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FOREWORD

This volume contains lectures delivered during the Winter School on Methods
in Multivalued Analysis organized in February 15–18, 2006 in Toruń by the
Juliusz Schauder Center for Nonlinear Studies at the Faculty of Mathematics
and Computer Sciences of the Nicolaus Copernicus University. Apart from the
plenary lectures by L. Górniewicz, W. Kryszewski, S. Plaskacz and L. Rybiński,
the series of short talks have been communicated during the afternoon meetings.
Full texts of these lectures and communications are included into the present
volume.

The school has gathered 70 participants from different universities of Poland;
among them were students, graduate students and scientists working in the area
of set-valued analysis.

The organizers and the lecturers hope that the publication of their lectures
will be welcomed by the community of Polish and foreign mathematicians. The
organizers and the lecturers wish to thank all the people who contributed the
success of the school.

Organizers

Toruń, June 2006
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INTRODUCTION

The interest in the theory of set-valued mappings is caused by many rea-
sons. This intensely developing branch of mathematics has lot in common with
topology, nonlinear, convex and non-smooth analysis, the theory of functions
and ordinary or partial differential equations. Many results of this theory have
found interesting applications in game theory, mathematical economics and con-
trol theory. A substantial part of this theory is the study of fixed points and the
solvability of generalized equations involving set-valued maps. Such equations,
or so-called ‘inclusions’, are solved by the use of abstract methods of algebraic
topology or various approximation techniques.

The algebraic methods, especially those based on the homology or cohomol-
ogy theory are carefully studied in the lecture by L. Górniewicz, while approxi-
mation techniques are presented in the lecture by W. Kryszewski. Such methods
lead to diverse results showing the existence of fixed points and/or solutions
to many problems arising in nonlinear analysis such as differential equations
(without the uniqueness of solutions), differential or integro-differential inclu-
sions and many others. The lecture by L. Rybiński is dealing with various types
of selection problems that arise while studying set-valued maps. In particular the
problem of the existence of measurable, continuous and Carathéodory selections
is thoroughly studied. The powerful tools for studying differential inclusions
and related problems in the theory of optimal control or the viability theory are
delivered by the techniques of convex and nonsmooth analysis. These methods,
in particular the generalized differentiability, are presented in the last lecture by
S. Plaskacz.

The contents of the volume is far from being a complete presentation of all
methods of the widely understood multlivalued analysis. It rather reflects the
personal viewpoint of the authors and, to some extent, shows sometimes their
recent contribution to the theory of set-valued maps. However it is a hope of
the authors that the presented material may be a convienient starting point for
all people wanting to go deeper into the theory and to learn about the beauty
of the outlined subject.





PART I

LECTURES





Juliusz Schauder Center Winter School
on Methods in Multivalued Analysis
Lecture Notes in Nonlinear Analysis
Volume 8, 2006, 11–66

HOMOLOGICAL METHODS
IN FIXED POINT THEORY OF MULTIVALUED MAPPINGS

Lech Górniewicz

Abstract. In this lecture we would like to present a systematic study of

the fixed point point theory for multivalued maps by using homological

methods. Homological methods were initiated in 1946 by S. Eilenberg and
D. Montgomery in their celebrated paper [11]. Note that by using homo-

logical methods it is possible to obtain stronger results than those obtained
by means of another methods, for example, approximation methods (comp.

[1], [14], [5]).

In this work we shall use some notions and results contained in [18].

1. Homology

In this section we consider the Čech homology functor H with compact carri-
ers and those of its properties which are of importance in the fixed-point theory
of multi-valued maps. Therefore all facts concerning H are formulated only
in the form necessary in the material which follows. The Čech homology and
cohomology are of auxiliary importance.

By a pair of spaces (X,X0) we understand a pair consisting of a Hausdorff
topological space X and of one its subsets X0. A pair of the form (X, ∅) will
be identified with the space X. Let (X,X0), (Y, Y0) be two pairs; if X ⊂ Y and
X0 ⊂ Y0, then we say that (X,X0) is a subpair of (Y, Y0) and indicate this by
writing (X,X0) ⊂ (Y, Y0).

2000 Mathematics Subject Classification. Primary 55M20, 47H11, 47H10, 54H25.

Key words and phrases. Lefschetz number, fixed points, CAC-maps, condensing maps,
ANR-spaces, fixed point index.
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12 Homological Methods in Fixed Point Theory

A pair (X,X0) is called compact if X is a compact space and closed subset
of X.

By a map f : (X,X0) → (Y, Y0) we understand a continuous (single-valued)
map f :X → Y satisfying the condition f(X0) = Y0. The category of all pairs
and maps will be denoted by C. By C̃ will be denoted the subcategory of C
consisting of all compact pairs and maps of such pairs. Two maps f, g: (X,X0)→
(Y, Y) are said to be homotopic (written f ∼ g) provided that there is a map
h: (X × 〈0, 1〉, X0 × 〈0, 1〉)→ (Y, Y0) such that h(x, 0) = f(x) and h(x, 1) = g(x)
for each x ∈ X.

We observe that if (X,X0) is a pair in C̃, then (X ×〈0, 1〉, X0×〈0, 1〉) is also
in C̃.

By H∗ (H∗) we denote the Čech homology (cohomology) functor with the
coefficients in the field of rational numbers Q from the category C̃ to the category
A of graded vector spaces over Q and linear maps of degree zero. Thus, for a
pair (X,X0),

H∗(X,X0) = {Hq(X,X0)}, (H∗(X,X0) = {Hq(X,X0)}),

is a graded vector space and, for a map f : (X,X0) → (Y, Y0), H∗(f) (H∗(f)) is
the induced linear map

f∗ = {f∗q}:H∗(X,X0)→ H∗(Y, Y0)

(f∗ = {f∗q}:H∗(X,X0)→ H∗(Y, Y0)),

where f∗q:Hq(X,X0)→ (Hq(Y, Y0), (f∗q:Hq(X,X0)→ (Hq(Y, Y0)).
We assume as known that the functor H∗, (H∗) satisfies all of the Eilenberg–

Steenrod axioms for homology (cohomology). Recall that a Čech homology (co-
homology) theory can be defined on the category A. Then the Čech cohomology
satisfies all of the Eilenberg–Steenrod axioms; however, the Čech homology sat-
isfies all of the Eilenberg–Steenrod axioms except that of exactness.

By HomQ:A → A we denote the contravariant functor which to a graded vec-
tor space E = {Eq} assigns the conjugate graded space HomQ(E)={Hom(Eq,Q)
and to a linear map l:E1 → E2 between graded spaces assigns the conjugate map

HomQ(l): HomQ(E2)→ HomQ(E1)

given by the formula

HomQ(l)(u) = u ◦ l, for every u ∈ HomQ(E2).

We now formulate the Duality Theorem between the Čech homology and
cohomology.
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(1.1) Theorem. On the category C̃ the functors H∗ and HomQ ◦ H∗ are
naturally isomorphic; in other words, for every f : (X,X0) → (Y, Y0) in C̃ we
have the commutative diagram

H∗(X,X0)

f∗

��

∼ // HomQ(H∗(X,X0))

HomQ(f∗)

��

H∗(Y, Y0) ∼
// HomQ(H∗(Y, Y0)).

A graded vector space E = {Eq} in A is said to be of finite type provided:

(i) dimEq <∞ for all q and
(ii) Eq = 0 for almost all q.

The following fact is well known:

(1.2) If E is a graded vector space of a finite type, then the graded vector
space HomQ(E) is isomorphic to E; in particular, HomQ(E) is also of
a finite type.

A pair (X,X0) in C̃ is said to be of finite type with respect to H∗ (H∗) provided
the graded vector space H∗(X,X0) (H∗(X,X0)) is of finite type.

From (1.1) and (1.2) we instantly obtain:

(1.3) A pair (X,X0) in C̃ is of finite type with respect to H∗ if and only if
(X,X0) is of a finite type with respect to H∗.

For pairs (X,X0), (Y, Y0) in C we define the Cartesian product as the pair
given by (X,X0) × (Y, Y0) = (X × Y,X × Y0 ∪ X0 × Y ), where in X × Y the
Cartesian product topology is given.

Given maps f : (X,X0) → (Y, Y0) and g: (X ′, X ′
0) → (Y ′, Y ′0), we can define

the product map f × g: (X,X0)× (X ′, X ′
0)→ (Y, Y0)× (Y ′, Y ′0) by letting

(f × g)(x, x′) = (f(x), g(x′)), for every x ∈ X and x′ ∈ X ′.

(1.4) Theorem (Küneth Theorem). For every two pairs (X,X0), (X ′, X ′
0)

in C̃, there is a linear isomorphism

L:H∗((X,X0)× (X ′, X ′
0))→ H∗(X,X0)⊗H∗(X ′, X ′

0)

such that if f : (X,X0)→ (Y, Y0) and g: (X ′, X ′
0)→ (Y, Y ′0) in C̃, then the follow-

ing diagram commutes:

H∗((X,X0)× (X ′, X ′
0))

L

��

H∗((Y, Y0)× (Y ′, Y ′0))
(f×g)∗
oo

L
��

H∗(X,X0)⊗H∗(X ′, X ′
0) H∗(Y, Y0)⊗H∗(Y ′, Y ′0).

f∗⊗g∗
oo

From (1.1), (1.4) and the conimutativity of functors ⊗ and HomQ for graded,
vector spaces of finite type, we have:
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(1.5) Theorem. For every two pairs of finite type (X,X0), (X ′, X ′
0) in C̃,

there is a linear isomorphism

L:H∗((X,X0)× (X ′, X ′
0))→ H∗(X,X0)⊗H∗(X ′, X ′

0)

such that if f : (X,X0) → (Y, Y0) and g: (X ′, X ′
0) → (Y ′, Y ′0) are two maps of

pairs of finite type, then the following diagram commutes:

H∗((X,X0)× (X ′, X ′
0))

L
��

H∗((Y, Y0)× (Y ′, Y ′0))
(f×g)∗
oo

L
��

H∗(X,X0)⊗H∗(X ′, X ′
0) j∗⊗g∗

// H∗(Y, Y0)⊗H∗(Y ′, Y ′0)

Now, we prove the following theorem:

(1.6) Theorem. Let (X, d) be a compact metric space of finite type with
respect to H∗. Then there exists an ε > 0 such that for every two maps f, g:Y →
X, where Y is a compact space, the condition

d(f(y), g(y)) < ε, for each y ∈ Y,

implies f∗ = g∗.

First we prove the following lemma:

(1.7) Lemma. Let X be a normal topological space and α = {U1, . . . , Un} a
finite covering of X by open sets. Then there exists a covering β = {V1, . . . , Vn}
of X by open sets, such that for each i = 1, . . . , n, V i ⊂ Ui (V i denotes the
closure of Vi in X).

Proof. Consider the following two closed subsets of X: F = X \ Ui, F ′ =
X \

⋃n
j=1,j 6=i Uj , where i = 1, . . . , n is an arbitrary but fixed number. Since

F ∩ F ′ = ∅, by the normality of X we find open subsets U and Vi of X such
that:

(i) F ⊂ U ,
(ii) F ′ ⊂ Vi and
(iii) U ∩ Vi = ∅.
Since X \

⋃n
j=1,j 6=i Uj ⊂ Vi, we infer that the family {U1, . . . , Ui−1, Vi, Ui+1,

. . . , Un} is a covering of X by open subsets and V i ⊂ Ui.
Applying the above construction successively for each i = 1, . . . , n, we obtain

a covering β = {V1, . . . , Vn} of X by open sets such that V i ⊂ Ui for each
i = 1, . . . , n, and the proof of (1.7) is completed. �

In the proof of (1.6) we will establish the following conventions. By a covering
of X we understand a finite covering of X by open sets. If α, β are two coverings
of X, then the symbol α ≥ β means that α refines β. If α is a covering of X,
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then N(α) will stand for the finite simplicial complex which is the nerve of α and
H∗(N(α)) is the simplicial cohomology ofN(α) with coefficientes in Q. If α, β are
two coverings of X and α ≥ β, then by iαβ :N(α)→ N(β) we denote a simplicial
map given by a vertex transformation from N(α) to N(β) taking a set V in α to
a set U in β such that V ⊂ U . It is well known that i∗αβ :H∗(N(β))→ H∗(N(α))
is independent of the choice of vertex transformations used to define iαβ . Finally,
for a map f :Y → X and a covering α = {U1, . . . , Un} of X, we denote by f−1(α)
the covering of Y of the form

f−1(α) = {f−1(U1), . . . , f−1(Un)}

and by fα:N(f−1(α)) → N(α) a simplicial map given by the following vertex
transformation:

fα(f−1(Ui)) = Ui, for each i = 1, . . . , n.

Proof of Theorem (1.6). Let [uα1 ], . . . , [uαk
] be a basis of H∗(X), where

uαi ∈ H∗(N(αi)) for each i = 1, . . . , k. We choose a covering α = {U1, . . . , Un}
of X such that α ≥ αi, for all i = 1, . . . , k. Consider simplicial maps iααi

:N(α)
→ N(αi) for each i = 1, . . . , k. Then

vi
α = i∗ααi

(uαi
) ∈ [uαi

], for each i.

Applying Lemma (1.7) to the covering α, we obtain a covering β = {V1, . . . , Vn}
such that V i ⊂ Ui for each i = 1, . . . , n. Let iβα:N(β) → N(α) be a simplicial
map given by the vertex transformation iβα(Vi) = Ui for each i. Then

wi
β = i∗βα(vi

α) ∈ [uαi
], for each i = 1, . . . k.

Let ε = mini dist(V i, X \ Ui). We may assume without loss of generality that
Ui 6= X for each i. Since V i∩X \Ui = ∅ and V i, X \Ui are compact, non-empty
sets, we deduce that e is a positive real number.

Let Y be a compact space and let f, g:Y → X be two maps such that
d(f(y), g(y)) < ε for each y ∈ Y . We assert that f∗ = g∗. Consider the coverings
γ = f−1(α) and δ = g−1(β). It is easy to see that

g−1(Vi) ⊂ f−1(Ui), for each i = 1, . . . , n and δ ≥ γ.

Let iδγ :N(δ) → N(γ) be a simplicial map given by the vertex transformation
iδγ(g−1(Vi)) = f−1(Ui) for each i = 1, . . . , n. We have the following commuta-
tive diagram:

N(γ)
fα // N(α)

N(δ)

iδγ

OO

gβ

// N(β)

iβα

OO
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This implies that i∗βγf
∗
α(vi

α) = g∗β(wi
β) for each i = 1, . . . , k and hence we obtain

[ff∗α(vi
α] = [g∗β(wi

β)]. Since g∗([uαi ]) = [g∗β(wi
β)] and f∗([uαi ]) = [f∗α(vi

α)], we
find that the maps f∗, g∗ are equal on a basis of H∗(X). Finally, from this we
deduce that f∗ = g∗ and the proof of (1.6) is completed. �

Using (1.1) we deduce that (1.6) is equivalent to the following:

(1.8) Theorem. Let (X, d) be a compact metric space of finite type with
respect to H∗. Then there exists an ε > 0 such that for every two maps f, g:Y →
X, where Y is a compact space, the condition:

d(f(y), g(y)) < ε, for each y ∈ Y,

implies f∗ = g∗.

Remark. Note that Theorem (1.6) remains true in the case where Y is an
arbitrary Hausdorff space.

Let (X,X0) be an arbitrary pair in C. We shall denote byM = {(Aα, A0α)}
the directed set of all compact pairs such that (Aα, A0α) ⊂ (X,X0) for each α,
with the natural quasi-order relation ≤ defined by the condition

(Aα, A0α) ≤ (Aβ , A0β) if and only if (Aα, A0α) ⊂ (Aβ , A0β).

If (Aα, A0α) ≤ (Aβ , A0β), then we shall denote by iαβ : (Aα, A0α) → (Aβ , A0β)
the inclusion map. For each pair (Aα, A0α) consider the graded vector space
H∗(Aα, A0α), together with the linear map iαβ∗ given for (Aα, A0α) ≤ (Aβ , A0β).
Then the family {H∗(Aα, A0α), iαβ∗} is a direct system in the categoryA overM.
We define a graded vector space

H(X,X0) = lim−−→α
{H∗(Aα, A0α), iαβ∗}.

It is easy to see that
Hq(X,X0) = {Hq(X,X0)},

where
Hq(X,X0) = lim−−→α

{Hq(Aα, A0α), iαβ∗}, for each q.

Let f : (X,X0)→ (Y, Y0) be a map. Consider the directed setsM = {(Aα, A0α)}
and N = {Bγ , B0γ)} for (X,X0) and (Y, Y0), respectively. We define F :M→N
by the formula

F ((Aα, A0α)) = (f(Aα), f(A0α)), for each (Aα, A0α) ∈M.

We observe that if (Aα, A0α) ≤ (Aβ , A0β) then

F ((Aα, A0α)) ≤ F ((Aβ , A0β)).

For each α, by fα: (Aα, A0α) → (f(Aα), f(A0α)) we denote a map given by
fα(x) = f(x) for each x ∈ A. Then the map F and the family {fα∗} is a map
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of directed systems {H∗(Aα, A0α), iαβ∗} and {H∗(Bγ , B0γ), iδγ∗}. We define the
induced linear map for f , H(f), by putting

H(f) = f∗ = lim−−→α
{f∗α}.

Then we have f∗q = lim−−→α
{fα∗q} for every q.

From the functoriality of lim−−→ we deduce that H: C → A is a covariant functor.

The functor H is said to be the Čech homology functor with compact carriers.
We note that if (X,X0) is a compact pair, then the family consisting of the

single pair (X,X0) is a cofinal subset ofM = {(Aα, A0α)} for (X,X0), and hence
we obtain H∗(X,X0) = H(X,X0). Similarly, if f : (X,X0)→ (Y, Y0) is a map of
compact pairs, then H∗(f) = H(f).

The following properties of H clearly follow from the Eilenberg–Steenrod
axioms for H∗ and the simple properties of lim−−→α

.

(1.9) If f, g: (X,X0)→ f(Y, Y0) are homotopie maps, then the induced linear
maps are equal, that is, f∗ = g∗.

(1.10) Let (X,X0) be a pair in C and let i:X0 → X, j:X → (X,X0) be
inclusions. Then there exists a linear map

δq:Hq(X,X0)→ Hq−1(X0), for each q,

so that

· · · −→ Hq(X0)
i∗q−→ Hq(X)

j∗q−→ Hq(X,X0)
δq−→ Hq−1(X0) −→ · · ·

is exact.

The linear map δq has the additional property of being natural in the follow-
ing sense:

(1.11) Given a map f : (X,X0)→ (Y, Y0) in C, the diagram

Hq(X,X0)

f∗q

��

δq
// Hq−1(X0)

(fX0 )∗q−1

��

Hq(Y, Y0)
δq

// Hq−1(Y0)

commutes for all q, where fX0 :X0 → Y0 is given by the formula fX0(x)
= f(x), for each x ∈ X0.

A pair (X,X0) of finite type with respect to H is called simply of finite type.
We prove the following
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(1.12) Theorem (1). Let (X, d) be a compact metric space of finite type.
Then there exists an ε > 0 such that, for every two maps f, g:Y → X, where Y
is a Hausdorff space, the condition

d(f(y), g(y)) < ε, for each y ∈ Y

implies f∗ = g∗.

Proof. Let ε be as in (1.8). Consider two maps f, g from a Hausdorff space Y
to X. Let A be a compact subset of Y and let fA, gA:A → X be given by
fA(y) = f(y), gA(y) = g(y) for each y ∈ A. We observe that fA, gA satisfies the
assumptions of (1.8). So, we have (fA)∗ = (gA)∗. Since f∗ = lim−→

A

{(fA)∗} and

g∗ = lim−→
A

{(gA)∗}, we infer that f∗ = g∗ and the proof of (1.12) is completed. �

A space X is acyclic provided:

(i) X is non-empty,
(ii) Hq(X) = 0 for all q ≥ 1, and
(iii) H0(X) ≈ Q.

A map f : (X,X0) → (Y, Y0) is proper provided for any compact B the counter
image f−1(B) is also compact. A map f : (X,X0) → (Y, Y0) is said to be a
Vietoris map provided the following conditions are satisfied:

(i) f is proper,
(ii) f−1(Y0) = X0,
(iii) the set f−1(y) is acyclic for every y ∈ Y .

The following evident remark is of importance:

(1.13) If f : (X,X0) → (Y, Y0) is a Vietoris map and (B,B0) ⊂ (Y, Y0), then
the map f̃ : (f−1(B), f−1(B0))→ (B,B0) is also a Vietoris map, where
f̃(x) = f(x) for each x ∈ f−1(B).

We shall require the following classical result:

(1.14) Theorem (Vietoris–Begle Mapping Theorem). Let X,Y be compact
spaces. If f :X → Y is a Vietoris map, then the induced map f∗:H∗(X) →
H∗(Y ) is a linear isomorphism.

The Vietoris–Begle Mapping Theorem and the five lemma gives:

(1.15) Theorem. Let (X,X0), (Y, Y0) be compact pairs. If f : (X,X0) →
(Y, Y0) is a Vietoris map, then f∗:H∗(X,X0) → H∗(Y, Y0) is a linear isomor-
phism.

Now, from (1.15) we deduce the following theorem for non-compact pairs.

(1) Theorem (1.12) is a generalized version (for arbitrary topological spaces) of (1.18).
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(1.16) Theorem. If f : (X,X0) → (Y, Y0) is a Vietoris map, then the in-
duced map f∗:H(X,X0)→ H(Y, Y0) is a linear isomorphism.

Proof. Consider M = {(Aα, A0α)} and N = {(Bγ , B0γ)} for (X,X0) and
(Y, Y0), respectively. LetM0 = {(f−1(Bγ), f−1(B0γ)); (Bγ , B0γ) ∈ N}. Since f
is a proper map, we haveM0 ⊂M. It is easy to see thatM0 is a cofinal subset
ofM. Therefore we may assume without loss of generality that

H(X,X0) = lim−−−−→
α∈M0

{H∗(Aα, A0α), iαβ∗}.

Then for each y ∈ Y the map

fγ : (f−1(Bγ), f−1(B0γ))→ (Bγ , B0γ)

is a Vietoris map of compact pairs. Using (1.15) we infer that

fγ∗:H∗(f−1(Bγ), f−1(B0γ))→ H∗(Bγ , B0γ)

is a linear isomorphism. Consequently, the linear map f∗ = lim−−−→
γ∈N
{fγ∗} is an

isomorphism. The proof of (1.16) is completed. �

In what follows the symbol p:X =⇒ Y will be used for Vietoris mappings.
Below, we shall list some properties of Vietoris mappings.

(1.17) Lemma (comp. (1.13)).

(a) If X
p1=⇒Y p2=⇒Z are Vietoris maps, then the composition p2◦p1:X =⇒ Z

of p1 and p2 is a Vietoris map too;
(b) if p:X =⇒ Y is a Vietoris map and B ⊂ Y , then the map p̃: p−1(B) =⇒

B, p̃(x) = p(x) for every x ∈ p−1(B) is a Vietoris map;
(c) consider a diagram of continuous maps

X
f
// Y Z

pks

X ⊕ Z
p1

_g GGGGGGGG

GGGGGGGG
g

OO

g1

;;xxxxxxxxx

in which X⊕Z = {(u, v) ∈ X×Z | f(x) = p(v)}, g(u, v) = f(u) = p(u),
g1(u, v) = v, p1(u, v) = v,

then p to be a Vietoris maps implies that p1 is a Vietoris map, too.

Remark. Let us remark that the map p1 in the above diagram is called the
fiber product of f and p.

Consider the subcategory C0 ⊂ C consisting of all pairs (U, V ) such that U
and V are open subsets in the Euclidean space Rn for some n, or V is a finite
polyhedron and V is an open subset of U , and all maps of such pairs.
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Since the family of all pairs of finite polyhedra {(K,K0)} is cofinal in the
family of all compact pairs {(A,A0)} contained in (U, V ), we obtain the following:

(1.18) On the category C1 the functors H and H are naturally isomorphic (H
denotes the singular homology functor with coefficients in Q).

Let A ⊂ U ⊂ Rn, where A is compact and U is open in Rn. We identify the
nth sphere Sn = {x ∈ Rn | ‖X‖ = 1} and Rn ∪ {∞}. Then from the excision
axiom for singular homology and (1.18) we deduce:

(1.19) The inclusion j: (U,U \A)→ (Sn, Sn \A) induces an isomorphism

j∗:H(U,U \A)→ H(Sn, Sn \A).

