Similarly
Mv′ = L and we conclude that there exists an idempotent v1 ∈ M such that
v1v
′ = v′. Now v = v′v = v1v

′v = v1v = v1, so we have v′v = v, vv′ = v′. This
also shows that v′ is unique. �

If v ∈ M and v′ ∈ L are idempotents satisfying vv′ = v′, v′v = v then we
write v ∼ v′ and say that v′ is equivalent to v.

Lemma B.2.11. If K,L,M are minimal ideals in βT and v ∈ M , v′ ∈ L,
v′′ ∈ K are idempotents such that v ∼ v′ and v′ ∼ v′′ then v ∼ v′′.

Proof. We have vv′′ = v(v′v′′) = (vv′)v′′ = v′v′′ = v′′ and similarly v′′v = v.
Thus v ∼ v′′. �
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du plan au voisinage d’un point fixe, Ann. of Math. (2) 146 (1997), 241–293.
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[62] , Sur l’absence de mélange pour des flots spéciaux au-dessus d’une rotation
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101, 109, 133, 135

recurrent —, 32

wandering —, 32

point transitive

cocycle, 34, 114, 144, 145, 147–

151, 156

flow, 31, 32, 36, 90, 114, 115,

119, 131, 133, 135, 136, 140–

144, 149, 159, 162, 163, 165,

166

pointed flow, 35

pointed minimal flow, 35, 37, 38, 40,

83, 84

POOD, 23

positive definite sequence, 169

product of off-diagonal, 23

proximal

extension, 35

flow, 33, 93

homomorphism, 35, 38, 41, 42,

84, 91–93, 118

pair, 33, 36–39, 93

pure-point spectrum, 21

recurrent point, 32

regionally recurrent homeomorphism,

32

regular

cocycle, 28, 65–68, 70, 71, 79,

122, 123, 127, 136–141, 150,

151, 153–156, 158, 161–166

extension, 35

flow, 35, 35, 85, 94, 119, 120

homomorphism, 35, 84, 85, 89,

91, 92, 119

relative product, 23

relatively
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dense set, 32, 101

disjoint automorphisms, 24

incontractible extension, 40, 118

independent extension, 23, 25,

26, 46, 60, 67, 79

minimal extension, 162, 163

weakly mixing extension, 46, 47,

61, 68, 69, 80

relatively disjoint automorphisms, 24

RIC extension, 40

RIC homomorphism, 118

rigid flow, 32, 62, 161

rigidity time, 32

Rokhlin cocycle, 7

extension, 29, 35, 62, 65–69, 79–

81, 154, 158–166

rotation

ergodic —, 21

minimal —, 33

selector, 126, 138, 140

continuous —, 153

measurable —, 153

semisimple automorphism, 26, 48,

48, 50, 51, 55–58, 60, 61,

79–81

set

dwelling —, 32

invariant —, 17, 31

minimal —, 31, 32, 33, 36, 37,

85, 86, 90, 92–95, 106, 109,

113, 114, 119, 133–135, 143,

144, 146, 147, 165

relatively dense —, 32, 101

syndetic —, 32

shadow diagram, 41

simple automorphism, 23, 50, 57, 58,

60, 67, 79

space

uniform —, 178

spectrally

disjoint, 63

equivalent operators, 172

strongly mixing, 18

syndetic set, 32

topologically ergodic flow, 32

uniform space, 178

uniform topology, 178

uniformity, 178

uniformly rigid flow, 32, 161

unitarily equivalent operators, 172

Veech Theorem, 25

wandering point, 32

weak topology on C(T ), 20

weakly canonical factor, 56

weakly mixing

action, 28, 63–65, 69

automorphism, 18, 18, 19, 46,

48, 51, 57, 58, 60, 81, 82

extension, 35, 41, 42

homomorphism, 35, 41, 42