Let K be a finite polyhedron and U an open subset of Rn, where K ⊂ U .
Consider a Vietoris map p:Y =⇒ U and a map q:Y → K from a Hausdorff
space Y to K. We prove the following:

(1.20) There are isomorphisms a1, a2, a3 such that the following diagram com-
mutes:

H(U,U \K)⊗H(U) H(U,U \K)⊗H(Y )
id⊗p∗oo

id⊗q∗ // H(U,U \K)⊗H(K)

H((U,U \K)× U)

a1

OO

H((U,U \K)× Y )
(id×p)∗

oo

a2

OO

(id×q)∗

// H((U,U \K)×K)

a3

OO

Proof. It is easy to see that the families

{(M,M0)× L}, {(M,M0)× p−1(L)}, {(M,M0)×K},

where M , M0, L are finite polyhedra, are cofinal in families of all compact pairs
contained in (U,U \K) × U , (U,U \K) × Y and (U,U \K) ×K, respectively.
We observe that for every L the space p−1(L) is of finite type (p is a Vietoris
map), so we may apply (1.5) and have the commutative diagram

H∗(M,M0)⊗H∗(L) H∗(M,M0)⊗H∗(p−1(L))
id⊗(pL)∗
oo

id⊗(qp−1(L))∗
// H∗(M,M0)⊗H∗(K)

H∗((M,M0)×L)

f

OO

H∗((M,M0)×p−1(L))
(id×pL)∗

oo

f

OO

(id×qp−1(L))∗

// H∗((M,M0)×K)

From the commutativity of the above diagram and the commutativity of lim
−→

and

⊗ we simply deduce (1.20). �

Consider the diagram
U

p⇐= Y
q−→ K,
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where p and q are as in (1.20). With the above diagram we associate the follow-
ing:

(U,U \K)
p⇐= (Y, Y \ p−1(K))

q−→ (Rn,Rn \ {0}),
where p(y) = p(y) and q(y) = p(y)− q(y) for each y ∈ Y . We observe that p is a
Vietoris map. Let ∆: (U,U\K)→ (U,U\K)×U be a map given by ∆(x) = (x, x)
and let d: (U,U \K)×K → (Rn,Rn \{0}) be given by d(x, x′) = x−x′, for each
x ∈ U and x′ ∈ K.

(1.21) Lemma. The following diagram commutes

H(U,U \K)

q∗p−1
∗ ))SSSSSSSSSSSSSS

∆∗ // H(U,U \K)⊗H(U)
id⊗q∗p−1

∗ // H(U,U \K)⊗H(K)

d∗ttiiiiiiiiiiiiiiii

H(Rn,Rn \ {0})

Proof. Consider the diagram

(U,U \K)× U (U,U \K)× Y
id×p
oo

id×q
// (U,U \K)×K

d

��

(U,U \K)

∆

OO

(Y, Y \ p−1(K))
p

oo

f

OO

q
// (Rn,Rn \ {0})

where the map f is given by f(y) = (p(y), y) for each y ∈ Y . From the comtnu-
tativity of the above diagram and (1.20) we obtain (1.21). �

Let us fix for each n an orientation 1 ∈ Hn(Sn) ≈ Q of the nth sphere
Sn = Rn ∪ {∞}. Consider the diagram

Sn i−→ (Sn, Sn \A)
j←− (U,U \A)

in which A is a compact subset of U and U is open in Rn; i, j are inclusions.
From (1.19) we infer that j∗ is an isomorphism. We define the fundamental class
OA of the pair (U,A) by the equality OA = j−1

∗n i∗n(1).

(1.22) Lemma. Let A ⊂ A1 ⊂ V ⊂ U ⊂ Rn, where A,A1 are compact, V ,
U are open subsets of Rn and let k: (V, V \ A1) → (U,U \ A) be the inclusion
map. Then we have k∗n(OA1) = OA.

Proof. Consider the commutative diagram

Sn

i1 %%KKKKKKKKKKK
i // (Sn, Sn \A) (U,U \A)

j
oo

(Sn, Sn \A1)

k1

OO

(V, V \A1)
j1

oo

k

OO
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in which j1, i1, k1 are inclusion maps. Applying Hn to the above diagram, we
obtain (1.22). �

Finally, we formulate Dold’s Lemma in terms of Čech homology with compact
carriers. Let K ⊂ U ⊂ Rn, where K is a finite polyhedron and U an open subset
of Rn. We define the following maps:

t:U ×K → K × U, t(x, x′) = (x′, x), for each x ∈ U and x′ ∈ K,
O×K :H(K)→ H(U,U \K)⊗H(K), O×K(u) = OK ⊗ u, for each u ∈ H(K),

×: Q⊗H(U)→ H(U), ×(q ⊗ u) = q · u, for each u ∈ H(U), q ∈ Q.

(1.23) Lemma. The composite

l = l(K,U):H(K)
O×

K−−−−→ H(U,U \K)⊗H(K)
∆∗⊕id−−−−→ H(U,U \K)⊗H(U)⊗H(K)
id⊗t∗−−−−→ H(U,U \K)⊗H(K)⊗H(U)
d∗⊗id−−−−→ Q⊗H(U) ×−−−−→ H(U)

coincides with the linear map i∗:H(K)→ H(U).

Remark. Lemma (1.23), in view of (1.18), clearly follows from the original
statement of Dold’s Lemma. For the proof of this lemma se [8] or [15].

2. The Lefschetz number

In what follows the vector spaces are taken over Q.
Let f :E → E be an endomorphism of a finite-dimensional vector space E.

If v1, . . . , vn, is a basis for E, then we can write

f(vi) =
n∑

j=1

aijvj , for all i = 1, . . . , n.

The matrix [aij ] is called the matrix of f (with respect to the basis v1, . . . , vn).
Let A = [aij ] be an (n × n)-matrix; then the trace of A is defined as

∑n
i=1 aii.

If f :E → E is an endomorphism of a finite-dimensional vector space E, then
the trace of f , written tr(f), is the trace of the matrix of f with respect to
some basis for E. If E is a trivial vector space then, by definition, tr(f) = 0.
It is a standard result that the definition of the trace of an endomorphism is
independent of the choice of the basis for E.

We recall the following two basic properties of the trace:
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(2.1) Property. Assume that in the category of finite-dimensional vector
spaces the following diagram commutes

E′
f
// E′′

E′

f ′

OO

f
// E′′

g
aaBBBBBBBB

f ′′

OO

Then tr(f ′) = tr(f ′′); in other words tr(gf) = tr(fg).

(2.2) Property. Given a commutative diagram of finite-dimensional vector
spaces with exact rows

0 // E′

f ′

��

// E

f

��

// E′′

f ′′

��

// 0

0 // E′ // E // E′′ // 0

we have tr(f) = tr(f ′) + tr(f ′′).

Let E = {Eq} be a graded vector space in A of finite type. If f = {fq} is an
endomorphism of degree zero of such a graded vector space, then the (ordinary)
Lefschetz number λ(f) of f is defined by

λ(f) =
∑

q

(−1)qtr(fq).

Let E be a finite-dimensional vector space and v1, . . . , vn a basis for E. We
define a basis v1, . . . , vn for HomQ(E) by putting

vi(vj) =
{

1 for i = j,

0 for i 6= j.

The basis v1, . . . , vn is called the conjugate basis to v1, . . . , vn. For a vector
space E and any integer q, define a linear map Θq: HomQ(E)⊗E → Hom(E,E)
by letting

Θq(u⊗ v)(v′) = (−1)qu(v′) · v, for u ∈ HomQ(E), v, v′ ∈ E

and extend Θq to all HomQ(E)⊗ E.

(2.3) Lemma. If the vector space E is finite-dimensional, then Θq is an
isomorphism.

Proof. Let v1, . . . , vn be a basis for E and v1, . . . , vn the conjugate basis to
v1, . . . , vn. Then every element a in HomQ(E)⊗ E has the following form:

a =
n∑

i,j=1

aijv
i ⊗ vj .
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If Θq(a) = 0, then

Θq(a)(vk) = (−1)q
n∑

j=1

akjv
k(vk) · vj = (−1)q

n∑
j=1

akj · vj = 0,

so akj = 0 for all k, j, which implies that a = 0. To prove Θq is onto, let
∈ Hom(E,E). Then we can write

f(vj) = aj1v1 + . . .+ ajnvn, for j = 1, . . . , n.

Let a = (−1)q
∑n

m,k=1 amkv
m ⊗ vk. For each j = 1, . . . , n we see that

Θq(a)(vj) = (−1)2q
n∑

k=1

ajk · vk = f(vj).

So f and Θq(a) agree on a basis for E, which implies that Θq, is onto. The proof
of (2.3) is completed. �

Define e: HomQ(E)⊗ E → Q as the evaluation map

e(u⊗ v) = u(v), for u ∈ HomQ(E), v ∈ E.

(2.4) Lemma. If E is a finite-dimensional vector and f :E → E is a linear
map, then

e(Θ−1
q (f)) = (−1)qtr(f).

Proof. Take a basis v1, . . . , vn for E and write

f(vj) =
n∑

k=1

ajkvk, for j = 1, . . . , n.

From the proof of (2.3) we know that

Θ−1
q (f) = (−1)q

n∑
m,k=1

amk(vm ⊗ vk),

so

e(Θ−1
q (f)) = (−1)q

n∑
m,k=1

amk(vm ⊗ vk) = (−1)q
∑

k

akk = (−1)qtr(f)

and the proof of (2.4) is completed. �

Let E = {Eq} be a graded vector space of finite type. Define the following
graded vector spaces:

(1) E∗ = {E∗q }, where E∗q = HomQ(E−q),
(2) Hom(E,E) = {(Hom(E,E))k}, where

(Hom(E,E))k =
⊕

−q+i=k

Hom(Eq, Ei),
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(3) E∗ ⊗ E = {(E∗ ⊗ E)}, where (E∗ ⊗ E)k =
⊕

q+i=k E
∗
q ⊗ Ei.

Define Θ: (E∗ ⊗ E)0 → (Hom(E,E))0 by letting

Θ(uq ⊗ vi) = Θq(uq ⊗ vi), for uq ∈ HomQ(Eq), vi ∈ Ei, q = i

and extend Θq to all (E∗ ⊗ E)0; and e: (E∗ ⊗ E)k → Q by letting

e(uq ⊗ vi) = uq(vi), for uq ∈ HomQ(Eq), vi ∈ Ei, q = i

and extend e to all (E∗ ⊗ E)0.
It is immediate from Lemma (2.4) that

(2.5) Theorem. If f :E → E is a linear map of degree zero on a graded
vector space of finite type E, then e(Θ−1(f)) = λ(f).

Let f :E → E be an endomorphism of an arbitrary vector space E. Denote
by f (n):E → E the nth iterate of f and observe that the kernels

Kerf ⊂ Kerf (2) ⊂ . . . ⊂ Kerf (n) ⊂ . . .

form an increasing sequence of subspaces of E. Let us now put

N(f) =
⋃
n

Kerf (n) and Ẽ = E/N(f).

Clearly, f maps N(f) into itself and therefore induces the endomorphism f̃ : Ẽ →
Ẽ on the factor space Ẽ = E/N(f).

(2.6) Lemma. We have f−1(N(f)) = N(f); consequently, the kernel of the
induced map f̃ : Ẽ → Ẽ is trivial, i.e. f is a monomorpism.

Proof. If v ∈ f−1(N(f)), then f(v) ∈ N(f). This implies that for some n
we have f (n)(f(v)) = 0 = f (n+1)(v) and v ∈ N(f). Conversely, if v ∈ N(f),
then f (n)(v) = 0 for some n; then f (n)(f(v)) = 0 and hence f(v) ∈ N(f), i.e.,
v ∈ f−1(N(f)). �

Let f :E → E be an endomorphism of a vector space E. Assume that
dim Ẽ < ∞; in this case we define the generalized trace Tr(f) of f by putting
Tr(f) = tr(f̃).

(2.7) Lemma. Let f :E → E be an endomorpism. If dimE < ∞, then
Tr(f) = tr(f).

Proof. We have the commutative diagram with exact rows

0 // N(f)

f

��

// E

f

��

// E/N(f)

ef

��

// 0

0 // N(f) // E // E/N(f) // 0



26 Homological Methods in Fixed Point Theory

in which f is induced by f . Applying (2.2), to the above diagram, we obtain

(∗) tr(f) = tr(f) + tr(f̃), where tr(f̃) = Tr(f).

We prove that tr(f) = 0. Since dimE <∞, we may assume thatN(f) = Kerf (n)

for some n ≥ 1. Now consider the commutative diagram

Ker(f)

0=f1

��

// Ker(f (2))f1

xxrrrrrrrrrr
f2

��

// . . . // Ker(f (n−1)

fn−1

��

// Ker(f (n))
fn

xxqqqqqqqqqqq
fn=f

��

Ker(f) // Ker(f (2)) // . . . // Ker(fn−1)) // Ker(f (n))

where the maps f i, fi, i = 1, . . . , n, are given, by f (observe that if v ∈ Ker(f (i)),
then f(v) ∈ Ker(f (i−1)), for every i > 1). Then, from (2.1) we infer

tr(f) = tr(fn−1) = . . . = tr(f2) = tr(f1) = 0.

Finally, from (∗) we obtain Tr(f) = tr(f̃) = tr(f) and the proof is completed.�

Let f = {fq} be an endomorphism of degree zero of a graded vector space
E = {Eq}. We say that f is a Leray endomorphism provided the graded vector
space Ẽ = {Ẽq} is of finite type. For such an f we define the (generalised)
Lefschets number Λ(f) of f by putting

Λ(f) =
∑

q

(−1)qTr(fq).

It is immediate from (2.7) that

(2.8) Lemma. Let f :E → E be an endomorphism of degree zero. If E is a
graded vector space of finite type, then Λ(f) = λ(f).

The following property of the Leray endomorphism is of importance:

(2.9) Property. Assume that in the category A the following diagram com-
mutes:

E′
f
// E′′

E′

f ′

OO

f
// E′′

g
aaBBBBBBBB

f ′′

OO

Then if either f ′ or f ′′ is a Leray endomorphism, then so is the other, and in
that case Λ(f ′) = Λ(f ′′).
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Proof. By assumption we have, for each q, the following commutative dia-
gram in the category of vector spaces:

E′q
fq
// E′′q

E′q

f ′q

OO

fq

// E′′q .

gq

``AAAAAAAA
f ′′q

OO

For the proof it is sufficient to show that if either Tr(f ′q) or Tr(f ′′q ) is defined,
then so is the other trace, and in that case Tr(f ′q) = Tr(f ′′q ). We observe that
the commutativity of the above diagram implies that the following diagram com-
mutes:

E′q/N(f ′q)
efq
// E′′q /N(f ′′q )

E′q/N(f ′q)

ef ′q

OO

efq

// E′′q /N(f ′′q )

egq

ffMMMMMMMMMM
ef ′′q

OO

Since f̃q and g̃q are monomorphisms, the commutativity of the above diagram
implies that dim(E′q/N(f ′q)) <∞ if and only if dim(E′′q /N(f ′′q )) <∞, and hence
we conclude that Tr(f ′q) is defined, if and only if Tr(f ′′q ) is defined. Moreover,
from (2.1) we deduce that Tr(f ′q) = Tr(f ′′q ), if Tr(f ′q) or Tr(f ′′q ) is defined. The
proof of (2.9) is completed. �

A linear endomorphism f :E → E is called weakly nilpotent provided for
every x ∈ E there exists n = nx such that fn(x) = 0.

Observe that if f :E → E is weakly nilpotent then N(f) = E and con-
sequently Tr(f) = 0. Assume that E = {Eq} is a graded vector space and
f = {fq}:E → E is an endomorphism. We say that f is weakly nilpotent if and
only if fq is weakly nilpotent for every q.

(2.10) Remark. Any weakly nilpotent endomorphism f :E → E is a Leray
endomorphism and Λ(f) = 0.

3. The coincidence problem

A natural generalization of the well known fixed point problem is the co-
incidence problem. Assume we have two metric spaces (X, d), (Y, d1) and two
continuous mappings p, q:Y → X.

We shall say that p and q have a coincidence provided there exists a point
x ∈ X such that p(x) = q(x). In the case when X = Y and p = idX is the
identity map the coincidence problem for p and q reduces to the fixed point
problem of q.
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Observe that for arbitrary p and q usually we do not have a coincidence.
Therefore in what follows we can assume that p is a Vietoris map and q:Y → X

is a compact map, i.e. q(Y ) is a compact subset of X.
We assume first that X = U is an open subset of Rn.

(3.1) Lemma. Consider the diagram

U
p⇐= Y

q−→ U

in which p is Vietoris and q is compact. Then the set χp,q = {x ∈ U | x ∈
q(p−1(x))} is compact.

Proof. Consider a sequence {xn} ⊂ U such that xn ∈ q(p−1(xn)) for every n.
For every n we choose yn ∈ p−1(xn) such that q(yn) = xn. It means that

{xn} ⊂ q(Y ), and hence {xn} contains a convergent subsequence and the proof
is completed. �

We shall now apply the Čech homology with compact carriers to the theory
of Lefschetz number and establish a general coincidence theorem, which contains
the classical Lefschetz Fixed Point theorem (cf. [15]) as a special case.

Let U by an open subset of the n-dimensional euclidean space Rn. Consider
the diagram:

(3.2) U
p⇐= Y

q−→ U

in which p is a Vietoris map and q is a compact map. With the above diagram
we associate the diagram:

(3.3) (U,U \ χp,q)
p⇐= (Y, Y \ p−1(χp,q))

q−→ (Rn,Rn \ {0}),

where p(y) = p(y) and q(y) = p(y)− q(y) for every y ∈ Y .
Now we define the index of coincidence I(p, q) of the pair (p, q) by putting

(cf. Section 1):

(3.4) I(p, q) = q∗(p∗)
−1(Oχp,q

) ∈ Hn(Rn,Rn \ {0}) ≈ Q.

(3.5) Proposition. If I(p, q) 6= 0, then there is a y ∈ Y such that p(y) =
q(y).

Proof. Indeed, if p(y) 6= q(y) for each y ∈ Y , then χp,q = ∅ an hence we have:

I(p, q) = q∗(p∗)
−1(Oχp,q ) = q∗(p∗)

−1(O) = 0,

observe that then we have Hn(U,U) = 0. �
From (1.5) clearly follows:

(3.6) Proposition. If A is a compact set such that χp,q ⊂ A ⊂ U , then
I(p, q) = q̃∗(p̃∗)−1(OA), where p̃, q̃ are defined by the same formulae as p and q.

Now we prove the following:
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(3.7) Proposition. Let K be a finite polyhedron such that q(Y ) ⊂ K ⊂ U .
Then there exists an element a ∈ (H(K))∗ ⊗H(K) such that I(p, q) = e(a).

Proof. Consider the diagram

Hu(U,U/K)
∆∗ //

eq∗ep
−1
∗

$$J
JJJJJJJJJJJJJJJJJJJJJJ

(H(U,U/K)⊗H(U))u

id⊗q1∗p−1
∗ // (H(U,U/K)⊗H(K))0

d∗

xxqqqqqqqqqqqqqqqqqqqqqqqqqqq

bd⊗id

��

(I) (II)

Q ≈ Hu(Rn,Rn{0} ((H(K)∗ ⊗H(K))0e
oo

in which q1:Y → K is the contraction of q to the pair (Y,K) and

d̂:H(U,U \K)→ (H(K))∗

is a linear map of degree (−n) given by:

d̂(u)(v) = d∗(u⊗ v) for u ∈ H(U,U \K) and v ∈ H(U \K)

and the notations are the same as in Section 1. The subdiagram (I) commutes.
The commutativity of (II) follows by an easy computation. We let:

a = (d̂⊗ id) ◦ (id⊗ q1∗p−1
∗ )(∆∗(OK)).

Then from the commutativity of the above diagram we get I(p, q) = e(a) and
the proof is completed. �

Now, we are able to prove the following

(3.8) Theorem (First Coincidence Theorem). If we have diagram (3.2),
then q∗p

−1
∗ is a Leray endomorphism and Λ(q∗p−1

∗ ) 6= 0 implies that p and q

have a coincidence.

Proof. Since q is a compact map, there exists a finite polyhedron K such
that q(Y ) ⊂ K ⊂ U . We have the commutative diagram

H(K)
i∗ // H(U)

H(p−1(K))

q′∗

OO

j∗
// H(Y )

q1∗

eeLLLLLLLLLL
id // H(Y )

q∗

OO

H(K)

(p′∗)
−1

OO

i∗
// H(U)

p−1
∗

ccHHHHHHHHH
p−1
∗

OO
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in which i∗, j∗ are linear maps induced by inclusions i:K → U and j: p−1(K)→
Y , respectively, and q′∗, q1∗, p

′
∗ are linear maps induced by the contractions of q

and p, respectively. The commutativity of the above diagram and (2.9) imply

Λ(q∗p−1
∗ ) = λ(q′∗(p

′
∗)
−1),

and hence q∗p−1
∗ is a Leray endomorphism.

Assume that Λ(q∗p−1
∗ ) 6= 0. For the proof it is sufficient to show that

(3.8.1) λ(q′∗(p
′
∗)
−1) = I(p, q)

(cf. also Section 1).
Consider the following diagram:

H(U,U \K)⊗H(U)⊗H(K)

id⊗t∗

��

bd⊗q1∗p−1
∗ ⊗id

// (H(K))∗ ⊗H(K)⊗H(K)

id⊗t∗

��

H(U,U \K)⊗H(K)⊗H(U)

d∗⊗id

��

bd⊗id⊗q1∗p−1
∗ // (H(K))∗ ⊗H(K)⊗H(K)

e⊗id

��

H(U) ≈ Q⊗H(U)
q1∗p−1

∗

// Q⊗H(K) ≈ H(K)

The commutativity of the above diagram is obtained by simple calculation. Let

a = (d̂⊗ id)(id⊗ q1∗p−1
∗ )Λ∗(OK) ∈ HomQ(H(K))⊗H(K).

Since e(a) = I(p, q) (see (9.4)), for the proof of (3.8.1) it is sufficient to show that

(3.8.2) Θ(a) = q′∗(p
′
∗)
−1

(cf. Section 1).
If we follow ∆∗(OK) ⊗ u ∈ H(U,U \ K) ⊗ H(U) ⊗ H(K) along →↓↓, we

obtain (Θ(a))(u). If we follow it along ↓↓, by Dold’s Lemma (1.6) we obtain
i∗(u). Therefore, for the proof of (3.8.2) it is sufficient to show that

(3.8.3) q1∗p
−1
∗ i∗ = q′∗(p

′
∗)
−1.

Consider the following commutative diagram:

U Y
p

oo
q1 // K

K

i

OO

p−1(K)
p′

oo

j

OO

q′

;;wwwwwwwww

Applying to the above diagram the functor H, we obtain (3.8.3) and the proof
of the First Coincidence Theorem is completed. �

To generalize (3.8) we need the Schauder Approximation Theorem.
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(3.9) Theorem (Schauder Approximation Theorem). Let U be an open
subset of a normed space E and let f :X → U be a compact map. Then for every
ε > 0 there exists a finite dimensional subspace En(ε) of E and a compact map
fε:X → U such that:

(a) ‖f(x)− fε(x)‖ < ε, for every x ∈ X,
(b) fε(X) ⊂ En(ε),
(c) the maps fε, f :X → U are homotopic.

Proof. Given ε > 0 (we can assume to be sufficiently small) f(X) is contained
in the union of open balls B(yi, ε) with B(yi, 2ε) ⊂ U , i = 1, . . . , k.

For every i = 1, . . . , k we define λi:X → R+, λi(x) = max{0, ε−‖f(x)−yi‖}
and

µi:X → [0, 1], µi(x) =
λi(x)∑k

j=1 λj(x)
.

Now, we define fε:X → U by putting

fε(x) =
k∑

i=1

µi(x) · yi.

Let En(ε) be a subspace of E spanned by vectors y1, . . . , yn, i.e.

En(ε) = span{y1, . . . , yk}.

Then fε(X) ⊂ conv{y1, . . . , yn} so fε is a compact map. We have:

‖f(x)− fε(x)‖ ≤
k∑

i=1

µi(x)‖f(x)− yi‖ < ε.

Moreover, the map h:X × [0, 1]→ U ,

h(x, t) = tf(x) + (1− t)fε(x)

is a good homotopy joining f and fε and the proof is completed. �

Now, we prove the following:

(3.10) Theorem (Second Coincidence Theorem). Assume that we have
a diagram:

U
p⇐= Y

q−→ U,

in which U is an open subset of a normed space E, p is Vietoris and q compact.
Then q∗p

−1
∗ is a Leray endomorphism and Λ(q∗p−1

∗ ) 6= 0 implies that p and q

have a coincidence.

Proof. Since q:Y → U is compact, in view of the Schauder Approximation
Theorem for every n we get a finite dimensional subspace En ⊂ E and a compact
map qn:Y → U such that:

(3.10.1) ‖q(y)− qn(y)‖ < 1/n,
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(3.10.2) qn(Y ) ⊂ En, and
(3.10.3) q ∼ qn.

We let Un = U ∩ En.
Now, for every n, we consider the following commutative diagram:

Un
in // U

Yn

q′n

OO

jn

//

pn

��

Y

qn

``@@@@@@@@
idY //

p

�#
??

??
??

?

??
??

??
? Y

qn

OO

p

��
Un in

// U

where q′n(y) = qn(y), qn(y) = q(y), pn(y) = p(y), in(x) = x, jn(y) = y for
respective y and x.

Consequently, its image under H is also a commutative diagram:

H(Un)
in∗ // H(U)

H(Un)

q′n∗◦p
−1
n∗

OO

in∗

// H(U)

qn∗◦p
−1
∗

ddIIIIIIIII
qn∗◦p−1

∗

OO

Now, it follows from the First Coincidence Theorem that q′n∗ ◦ p−1
n∗ is a Leray

endomorphism. So, by the commutativity property q1∗p−1
∗ is a Leray endomor-

phism and because qn∗ = q∗ (cf. (3.10.3)) we obtain:

(3.10.4) Λ(q′n∗p
−1
n∗ ) = Λ(qn∗p−1

∗ ) = Λ(q∗p−1
∗ ).

Now, let us assume that Λ(q∗p−1
∗ ) 6= 0. Then, in view of (3.10.4), by the

First Coincidence Theorem we deduce that p(yn) = qn(yn) for every n.
Let xn = p(yn) = qn(yn) for every n. We put q(yn) = xn, n = 1, 2, . . . Since

q is compact, we may assume without loss of generality that limn xn = x ∈ U .
We have ‖xn − xn‖ = ‖qn(yn)− q(yn)‖ < 1/n for every n (cf. (3.10.1)) and

hence limn xn = x. Then x ∈ q(p−1(x)) and consequently there exists y ∈ p−1(x)
such that p(y) = q(y) = x; the proof is completed. �

(3.11) Theorem (Coincidence Theorem for arbitrary ANRs). Consider
a diagram:

X
p⇐= Y

q−→ X,

in which X is a retract of some open set in a normed space ( 2), p is Vietoris
and q is compact. Then q∗ ◦ p−1

∗ is a Leray endomorphism and Λ(q∗ ◦ p−1
∗ ) 6= 0

implies that p and q have a coincidence.

(2) We shall see in next section that such a space X is an ANR-space.
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Proof. By assumptions there exists an open subset U of a normed space E
such that X ⊂ U is a retract of U . Let r:U → X be the retraction map and
i:X → U the inclusion. Of course the following diagram is commutative:

H(U)
r∗ // H(X)

H(U)

i∗q∗p−1
∗ r∗

OO

r∗
// H(X)

i∗q∗p−1
∗

hhPPPPPPPPPPPP
q∗p−1

∗

OO

By applying (3.10) the Second Coincidence Theorem we would like to deduce
that i∗q∗p−1

∗ r∗ is a Leray endomorphism.
Now, by considering the fibre product and pull-back construction we obtain

the following commutative diagram.

U

r

��

X U �X Y

p

`h HHHHHHHHH

HHHHHHHHH
f

oo

r
zzvvvvvvvvv

q≡i◦q◦r

����
��
��
��
��
��
��
��
��
��
��

Y

p

KS

q

��

X

i

��

U

where p(u, y) = u, r(u, y) = y, f(u, y) = r(u) = p(y). Then i∗q∗p−1
∗ r∗ = q∗ ◦ p−1

∗
and moreover there is a coincidence point for p and q if and only if it is for
p and q. Consequently our result follows from the commutativity property of
the Leray endomorphisms and the Second Coincidence Theorem, the proof is
completed. �

There are many consequences of Theorem (3.11). Before we state them we
need a simple observation.

(3.12) Property. Assume we have a diagram

X
p⇐= Y

q−→ X,

in which X is acyclic, p Vietoris and q compact. Then q∗ ◦ p−1
∗ is a Leray

endomorphism and Λ(q∗ ◦ p−1
∗ ) = 1.
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Proof. In fact, from the acyclicity of X we deduce that q∗ ◦ p−1
∗ = idH(X)

but

Hn(X) =
{

0 for n > 0,

Q for n = 0,
so, our claim follows. �

From (3.11) and (3.12) we obtain:

(3.13) Corollary. If we have the diagram:

X
p⇐= Y

q−→ X,

in which X ∈ AR, p is Vietoris and q compact, then there exists a point y ∈ Y
such that p(y) = q(y).

Now, if we let Y = X and p = idX then from (3.11) we deduce the generalized
Lefschetz fixed point theorem, proved by A. Granas in 1967 (see [15]):

(3.14) Corollary. If X ∈ AR and f :X → X is a compact map then
f∗:H(X) → H(X) is a Leray endomorphism and Λ(f∗) 6= 0 implies that f
has a fixed point.

Finally, from (3.14) we deduce the following generalized version of the Schau-
der fixed point theorem:

(3.15) Corollary. If X ∈ AR and f :X → X is a compact map then f has
a fixed point.

We recommend [18] for details concerning multivalued mappings.
A u.s.c. map ϕ:X ( Y is said to be acyclic provided the set ϕ(x) is acyclic

for every point x ∈ X.

(3.16) Lemma. If ϕ:X ( Y is an acyclic map, then the natural projection
pϕ: Γϕ =⇒ X is a Vietoris map, where Γϕ{(x, y) ∈ X × Y | y ∈ ϕ(x)} and
qϕ(x, y) = y.

Using Theorem (1.16) for an acyclic map ϕ:X ( Y , we define the linear
map ϕ∗:H(X)→ H(Y ) by putting

ϕ∗ = (qϕ)∗ ◦ [(pϕ)∗]−1.

ϕ∗ is said to be induced by the multi-valued map ϕ. It is easy to see that if
ϕ = f (i.e. ϕ is a single-valued continuous map), then ϕ∗ = f∗.

Let ϕ:X ( Y be a multi-valued map. A pair (p, q) of single-valued, con-
tinuous maps of the form X

p⇐=Z
q−→Y is called a selected pair of ϕ (written

(p, q) ⊂ ϕ) if the following two conditions are satisfied:

(i) p is a Vietoris map,
(ii) q(p−1(x)) ⊂ ϕ(x) for each x ∈ X.
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(3.17) Remark. We observe that if ϕ is a compact map and (p, q) ⊂ ϕ,
then q is a compact map.

(3.18) Proposition. If ϕ:X ( Y is an acyclic map and (p, q) ⊂ ϕ, then
q∗p

−1
∗ = ϕ∗.

Proof. Let (p, q) be a selected pair of ϕ of the form X
p⇐= Z

q−→ Y . Consider
the commutative diagram

Γϕ

pϕ

z� }}
}}

}}
}

}}
}}

}}
}

qϕ

  
@@

@@
@@

@

X Y

Z

p

\dBBBBBBB

BBBBBBB

f

OO

q

>>||||||||

in which f(z) = (p(z), q(z)) for every z ∈ Z.
The condition q(p−1(x)) ⊂ ϕ(x) implies that (p(z), q(z)) ∈ Γϕ. Applying to

the above diagram the functor H, we obtain q∗p
−1
∗ = (qϕ)∗ ◦ [(pϕ)∗]−1, and the

proof is completed. �

From (3.8) and (3.18) we simply deduce

(3.19) Proposition. If p:Z → X is a Vietoris map from Z onto a metric
space X, then the map ϕp:X ( Z is acyclic and (ϕp)∗ = p−1

∗ , where ϕp(x) =
p−1(x).

(3.20) Definition. A multi-valued map ϕ:X ( Y is called admissible pro-
vided there exists a selected pair (p, q) of ϕ.

We observe that if ϕ has an acyclic selector or, in particular, a continuous
single-valued selector, then ϕ is an admissible map.

(3.21) Definition. An admissible map ϕ:X ( Y is called strongly admis-
sible (s-admissible) provided there exists a selected pair (p, q) of ϕ such that
q(p−1(x)) = ϕ(x) for each x ∈ X.

(3.22) Examples.

(a) Every acyclic map is not only admissible but also s-admissible. For
example, the pair (pϕ, qϕ) is a selected pair of acyclic map ϕ such that
(pϕ, qϕ) = ϕ.

(b) We observe that if ϕ:X ( Y is an s-admissible map, then ϕ(x) is a
compact and connected set for each x ∈ X.

The map ϕ: [0, 1]→ [0, 1] given by

ϕ(t) =
{
t for t 6= 0,

{0, 1} for t = 0,
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is an admissible map but ϕ is not an s-admissible map.

(3.23) Theorem. Let ϕ:X → X1 and ψ:X1 → X2 be two admissible maps.
Then the composition ψ◦ϕ:X → X2 is an admissible map, and for every selected
pair (p1, q) ⊂ ϕ and (p2, q2) ⊂ ψ there exists a selected pair (p, q) of ψ ◦ ϕ such
that

q2∗ ◦ (p2∗)−1 ◦ q1∗ ◦ (p1∗)−1 = q∗ ◦ p−1
∗ .

Proof. Let (p1, q1) ⊂ ϕ and (p2, q2) ⊂ ψ. Consider the commutative diagram

X Z1
p1ks q1 // X1 Z2

p2ks q2 // X2

Z = Z1 ⊗ Z2

p

em SSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSS

f1

ai LLLLLLLLLL

LLLLLLLLLL
g

OO
f2

99rrrrrrrrrr
q

55kkkkkkkkkkkkkkkkk

in which

Z = {(z1, z2) ∈ Z1 × Z2; q1(z1) = p2(z2); p(z1, z2) = p1(z1)},
q(z1, z2) = q2(z2), f1(z1, z2) = z1, f2(z1, z2) = z2, g(z1, z2) = q1(z1),

for each (z1, z2) ∈ Z (comp. (1.17)). Moreover, we have q(p−1(x)) ⊂ ψ(ϕ(x)) for
each x ∈ X. Applying to the above diagram the functor H, we obtain

q2∗(p2∗)−1 ◦ q1∗(p1∗)−1 = q∗p
−1
∗

and the proof of (3.23) is completed. �

(3.24) Theorem. If ϕ:X ( X1 and ψ:X1 ( X2 are two s-admissible
maps, then the composition ψ ◦ϕ:X → X2 is an s-admissible map and for every
(p1, q1) = ϕ and (p2, q2) = ψ there exists a (p, q) = ψ ◦ ϕ such that

q2∗(p2∗)−1 ◦ q1∗(p1∗)−1 = q∗p
−1
∗ .

The proof of (3.24) is analogous to the proof of (3.23). Theorem (3.24)
implies that the composition of two acyclic maps is an s-admissible map.

Let ϕ:X ( Y be an admissible map. Define the set {ϕ}∗ of linear maps
from H(X) to H(Y ) by putting

{ϕ}∗ = {q∗ ◦ p1
∗ | (p, q) ⊂ ϕ};

{ϕ}∗ is said to be an induced set of linear maps by the map ϕ. From (3.18) we
infer that if ϕ is an acyclic map then {ϕ}∗ = {ϕ∗}.

(3.25) Theorem. Let ϕ,ψ:X ( Y be two admissible maps. If ϕ ⊂ ψ, then
{ϕ}∗ ⊂ {ψ}∗.

For the proof of (3.25) we observe that if (p, q) ⊂ ϕ, then (p, q) ⊂ ψ.
From (3.25) and (3.18) we obtain
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(3.26) Corollary. Let ψ:X ( Y be an acyclic map and ϕ:X ( Y an
admissible map. If ϕ ⊂ ψ, then {ϕ}∗ = {ψ}∗.

(3.27) Example. Let Sn denote the unit n-sphere in the Euclidean space
Rn+1. Define the map ϕ:Sn ( Sn by ϕ(x) = Sn for each x ∈ Sn. It is easy
to see that ϕ is an admissible map and hence every continuous (single-valued)
map f :Sn → Sn is a selector of ϕ. Therefore Theorem (3.25) implies that {ϕ}∗
is an infinite set. Moreover, we assert that ϕ is an s-admissible map and in this
case, if the dimension of Sn is even, there exist two selected pairs, (p, q) = ϕ and
(p′, q′) = ϕ, such that q∗p−1

∗ 6= q′∗(p
′
∗)
−1. In order to show this, we define the

maps ψ1, ψ2:Sn ( Sn by

ψ1(x) =
{
y ∈ Sn

∣∣∣∣ ‖x− y‖ ≤ 3
2

}
and ψ2(x) = ψ1(−x), for each x ∈ Sn.

We have
ϕ(x) = ψ1(ψ1(x)) = ψ2(ψ1(x)), for each x ∈ Sn

and (3.24) implies that ϕ is an s-admissible map. Since idSn ⊂ ψ1 and (−idSn) ⊂
ψ2, from (3.26) we infer that ψ1∗ = idH(Sn) and (−idSn)∗ = ψ2∗. Applying
Theorem (3.24) again, we deduce that there exist two selected pairs, (p, q) = ϕ

and (p′, q′) = ψ, such that q∗p−1
∗ = ψ1∗ ◦ ψ1∗ and q′∗(p

′
∗)
−1 = ψ2∗ ◦ ψ1∗. Finally,

this implies that q∗p1
∗ 6= q′∗(p

′
∗)
−1 for ϕ:S2k → S2k.

(3.28) Definition. Two admissible maps ϕ,ψ:X ( Y are called homotopic
(written ϕ ∼ ψ) provided there exists an admissible map χ:X × I → Y , where
I = [0, 1], such that

χ(x, 0) ⊂ ϕ and χ(x, 1) = ψ(x), for each x ∈ X.

(3.29) Theorem. Let ϕ,ψ:X ( Y be two admissible maps. Then ϕ ∼
ψ implies that there exist selected pairs (p, q) ⊂ ϕ and (p, q) ⊂ ψ such that
q∗ ◦ p−1

∗ = q∗ ◦ p−1
∗ .

Proof. Let (p̃, q̃) ⊂ χ. Consider the commutative diagram

X

i0

��

p̃−1(i0(X))
p

oo

j0

��

eq·j0=q

$$I
IIIIIIIII

X × I Z
ep

oo
eq

// Y

X

i1

OO

p̃−1(i1(X))
p

oo

j1

OO

eq·j1=q

::uuuuuuuuuu

in which i0(x) = (x, 0), i1(x) = (x, 1) for each x ∈ X, j0, j1 are inclusions
and p, p are given as the first coordinates of p(z) for every z ∈ p̃−1(i0(X))
and z ∈ p̃−1(i1(X)), respectively. Then p, p are Vietoris maps and we have
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(p, q) ⊂ ϕ, (p, q) ⊂ ψ. We observe that i0∗ = i1∗ is a linear isomorphism. This
and the commutativity of the above diagram imply q∗ ◦ p−1

∗ = q∗ ◦ p1
∗. This

proves Theorem (3.29). �

(3.30) Corollary. Let ϕ,ψ:X ( Y be two admissible maps. Then ϕ ∼ ψ

implies {ϕ}∗ ∩ {ψ}∗ 6= ∅.

(3.31) Corollary. Let ϕ,ψ:X ( Y be two acyclic maps. Then ϕ ∼ ψ

implies ϕ∗ = ψ∗.

(3.32) Example. Let ϕ,ψ1:Sn ( Sn be as in (3.27). Define the map
χ:Sn× I → Sn by χ(x, t) = ψ1(x). Then χ is a homotopy joining ϕ with ψ1 but
{ψ1}∗ = {ψ1∗} is a set consisting of one element; however, {ϕ}∗ is an infinite
set.

An admissible map ϕ:X ( X is called a Lefschetz map provided for each
selected pair (p, q) ⊂ ϕ the linear map q∗p

−1
∗ :H(X) → H(X) is a Leray endo-

morphism.
For every Lefschetz map ϕ:X ( X we may define the Lefschetz set

Λ(ϕ) = {Λ(q∗p−1
∗ ) | (p, q) ⊂ ϕ}.

The following facts are simple consequences of (3.25), (3.30) and (3.31), re-
spectively:

(3.33) Proposition. Let ϕ,ψ:X ( X be two Lefschetz maps. Then ϕ ⊂ ψ
implies Λ(ϕ) ⊂ Λ(ψ).

(3.34) Proposition. Let ϕ,ψ:X ( X be two Lefschetz maps. Then ϕ ∼ ψ
implies Λ(ϕ) ∩ Λ(ψ) 6= ∅.

(3.35) Proposition. Let ϕ,ψ:X ( X be two acyclic maps. If ϕ ⊂ ψ or
ϕ ∼ ψ, then ϕ is a Lefschetz map if and only if ψ is a Lefschetz map and in this
case Λ(ϕ) = Λ(ψ).

(3.36) Example. Let X be a space which is not of finite type. Define the
maps f, ϕ:X → X by ϕ(x) = X, f(x) = x0 for each x ∈ X. Then ϕ is an
admissible map. We have f ⊂ ϕ and idX ⊂ ϕ but f∗ is a Leray endomorphism
and idH(X) is not a Leray endomorphism.

4. ANR-s, AANR-s and w-AANR-s

In this chapter we recall the notions and basic properties which are essen-
tial in the fixed-point theory of multi-valued maps, of ANR-s, AANR-s and
w-AANR-s.

A single-valued continuous map f :X → Y is said te be an r-map if there is
a continuous single-valued map g:Y → X which is a right inverse of f , that is
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such that the composition f ◦ g:Y → Y is the identity map idY . If there exists
an r-map f :X → Y , then the space Y is called an r-image of the space X.

The maps called retractions are a special kind of r-maps. Suppose that Y is
a subset of X. Then map f :X → Y is said to be a retraction if the inclusion
i:Y → X is a right inverse of f , i.e. f(x) = x for all points x ∈ X. A subset X0

of a space X is said to be a retract of X if there is a retraction of X onto X0. A
closed subset X0 of a space X is said to be a neighbourhood retract in the space
X provided X0 is the retract of an open subset of X which contains X0.

We denote by ANR the class of metrizable absolute neighbourhood retracts.
A metrizable space X belongs to ANR provided, for each homeomorphism h

mapping X onto a closed subset h(X) of a metrizable space Y , the set h(X) is
a neighbourhood retract in Y .

In what follows we shall make use of the following facts from general topology:

(4.1) Theorem (Kuratowski Theorem). Every metrizable space is embed-
dable isometrically into a Banach space; in particular, any topologically complete
metrizable space can be embedded as a closed subset of a Banach space.

(4.2) Theorem (Arens–Eells Theorem). Every metrizable space can be em-
bedded as a closed subset of a normed space.

We prove the following

(4.3) Theorem. In order that X ∈ ANR it is necessary and sufficient that
X be an r-image of an open subset of a normed space.

Proof. Let X ∈ ANR. By Theorem (4.2) there exists an embedding h:X →
E of X into a normed space E such that h(X) is closed in E. Then there is a
retraction r:U → h(X) of an open subset U of E which contains h(X). Then
h−1 ◦ r:U → X is clearly an r-map. Now suppose that X is an r-image of a get
U which is open in a normed space E. Let f :U → X be an r-map and g:X → U

a right inverse for f . Consider a homeomorphism h mapping X onto a closed
subset of a metric space Y . Then g1 = g ◦ h−1 maps h(X) into U ⊂ E and
so, by the generalized theorem of Tietze, there is a continuous extension g̃ of g1
mapping Y into E. Let U ′ be the counter-image of U under g̃1. Then U ′ is a
neighbourhood of h(X) in Y . Setting r(y) = h ◦ f ◦ g̃1(y) for y ∈ Y , we obtain
a retraction map r and the proof is completed. �

By applying (4.1), instead of (4.2), we obtain analogously

(4.4) Theorem. A metrizable space is a topologically complete ANR if and
only if it is an r-image of an open set in a Banach space.

From (4.3) clearly follows

(4.5) Corollary. Every open subset of an ANR is ANR.

Similarly (4.4) implies
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(4.6) Corollary. Every open subset of a topologically complete ANR is a
topologically complete ANR.

The following facts are well known:

(4.7) Properties.

(a) Every (finite) polyhedron is a compact ANR.
(b) Every compact ANR is a space of finite type.
(c) Every convex subset of a normed space is an ANR.
(d) Suppose that the metrizable space X is the union of two closed subsets

X1 and X2 and that X0 = X1 ∩X2. If X0, X1, X2 ∈ ANR, then X ∈
ANR.

Now, we prove the following geometrical fact:

(4.8) Lemma. If U is open in a Banach space E and X ⊂ U is compact,
then there exists a compact C ∈ ANR such that X ⊂ C ⊂ U .

Proof. Cover X by a finite number of closed balls W1, . . . ,Wn ⊂ U and
denote by Ci the convex closure of the compact set X ∩Wi for each i = 1, . . . , n.
By the Mazur Lemma, every Ci is compact. From the inclusions Ci ⊂ Wi ⊂ U

we conclude that X is contained in the compact set C =
⋃n

i=1 Ci ⊂ U .
Now, we show by induction on n that the union of n compact, convex sets

is an ANR. The statement is true if n = 1 (comp. (4.7)(c)). Assume that the
result is true for any integer less than n. By hypothesis Y =

⋃n−1
i=1 Ci and Cn

are ANR-s. Further,

Y ∩ Cn =
( n−1⋃

i=1

Ci

)
∩ Cn =

n−1⋃
i=1

(Ci ∩ Cn),

which by the induction hypothesis is an ANR. Thus C = Y ∪ Cn is the union
of two ANR-s whose intersection is an ANR and (4.7)(d) implies that C is an
ANR. This completes the induction and shows (4.8). �

The class of AANR-s was first studied by H. Noguchi.

(4.9) Definition. Let (X,A) be a pair of metric spaces and let ε be a
positive real number. A continuous (single-valued) map rε:X → A is called an
ε-retraction provided d(rε(a), a) < ε for all a ∈ A.

A subspace A of a metric space X is said to be an approximative retract of
X provided for each ε > 0 there exists an ε-retraction rε:X → A.

(4.10) Definition. A metrizable space X is said to be an approximative
ANR (AANR) provided for each homeomorphism h mapping X onto a closed
subset h(X) of a metric space Y , the set h(X) is an approximative retract of
some open set U in Y .
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Although not necessarily locally connected, the AANR-s enjoy many familiar
properties of ANR spaces. In particular:

(4.11) Property. Every compact AANR X is of finite type.

(4.12) Definition. An AANR X is said to be admissible provided there
exist a homeomorphism h mapping X onto a closed subset h(X) of a normed
space E and an open neighbourhood U of h(X) in E such that the following two
conditions are satisfied:

(a) h(X) is an approximative retract of U ,
(b) the inclusion i:h(X) → U induces a monomorphism i∗:H(h(X)) →

H(U).

(4.13) Proposition. Every ANR in an admissible AANR.

Proof. Let X ∈ ANR. Using the Arens–Eells embedding theorem, we obtain
a homeomorphism h mapping X into a normed, space E such that

(a) h(X) is closed of E,
(b) there exists a retraction r:U → h(X), where U is an open neighbour-

hood of h(X) in E.

Then the inclusion i:h(X)→ U is the right inverse of r and we have ri = idh(X).
Hence we infer that r∗i∗ = idH(h(X)) and this implies that i∗ is a monomor-
phism. �

(4.14) Proposition. Every compact AANR is an admissible AANR.

Proof. Using the Arens–Eells embedding theorem (or the Kuratowski embed-
ding theorem), we may assume without loss of generality that X is an approxi-
mative retract of some open neighbourhood U of X in a normed space E. Since
X is of finite type, from Theorem (1.12) we deduce that there exists an ε0 > 0
such that for every two maps f, g:X → X, the condition ‖f(x) − g(x)‖ < ε0
implies f∗ = g∗.

Choose an ε > 0 such that ε < ε0 and consider the two maps id, rε◦i:X → X,
where r:U → X is an ε-retraction and i:X → U is an inclusion map. By
Theorem (1.12) we infer that idH(X) = (rε)∗·i∗, and this implies that i∗:H(X)→
H(U) is a monomorphism. �

(4.15) Proposition. Every acyclic AANR is an admissible AANR.

For the proof of (4.15) observe that if X is an acyclic space and X ⊂ Y , then
the inclusion i:X → Y induces a monomorphism i∗:H(X)→ H(Y ).

The following lemma is of importance:

(4.16) Lemma. Let X be an AANR. Assume that X is an approximative
retract of an open subset U in a normed space E and i:X → U induces a
monomorphism i∗:H(X)→ H(U). Then for every compact subset K ⊂ X there
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exists a positive real number ε(K) such that for every ε < ε(K) and for every
ε-retraction rε:U → X we have

(rε)∗i∗j∗ = j∗ where j:K → X is the inclusion map.

Proof. Let ε(K) > 0 be a number smaller than the distance dist(K, ∂U) from
the compact set K to the boundary ∂U of U in E. From the definition of ε(K)
we infer that for each x ∈ X and ε < ε(K) the interval t · irεij(x)+(1− t) · ij(x),
where 0 ≤ t ≤ 1, is entirely contained in U . This implies that irεij and ij are
homotopic for every ε < ε(K). Since i∗ is a monomorphism, we get (rε)∗i∗j∗ = j∗
for each ε < ε(K) and the proof is completed. �

A closed subspace X of a metric space Y is called a weak approximative
neighbourhood retract in Y provided for every ε > 0 there exist an open neigh-
bourhood Uε of X in Y and an ε-retraction rε:Uε → X.

(4.17) Definition. A metrizable space X is said to be weakly AANR (w-
AANR) provided for each emedding h:X → Y , Y being a metric space and
h(X) being closed in Y , the space h(X) is a weak approximative neighbourhood
retract in Y .

It is easy to see that there exists a compact w-AANR which is not of finite
type.

We prove the following simple geometrical fact:

(4.18) Lemma. Let X be a weak approximative neighbourhood retract in
a normed space E and let K be a compact subset of X. Then for each open
neighbourhood W of K in X there exists a positive real number ∂(W ) such that
K ⊂ r−1

ε (W ) for each 0 < ε < ∂(W ), where rε denotes any ε-retraction related
to X.

Proof. Let W be an open neighbourhood of K in X and let ∂(W ) denote the
boundary of W in X. Then K ∩∂(W ) = ∅. We define f(x) = infy∈∂(W ) ‖x− y‖.
Since ∂(W ) as a closed subset of X is closed in E, then K ∩ ∂(W ) = ∅ implies
f(x) > 0 for every x ∈ K and thus f :K → (0,∞). Since K is compact, we
deduce that ∂(W ) = infx∈K{f(x)} is a positive real number. Then for every
0 < ε < ∂(W ) we have K ⊂ r−1

ε (W ) and the proof is completed. �

5. Fixed-Point Theorem for compact admissible maps

We shall now propose the application of the Čech homology with compact
carriers and the theory of Lefschetz number by establishing a general fixed-point
theorem for admissible maps, which contains the classical Lefschetz Fixed-Point
Theorem (for single-valued maps) and the well-known Eilenberg–Montgomery
Fixed-Point Theorem for acyclic maps. The principal results of this chapter are
Theorems (5.1) and (5.9).

Now, we shall state the principal result of this paper.
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(5.1) Theorem. Let X be an admissible AANR and let ϕ:X ( X be an
admissible compact map. Then:

(a) ϕ is a Lefschetz map, and
(b) Λ(ϕ) 6= {0}

implies that ϕ has a fixed point.

Proof. Since X is an admissible AANR, we may assume that there exists
an open subset of a normed space E such that the following two conditions are
satisfied:

(i) X is an approximative retract of U ,
(ii) the inclusion i:X → U induces a monomorphism i∗:H(X)→ H(U).

Let rn:U → X be a (1/n)-retraction. We have

(iii) ‖rn(x)− x‖ < 1/n for each x ∈ X and for every n.

Let p, q:Y → X be a pair of maps such that (p, q) ⊂ ϕ. Consider for each n
an admissible compact map ψn:U → U given by ψn = i∗q∗ϕ∗prn. Using (3.23)
and (3.18), we choose a selected pair (pn, qn) ⊂ ψn such that

(iv) qn∗p−1
n∗ = i∗q∗p

−1
∗ rn∗, for each n.

Since q is a compact map, we infer that the set A = q(Y ) is compact. Con-
sider for each n the diagram

H(U)
rn∗ // H(X)

H(U)

i∗q∗p−1
∗ rn∗

OO

rn∗
// H(X)

i∗j∗q′∗p−1
∗

ggOOOOOOOOOOOO
q∗p−1

∗

OO

where q′:Y → A is given by q′(y) = q(y) for each y ∈ Y and j:A → X is an
inclusion. From Lemma (4.16) we obtain rn∗i∗j∗ = j∗ for all n > n0. Since
j∗q

′
∗ = (j ◦ q′)∗ = q∗, we deduce that the above diagram commutes for each

n > n0. Consequently, from (2.9), (iv) and coincidence theorem we conclude
that q∗p−1

∗ is a Leray endomorphism. Thus the assertion (a) is proved.
To prove (b) assume that Λ(ϕ) 6= {0}. Then there exists a selected pair

(p, q) ⊂ ϕ such that Λ(q∗p−1
∗ ) 6= 0. Let (pn, qn) ⊂ ψn where pn, qn and ψn are

obtained as in first part of the proof. Then, from (2.9) and (iv) we have

Λ(qn∗p−1
n∗ ) = Λ(i∗q∗p−1

∗ rn∗) = Λ(q∗p−1
∗ ) 6= 0, for each n > n0.

This, in view of coincidence theorem, implies that ψn has a fixed point for each
n > n0. We find a sequence {xn} in the compact set A such that:

(v) xn ∈ ψn(xn) for each n > n0.

Let {xnk
} be a subsequence of {xn} such that

(vi) limk xnk
= x.
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Then from (iii) we obtain

(vii) limk rnk
(xnk

) = x.

Conditions (v)–(vii) give

(viii) {rnk
(xnk

)} → x, xnk
∈ qϕprnk

(xnk
) and {xnk

} → x.

Finally, the u.s.c. of ψ = q ◦ ϕp (3.8), in view of (viii) and (3.1), implies x ∈
ψ(x) = q ◦ ϕp(x) = qp−1 ⊂ ϕ(x) and the proof of Theorem (5.1) is completed.�

We now draw a few immediate consequences of Theorem (5.1).

(5.2) Corollary. Let X be an ANR or a compact AANR and let ϕ:X ( X

be an admissible compact map. Then

(a) ϕ is a Lefschetz map, and
(b) Λ(ϕ) 6= {0}

implies that ϕ has a fixed point.

Observe that for X ∈ ANR the above Corollary immediately follows from
Coincidence Theorem.

For acyclic maps we obtain the following

(5.3) Corollary. Let X be an admissible AANR or, in particular, either of
the following:

(a) an ANR,
(b) a compact AANR.

If ϕ:X ( X is a compact acyclic map, then

(i) ϕ is a Lefschetz map, and
(ii) Λ(ϕ) 6= 0

implies that ϕ has a fixed point.

From (5.3) and (3.35) we deduce

(5.4) Corollary. Let X be an admissible AANR and let ϕ,ψ:X ( X be
two compact acyclic maps which satisfy one of the following conditions:

(a) ϕ is a selector of ψ,
(b) ϕ is homotopic to ψ.

Then both ϕ and ψ are Lefschetz maps, Λ(ϕ) = Λ(ψ), and Λ(ψ) 6= 0 implies that
ϕ has a fixed point.

(5.5) Corollary. Let X he an admissible AANR and ϕ:X ( X an admis-
sible compact map. Assume further that ϕ(X) is contained in an acyclic subset
X0 of X. Then Λ(ϕ) = {1} and ϕ has a fixed point.
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Proof. Let p, q:Y → X be a pair of maps such that (p, q) ⊂ ϕ. Write the
diagram

X0
i // X

p−1(X0)

q

OO

j
//

p

��

Y

q1

ccGGGGGGGGG

p

��
>>

>>
>>

>>
id // Y

q

OO

p

��

X0 i
// X

in which p, q, q1 are contractions of p and q, respectively and i, j are inclusions.
Then its image under H also commutes. Since Λ(q∗p−1

∗ ) = 1 from (2.9), we have
Λ(q∗p−1

∗ ) = 1 for every (p, q) ⊂ ϕ, and from Theorem (5.1) we obtain (5.5). �

A spaceX has the fixed-point property within the class of admissible compact
maps provided any admissible compact map ϕ:X → X has a fixed, point.

(5.6) Corollary. Let X be an acyclic AANR or, in particular, either of the
following:

(a) an acyclic ANR,
(b) a contractible open set in a normed space.

Then X has the fixed-point property within the class of admissible compact maps.

This simply follows from (5.5) and (4.15). Similarly, from (5.5) and (4.7)(c),
we have

(5.7) Corollary (The Schauder Fixed-Point Theorem). Let X be a convex
subset of a normed space. Then X has the fixed-point property within the class
of admissible compact maps.

Finally, we prove the following proposition, well-known for single-valued
maps:

(5.8) Proposition. Assume that a space X has the fixed-point property
within the class of admissible, compact maps. Then every retract of X has the
fixed-point property within the class of admissible compact maps.

Proof. Assume that X has the fixed-point property within the class of ad-
missible compact maps. Let A ⊂ X be a retract of X and let r:X → A be
the corresponding retraction. Let ϕ:A → A be an admissible compact map.
Define the map ψ:X → X by putting ψ = iϕr, where i:A→ X is the inclusion
map. From (3.23) we deduce that ϕ is an admissible compact map. By assump-
tion, there exists a point x such that x ∈ ϕ(x), but ψ(X) ⊂ A, and therefore
x ∈ A. Since r is a retraction map, we have r(x) = x and hence x ∈ ϕ(x). This
completes the proof. �

Now, we prove the following
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(5.9) Theorem. Let X be a compact w-AANR of finite type and let ϕ:X →
X be an admissible map. Then Λ(ϕ) 6= {0} implies that ϕ has a fixed point.

Proof. We may assume without loss of generality that X is a weak approx-
imative neighbourhood retract in a Banach space E. For each n = 1, 2, . . . let
rn:Un → X be a (1/n)-retraction from an open neighbourhood of X in E to X.
We have

(5.9.1) ‖x− rn(x)‖ < 1/n, for all x ∈ X.

For each n let in:X → Un be the inclusion map. By assumption we infer that
there exists a selected pair (p, q) ⊂ ϕ such that Λ(q∗p−1

∗ ) 6= 0. Let ψ:X → X be
a map given by ψ = q · ϕ. Then ψ is an admissible map and hence (p, q) = ψ.
Define for each n a map ψn:Un → Un by putting

ψn = inψrn.

From (3.23) and (3.18) we deduce that for each n there exists a selected pair
(pn, qN ) ⊂ ψn such that

(5.9.2) qn∗p
−1
n∗ = in∗q∗p

−1
∗ rn∗.

Consider for each n the diagram

H(X)
in∗ // H(Un)

H(X)

q∗p−1
∗

OO

in∗

// H(Un)
q∗p−1

∗ rn∗

ggPPPPPPPPPPPP
in∗q∗p−1

∗ rn∗

OO

Since X is a compact space of finite type, we deduce from Theorem (1.12) that

rn∗in∗ = idH(X), for all n > n0.

This implies that for each n > n0 the above diagram commutes and hence (5.9.2)
and (2.9) gives

λ(q∗p−1
∗ = Λ(qn∗p−1

n∗ ) 6= 0, for all n > n0.

Thus coincidence theorem implies that ψn has a fixed point for each n > n0.
Using the procedure followed in the proof of (5.1), we obtain a fixed point of ϕ,
and the proof is completed. �

(5.10) Corollary. If X is an acyclic compact w-AANR, then X has the
fixed-point property within the class of admissible maps.

In particular, for acyclic maps Theorem (5.9) and (3.35) give
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(5.11) Corollary. Let X be a compact w-AANR and let ϕ,ψ:X ( X be
two acyclic maps which satisfy one of the following conditions:

(a) ϕ is a selector of ψ,
(b) ϕ is homotopic to ψ.

Then λ(ϕ) = λ(ψ) and λ(ψ) 6= 0 implies that ϕ has a fixed point.

Let A be a non-empty subset of a space X and let i:A→ X be the inclusion
map; call A a homologically trivial subset of X provided

(i) dim Im i∗0 = 1, and
(ii) i∗k = 0 for all k ≥ 1.

We note the following evident facts:

(5.12) Lemma.

(a) If A ⊂ X ⊂ Y and A is a homologically trivial subset of X, then A is a
homologically trivial subset of Y .

(b) If A0 ⊂ A ⊂ X and A is a homologically trivial subset of X, then A0 is
a homologically trivial subset of X.

(c) If A ⊂ X and A or X is an acyclic space, then A is a homologically
trivial subset of X.

(5.13) Theorem. Let X be a metric space and assume that the Lefschetz
Fixed-Point Theorem for X, within the class of admissible compact maps, holds.
If ϕ:X ( X is an admissible compact map and for some m ≥ 1 the set ϕm(X)
is a homologically trivial subset of X, then

(a) Λ(ϕ) = {1}, and
(b) ϕ has a fixed point.

Proof. Assume that ϕm(X), m ≥ 1, is a homologically trivial subset of X.
Let ϕm(X) = X0 and let i:X0 → X denote the inclusion map. First we observe
that ϕm:X → X, as the composition of admissible maps, is also admissible. Let
ϕ̃m:X → X0 be the contraction map of ϕm to the pair (X,X0). It is easy to see
that ϕ̃m is an admissible map. We have ϕm = i ◦ ϕ̃m. Let (p, q) be a selected
pair of ϕ. Then, in view of (3.23), there exists a selected pair p′, q′:Y → X of
ϕm such that

(5.13.1) q′∗p
′−1
∗ = q∗p

−1
∗ . . . q∗p

−1
∗︸ ︷︷ ︸

mth

.

Observe that the pair (p′, q) ⊂ ϕ̃m, where q:Y → X0 is the contraction map of
q′ to the pair (Y,X0), is a selected pair of ϕ̃m. We assert that

(5.13.2) q′∗p
′−1
∗ = i∗q

′
∗p
′−1
∗ .
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In this order, consider the following commutative diagram:

Y
p′

~~~~
~~

~~
~

q′
// X

X

Y

p′

__@@@@@@@@

id

OO

q
// X0

i

OO

Applying to the above diagram the functor H, we obtain (5.13.2). For n ≥ 1,
i∗n = 0 and hence we have

i∗nq∗n(p′∗n)−1 = q′∗n(p′∗n)−1 = q∗np
−1
∗n . . . q∗np

−1
∗n .

Since q∗np−1
∗n is nilpotent for n ≥ 1, it follows that

Tr(q∗np−1
∗n ) = 0, for n ≥ 1.

For n = 1, it follows that since the rank of i∗n is 1, the rank of q∗0p−1
∗0 must be

1. Hence
Λ(q∗p−1

∗ ) = tr(q∗0p−1
∗0 ) = 1

and the proof of (a) is completed; (b) simply follows from (a). �

(5.14) Theorem. Let X be a topologically complete ANR and ϕ:X ( X

an admissible compact map. Let K be a compact subset of X which is invariant
under ϕ. Suppose also that C∞ =

⋂
m≥1 ϕ

m(X) is contained in K and that each
compact subset of C∞ is a homologically trivial subset of K. Then ϕ has a fixed
point.

Let X be a compact space, A a closed subset of X and i:A→ X the inclusion
map. Then from Theorem (1.1) we obtain

(5.15) Lemma. A is a homologically trivial subset of X if and only if A is
a cohomologically trivial subset of X, i.e., dim Im i∗0 = 1 and i∗n = 0 for each
n ≥ 1.

(5.16) Lemma. Let X be a compact space of finite type and let {An}n≥1

be a sequence of closed, non-empty subsets of X such that An+1 ⊂ An for each
n ≥ 1. Assume further that the set A =

⋂
n≥1An, is a cohomologically trivial

subset of X. Then there exists a number n ≥ 1 such that An is a cohomologically
trivial subset of X.

Proof. By the continuity of the Čech cohomology we have

Hm(A) = lim
−→
{Hm(An)}.
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By assumption, each reduced, cohomology class of Hm(X) is annihilated by
the maps induced by the respective inclusions. Hence, there exists for each
such class v an integer n(v) such that v is annihilated by the map i∗mn(v), where
in(v):An(v) → X denote the inclusion map. Since X is of finite type, we infer
that H∗(X) has a finite basis. Thus there must exist an integer n = n(v) for all
reduced cohomology classes v in such a finite basis. For this n, however, An is a
cohomologically trivial subset of X and the proof of (5.16) is completed. �

Proof of Theorem (5.14). By (4.1) we may assume without loss of generality
that X is a retract of an open subset U in a Banach space E. Let r:U → X

be a retraction and i:X → U the inclusion map. Define an admissible map (see
(3.23)) ψ1:U → U by putting ψ1 = i◦ϕ◦r. Then K is an invariant subset under
ψ1 and moreover, ⋂

m≥1

ψm
1 (U) =

⋂
m≥1

ϕm(X).

Let (p, q) be a selected pair of ϕ1. Define a map ψ:U → U by putting
ψ = q ◦ ϕ. Then ψ is a u.s.c., compact, admissible map (comp. (3.8)). We have⋂

m≥1

ψm(U) ⊂
⋂

m≥1

ψm
1 (U).

It is easy to see that K is an invariant subset under ψ. Since ψ is a compact map,
we infer that the set A = K∪(ψ(U)) is a compact subset of U . Applying Lemma
(4.8) to the pair (U,A), we obtain a compact ANR C such that A ⊂ C ⊂ U .
Then the contraction ψ̃ of ψ to the pair (C,C) is an admissible map. From
(3.4) we infer that C ′∞ =

⋂
m≥1 ψ̃

m(C) is a compact and non-empty subset
of C. Since C ′∞ ⊂ K, from the assumption and (5.12) we conclude that C ′∞
is a homologically trivial subset of C. Hence we infer from (5.15) that C ′∞
is a cohomologically trivial subset of C. Applying Lemma (5.16) to the pair
(C,C ′∞), we infer that there exists an integer m ≥ 1 such that ψ̃m(C) is a
cohomologically trivial subset of C. Then, in view of (5.15), we deduce that
ψ̃m(C) is a homologically trivial subset of C for some m ≥ 1. Hence Theorem
(5.13) implies that ψ̃ has a fixed point and therefore ϕ has a fixed point. The
proof of Theorem (5.14) is completed. �

(5.17) Corollary. Let X be a compact ANR and let ϕ:X → X be an
admissible map. If the set C∞ =

⋂
m≥1 ϕ

m(X) is a homologically trivial subset
of X, then ϕ has a fixed point.

In what follows, all spaces will be assumed, to be compact Hausdorff.
For a space X we denote by Cov(X) the directed set of all finite open cov-

erings of X. Let ϕ:X → X be a multivalued map and α ∈ Cov(X). A point
x ∈ X is said to be an α-fixed point for ϕ provided there exists a member U ∈ α
such that

(i) x ∈ U and
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(ii) ϕ(x) ∩ U 6= ∅.
Clearly, if α, β ∈ Cov(X) and α refines β, then every α-fixed point for ϕ is also
a β-fixed point for ϕ.

(5.18) Lemma. Let ϕ:X → X be a u.s.c. map. Assume that there exists a
cofinal family of coverings D = {α} ⊂ Cov(X) such thai ϕ has an α-fixed point
for every α ∈ D. Then ϕ has a fixed point.

Proof. Suppose that ϕ has no fixed points. Then for each x ∈ X there
are open neighbourhoods Vx and Uϕ(x) of x and ϕ(x), respectively, such that
Vx ∩ Uϕ(x) = ∅. From the u.s.c. of ϕ, we deduce that the set V = ϕ−1(Uϕ(x)) is
an open neighbourhood of x in X. Let Wx = Vx ∩ V ; then we have

(i) ϕ(Wx) ⊂ Uϕ(x) and
(ii) Wx ∩ Uϕ(x) = ∅.

Since X is a compact space, we infer that there exists a finite number of sets
Wx1 , . . . ,Wxn

i ”c such that X =
⋃n

i=1Wxi
. Putting β = {Wx1 , . . . ,Wxn

}, we
get a covering of X such that ϕ has no β-fixed point. If α is a member of D that
refines β, then ϕ has no α-fixed point, and thus we obtain a contradiction. �

Let {Xi}i∈I be a family of compact spaces indexed by an infinite set I and
let X =

∏
i∈I Xi be their topological product. Denote by P = {J} the family of

all finite subsets of I; given J ∈ P, we put XJ =
∏

i∈J Xi.

(5.19) Theorem. The infinite product X =
∏

i∈I Xi of compact spaces has
the fixed-point property within the class of admissible maps if and only if every
finite product XJ =

∏
i∈J Xi (J ∈ P) has the fixed-point property within the

class of admissible maps.

Proof. Choose in each Xi a point x0
i and define X̃J ⊂ X as follows:

{xi} ∈ X̃J ⇔
{
xi ∈ Xi for i ∈ J ,

xi = x0
i for i /∈ J .

Clearly we may identify X̃J with XJ . Next we define a subset D = {α} ⊂
Cov(X) as follows: α ∈ D provided α is a finite covering consisting of open sets
of the form UJ =

∏
i∈J Ui with Ui open in Xi and Ui = Xi for all i /∈ J . By

the Theorem of Tychonoff and taking into account the definition of the product
topology, we conclude that D is cofinal in Cov(X). Let α ∈ D; it follows from
the definition of the set D that α determines a finite set of essential indices J(α).
Take ra:X → X̃J(α) to be the projection and sα: X̃J(α) → X the inclusion.

Assume that every finite product XJ =
∏

i∈J Xi has the fixed-point property
within the class of admissible maps. Let ϕ:X → X be an admissible map. We
prove that ϕ has a fixed point. Let p, q:Y → X be a selected pair of ϕ. Consider
the map ψ:X → X given by ψ = q ◦ ϕp. Then from (3.6), (3.3) and (3.23) we
deduce that ψ is a u.s.c., admissible map. For each α ∈ D, consider the map
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ψα: X̃J(α) → X̃J(α) given by ψα = rαψsα. Then (3.3) and (3.23) imply that ψ
is a u.s.c., admissible map far each α ∈ D. By assumption, there exists a point
xα ∈ X̃J(α) such that

(5.19.1) xα ∈ ψα(xα) = raψsα(xα) = rαψ(xα), for each α ∈ D.

Let U be a member of α such that xα ∈ U . Then from (5.19.1) we deduce that
ψ(xα) ∩ U 6= ∅. This implies that xα is an α-fixed point of ψ, and hence from
(5.18) we infer that ψ has a fixed point. Finally, since ψ(x) ⊂ ϕ(x) for each
x ∈ X, we conclude that ϕ has a fixed point.

Conversely, assume that X has the fixed-point property within the class of
admissible maps and that there exists a finite set J ∈ P such XJ has no fixed-
point property within the class of admissible maps. We may assume without loss
of generality that there is an admissible ψ: X̃J → X̃J such that x /∈ ψ(x), for each
x ∈ X̃J . Let rJ :X → X̃J be projection and sJ : X̃J → X the inclusion. Then we
have the admissible map ϕ:X → X given by ϕ = sJψrJ . By assumption there
exists a point x ∈ X such that

x ∈ ϕ(x) = sJψrJ(x).

This implies that rJ(x) ∈ rJsJψ(rJ(x)) and thus we obtain a contradiction. The
proof of (5.19) is completed. �

From (5.6) and (5.19) we obtain

(5.20) Corollary. An arbitrary Tychonoff cube has the fixed-point property
within fhe class of admissible maps.

Corollary (5.20) and Proposition (5.8) give

(5.21) Corollary. Every retract of a Tychonoff cube has the fixed-point
property within tne class of admissible maps.

6. The Lefschetz fixed point theorem
for non-compact admissible mappings

The aim of this section is to extend the Lefschetz fixed point theorem onto
a class of non-compact mappings: the class of compact absorbing contractions.
We define:

(6.1) Definition. A multivalued map ϕ:X ( X is called a compact absorb-
ing contraction, if there exists an open set U ∈ X such that clϕ(U) is a compact
subset of U and X ⊂

⋃∞
i=0 ϕ

−i(U).

Evidently, any compact map ϕ:X ( X is a compact absorbing contraction;
then we can take U = X.

In what follows we will use the following notion: ϕ ∈ CAC(X) if and only if
ϕ:X ( X is admissible and a compact absorbing contraction.
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(6.2) Proposition. If ϕ ∈ CAC(X) then for every selected pair (p, q) ⊂ ϕ

the homomorphism:
q̃∗ ◦ p̃−1

∗ :H(X,U)→ H(X,U)
is weakly nilpotent, where for p, q: Γ → X we define p̃, q̃: (Γ, p−1(U)) → (X,U),
p̃(u) = p(u) and q̃(u) = q(u) for every u ∈ Γ.

Proof. For any compact K ⊂ X one can find n such that (qp−1)n(K) ⊂ U .
Since we consider the Čech homology functor with compact carriers then our
claim holds true. �

Now, we shall prove the following:

(6.3) Theorem. Let X ∈ ANR and ϕ ∈ CAC(X). Then ϕ is a Lefschetz
map and Λ(ϕ) 6= {0} implies that Fix(ϕ) 6= ∅.

Proof. Let ϕ:X ( X be an admissible compact absorbing contraction map.
Since ϕ(U) ⊂ clϕ(U) ⊂ U , consider ϕ′:U ( U , ϕ′(x) = ϕ(x). Let (p, q) ⊂ ϕ be
a selected pair of ϕ. Then q(p−1(U)) ⊂ ϕ(U). Let p, q:Y → X. Then we define
q′, p′: p−1(U)→ U , p′(u) = p(u), q′(u) = q(u). Observe that (p′, q′) ⊂ ϕ′. Since
ϕ′ is compact, in view of (5.1), q′∗(p

′
∗)
−1 is a Leray endomorphism. Consider the

maps p′′, q′′: (Y, p−1(U)) → (X,U); p′′ is a Vietoris map and, in view of (6.2)
q′′∗ ◦ (p′′∗)

−1 is weakly nilpotent. Consequently, from (2.9), (2.10) and (5.8) we
deduce that Λ(q∗p−1

∗ ) = Λ(q′∗(p
′
∗)
−1). So, ϕ is a Lefschetz map.

Now, if we assume that Λ(q∗p−1
∗ ) 6= 0 for some (p, q) ⊂ ϕ, then Λ(q′∗(p

′
∗)
−1) 6=

0 and by using once again (5.8) we get Fix(ϕ′) 6= ∅ but it implies that Fix(ϕ) 6= ∅
and the proof is completed. �

Now, we would like to show how large the class CAC(X) is.

(6.4) Definition. An u.s.c. multivalued map ϕ:X ( Y is called locally
compact provided that, for each x ∈ X, there exists a subset V of X such that
x ∈ V , and the restriction ϕ|V is compact.

(6.5) Definition. A multivalued locally compact map ϕ:X ( X is called
eventually compact if there exists an iterate ϕn:X ( X of ϕ such that ϕn is
compact.

(6.6) Definition. A multivalued locally compact map ϕ:X ( X is called
a compact attraction if there exists a compact K of X such that for each open
neighbourhood V of K we have X ⊂

⋃∞
i=0 ϕ

−i(V ) and ϕn(x) ⊂ V implies that
ϕm(x) ⊂ V for every m ≥ n and every x ∈ X, the compact K is then called an
attractor for ϕ.

(6.7) Definition. A multivalued locally compact map ϕ:X ( X is called
asymptotically compact if the set Cϕ =

⋂∞
n=0 ϕ

n(X) is a nonempty, relatively
compact subset of X. The set Cϕ is called the center of ϕ.

Note that any multivalued eventually compact map is a compact attraction
and asymptotically compact map.
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(6.8) Lemma. Any eventually compact map is a compact absorbing con-
traction map.

Proof. Let ϕ:X ( X be an eventually compact map such that K ′ = ϕn(X)
is compact. Define K =

⋃n−1
i=0 ϕ

i(K ′), we have

ϕ(K) ⊂
n⋃

i=1

ϕi(K ′) ⊂ K ∪ ϕn(X) ⊂ K ∪K ′ ⊂ K.

Since ϕ is locally compact, there exists an open neighbourhood V0 of K such
that L = ϕ(V0) is compact, where ϕ(V0) = clϕ(V0).

There exists a sequence {V1, . . . , Vn} of open subsets of X such that L ∩
ϕ(Vi) ⊂ Vi−1 and K∪ϕn−i(L) ⊂ Vi for all i = 1, . . . , n. In fact, if K∪ϕn−i(L) ⊂
V , and 0 ≤ i < n, since K ∪ ϕn−i(L) and CVi ∩ L are disjoint compact sets of
X, there exists an open subset W of X such that

K ∪ ϕn−i(L) ⊂W ⊂W ⊂ Vi ∪ CL.

Define Vi+1 = ϕ−1(W ); since ϕ(K) ∪ ϕ(ϕn−(i+1)(L)) ⊂ K ∪ ϕn−i(L) ⊂ W , we
have K∪ϕn−(i+1)(L) ⊂ Vi+1, and ϕ(Vi+1) ⊂W ⊂ Vi∪CL implies L∩ϕ(Vi+1) ⊂
Vi. Beginning with K ∪ ϕn(L) ⊂ K ⊂ V0, we define, by induction V1, . . . , Vn

with the desired properties.
Putting U = V0 ∩ V1 ∩ . . . ∩ Vn, we have K ′ ⊂ K ⊂ U and

ϕ(U) ⊂ ϕ(V0) ∩ ϕ(V1) ∩ . . . ∩ ϕ(Vn) ⊂ L ∩ ϕ(V1) ∩ . . . ∩ ϕ(Vn),

hence

ϕ(U) ⊂ (L ∩ ϕ(V1)) ∩ . . . ∩ (L ∩ ϕ(Vn)) ∩ L ⊂ V0 ∩ . . . ∩ Vn−1 ∩ Vn = U,

but ϕ(U) is compact since ϕ(U) ⊂ L. Moreover,

X =
n⋃

i=1

ϕ−i(K ′) ⊂
∞⋃

i=0

ϕ−i(U). �

(6.9) Proposition. Any compact attraction map is a compact absorbing
contraction map.

Proof. Let ϕ:X ( X be a compact attraction map, K, a compact attractor
for ϕ and W , an open set of X such that K ⊂ W and L = ϕ(W ) is compact.
We have L ⊂ X ⊂

⋃∞
i=0 ϕ

−i(W ) hence, since L is compact, there exists n ∈ N
such that L ⊂

⋃n
i=0 ϕ

−i(W ). Define V =
⋃n

i=0 ϕ
−i(W ). Then

X ⊂
∞⋃

i=0

ϕ−i(W ) ⊂
∞⋃

i=0

ϕ−i(V ),

ϕ(V ) ⊂
n⋃

i=0

ϕ−i+1(W ) ⊂ ϕ(W ) ∪ V ⊂ L ∪ V ⊂ V
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and

ϕn+1(V ) ⊂
n⋃

i=0

ϕn−i+1(W ) =
n⋃

j=0

ϕj+1(W ) ⊂
n⋃

j=0

ϕj(L),

which is compact and included in V , since L ⊂ V and ϕ(V ) ⊂ V implies that
ϕj(L) ⊂ V for all j ∈ N . Consider the restriction ϕ′:V → V of ϕ. ϕ′:V → V is
an eventually compact map, since V is an open set. By Lemma (6.8), there exists
an open subset U of V , hence of X, such that clϕ′(U) = clϕ(U) is a compact
subset of U and V ⊂

⋃∞
n=0 ϕ

′−n(U) ⊂
⋃∞

n=0 ϕ
−n(U). Hence

X ⊂
∞⋃

n=0

ϕ−n(W ) ⊂
∞⋃

n=0

ϕ−n(V ) ⊂
∞⋃

n=0

ϕ−n(U). �

For more information about the above class of mappings and open problems
see: [AG] and [13]. Note also that a fixed point index can be defined for CAC-
mappings. We shall end this section by introducing the class of condensing
mappings.

Let E ne a Banach space and B(E) be the set of all bounded nonempty
subset of E.

We shall define the measure of noncompactness on B(E). We shall say that
a subset A ⊂ E is relatively compact provided the set clA is compact.

(6.10) Definition. Let E be a Banach space and B(E) the family of all
bounded subsets of E. Then the function: α:B(E)→ R+ defined by:

α(A) = inf{ε > 0 | A admits a finite cover by sets of diameter ≤ ε}

is called the (Kuratowski) measure of noncompactness, the α-MNC for short.
Another function β:B(E)→ R+ defined by:

β(A) = inf{r > 0 | A can be covered by finitely many balls of radius r}

is called the (Hausdorff) measure of noncompactness.

Definition (6.10) is very useful since α and β have interesting properties,
some of which are listed in the following

(6.11) Proposition. Let E be a Banach space with dim E = +∞ and
γ:B(E) → R+ be either α or β. Then:

(a) γ(A) = 0 if and only if A is relatively compact,
(b) γ(λA) = |λ|γ(A) and γ(A1 +A2) ≤ γ(A1)+γ(A2), for every λ ∈ R and

A,A1, A2 ∈ B(E),
(c) A1 ⊂ A2 implies γ(A1) ≤ γ(A2),
(d) γ(A1 ∪A2) = max{γ(A1), γ(A2)},
(e) γ(A) = γ(conv(A)),
(f) the function γ:B(E)→ R+ is continuous (with respect to the metric dH

on B(E)).
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Proof. You will have no difficulty in checking (a)–(d) and (f) ny means of
Definition (6.10).

Concerning (e), we only have to show that γ(conv(A)) ≤ γ(A), since A ⊂
conv(A) and therefore γ(A) ≤ γ(conv(A)). Let µ > γ(A) and A ⊂

⋃m
i=1Mi with

δ(Mi) ≤ µ if γ = α and Mi = B(xi, µ) if γ = β. Since δ(conv(µi)) ≤ µ and
B(xi, µ) are convex, we may assume that the Mi are convex. Since

conv(A) ⊂ conv
[
M1 ∪ conv

( m⋃
i=2

Mi

)]

⊂ conv
[
M1 ∪ conv

[
M2 ∪ conv

( m⋃
i=3

Mi

)]]
⊂ . . . ,

it suffices to show that

γ(conv(C1 ∪ C2)) ≤ max{γ(C1), γ(C2)} for convex C1 and C2.

Now, we have

conv(C1 ∪ C2) ⊂
⋃

0≤λ≤1

[λC1 + (1− λ)C2],

and since C1 − C2 is bounded there exists an r > 0 such that ‖x‖ ≤ r for all
x ∈ (C1 − C2).

Finally, given ε > 0, we find λ1, . . . , λp such that

[0, 1] ⊂
p⋃

i=1

(
λi −

ε

r
, λi +

ε

r

)
and therefore

conv(C1 ∪ C2) ⊂
p⋃

i=1

[λiC1 + (1− λi)C2 + clB(0, ε)].

Hence, (b)–(d) and the obvious estimate γ(clB(0, ε)) ≤ 2ε imply

γ(conv(C1 ∪ C2)) ≤ max{γ(C1), γ(C2)}+ 2ε,

for every ε > 0. Consequently the proof is completed. �

Now, let us state the following obvious observation.

(6.12) Remark. For every A ∈ B(E) we have β(A) ≤ α(A) ≤ 2β(A).

We shall end this section by considering two examples and by formulating
a generalization of the Cantor theorem.
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(6.13) Example. Assume that dim E = +∞. Now, let us complete the
measures of a ball B(x0, r) = {x0}+ r ·B(0, 1). Evidently,

γ(B(x0, r)) = rγ(clB(0, 1)) = rγ(S),

where S = δB(0, 1) = {x ∈ E | ‖x‖ = 1}.
Furthermore, α(S) ≤ 2 and β(S) ≤ 1. Suppose α(S) < 2. Then S =

⋃n
i=1Mi

with the closed sets Mi and δ(Mi) < 2. Let En be an n-dimensional subspace
of E. Then

S ∩ En =
n⋃

i=1

Mi ∩ En

and in view of the Lusternik–Schnirelman–Borsuk theorem (see [De3-M, p. 22]
or [9, p. 43]) there exists i such that the set Mi∩En contains a pair of antipodal
points, x and −x. Hence δ(Mi) ≥ 2 for this i, a contradiction. Thus α(S) = 2
and

1 =
α(S)

2
≤ β(S) ≤ 1,

i.e. we have α(B(x0, r)) = 2r and β(B(x0, r)) = r provided dim E = +∞.

(6.14) Example. Let r:E → clB(0, 1) be the retraction map defined as
follows:

r(x) =

{
x if ‖x‖ ≤ 1,
x

‖x‖
if ‖x‖ > 1.

Let A ∈ B(E). Since r(A) ⊂ conv(A∪{0}), we obtain γ(r(A)) ≤ γ(A). In other
words we can say that r is a nonexpansive map with respect to the Kuratowski
or Hausdorff measure of noncompactness.

Finally, note that the following version of the Cantor theorem holds true.

(6.15) Theorem. If γ = α or γ = β and {An} is a decreasing sequence of
closed nonempty subsets in B(E) such that limn γ(An) = 0. Then A =

⋂∞
n=1An

is a nonempty and compact subset of E.

To learn about condensing maps it is useful to start with the notion of k-set
contraction and condensing pairs of maps. As in Section 4, by a pair (p, q) we
mean the following diagram:

X
p⇐= Γ

q−→ Y

in which p is Vietoris and q continuous. Such a pair (p, q) is called compact
provided q is compact.

Let E be a Banach space. By γ:B(E) → R+ we will denote the measure of
non-compactness function, i.e. γ is a function satisfying all properties of (4.10).
In particular, we can let γ = α to be the Kuratowski measure of compactness or
γ = β to be the Hausdorff measure of non-compactness (see Section 4).
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(6.16) Definition. Let A and C be two subsets of E. A pair A
p⇐= Γ

q−→
C is called a k-set contraction pair, if there exists a real number k, 0 ≤ k < 1,
such that for every bounded B ⊂ A the following condition is satisfied:

(6.16.1) γ(q(p−1(B))) ≤ k · γ(B);

(p, q) is called a condensing pair, if for every bounded and no relatively compact
B ⊂ A we have

(6.16.2) γ(q(p−1(B))) < γ(B).

It is evident that any compact pair is k-set contraction with k = 0 and any
k-set contraction pair is condensing. Moreover, let us observe that if (p, q) is
a condensing pair then for any bounded B ⊂ A the set q(p−1(B)) is bounded.

(6.17) Proposition. Let A
p⇐= Γ

q−→ C be a condensing pair, where A

is a bounded and closed subset of E. Then Fix(p, q) is a compact set, where as
before Fix(p, q) = {x ∈ A | x ∈ q(p−1(x)}.

Proof. Indeed, we have Fix(p, q) ⊂ q(p−1(Fix(p, q))), hence

γ(Fix(p, q)) ≤ γ(q(p−1(Fix(p, q)))) < γ(Fix(p, q)).

So, by (4.10) we deduce that Fix(p, q) is compact. Because Fix(p, q) = Fix(p, q)
the proof is completed. �

We will say that the pair (p, q) satisfies the Palais–Smale condition provided
for every sequence {un} ⊂ Γ, the property

lim
n

(p(un)− q(un)) = 0

implies that there exists a convergent subsequence of {un}.

(6.18) Proposition. Let (p, q) be the same as in (6.17). Then the pair (p, q)
satisfies the Palais–Smale condition.

Proof. Let limn(p − q)(yn) = 0. We put xn = p(yn) − q(yn), un = p(yn).
Then {xn} ⊂ E and {un} ⊂ A. By assumption γ({xn}) = 0. We will show that
γ({un}) = 0. Because q(yn) ∈ q(p−1(un)) we have

γ(q({yn})) ≤ γ(q(p−1({un}))) ≤ k · γ({un}).

On the other hand, un = xn + q(yn) so, in view of (4.10.2), we obtain

γ({un}) ≤ γ({xn}) + γ({q(yn)}) = γ(q({yn})).

The above two inequalities imply that γ({un}) = 0. Therefore the set p−1({un})
is compact (p is proper!), so from the sequence {yn} in p−1({un}) we can choose
a convergent subsequence and the proof is completed. �
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Let A be a bounded closed subset of E and let C be a convex closed subset of
E. Consider a k-set contraction pair (p, q) from A to C. We will associate with
such a pair (p, q) a compact pair (p̃, q̃) such that Fix(p, q) = Fix(p̃, q̃). In order
to do it we define a decreasing sequence {Kn} of closed bounded and convex
subsets of C by putting

K1 = conv(q(p−1(A))), . . . ,Kn = conv(q(p−1(A ∩Kn−1))), . . .

It is evident that q(p−1(Kn∩A)) ⊂ Kn+1 and Fix(p, q) ⊂ Kn for every n. There
are two possibilities, namely,

Kn 6= ∅, for each n,(6.19)

Ki 6= ∅, for i = 1, . . . ,m and Km+j = ∅, for each j.(6.20)

If (6.20) holds then we choose a point x0 ∈ Km and we define

(6.21) q̃: Γ→ C by putting q(y) = x0 and p̃ = p.

Then (p̃, q̃) is a compact pair such that Fix(p, q) = Fix(p̃, q̃) = ∅.

(6.22) Lemma. Assume that (6.20) holds and let x1 ∈ Km. Then there
exists a compact homotopy h: Γ× [0, 1]→ C joining q̃ with q̃1 such that

Fix(p, h) = {x ∈ A | x ∈ h(p−1((x)× {t})), for every t} = ∅,

where q̃1: Γ→ C is given by the formula q̃1(y) = x1.

For the proof of Lemma (6.22) it is sufficient to consider a homotopy h: Γ×
[0, 1]→ C given as follows:

h(y, t) = (1− t)x0 + tx1.

(6.23) Remark. By comparing (6.21) and (6.22) we can say that, if (6.20)
holds, then the pair (p̃, q̃) is defined uniquely up to homotopy.

(6.24) Lemma. If (6.19) holds, then K∞ =
⋂∞

n=1Kn is a compact convex
and nonempty set which contains Fix(p, q).

Proof. First, we claim that

(6.24.1) γ(Kn) ≤ kn · γ(A), for each n, where k is given for considered k-set
contraction pair (p, q).

We prove (6.24.1) by induction. Since

γ(K1) = γ(conv(q(p−1(A)))) = γ(q(p−1(A))) ≤ k · γ(A),

our assertion holds for n = 1. Now assume that (6.24.1) is true for every m < n.
Then we obtain:

γ(Kn) = γ(conv(q(p−1(A ∩Kn−1)))) = γ(q(p−1(A ∩Kn−1)))

≤ k · γ(A ∩Kn−1) ≤ k · γ(Kn−1) ≤ k · kn−1γ(A) = knγ(A)
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and thus finish the proof of (6.24.1).
Now, from (6.24.1) it follows that limn γ(Kn) = 0. Therefore, our claim

follows from (4.14). �

We associate with given k-set contraction pair (p, q):A
p⇐= Γ

q−→ C the pair
(p̃, q̃):

(6.25) A ∩K∞
ep⇐= p−1(A ∩K∞)

eq−→ K∞

by putting p̃(u) = p(u) and q̃(u) = q(u). Since q̃ p̃−1(A∩K∞) ⊂ K∞, in view of
(6.24) we get Fix(p, q) = Fix(p̃, q̃). Observe, that if A = C, then the condition
(6.20) cannot occur.

Since (p̃, q̃) is a compact pair, then from the Lefschetz fixed point theorem
for admissible (or determined by morphisms) maps we obtain:

(6.26) Proposition. If C is a bounded closed and convex subset of E and
(p, q) is a k-set contraction pair from C to C, then Fix(p, q) 6= ∅.

We prove:

(6.27) Theorem. If C is a bounded closed and convex subset of E and (p, q)
is a condensing pair from C to C, then Fix(p, q) 6= ∅.

For the proof of (6.27) we need some additional facts. Let ε > 0. A point
u ∈ Γ is called an ε-coincidence for (p, q), if ‖p(u)− q(u)‖ < ε.

(6.28) Lemma. If (p, q) has an ε-coincidence for every ε > 0 and satisfies
the Palais–Smale condition, then Fix(p, q) 6= ∅.

Proof. Let εn = 1/n and {un} ⊂ Γ be a sequence of εn-coincidence points of
(p, q), n = 1, 2, . . . . Then limn(p(un) − q(un)) = 0. So, from the Palais–Smale
condition we obtain that there exists a convergent subsequence {unk

} of {un}.
Let u = limk unk

. Then p(u) = q(u), so the set κ(p, q) of coincidence points
is nonempty and consequently Fix(p, q) 6= ∅. �

Proof of (6.27). We can assume without loss of generality, that 0 ∈ C. For
each n = 1, 2, . . . we define a map qn: Γ→ C by putting:

qn(u) =
(

1− 1
n

)
· q(u).

Then (p, q) is an (1 − (1/n))-set contraction, n ≥ 2. So, from (6.26) for every
n ≥ 2 we obtain a point un ∈ Γ such that p(un) = q(un). On the other hand we
have:

‖p(un)− q(un)‖ ≤ ‖p(un)− qn(un)‖+ ‖q(un)− qn(un)‖

=
1
n
‖q(un)‖ ≤ 1

n
· diam(C),
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where diam(C) denotes the diameter of C. It implies that (p, q) has ε-coincidence
for every ε > 0 and hence our theorem follows from (6.28) and (6.19); the proof
is completed. �

Let C be a convex closed subset of E and (p, q):U
p⇐= Γ

q−→ C be a k-set
contraction pair such that Fix(p, q) ∩ ∂U = ∅, i.e. (p, q) has no fixed points on
the boundary ∂U of U in C, where U is an open subset of C.

Following (6.25) we obtain a compact pair

(p̃, q̃):U ∩K∞
ep⇐= p−1(U ∩K ′

∞)
eq−→ C ∩K∞.

For simplicity let us denote U1 = U ∩K∞ and C1 = C∩K∞, Γ1 = p−1(U ∩K∞).
Then we have a compact pair

U1
ep⇐= Γ1

eq−→ C1,

where U1 is open in C1 and C1 is a convex nonempty compact subset of E.
Now, by using the Schauder Approximation Theorem, for given ε > 0 we can

find a n(ε)-dimensional subspace En(ε) of E and an ε-approximation qε: Γ1 →
En(ε) of q̃. We let V = U1∩En(ε) and Cε = C1∩En(ε). Then we obtain a diagram:

V
p1⇐= p̃−1(V )

qε−→ Cε.

It is easy to see that for sufficiently small ε > 0 such that Fix(p1, qε) ∩ ∂V = ∅
and qε is homotopic to qε′ for ε, ε′ ≤ ε0, for some ε > 0.

Let r: Rn → Cε be a retraction (Cε is convex and closed, so Cε ∈ AR). Then
r−1(V ) is an open subset of Rn and we have the following commutative diagram:

r−1(V )
r // V p̃−1(V )

p1ks qε // Cε

i

��

Γε

pε

^f FFFFFFFF

FFFFFFFF
f

OO

g

;;xxxxxxxxx

qε=i◦qε◦g
// En(ε)

in which Γε = {(x, y) ∈ r−1(V )× p̃−1(V ) | r(x) = p1(y)}, pε(x, y) = x, f(x, y) =
r(x), g(x, y) = y. Moreover, we obtain:

Fix(pε, qε) = Fix(p1, qε) ⊂ V.

But for the pair (pε, qε) the coincidence index I(pε, qε) is well defined (see (3.4)).
We let:

(6.29) I(p, q) = I(pε, qε).

Then I(p, q) is called the coincidence index for the k-set contraction pair (p, q).
Note that by a standard argument, used already several times, we can see that
definition (6.29) is correct for a given retraction r.

The following problem remains open (see [14]).
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(6.30) Does Definition (6.29) depend on the choice of a retraction map r?

Note that (6.30) is a slight reformulation of the definition of a topological
degree for n-admissible mappings.

We shall make use of the following two properties of the coincidence index
defined in (6.29).

(6.31) Property (Existence). If I(p, q) 6= 0, then Fix(p, q) 6= ∅.

(6.32) Property (Homotopy). Let U be an open subset of C, where C is
a convex closed subset of a normed space E. Let p: Γ ⇒ U be a Vietoris map
and let h: Γ× [0, 1]→ C be a continuous map. Assume further that the following
two conditions are satisfied:

(a) Fix(p, h) ∩ ∂U = ∅, where Fix(p, h) = {x ∈ U | x ∈ h(p−1(x, t)) for
some t ∈ [0, 1]},

(b) γ(h(p−1(B × [0, 1]))) ≤ k · γ(B) for every B ⊂ U and some 0 ≤ k < 1.

Then I(p, h0) = I(p, h1), where hi(x) = h(x, i), i = 0, 1.

The standard proofs of (6.31) and (6.32) are left to the reader.
Now we will generalize the non-linear alternative and the Leray–Schauder

alternative from the case of k-set contraction singlevalued maps to the case of
k-set contraction pairs. Till the end of this section we will assume that C is
a convex and closed subset of E which contains the zero point 0 of E.

(6.33) Theorem (The Non-Linear Alternative). Let U be an open bounded
subset of C such that 0 ∈ U and let (p, q) be a k-set contraction pair from U

to C. Then at least one of the following properties holds:

(a) κ(p, q) 6= ∅,
(b) there is an x ∈ ∂U such that x ∈ (λ · q(p−1(x))) for some λ > 1.

Proof. We can assume without loss of generality, that Fix(p, q) ∩ ∂U = ∅.
For the proof consider a homotopy h: Γ × [0, 1] → C defined by the formula
h(y, t) = t · q(y). Then h satisfies (6.32)(b) and it is a homotopy joining q with
the constant map q1, q1(y) = 0. If Fix(p, h) ∩ ∂U = ∅, then from (6.32) and
(6.31) we deduce that Fix(p, q) 6= ∅, so (a) holds. If Fix(p, h) ∩ ∂U 6= ∅, then we
can take a point x0 ∈ ∂U such that x0 ∈ (t0 · q(p−1(x0))) for some 0 < t0 < 1.
Consequently, for λ = 1/t0 > 1 we have x0 ∈ λ · q(p−1(x0))) and the proof is
completed. �

(6.34) Corollary. Assume (p, q) is as in (6.33). Assume further that for
every x ∈ ∂U and for every u ∈ q(p−1(x)) one of the following conditions holds:

(a) ‖u‖ ≤ ‖x‖,
(b) ‖u‖ ≤ ‖x− u‖,
(c) ‖u‖2 ≤ ‖x‖2 + ‖x− u‖2.
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Then κ(p, q) 6= ∅.

For the proof of (6.34) it is sufficient to note that each of conditions (a)–(c)
implies that the second property of the non-linear alternative cannot occur.

For a pair (p, q) from C to C and for a subset A ⊂ C, by (pA, qA) we will
denote a pair defined as follows:

pA: p−1(A)⇒ A, pA(y) = p(y),

qA: p−1(A)→ C, qA(y) = q(y).

(6.35) Theorem (The Leray–Schauder Alternative). Let (p, q) be a pair
from C to C such that for any open and bounded U ⊂ C the pair (pU , qU ) is a k-
set contraction. Let G(p, q) = {x ∈ C | x ∈ (λ · q(p−1(x))), for some 0 < λ < 1}.
Then either G(p, q) is unbounded or κ(p, q) 6= ∅.

Proof. Assume G(p, q) is bounded. We choose an open ball B(0, r) in E

containing G(p, q) in its interior. Let U = B(0, r)∩C. Then (pU , qU ) ∈ C(U,C)
and no x ∈ ∂U can satisfy the second property of the non-linear alternative. By
using once again (6.33) to the pair (pU , qU ) we have ∅ 6= κ(pU , qU ) ⊂ κ(p, q) and
the proof is completed. �

(6.36) Remark. Finally, let us remark that all results of this section can be
formulated for k-set contraction and condensing admissible maps or morphisms;
ϕ is a k-set contraction (condensing) admissible map if there exists a k-set con-
traction (condensing) pair (p, q) such that (p, q) ⊂ ϕ. In the definition of the
k-set contraction (condensing) morphism we consider the equivalence relation
in family of all k-set contraction (condensing) pairs (p, q).

(6.37) Remark. Note that next we will continue the study of k-set contrac-
tion and condensing maps in the framework of so called compacting mappings.

(6.38) Definition. A closed subset of X of a Banach space E is called
a special ANR provided there exists a family {Cj}j∈J of closed convex subsets
of E such that X =

⋃
j∈J Cj and this union is locally finite, i.e. for every x ∈ X

there exists a finite set Jx ⊂ J , such that x 6∈ Cj for every j ∈ J \ Jx (written
X ∈ s-ANR).

Note that a special ANR is an ANR-space.
If X ∈ s-ANR and X is a finite union X =

⋃n
j=1 Cj of closed convex subsets

in E, then we will write X ∈ sf-ANR.
We shall use the following lemma:

(6.39) Lemma. Let C ∈ sf-ANR be the union C =
⋃n

j=1 Cj of closed convex
subsets of E. Then there exists a polyhedron P such that P =

⋃m
i=1 Pi, where

Pi = conv{x1, . . . , xmi
} for some x1, . . . , xmi

∈ C and a continuous map π:C →
C such that π(Ci) ⊂ Pi ⊂ Ci for all i ≤ n.
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Lemma (6.39) is strictly technical so the proof is omitted here. For details
see [14].

(6.40) Definition. Let X ∈ s-ANR and U be an open subset of X. An
admissible map ϕ:U ( X is called compacting provided there exists an open
set W ⊂ U and a sequence {Kn} such that Kn ∈ sf-ANR for every n and the
following conditions are satisfied:

(a) Fix(ϕ) ⊂W ⊂W ⊂ U ,
(b) W ⊂ K1 ⊂ X,
(c) ϕ(W ∩Kn) ⊂ Kn+1 ⊂ Kn for any n ≥ 1,
(d) limn→∞ γ(Kn) = 0, where γ denotes the measure of non-compactness.

We shall prove the following:

(6.41) Proposition. Suppose that X ∈ s-ANR, U is an open subset of X
and f :U → X is a continuous map such that S = {x ∈ U | f(x) = x} is
compact. Assume that there is an open neighbourhood W of S such that f |W is
a k-set-contraction with k < 1. Then f is compacting.

Proof. X has a locally finite covering {Cα | α ∈ A} by closed, convex hull
of B in the overlying Banach space. By the local finiteness of the covering and
the compactness of co f(W ), there exists a neighbourhood W1 of S, W 1 ⊂ W ,
such that (W1 ∪ co f(W1)) ∩ Cα is empty except for α in a finite index set A1.
Define K1 ∈ F0 by K1 =

⋃
α∈A1

Cα and for n ≥ 1 define {Kn} inductively by
Kn+1 = (co f(W1 ∩Kn)) ∩X. Since f is a k-set-contraction, k < 1, γ(Kn+1) ≤
knγ(W1)→ 0. It is also not hard to see that Kn ⊃ Kn+1, f(W1 ∩Kn) ⊂ Kn+1

and W1 ⊂ K1. Thus f is compacting; the proof is completed. �

Now, assume that ϕ:W ( X is compacting with W and {Kn} satisfying the
conditions of (6.40). Since Ki ∈ sf-ANR there exists m(i) and Ci1, . . . , Cim(i)

closed convex such that Ki =
⋃m(i)

j=1 Cij and ∂(Cij) < γ(Ki) + i−1.
We may now choose n and by Lemma (6.39), πn:K1 → K1 such that

πn(K1) ⊂ Pn ⊂ X, where Pn is a polyhedron such that

Pn =
m⋃

i=1

m(i)⋃
j=1

Pij and πn(Cij) ⊂ Pij ⊂ Cij .

Thus πn(Ki) ⊂ Ki for any i ≤ n and if x ∈ Ki we have ‖πn(x)−x‖ ≤ γ(Ki)+i−1.
Since the fixed point index for maps determined by morphisms on polyhedra is
defined, as we have already observed, we can let:

(6.42) i(X,ϕ,U) = lim
n→∞

i(Pn, πn ◦ ϕ,W ∩ Pn) = i(Pn, πn ◦ ϕ,W ∩ Pn)

if n is big enough. The proof of a correctness of the above definition is quite
long and technically complicated.
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We shall restrict our considerations to the case of the fixed point index defined
in (6.29) having the following properties:

• existence,
• excision,
• additivity,
• homotopy,
• commutativity,
• mod p.

To obtain the normalization property of the above fixed point index one more
assumption about ϕ is needed. We have to assume that ϕ is a compact absorbing
contraction and compacting mapping. We have proved that for compact absorb-
ing contractions the Lefschetz fixed point theorem is true, so it is sufficient to
see that the respective Lefschetz number and the fixed point index are equal.

There are still some open problems concerning compacting and compact ab-
sorbing contractions:

One of those is to find relations between:

• compacting, condensing, k-set contraction mappings on one hand;
• eventually compact mappings with compact attractors, compact absorb-

ing contractions, asymptotically compact — on the other hand.

For details we recommend [1] and [14].

7. Remarks and comments

In this material we concentrated our considerations to the Lefschetz Foxed
Point Theorem. Note that more generalized results can be obtained. In Section
3 we defined the index of coincidence I(p, q) for a pair

U
p⇐= Y

q−→ Rn,

where U is an open subset of the Euclidean space Rn (see (3.4)). This definition
can be taken up for the pair:

U
p⇐= Y

q−→ X,

where U is an open subset of an ANR-space X and q is a compact map. It
allows us to define the index set I(ϕ) of ϕ for an admissible and compact map
ϕ:U ( X. Then using obtained results it is possible to generalize this index
to the case when ϕ:U ( X is a CAC-map. For details we recommend [14].
Moreover, we would like to remark that some special results concerning fixed
point index can be done also for condensing and compacting mappings (see
again [14]).

Using homological methods it is possible to study the fixed point theory for
the fixed point theory for the other classes of multivalued mappings, namely:

• spheric mappings (see [21], [22]);
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• mappings with values consisting from one or n acyclic components (see
[14] or [10]);
• whitehead mappings (see [Ski]).

The next possibility is connected with non-metric case. Let E be a topological
vector space; E is called Klee admissible provided for every compact set K ⊂ E
and for every open neighbourjood V of o in E there exists a map πV :K → E

such that πV (K) ⊂ En ⊂ E, where En is n-dimensional subspace of E and
πV (x) ∈ (X + V ) for every x ∈ K.

Note that, in particular, any locally convex space E is Klee admissible.
Now, all results presented in this work can be generalized for the respective

classes of multivalued mappings of retracts of open sets in Klee admissible spaces.
For details concerning non-metric case see [1].

Finally, let us remark that using homological methods it is possible to study
also (for details see: [12]–[14], [15]):

• relative versions of the Lefschetz Fixed Point Theorem;
• periodic problems;
• Nielsen theory for multivalued mappings.

Instead of [1] and [14] for further studies of homological methods in fixed
point theory we recommend [5], where a review of modern methods in fixed
point theory is presented.
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[12] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps,

Diss. Math. 129 (1976), 1–66.

[13] , Topological Degree of Morphisms and Its Applications to Differential In-

clusions, Raccolta di Sem. del. Dip. Mat., vol. 5, Dell’Univ. Studi della Calabria,
Cosenza, 1985.

[14] , Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic
Press, Dordrecht, 1999; second edition, Springer, 2006.

[15] A. Granas and J. Dugundji, Fixed Point Theory, Springer–Verlag, New York,
2003.

[16] M. Kisielewicz, Differential inclusions and optimal control, Polish Sc. Publishers
and Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
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[26] M. Ślosarski, Some applications of the topological essentiality and characterization

of the fixed point set to differential inclusions, Ph. D. Thesis, Nicolaus Copernicus
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APPROXIMATION METHODS
IN THE THEORY OF SET-VALUED MAPS

Wojciech Kryszewski

Abstract. In the lecture we shall present some methods allowing to in-

vestigate fixed points and the solvability of generalized equations involving
set-valued maps.

Generally speaking there are two concurrent attitudes to the problem: topo-
logical (or more precisely homological and/or homotopical) approach and the
approximation one (1). However essentially different, these two attitudes are
most often combined and intertwined: sometimes there are sufficiently close
single-valued approximations (understood in an appropriate sense) whose topo-
logical behavior reflects the properties of the studied map. Thus approximation
techniques may interact with topological methods and bring a deeper insight
into the theory. Whereas purely topological and algebraic methods seem to be
more universal, approximation approach is frequently substantially simpler and,
at most occasions, sufficient for a vast area of applications.

1. Preliminaries

In this section we shall provide the exposition of some rudimentary material
concerning set-valued maps (see e.g. [9], [45], [4], [52] and [46]).

2000 Mathematics Subject Classification. 47H04, 47H10, 47H11, 54C60, 54C65.
Key words and phrases. Set-vlued map, approximation, selection, degree theory, fixed

point.

(1) Speaking of approximations we have also selections in mind.
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1.1. Set-valued maps. From the formal point of view, a set-valued map
is a simple generalization of an ordinary (single-valued) mapping. To support
this statement let us introduce some notation and elementary concepts. Assume
that sets X, Y are nonempty and let ϕ ⊂ X × Y be a relation. Then

ϕ−1 := {(y, x) ∈ Y ×X | (x, y) ∈ ϕ}

is the inverse relation. If A ⊂ X, then

ϕ(A) := {y ∈ Y | ∃x ∈ A (x, y) ∈ ϕ}

is the image of A through ϕ; in particular, if B ⊂ Y , then

ϕ−1(B) = {x ∈ X | ∃ y ∈ B (x, y) ∈ ϕ}

(sometimes we say that ϕ−1(B) is the preimage of B through ϕ). If Z is another
set and a relation ψ ⊂ Y × Z, then

ψ ◦ϕ := {(x, z) ∈ X × Z | ∃ y ∈ Y (x, y) ∈ ϕ, (y, z) ∈ ψ}

is the composition of ϕ and ψ.
Let πX :X×Y and πY :X×Y be projections, i.e. πX(x, y) = x and πY (x, y) =

y for any (x, y) ∈ X×Y . According to the Peano definition, a relation ϕ ⊂ X×Y
is a function or a map if

(1.1) πX(ϕ) = X

and

(1.2) ϕ ◦ ϕ−1 ⊂ ∆Y := {(y, y′) ∈ Y × Y | y = y′}.

Definition 1.1.1. If a relation ϕ ⊂ X ×Y satisfies condition (1.1), then we
say that ϕ is a set-valued map.

As in the case of functions, given a set-valued map ϕ ⊂ X × Y , we write
ϕ:X � Y and say that ϕ(x) := {y ∈ Y | (x, y) ∈ ϕ} = ϕ({x}) is the value
of ϕ at x ∈ X; in view of (1.1), ϕ(x) �= ∅ for all x ∈ X (2). It is clear that
any map f :X → Y (we then speak of a single-valued map in order to make it
clear that a map whose values are singletons id considered) is a particular case
of a set-valued map; in this case the value f(x) is identified with the singleton
{f(x)}.

In order to incorporate this, perhaps more intuitive approach, one often
identifies a set valued map ϕ:X � Y with an ordinary map ϕ:X → P(Y )\ {∅},

(2) In what follows we shall usually make some additional assumptions concerning the

values of ϕ:X � Y intimately connected with an additional structure (linear, topological,

etc.) imposed onto Y .
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where P(Y ) stand for the family of all subsets of Y . From this point of view it
is convenient to define the graph

Gr(ϕ) := {(x, y) ∈ X × Y | y ∈ ϕ(x)}

of ϕ, although, as we see, the distinction between ϕ and Gr(ϕ) is only formal.
Given a set-valued map ϕ:X � Y and B ⊂ Y , apart from the preimage

ϕ−1(B), it is convenient to define the strict or the small preimage of B

ϕ+1(B) := {x ∈ X | ϕ(x) ⊂ B}.

Clearly ϕ+1(B) ⊂ ϕ−1(B).
If ϕ′:X′ � Y ′, then one defines the Cartesian product ϕ × ϕ′:X × X′ �

Y × Y ′ by
ϕ× ϕ′(x, x′) := ϕ(x) × ϕ′(x′), (x, x′) ∈ X ×X′.

Apart from some obvious properties of images, preimages and strict preim-
ages of set-valued maps, it is not difficult to establish the following issues.

Proposition 1.1.2. Given a set-valued map ϕ:X � Y , let A ⊂ X, B ⊂ Y .
Then:

(a) ϕ+1(Y \B) = X \ ϕ−1(B) and ϕ−1(Y \B) = X \ ϕ+1(B);
(b) A ⊂ ϕ+1(ϕ(A)) ⊂ ϕ−1(ϕ(A));
(c) ϕ(ϕ+1(B)) ⊂ B ⊂ ϕ(ϕ−1(B));
(d) (ϕ−1)−1(A) = ϕ(A);
(e) ϕ(A) = πY (Gr(ϕ) ∩A× Y ); ϕ−1(B) = πX(Gr(ϕ) ∩X ×B).

If ψ: Y � Z is another set-valued map and C ⊂ Z, then:

(f) (ψ ◦ ϕ)±1(C) = ϕ±1(ψ±1(C));
(g) Gr(ψ ◦ ϕ) = (ϕ× idZ)−1(Gr(ψ)) = (idX × ψ)(Gr(ϕ)) (3).

To facilitate the notation, in what follows we put

pϕ := πX |Gr(ϕ), qϕ := πY |Gr(ϕ).

Then, for A ⊂ X and B ⊂ Y ,

Gr(ϕ) ∩A× Y = p−1
ϕ (A), Gr(ϕ) ∩X × Y = q−1

ϕ (B).

Thus, for example, equalities (e) read

ϕ(A) = qϕ(p−1
ϕ (A)), ϕ−1(B) = pϕ(q−1

ϕ (B)).

1.2. Continuity of set-valued maps. Assume that X and Y are Hausdorff
topological spaces (only such spaces will be considered below) and let ϕ:X � Y

be a set-valued map.

(3) idZ (resp. idX) stands for the identity on Z (resp. X).
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Definition 1.2.1. Let x ∈ X. We say that ϕ is upper (resp. lower) semi-
continuous at x if, for any open set V , if ϕ(x) ⊂ V (resp. ϕ(x) ∩ V �= ∅), then
ϕ+1(V ) (resp. ϕ−1(V )) is a neighbourhood of x. As usual we say that ϕ is upper
(resp. lower) semicontinuous if so it is at any point x ∈ X. A set-valued map
being simultaneously upper and lower semicontinuous is called continuous.

It is easy to see that in case of a single-valued map, lower and upper semi-
continuity coincide with the ordinary continuity.

By the very definition and in view of Proposition 1.1.2(a) and (f), we have:

Proposition 1.2.2. Let ϕ:X � Y . The following conditions are equiva-
lent:

(a) ϕ is upper semicontinuous;
(b) for any open V ⊂ Y , ϕ+1(V ) is open;
(c) for any closed C ⊂ Y , ϕ−1(C) is closed.

In a similar manner, the following conditions are equivalent:

(i) ϕ is lower semicontinuous;
(ii) for any open V ⊂ Y , ϕ−1(V ) is open;

(iii) for any closed C ⊂ Y , ϕ+1(C) is closed.

The composition of upper (resp. lower) semicontinuous is upper (resp. lower)
semicontinuous.

Example 1.2.3. (a) Let J ⊂ R and ϕ: R � R be given by

ϕ(x) =
{ {0} if x ∈ R \ J,

[−1, 1] if x ∈ J.

If J = [a, b], then ϕ upper semicontinuous; if J = (a, b), then ϕ is lower semi-
continuous; if e.g. J = [a, b), then ϕ is neither upper nor lower semicontinuous.

(b) Let f, g:X → R be lower and upper semicontinuous real functions, re-
spectively, such that f(x) ≤ g(x) for all x ∈ X. Then a map ϕ:X � R, given
by ϕ(x) = [f(x), g(x)] for x ∈ X, is upper semicontinuous. If g(x) ≤ f(x) on X,
then ψ:X � R, given by ϕ(x) := [g(x), f(x)] for x ∈ X, is lower semicontinuous.

(c) If p: Y → X is a surjection, then ϕ:X � Y given by ϕ(x) = p−1(x)
for x ∈ X, is upper (resp. lower) semicontinuous if and only if p is closed (resp.
open). To see this recall that, for any B ⊂ Y , p(B) = (p−1)−1(B) = ϕ−1(B).

(d) Let Z be a set and let p:Z → X, q:Z → Y . If p is a surjection, then a set-
valued map ϕ:X � Y given by ϕ(x) = q(p−1(x)), x ∈ X, is upper (resp. lower)
semicontinuous if and only if p is closed (resp. open) with respect to the weakest
topology on Z under which q is continuous. In view of the sufficiency part of (c)
it is enough to show the necessity: we are to prove that p is closed (resp. open)
provided ϕ is upper (resp. lower) semicontinuous. In view of the necessity part
of (c) we shall show that p−1:X � Z is upper (resp. lower) semicontinuous. Let
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U be open in Z; without loss of generality we may assume that U = q−1(V )
where V is open in Y . Thus (p−1)±1(U) = (q ◦ p−1)±1(V ) is open.

(e) If in (d) Z is a topological space, q is continuous and p is closed (resp.
open), then ϕ is upper (resp. lower) semicontinuous. This follows from (c) and
the last part of Proposition 1.2.2.

Remark 1.2.4. The above example (d) is in a sense universal. Given a set-
valued map ϕ:X � Y , we see that, for each x ∈ X, ϕ(x) = qϕ(p−1

ϕ (x)). Hence
if pϕ is closed (resp. open), then ϕ is upper (resp. lower) semicontinuous. If ϕ is
upper (resp. lower) semicontinuous, then pϕ is closed (resp. open) with respect
to the weakest topology on Gr(ϕ) under which qϕ is continuous (see also [45],
[46]).

Let us now collect some other properties of upper (or lower) semicontinuous
maps.

Proposition 1.2.5.

(a) If Y is regular, ϕ:X � Y is upper semicontinuous and has closed
values, then its graph Gr(ϕ) is closed (in X × Y ) (4).

(b) A set-valued map ϕ:X → Y has compact values and is upper semicon-
tinuous if and only if pϕ is perfect (5).

(c) If ϕ:X � Y is upper semicontinuous and has compact values, A ⊂ X

is compact, then so is ϕ(A).
(d) If ϕ is as above, ψ:X � Y has closed graph and, for each x ∈ X,

ϕ(x) ∩ ψ(x) �= ∅, then ϕ ∩ ψ is upper semicontinuous.

Proof. Condition (a) is easy. We shall prove (b). If pϕ is perfect, then for
each x ∈ X, ϕ(x) = qϕ(p−1

ϕ (x)) is compact; moreover pϕ is closed, so ϕ is upper
semicontinuous. If ϕ is upper semicontinuous and has compact values, then for
each x ∈ X, p−1

ϕ = {x} × ϕ(x) is compact. Let B ⊂ Gr(ϕ) be closed and let
x �∈ p(B), then {x} ×ϕ(x) ∩B = ∅. The compactness of ϕ(x) implies that there
are open sets U ′ ⊂ X and V ⊂ Y such that x ∈ U ′, ϕ(x) ⊂ V and U ′×V ∩B = ∅.
The upper semicontinuity implies that U ′′ := ϕ+1(V ) is open. Let U := U ′ ∩U ′′.
Then x ∈ U and U ∩ p(B) = ∅. This shows that p(B) is closed.

To see (c) observe that ϕ(A) = qϕ(p−1
ϕ (A)). Since pϕ is perfect, it is proper;

hence p−1
ϕ (A) is compact.

(d) Assume that B is closed in Gr(ϕ ∩ ψ) = Gr(ϕ) ∩ Gr(ψ). Since Gr(ψ) is
closed, B is closed in Gr(ϕ). Hence pϕ∩ψ(B) = pϕ(B) is closed and, thus, ϕ∩ ψ
is upper semicontinuous. �

(4) Clearly if the Gr(ϕ) is closed, then so are the values of ϕ.

(5) Recall that a map f : X → Y between topological spaces is perfect if it is closed and,
for each y ∈ Y , the fiber f−1(y) is compact. Each perfect map is proper, i.e. such that, for any

compact K ⊂ Y , f−1(K) is compact. If Y is a k-space (i.e. Y is compactly generated), then

f is perfect if and only if it is proper; in particular this holds if Y is a metric space.
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Example 1.2.6. Generally speaking set-valued maps with closed graphs
are not upper semicontinuous. For instance let ϕ: R � R

2 be given by ϕ(a) =
{(x, y) ∈ R

2 | y = ax} for a ∈ R. Then Gr(ϕ) is closed, but for a0 = 0 the
inclusion ϕ(a) ⊂ B(ϕ(0), ε) holds for neither a �= 0 nor ε > 0.

Definition 1.2.7. We say that ϕ:X � Y is compact (resp. locally compact)
if the closure clϕ(X) of ϕ(X) is compact (resp. each x ∈ X has a neighbourhood
U such that clϕ(U) is compact).

By Proposition 1.2.5(d), if ϕ is locally compact and has closed graph, then
ϕ is upper semicontinuous.

1.3. Continuity in metric spaces. Suppose now that X, Y are metric
spaces and let ϕ:X � Y . As a simple consequence of Definition 1.2.1 and
Proposition 1.2.5 we get

Corollary 1.3.1.

(a) The map ϕ is lower semicontinuous at x0 ∈ X if and only if, for any
y0 ∈ ϕ(x0) and a sequence xn → x0, there is a sequence yn → y0 such
that yn ∈ ϕ(xn) for all n ∈ N.

(b) The map ϕ is upper semicontinuous and has compact values if and only
if, given a sequence (xn, yn) ∈ Gr(ϕ), if xn → x0, then there is a sub-
sequence (ynk) such that ynk → y0 ∈ ϕ(x0).

Example 1.3.2. Let I = [0, T ], T > 0. Consider a Carathéodory function
f : I × R

N → R
N (i.e. for almost all t ∈ I, f(t, · ) is continuous and, for all

x ∈ R
N , f( · , x) is measurable). Assume that there is c ∈ L1(I,R) such that

‖f(t, x)‖ ≤ c(t) for almost all t ∈ I and all x ∈ R
N . It is well-known that, for

any a ∈ E, the set S(a) of all solutions to the problem x′ = f(t, x), x(0) = a (i.e.
x ∈ S(x0) if and only if x: I → R

N is continuous and x(t) = a+
∫ t

0 f(s, x(s)) ds
for all t ∈ I) is nonempty. We shall see that the map R

N � x0 � S(x0) ⊂
C(I,RN) has compact values and is upper semicontinuous. To this end let
(an, xn) ∈ Gr(S) and suppose that an → a ∈ R

N . Then, for all t ∈ I, xn(t) =
an +

∫ t
0 yn(s) ds where yn(s) = f(s, xn(s)) for s ∈ I. Clearly the sequence (xn)

is uniformly bounded and equicontinuous. By the Ascoli–Arzela theorem, there
is a subsequence xnk → x ∈ C(I,RN ) uniformly. For almost all s ∈ I,

lim
k→∞

ynk(s) = lim
k→∞

f(s, xnk(s)) = f(s, x(s)).

Thus, by the Lebesgue theorem,

x(t) = lim
k→∞

xnk(t) = a+ lim
k→∞

∫ t

0
ynk(s) ds = a +

∫ t

0
f(s, x(s) ds

and x ∈ S(a).
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Continuity of set valued maps in metric spaces may be studied in terms of
the so-called lower and upper set-limits. Assume that A ⊂ X, ϕ:A � Y and
let x0 ∈ clA. Then, the (topological) lower set-limit Lim inf x→x0 ϕ(x) and the
upper set-limit Lim sup x→x0

ϕ(x) are subsets of Y defined as follows:

y ∈ Lim inf
x→x0

ϕ(x) ⇔ ∀ (xn)∞
n=1, xn

A−→ x0 ∃ yn ∈ ϕ(xn), yn → y

and

y ∈ Lim sup
x→x0

ϕ(x) ⇔ ∃ (xn)∞
n=1, xn

A−→ x0 ∃ yn ∈ ϕ(xn), yn → y,

where the notation xn
A−→ x0 means that xn tends to x0 staying in A. These

limits admit also the following description

Lim inf
x→x0

ϕ(x) =
⋂
ε>0

⋃
η>0

⋂
x∈BA(x0,η)

B(ϕ(x), ε),

Lim sup
x→x0

ϕ(x) =
⋂
ε>0

⋂
η>0

⋃
x∈BA(x0,η)

B(ϕ(x), ε) =
⋂
η>0

cl
( ⋃
x∈BA(x0,η)

ϕ(x)
)
,

where

BA(x0, η) := {x ∈ A | d(x, x0) < η} and B(ϕ(x), ε) := {y ∈ Y | d(y, ϕ(x)) < ε}.

In a particular discrete case: given a sequence (An)∞
n=1 of subsets in X, then

Lim inf
n→∞

An :=
{
x ∈ X

∣∣∣ lim
n→∞

d(x, An) = 0
}
,

Lim sup
n→∞

An :=
{
x ∈ X

∣∣∣ lim inf
n→∞

d(x, An) = 0
}
.

If Lim inf n→∞An = Lim sup n→∞An, then this set is denoted by Lim n→∞An
and called the limit of the sequence (An).

Remark 1.3.3. One has to be cautious when dealing with set-limits. Our
definitions may differ from those provided elsewhere. Namely, sometimes differ-
ent authors define them as:

Lim inf
x→x0

ϕ(x) =
⋂
ε>0

⋃
η>0

⋂
x∈BA(x0,η)\{x0}

B(ϕ(x), ε),

Limsup
x→x0

ϕ(x) =
⋂
ε>0

⋂
η>0

⋃
x∈BA(x0,η)\{x0}

B(ϕ(x), ε)

=
⋂
η>0

cl
( ⋃
x∈BA(x0,η)\{x0}

ϕ(x)
)
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or, equivalently,

Lim inf
x→x0

:=
{
y ∈ Y

∣∣∣ lim
x→x0

d(y, ϕ(x)) = 0
}
,

Lim sup
x→x0

:=
{
y ∈ Y

∣∣∣ lim inf
x→x0

d(y, ϕ(x)
}
.

Obviously, if x0 ∈ clA but x0 �∈ A or in the discrete case, then our definitions
and those above coincide (compare [4]).

It is easy to see that both upper and lower limits are closed,

Lim inf
x→x0

ϕ(x) ⊂ Lim sup
x→x0

ϕ(x)

and, if x0 ∈ A, then

Lim inf
x→x0

ϕ(x) ⊂ clϕ(x0) ⊂ Lim sup
x→x0

ϕ(x).

By the very definition we have

Proposition 1.3.4. Let ϕ:X � Y .

(a) The map ϕ is lower semicontinuous at x0 ∈ X if and only if

ϕ(x0) ⊂ Lim inf
x→x0

ϕ(x).

(b) The map ϕ has closed graph if and only if, for each x0 ∈ X,

Lim sup
x→x0

ϕ(x) = ϕ(x0).

We thus see that lower limits help to study lower semicontinuity, while upper
limits may be used to establish the closeness of the graph.

Finally let us mention the following result (see [4]). Recall that a set A ⊂ X

is residual if A =
⋂∞
n=1 An and, for all n ∈ N, An is open and dense in X (i.e.

X \ An is a nowhere dense). In other words A is residual if its complement is
contained a set of the first Baire category. Countable intersections of residual
sets are residual. In view of the Baire theorem residual subsets of a complete
space are dense. A property that holds along a residual set is called a generic
property.

Proposition 1.3.5 (Generic continuity). Let X, Y be complete metric spa-
ces and let ϕ:X � Y . Then:

(a) If ϕ is upper (or lower) semicontinuous, then it is continuous on some
residual subset of X.

(b) If ϕ has closed values and is lower semicontinuous, then there is a resid-
ual set R ⊂ X such that, for all x0 ∈ X,

Lim sup
x→x0

ϕ(x) = ϕ(x0).
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Given nonempty sets A,B ⊂ X, let

h(A,B) := sup
a∈A

d(a, B) ∈ [0,∞].

It is clear that if A is bounded, then h(A,B) < ∞. Observe that

h(A,B) = sup
x∈X

(d(x, B) − d(x, A)).

Let, the Hausdorff distance

dH(A,B) := max{h(A,B), h(B,A)}.

We easily see that

dH(A,B) = sup
x∈X

|d(x, A) − d(x, B)| = dH(B,A).

If the sets A,B are bounded, then dH(A,B) < ∞ (not necessarily conversely); if
A = B, then dH(A,B) = 0; if dH(A,B) = 0 and A,B are closed, then A = B. It
is also easy to see that, for any C ⊂ X, dH(A,B) ≤ dH(A,C) + dH(C,B). Thus
dH is a metric in a (hyper)space BC(X) of all bounded closed subsets of X. It
is also easy to show that BC(X) together with dH is complete (resp. compact)
provided so is X.

Suppose now that a sequence (An) of sets in X is given and let A ⊂ X.
Suppose that h(A,An) < ∞ (resp. h(An, A) < ∞) for all n ∈ N. The the
following implications hold:

(1) if limn→∞ h(A,An) = 0, then clA ⊂ Lim inf n→∞An;
(2) if limn→∞ h(An, A) = 0, then Lim sup n→∞An ⊂ clA.

Hence

(3) if limn→∞ dH(An, A) = 0, then clA = Lim n→∞An.

Converse implications does not hold in general (it is easy to provide counterexam-
ples). The reason is quite simple: Hausdorff limits are of the ‘uniform’ character,
while set-limit have rather the ‘pointwise’ character. As concerns (1), the con-
verse statement is true provided A is compact (or relatively compact). In order
to have statements converse to (2) (or (3)) one has to assume e.g. that X is
compact. Facts analogous to the above ones are true also if a discrete sequence
is replaced with a ‘continuous’ family, i.e. a set-valued map ϕ:B � X defined
on a subset B ⊂ Y and respective limits considered when y

Y−→ y0 where
y0 ∈ clB.

The above discussion corresponds well to the notion of Hausdorff continuity
of set-valued maps. Suppose that ϕ:X � Y is a set-valued map and let x0 ∈ X.

Definition 1.3.6. We say that ϕ is H-upper (resp. lower) semicontinuous
at x0 provided, for each ε > 0, there is δ > 0 such that if x ∈ X and d(x, x0) < δ,
then h(ϕ(x), ϕ(x0)) < ε (resp. h(ϕ(x0), ϕ(x)) < ε). Obviously we say that ϕ is
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H-continuous at x0 if it is H-upper and lower semicontinuous at x0, simultane-
ously. The map is H-upper (resp. lower) semicontinuous or H-continuous if so
it is at every x0 ∈ X.

It is easy to establish the following fact.

Proposition 1.3.7. If ϕ is upper semicontinuous at x0, then it is H-upper
semicontinuous at x0. If ϕ is H-lower semicontinuous at x0, then it is lower
semicontinuous at x0. The converse implications hold if ϕ(x0) is compact. In
particular H-continuity in equivalent to the continuity in case of set-valued maps
with compact values.

Finally we say that ϕ:X � Y is Lipschitz (precisely L-Lipschitz, where
L ≥ 0) if, for all x, y ∈ X,

dH(ϕ(x), ϕ(y)) ≤ Ld(x, y).

In a similar manner one may define the local Lipschitz continuity of a set-valued
map. We sat that ϕ is a contraction (precisely k-contraction) if it is k-Lipschitz
with 0 ≤ k < 1.

The notions of upper and lower set-limits may be defined for set-valued
maps defined and/or having values in topological spaces. For that reason sup-
pose that A is a subset of a Hausdorff topological space X, x0 ∈ clA, and
let ϕ:A � Y where Y is another Hausdorff topological space. By definition
y ∈ Lim inf x→x0 ϕ(x) (resp. y ∈ Lim sup x→x0

ϕ(x)) if for every (resp. there

is a) generalized sequence (xλ)λ∈Λ such that xλ
A−→ x0, for each λ ∈ Λ, there

is yλ ∈ ϕ(xλ) such that yλ → y (6). Results similar to described above are the
still true.

In particular, given a metric space X, A ⊂ X, x0 ∈ clA, a normed space
E and a set-valued map N :X � E∗ (where E∗ denotes the (topological)
dual of E) one may speak of the weak∗-set-limits w∗- Lim inf x→x0 ϕ(x) and
w∗- Lim sup x→x0

ϕ(x), i.e. set-limits in E∗ when E∗ is endowed with the weak∗-
topology.

In order to illustrate these issues let us discuss the following

Lemma 1.3.8 (Walkup–Wets formula [71]). Let T :X � E be a set-valued
map such that, for each x ∈ X, T (x) is a closed convex cone. Let x0 ∈ X and
suppose that, for each x ∈ X,

N(x) := T (x)⊥ := {p ∈ E∗ | 〈p, y〉 ≤ 0 for all y ∈ T (x)}.

Then N :X � E∗ and

Lim inf
x→x0

T (x) =
[
w∗- Lim sup

x→x0

N(x)
]⊥
.

(6) Clearly, if X, Y are metric spaces, then both notions provided here and above coincide.
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Proof. Let y0 ∈ Lim inf x→x0 T (x) and let p0 ∈ w∗- Lim sup x→x0
N(x): we

are to show that 〈p0, y0〉 ≤ 0. There is a (generalized) sequence xλ → x0, λ ∈ Λ,
and pλ ∈ N(xλ) such that pλ → p0 weakly∗. There also exists a sequence
yλ ∈ T (xλ) such that yλ → y0. Hence 〈pλ, yλ〉 ≤ 0 and, therefore, 〈p0, y0〉 ≤ 0.

Conversely suppose that y0 ∈ [w∗- Lim sup x→x0
N(x)]⊥ but y0 is not con-

tained in Lim inf x→x0 T (x). Hence there is ε > 0 and a (generalized) sequence
xλ → x0, λ ∈ λ, such that B(y0, ε) ∩ T (xλ) = ∅ for all λ ∈ Λ. The separation
theorem implies that, for each λ ∈ Λ, there is a form pλ ∈ E∗ such that

sup
y∈T (xλ)

〈p, y〉 ≤ 〈pλ, y0〉 − ε‖pλ‖.

We may assume that ‖pλ‖ = 1; then

sup
y∈T (xλ)

〈pλ, y〉 ≤ 〈pλ, y0〉 − ε.

Since T (xλ) is a cone, we infer that supy∈T (xλ)〈pλ, y〉 = 0, i.e. pλ ∈ N(xλ) and
ε ≤ 〈pλ, y0〉. By the Alaoglu theorem, we may assume without loss of generality
that pλ → p0 weakly∗ and ‖p0‖ ≤ 1. Clearly p0 ∈ w∗- Lim sup x→x0

N(x); thus
〈p0, y0〉 ≤ 0. But ε ≤ 〈p0, y0〉: contradiction. �

Corollary 1.3.9. Under the above assumption T is lower semicontinuous if
and only if Gr(N) is closed in X×E∗ (where E∗ is endowed with weak∗-topology).

Proof. We show necessity. Let a (generalized) sequence (xλ, pλ) ∈ Gr(N),
λ ∈ Λ, and let xλ → x and pλ → p weakly∗. Suppose that p �∈ N(x). Hence
there is y ∈ T (x) such that 〈p, y〉 > 0. Since T is lower semicontinuous, there
is a sequence (yλ) in E such that yλ ∈ T (xλ) and yλ → y. It is clear that then
〈pλ, yλ〉 ≤ 0 and 〈pλ, yλ〉 → 〈p, y〉 in R: contradiction.

To see sufficiency, observe that the closeness of Gr(N) implies that, for each
x0 ∈ X, w∗- Lim sup x→x0

N(x) ⊂ N(x0). Therefore, by the Walkup-Wets for-
mula

T (x0) = N(x0)⊥ ⊂
[
w∗- Lim sup

x→x0

N(x)
]⊥

= Lim inf
x→x0

T (x). �

Remark 1.3.10. An immediate application of Corollary 1.3.9 concerns reg-
ularity of the so-called tangent cones (see [3], [4] and [64] where the finite-
dimensional situation has been discussed). Suppose that K ⊂ E, where E is
a normed space, is closed and let x ∈ K. By the Bouligand tangent cone to K

at x we mean the set

TK(x) := Lim sup
h→0+

K − x

h
.

In other words v ∈ TK (x) if and only if there are sequences hn → 0+ and vn → v

such that vn ∈ (K − x)/hn, i.e. x + hnvn ∈ K, for all n ≥ 1. By the Clarke
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tangent cone to K at x we mean the set

CK(x) := Lim inf
y

K−→ x, h→0+

K − y

h
.

Hence v ∈ CK(x) if and only if, for any sequences yn → x and hn → 0+, there
is a sequence vn → v such that vn ∈ (K − yn)/hn, i.e. yn + hnvn ∈ K, for all
n ≥ 1.

It is easy to see that, for each x ∈ K, TK (x) and CK(x) are closed cones (i.e.
given v ∈ TK(x) and λ ≥ 0, λv ∈ TK(x) and the same for CK(x)). Additionally,
CK(x) is convex. Moreover, CK(x) ⊂ TK (x). An important result states that

Lim inf
y

K−→ x

TK(y) ⊂ CK(x)

with equality in case dimE < ∞.
By the normal cone to K at x we mean the set

NK(x) := CK(x)⊥ := {p ∈ E∗ | 〈p, v〉 ≤ 0 for all v ∈ CK(x)}.

Suppose that K ⊂ E is closed convex. It is an easy exercise to show that in
this case

(∗) TK(x) = CK(x) = SK (x) := cl
( ⋃
h>0

K − x

h

)
.

By (∗), NK(x) = {p ∈ E∗ | supy∈K〈p, y − x〉 ≤ 0}. It is easy to see that the
graph Gr(NK) of the set-valued map K � x � NK(x) is closed in K × E∗

where E∗ has the weak∗-topology. Indeed, assume that a (generalized) sequence
(xλ, pλ) ∈ Gr(NK ), λ ∈ Λ, is given and (xλ, pλ) → (x, p), i.e. xλ → x and
pλ → p weakly∗. Hence, for each y ∈ K, 〈y − xλ, pλ〉 ≤ 0 and, therefore,
〈y − x, p〉 = limλ∈λ〈y − xλ, pλ〉 ≤ 0, i.e. p ∈ NK (x).

In view of Corollary 1.3.9, the cone map K � x � TK(x) is lower semicon-
tinuous (see also [64]).

Apart from the above notion of the normal cone NK (x), the notion of the
proximal normal cone is sometimes studied. Let, as above, K ⊂ E be closed.
The map πK assigning to each y ∈ E the (possibly empty) set πK(y) := {z ∈
K | ‖y − z‖ = dK(y)}, called the metric projection, has closed graph. If E is
a Hilbert space and K is closed convex, then πK(y) is a singleton for any y ∈ E,
but, in general, even if dimE < ∞, πK(y) is a set. If x ∈ K, then the set π−1

K (x)
is always nonempty (since πK(x) = x). Let

PNK(x) :=
⋃
λ>0

λ(π−1
K (x) − x)

be the proximal normal cone. Observe that if E is a Hilbert space with the
inner product 〈 · , · 〉 (K is arbitrary), then 〈v, u〉 ≤ 0 for any v ∈ PNK(x)
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and u ∈ cl convTK(x), i.e. cl convTK(x) ⊂ PNK(x)⊥ (see also [64]); moreover,
CK(x) = N(x,K)⊥ where

N(x,K) = Lim sup
y

K−→ x

PNK(y).

For a general discussion of similar problems — see [58].

Below we shall establish the lower semicontinuity of TK ( · ) as a byproduct
of some approximation issues.

2. Approximations and selections

As mentioned above, from a formal point of view, single-valued maps are
particular cases of set-valued ones. But the significance of single-valued maps
is evidently more essential in the theory of set-valued maps. A lot of set-valued
constructions and issues may be reduced to analogous facts for suitably chosen
single valued single-valued maps or sequences of such maps.

Remark 2.0.1. Let us make here a general remark. In what follows we
shall often make use of partitions of unity. Recall that if X is a paracompact
space, then any open cover A of X admits a partition of unity subordinated to A.
This means that there is a family {λs}s∈S of continuous functions λs:X → [0, 1]
such that {supp λs}s∈S, where suppλs := cl {x ∈ X | λs �= 0}, is a locally-finite
refinement of A, i.e. it is a (closed) covering of X, for each s ∈ S, there is Us ∈ A

such that supp λs ⊂ Us and each point x ∈ X has a neighbourhood V such that
#{s ∈ S | suppλs ∩ V �= ∅} < ∞.

It is well-known that any metric space is paracompact. In particular open
coverings of a metric space admit partitions of unity. However in this case one
can do better. Namely it is easy to show that if X is a metric space, then
there are partitions of unity {λs}s∈S such that, for each s ∈ S, λs is a Lipschitz
function. Given a Lipschitz partition of unity {λs}s∈S, a point ys ∈ E, s ∈ S,
where E is a metric vector space, the function

f(x) :=
∑
s∈S

λs(x)ys, x ∈ X,

is well-defined continuous (this is evident) and locally Lipschitz. The reader is
kindly asked to take this observation into account always when partition of unity
arguments for maps between metric spaces are used.

It is also worthwhile to recall that given a paracompact space and an open
cover A of X, there exists an open point-star-refinement B of A, i.e. an open
cover B of X such that, for each x ∈ X, there is Ux ∈ A, such that the star
st (x,B) :=

⋃{V ∈ B | x ∈ V } ⊂ Ux. Similarly there is an open star-refinement
B of A, i.e. an open cover B of X such that the stars st (V,B) :=

⋃{W ∈ B |
W ∩ V �= ∅}, V ∈ B, refine A (see [37]).
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2.1. Selections. Suppose that ϕ:X � Y is set-valued map between two
sets X and Y . By a section or a selection of ϕ we understand a single-valued map
f :X → Y such that f(x) ∈ ϕ(x) for all x ∈ X. Obviously we are interested in the
existence of selections satisfying additional properties (continuity, measurability
etc.) for the very existence is guaranteed by the axiom of choice. The best know
result in this direction is the celebrated Michael theorem (compare [68]).

Theorem 2.1.1 (Michael, [62]). Suppose that X is a paracompact space, E
is a Fréchet space (a completely metrizable locally convex linear topological space)
and let ϕ:X � E be lower semicontinuous with closed convex values. Then there
is a continuous selection f :X → E of ϕ.

Proof. Choose a translation invariant metric d on E such that balls are con-
vex.

Step 1. Assume that ψ:X � E is lower semicontinuous with convex values.
Let ε > 0. Then there is a continuous f :X → E such that f(x) ∈ B(ψ(x), ε) :=
ψ(x) +B(0, ε) for all x ∈ X. To this end, for any y ∈ E, let Uy := ψ−1(B(y, ε)).
Then A := {Uy}y∈E is an open covering of X. Let {λs}s∈S be a partition
of unity subordinated to A, i.e. for each s ∈ S, there is ys ∈ E such that
suppλs ⊂ ψ−1(B(ys, ε)). We define

f(x) :=
∑
s∈S

λs(x)ys, x ∈ X.

Then f is continuous and, for x ∈ X, let S(x) := {s ∈ S | λs(x) �= 0}. For any
s ∈ S(x), there is y′

s ∈ ψ(x) ∩ B(ys, ε); hence d(y′
s − ys, 0) = d(y′

s, ys) < ε, i.e.
y′
s − ys ∈ B(0, ε). Let y :=

∑
s∈S(x) λs(x)y′

s. The convexity of B(0, ε) implies
that y − f(x) =

∑
s∈S(x) λs(x)(y′

s − ys) ∈ B(0, ε), i.e. d(f(x), y) < ε. The
convexity of ψ(x) implies that y ∈ ψ(x). Therefore

d(f(x), ψ(x)) ≤ d(f(x), y) < ε.

Step 2. We shall construct a sequence (fn:X → E)∞
n=1 of continuous maps

such that

(1) d(fn+1(x), fn(x)) < 2−(n−1);
(2) fn(x) ∈ B(ϕ(x), 2−n) for all x ∈ X and n ∈ N.

The existence of f1 follows from Step 1 with ε = 2−1. Suppose that f1, . . . , fn
are already constructed. Let ψ(x) := ϕ(x) ∩B(fn(x), 2−n) for x ∈ X. Then ψ

has convex values and, by (2), ψ(x) �= ∅. It is easy to prove that ψ is lower
semicontinuous. Again by Step 1, there is fn+1:X → E such that fn+1(x) ∈
B(ψ(x), 2−(n+1)). Then fn+1(x) ∈ B(ϕ(x), 2−(n+1)) and

d(fn+1(x), fn(x)) < 2−n + 2−(n+1) < 2−(n−1).
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This inductively establishes the construction. Condition (1), together with the
completeness of E shows that fn → f uniformly on X. Clearly f is continuous.
By (2), f(x) ∈ ϕ(x) for all x ∈ X. �

The Michael theorem is very strict: if we abandon any of its assumptions,
the existence of continuous sections may not occur (see [62] and [12]).

Remark 2.1.2. In the context of the Michael theorem it is also worthwhile
to observe that it may be shown that if X is a Hausdorff space X, such that any
lower semicontinuous map ϕ:X � E (where E is a Banach space) with closed
convex values possesses a continuous section, then X is paracompact.

The next result also seems to be interesting.

Theorem 2.1.3 (Browder, [16]). Assume that X is a paracompact space,
Y is a topological vector space and let ϕ:X � Y . If, for each x ∈ X, ϕ(x) is
convex and, for each y ∈ Y , ϕ−1(y) is open, then ϕ has a continuous selection.

Proof. Clearly {ϕ−1(y)}y∈Y is an open covering of X. Let {λs}s∈S be a par-
tition of unity subordinated to this cover (i.e. for s ∈ S, there is ys ∈ Y such
that suppλs ⊂ ϕ−1(ys)) and define

f(x) :=
∑
s∈S

λs(x)ys, x ∈ X.

Then f is continuous. Let x ∈ X. If λs(x) �= 0, then x ∈ ϕ−1(ys), i.e. ys ∈ ϕ(x);
the convexity of ϕ(x) shows that f(x) ∈ ϕ(x). �

The question of the existence of Lipschitz continuous selections is more com-
plicated. Perhaps the best-known result is this direction is the following result
(see [52] and strict references therein).

Proposition 2.1.4. If X is a metric space, ϕ:X � R
n is L-Lipschitz with

compact convex values, then it admits a Lipschitz continuous selection (with
a constant L′ depending on L and n: precisely L′ = (n!!/(n− 1)!!)L if n is odd
and L′ = (n!!/(π(n− 1)!!))L if n is even).

The constructive proof involves the so-called Steiner points. Let us mention
that this results has no infinite-dimensional counterpart: Lipschitz selections to
Lipschitz set-valued maps ϕ:X � Y with values in a Banach space Y exist if
and only dimY < ∞.

Finally we mention an important result due to Fryszkowski (compare [14] for
some generalizations).

Theorem 2.1.5 (Fryszkowski, [40]). Suppose that X is a separable metric
space, ϕ:X � L1(T, E), where (T,M, µ) is a complete σ-finite non-atomic mea-
sure space, E is a Banach space and L1(T, E) stands for the space of (Bochner)
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integrable functions T → E, such that, for each x ∈ X, ϕ(x) is a decomposable
set (7). Then ϕ admits a continuous selection f :X → L1(T, E).

2.2. ε-selections. Let X be a topological space and let Y be a metric
space. Given ε > 0, we say that f :X → Y is an ε-selection of a set-valued
map ϕ:X � E if, for each x ∈ X, d(f(x), ϕ(x)) < ε. It is also adequate to say
that f is an ε-uniform approximation of ϕ.

It is possible to characterize set-valued maps that have ε-selections for each
ε > 0. To this end let us pose the following definition.

Definition 2.2.1 (comp. [34]). We say that ϕ:X � Y is sub-lower semi-
continuous at x ∈ X, if for every ε > 0, there is yx ∈ ϕ(x) and a neighbourhood
Ux of x such that yx ∈ B(ϕ(x′), ε) for all x′ ∈ Ux. The map ϕ is sub-lower
semicontinuous if so it is at any x ∈ X.

It is clear that any lower semicontinuous map is sub-lower semicontinuous,
but not conversely.

Example 2.2.2. A map ϕ: R � R given by

ϕ(x) =
{

1 if x �= 1,

[1, 2] if x = 1,

is sub-lower semicontinuous but not lower semicontinuous.

Proposition 2.2.3. Suppose that a map ϕ:X � Y has a continuous ε-
selections for any ε > 0. Then ϕ is sub-lower semicontinuous.

Proof. Let ε > 0 and x ∈ X. There is a continuous ε/3-selection f :X → Y

of ϕ. Hence, there is yx ∈ ϕ(x) such that d(f(x), yx) < ε/3 and a neighbourhood
Ux of x such that d(f(x), f(x′)) < ε/3 if x′ ∈ Ux. Hence, for y ∈ Ux,

d(yx, ϕ(x′)) ≤ d(yx, f(x)) + d(f(x), f(x′)) + d(f(x′), ϕ(x′)) < ε. �

As for the existence we have a result similar to the Michael theorem.

Proposition 2.2.4 (see [34], [72]). If X is paracompact, ϕ:X � E, where
E is a normed space, is sub-lower semicontinuous and has convex values, then,
for each ε > 0, there is a continuous ε-selection f :X → E such that f(x) ∈
convϕ(X) for each x ∈ X.

Proof. Let ε > 0. For any x ∈ X, choose yx ∈ ϕ(x) and a neighbourhood Ux
as in the above definition. Let {λs}s∈S be a partition of unity subordinated to
the covering {Ux}x∈X , i.e. for all s ∈ S there is xs ∈ X such that supp λs ⊂ Uxs .
Let ys := yxs and

f(x) :=
∑
s∈S

λs(x)ys, x ∈ X.

(7) A set K ⊂ L1(T,E) is decomposable if, for each u, v ∈ K and A ∈M, χAu + χT\Av ∈
K, where χA is a characteristic function of A.
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Then f is continuous. If x ∈ X and λs(x) �= 0, then x ∈ Uxs ; hence ys ∈
B(ϕ(x), ε). Choose y′

s ∈ ϕ(x) such that ‖ys − y′
s‖ < ε. Then

d(f(x), ϕ(x)) ≤
∥∥∥∥f(x) −

∑
s∈S

λs(x)y′
s

∥∥∥∥ ≤
∑
s∈S

λs(x)‖ys − y′
s‖ < ε. �

The concept of sub-lower semicontinuity may be easily generalized. If Y is
a uniform space with the uniform structure V , then we say that ϕ:X � Y is
sub-lower semicontinuous if, for any x ∈ X and any V ∈ V , there is yx ∈ ϕ(x)
and a neighbourhood Ux of x such that yx ∈ V (ϕ(x′)) := {y ∈ Y | ∃ y′ ∈
ϕ(x′) (y, y′) ∈ V } for any x′ ∈ Ux. At the same time, given V ∈ V , we say
that f :X → Y is a V -selection of a set-valued map ϕ:X � Y if, for each
x ∈ X, f(x) ∈ V (ϕ(x)). Propositions 2.2.3 and 2.2.4 are still valid (in case of
Proposition 2.2.4 one has to assume that E is a locally convex space). We leave
the easy proofs to the reader (one has to use the properties of uniform spaces
corresponding to the triangle inequality).

The notion of ε-selection (or, more generally, V -selection where V ∈ V ) may
not be sufficient on many occasions. For that reason assume that X, Y are
topological spaces and let W be a neighbourhood (in Y × Y ) of the diagonal
∆Y := {(y, y′) ∈ Y × Y | y = y′}. We say that f :X → Y is a W -selection of ϕ,
if f(x) ∈ W (ϕ(x)) := {y ∈ Y | there exists y′ ∈ ϕ(x) such that (y, y′) ∈ W} for
any x ∈ X.

We say that ϕ is nearly selectionable if, for any neighbourhood W ⊃ ∆Y ,
there is a continuous W -selection of ϕ.

It is clear that if Y is a uniform space and a map ϕ is nearly selectionable,
then it has V -selections for any vicinity V from the uniform structure V in Y .
Hence we have

Proposition 2.2.5. If E is a linear topological space, then a sub-lower semi-
continuous map ϕ:X � E with convex values is nearly selectionable.

To see the main reason to consider W -selections we state

Proposition 2.2.6. Let X, Y , Z be topological spaces, ϕ:X � Y and let
g: Y → Z be continuous. If ϕ is nearly selectionable, then so is the composition
g ◦ϕ.

Proof. Let U be an arbitrary neighbourhood of the diagonal ∆Z. Consider
a map G: Y × Y → Z × Z given by G(y, y′) = (g(y), g(y′)) for y, y′ ∈ Y . The
continuity of G implies that W := G−1(U) is a neighbourhood of ∆Y . Thus if
f :X → Y is a continuous W -selection of ϕ, then g ◦ f is a U -selection of g ◦ϕ.�

Remark 2.2.7. (a) If the spaces Y , Z are uniform and g above is uniformly
continuous, then g ◦ ϕ has V -selections for any vicinity V from the uniform
structure in Z.
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(b) It is easy to show that if Z is a uniform space with the uniform structure
W , ψ: Y � Z has continuousW -selections for any W ∈ W , then the composition
ψ◦ϕ is nearly selectionable provided so is ϕ. To see this take W ∈ W and V ∈ W
such that V ◦V ⊂ W . There is a continuous g: Y → Z such that g(y) ∈ V (ψ(y))
for any y ∈ Y . Hence g ◦ϕ(x) ⊂ V (ψ ◦ϕ(x)) for all x ∈ X. By Proposition 2.2.6,
there is f :X → Y such that g ◦ f(x) ∈ V (g ◦ ϕ(x)) ⊂ W (ψ ◦ ϕ(x)).

2.3. Graph-approximations. As we saw above, selections or ‘near’-sele-
ctions are available for maps satisfying some sorts of lower semicontinuity as-
sumptions. In case of upper semicontinuous maps, it may appear that neither
continuous selections nor ε-selections exist. Hence we shall discuss a different
appropriate concept of a single-valued approximation (see survey [57]).

Definition 2.3.1. Let X, Y be topological spaces, ϕ:X � Y , U be a neigh-
bourhood of Gr(ϕ) (in X × Y ) and A ⊂ X. We say that f :A → Y is a U -
approximation (or U -graph-approximation) of ϕ over A if Gr(f) ⊂ U (8). We say
that ϕ is approximable over A (resp. approximable) if, for each neighbourhood U
of Gr(ϕ), there are U -approximations of ϕ over A (resp. over X).

Note that approximablity of ϕ over A is not the same as approximablity of
the restriction ϕ|A of ϕ to A: it is easy to provide counterexamples.

Some relations between graph-approximations and ε-selections are show in
the following result (9).

Proposition 2.3.2. Suppose that X is a topological space, A ⊂ X, Y is
a metric space and ϕ:X � Y .

(a) If X is paracompact, ϕ is upper semicontinuous with compact values,
then for any neighbourhood U of Gr(ϕ), there is a function ε:X →
(0,∞) such that any ε( · )-selection (i.e a map f :A → Y such that
f(x) ∈ B(ϕ(x), ε(x)) for x ∈ A) is a U -approximation.

(b) If ϕ is H-lower semicontinuous, the for any continuous ε:X → (0,∞),
there is a neighbourhood U of Gr(ϕ) such that any U -approximation
f :A → Y is an ε( · )-selection.

Proof. (a) Fix x ∈ X and a neighbourhood U of Gr(ϕ). Then ϕ(x) ⊂ U (x).
There is εx > 0 and a neighbourhood Ux of x such that Ux × B(ϕ(x), 2εx) ⊂ U
since ϕ(x) is compact. In particular, for any y ∈ Ux, B(ϕ(x), 2εx) ⊂ U (y). By
the upper semicontinuity, we may assume without loss of generality that, for
y ∈ Ux, ϕ(y) ⊂ B(ϕ(x), εx). Consider a partition of unity {λj}j∈J subordinated
to the covering {Ux}x∈X , i.e. for each j ∈ J , there is xj ∈ X such that suppλj ⊂

(8) Observe that if Gr(f) ⊂ U is and only if f(x) ∈ U(x) := {y ∈ Y | (x, y) ∈ U} for any
x ∈ X.

(9) Some of results given below are new (or at least they are new in the provided general

context); others are taken mainly from [56].
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Uj := Uxj . For j ∈ J , let εj := εxj and define

ε(x) :=
∑
j∈

λj(x)εj, x ∈ X.

It is clear that ε is continuous and ε(x) > 0 for all x ∈ X.
Let x ∈ X. There is j ∈ J such that λj(x) > 0 (i.e. x ∈ Uj) and ε(x) ≤ εj .

Hence B(ϕ(xj ), 2εj) ⊂ U (x) and ϕ(x) ⊂ B(ϕ(xj ), εj). Therefore

B(ϕ(x), ε(x)) ⊂ B(ϕ(xj), ε(x) + εj) ⊂ B(ϕ(xj), 2εj) ⊂ U (x).

If f :A → Y is an ε( · )-selection, then f(x) ∈ B(ϕ(x), ε(x)) ⊂ U (x) for any
x ∈ A.

(b) For any (z, y) ∈ Gr(ϕ), let

U(z, y) = [ε−1(ε(z)/2,∞) ∩ Uz ] × B(y, ε(z)/4)

where Uz is a neighbourhood of z such that h(ϕ(z), ϕ(x)) < ε(z)/4 for any
x ∈ Uz (Uz exists in view of H-lower semicontinuity of ϕ). Clearly U(z, y) is
open neighbourhood of (z, y). Put

U :=
⋃

(z,y)∈Gr(ϕ)

U(z, y).

Then U is a neighbourhood of Gr(ϕ). Suppose that f :A → Y is a U -approxi-
mation of ϕ and let x ∈ A. Then (x, f(x)) ∈ U , i.e. there is (z, y) ∈ Gr(ϕ) such
that (x, f(x)) ∈ U(z, y). This means that ε(z)/2 < ε(x), h(ϕ(z), ϕ(x)) < ε(z)/4
and f(x) ∈ B(y, ε(z)/4). Hence y ∈ ϕ(z) ⊂ B(ϕ(x), ε(z)/4) and

d(f(x), ϕ(x)) ≤ d(f(x), y) + d(y, ϕ(x)) < 2ε(z)/4 < ε(x). �

The last result implies that any approximable H-lower semicontinuous map
(or lower semicontinuous with compact values) has ε( · )-selections (resp. ε-se-
lections) for any continuous function ε:X → (0,∞) (resp. any ε > 0). This
also means that in case of continuous maps with compact values the concepts
ε-selections and U -approximations coincide in a sense.

Apart from U -approximations (they may be studied in case of maps acting
between topological spaces), it makes sense to consider ε( · )-approximations.

Definition 2.3.3. Suppose X, Y are metric spaces, A ⊂ X and ϕ:X � Y .
We say that f :A → Y is an ε( · )-approximation of ϕ over A if, for each x ∈ A,

f(x) ⊂ B(ϕ(B(x, ε(x))), ε(x)).

In particular, if ε > 0, then f :A → Y is an ε-approximation if, for each x ∈ A,
f(x) ∈ B(ϕ(B(x, ε)), ε). One says that ϕ is weakly approximable over A if, for
each ε > 0, ϕ admits continuous ε-approximations.

Its is clear that if ϕ is approximable, then it is weakly approximable.
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To see the immediate connection of ε( · )-approximations and U -approxima-
tions, let ε:X → (0,∞) be continuous. We define a particular neighbourhood U
of Gr(ϕ), namely put

U (ε) :=
⋃

(x,y)∈Gr(ϕ)

B((x, y), ε(x))

where on X × Y we consider the max-metric, i.e. B((x, y), ε(x)) := {(x′, y′) ∈
X × Y | max{dX(x, x′), dY (y, y′)} < ε(x)}.

Proposition 2.3.4.

(a) If f :A → Y is an ε( · )-approximation of ϕ over A ⊂ X if and only if f
is a U (ε)-approximation over A.

(b) If ϕ is upper semicontinuous with compact values, then for any neigh-
bourhood U of Gr(ϕ), there is a continuous function ε:X → (0,∞)
such that if f :A → Y is an ε( · )-approximation over A, the f is a U -
approximation of ϕ over A.

Proof. Fix a neighbourhood U of Gr(ϕ). The compactness of values and the
upper semicontinuity of ϕ implies that, for each x ∈ X, there is rx > 0 such that

B(x, rx) ×B(ϕ(B(x, 2rx)), rx) ⊂ U .

Let {λj}j∈J be a partition of unity subordinated to the covering {B(x, rx)}x∈X ,
i.e. for any j ∈ J , there is xj ∈ X such that suppλj ⊂ B(xj , rj) where rj := rxj .
We put

ε(x) :=
∑
j∈J

λj(x)rj, x ∈ X.

Suppose that f :A → Y be an ε( · )-approximation of ϕ. For x ∈ X, there is
j ∈ J such that λj > 0 (thus x ∈ B(xj , rj) and ε(x) ≤ rj. Since Gr(f) ⊂
O(Gr(ϕ), ε), there is a point (x′, y′) ∈ Gr(ϕ) such that d(x, x′) < ε(x) and
d(y′, f(x)) < ε(x). Thus x′ ∈ B(xj , 2rj), y′ ∈ ϕ(x′) ⊂ ϕ(B(xj , 2rj)) and f(x) ∈
B(ϕ(B(xj , 2rj)), rj). This implies that

(x, f(x)) ∈ B(xj , rj) × B(ϕ(B(xj , 2rj)), rj) ⊂ U . �

Remark 2.3.5. (a) If a neighbourhood U of Gr(ϕ) is such that, for each
x ∈ A, there is δx > 0 such thatB(x, δx)×B(ϕ(x), δx) ⊂ U , then the compactness
of values is not necessary to obtain the existence of a continuous ε( · ) such that
ε( · )-approximations are U -approximations.

(b) If X is a compact metric space, A ⊂ X is closed, then to each neigh-
bourhood U of Gr(ϕ) there corresponds a number δ > 0 such that any δ-
approximation of ϕ over A is a U -approximation over A. Indeed, if ε:X → (0,∞)
is a continuous function that exists in view of the above proposition, then putting
δ := infx∈A ε(x) satisfies the requirements.
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In spite of that fact that U -approximations may be studied in the context of
topological spaces (not necessarily metric ones), the use of this sort of approx-
imations also in metric spaces (in opposition to the use of ε-approximations or
ε( · )-approximations) stems e.g. from the following facts (comp. [56], [57]).

Proposition 2.3.6. If Let X, Y are topological spaces, ϕ:X � Y is approx-
imable over A ⊂ X and g: Y → Z, where Z is a topological space, is continuous,
then the composition g ◦ ϕ is approximable over A.

Proof. Let U be an arbitrary neighbourhood of Gr(g ◦ ϕ). Let G:X × Y →
X×Z be given by G(x, y) := (x, g(y)) for x ∈ X and y ∈ Y . It is easy to see that
W := G−1(U ) is open and Gr(ϕ) ⊂ W . Therefore, given a W -approximation
f :A → Y of ϕ, g ◦ f is a U -approximation of g ◦ ϕ. �

Theorem 2.3.7. Suppose that set-valued maps ϕ:X → Y , ψ: Y � Z are
approximable. If Y is paracompact, ψ is upper semicontinuous with compact
values and ϕ is perfect in the sense that, for each y ∈ Y , ϕ−1(y) is compact
and ϕ(B) is closed whenever B ⊂ X is closed ( 10), then ψ ◦ ϕ is approximable.
Precisely: if A ⊂ X, then, for any neighbourhood U of Gr(ψ ◦ ϕ), there are
neighbourhoods W of Gr(ϕ) and V of Gr(ψ) such that V ◦ W ⊂ U ; hence g ◦ f
is a U -approximation of ψ ◦ ϕ over A provided f :A → Y is a W -approximation
over A of ϕ and g: Y → Z is a V -approximation of ψ.

Proof. Let U be a neighbourhood of Gr(ψ ◦ ϕ). For each y ∈ Y , the set
ϕ−1(y) × ψ(y) is closed and

ϕ−1(y) × ψ(y) ⊂ Gr(ψ ◦ ϕ) ⊂ U .

Since ϕ−1(y) and ψ(y) are compact, there are neighbourhoods My of ϕ−1(y)
(in X) and Ny of ψ(y) (in Z) such that

My ×Ny ⊂ U .

Observe now that ϕ−1 is upper semicontinuous in the sense that given a clo-
sed B ⊂ X, (ϕ−1)−1(B) = ϕ(B) is closed; this, together with the upper semi-
continuity of ψ and the paracompactness of Y , implies that there is a locally
finite open covering {Ly}y∈Y of Y such that

ϕ−1(clLy) ⊂ My , ψ(clLy) ⊂ Ny.

We define relations U ⊂ Y ×X and V ⊂ Y × Z by specifying, for y ∈ Y ,

W (y) :=
⋂

{Mw | w ∈ Y and y ∈ clLw},

V (y) :=
⋂

{Nw | w ∈ Y and y ∈ clLw}.

(10) This terminology agrees with the usual one.
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Let y ∈ Y . Then W (Ly) ⊂ My . Indeed: if z ∈ Ly, then W (z) ⊂ My. Analo-
gously V (Ly) ⊂ Ny. Moreover, ϕ−1(y) ⊂ W (y) and ψ(y) ⊂ V (y). Indeed, for
example, if w ∈ Y and y ∈ clLw, then ϕ−1(y) ⊂ ϕ−1(clLw) ⊂ Mw (analogously
for ψ). Therefore ϕ−1 ⊂ W and Gr(ψ) ⊂ V .

We shall see that W and V are open (in Y × X and Y × Z, respectively).
The local finitness of {Lw}w∈Y implies that, for each y ∈ Y , W (y) is open in
X and Hy := Y \ ⋃{clLw | w ∈ Y and y �∈ clLw} is an open neighbourhood
of y (in Y ). We claim that Hy × W (y) ⊂ W . The definition of Hy implies
that, for any v ∈ Hy: if w ∈ Y and v ∈ clLw, then y ∈ clLw. It follows that
W (y) ⊂ W (v) for each v ∈ Hy. This establishes our claim and implies that
W =

⋃
y∈Y Hy × W (y), i.e. W is open. Similarly we show that V is open.

We have an open covering {Ly}y∈Y of Y , open sets W ⊂ Y ×X and V ⊂ Y ×Z
such that ϕ−1 ⊂ W and Gr(ψ) ⊂ V ; W (Ly) ⊂ My and V (Ly ) ⊂ Ny for all y ∈ Y .
Thus, for each y ∈ Y , there is w ∈ Y such that y ∈ Lw; then

W (y) × V (y) ⊂ W (Lw) × V (Lw) ⊂ Mw ×Nw ⊂ U .

Hence V ◦ W −1 ⊂ U .

Clearly Gr(ϕ) ⊂ W −1 (obviously W −1 is open in X×Y ) and, again, Gr(ψ) ⊂
V . If f :X → Y is a W −1-approximation of ϕ and g: Y → Z is a V -approximation
of ψ, then Gr(g ◦ f) ⊂ V ◦ W −1 ⊂ U , i.e. g ◦ f is a U -approximation of ψ ◦ ϕ. �

Remark 2.3.8. (a) If X, Y , Z and ψ are as above and g:X → Y is perfect,
then ψ ◦ g is approximable. Moreover, for any neighbourhood U of Gr(ψ ◦ g),
there is a neighbourhood V of Gr(ψ) such that {(x, z) ∈ X×Z | (g(x), z) ∈ V } =
V ◦ g ⊂ U .

(b) Sometimes we would like to consider a composition ψ◦ϕ, where ψ is upper
semicontinuous with merely closed values. The fact analogous to Theorem 2.3.7
holds true provided the initial neighbourhood U of Gr(ψ ◦ϕ) is thick. Generally
speaking we say that a neighbourhood U of the graph Gr(ϕ) of some set-valued
map ϕ:X → Y between Hausdorff spaces X and Y is thick if, for each x ∈ X,
there are neighbourhoods Ux of x and Vx of ϕ(x) such that Ux ×Vx ⊂ U . Let us
show the assertion. By inspection of the proof of Theorem 2.3.7, we see that the
only instance when compactness of values of ψ was used was the moment when
we establish the existence of neighbourhoods My and Ny of ϕ−1 and ψ(y), y ∈ Y ,
respectively, such that My ×Ny ⊂ U . Let us make it under the assumption that
U is a thick neighbourhood of Gr(ψ ◦ ϕ). Take y ∈ Y and x ∈ ϕ−1(y). Then
there are neighbourhoods Ux of x and Vx of ψ ◦ ϕ(x) such that Ux × Vx ⊂ U .
Since y ∈ ϕ(x), ψ(y) ⊂ ψ ◦ ϕ(x) ⊂ Vx. The compactness of ϕ−1(y) implies that
there are points x1, . . . , xn ∈ ϕ−1(y) such that My :=

⋃n
i=1 Uxi ⊃ ϕ−1(y). Let

Ny :=
⋂n
i=1 Vxi . Then ψ(y) ⊂ Ny and My ×Ny ⊂ U .
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Example 2.3.9. Let X, Y be metric spaces, ϕ:X � Y and let ε:X →
(0,∞). Then

U (ε) :=
⋃

(x,y)∈Gr(ϕ)

B((x, y), ε(x))

is a thick neighbourhood of Gr(ϕ). Indeed, for each x ∈ X,

B(x, ε(x)) × B(ϕ(x), ε(x)) ⊂ U (ε).

This example sheds new light onto Proposition 2.3.4 and Remark 2.3.5(a). Ob-
serve that if ϕ has compact values, then each neighbourhood of Gr(ϕ) is thick.

Corollary 2.3.10. If X is compact, Y is paracompact, ϕ:X � Y , ψ: Y �
Z are approximable and upper semicontinuous with compact values, then ψ ◦ϕ is
approximable. If, additionally, X, Y , Z are metric spaces, then for each ε > 0,
there is δ > 0 such that given δ-approximations f :X → Y , g: Y → Z of ϕ and ψ,
respectively, g ◦ f is an ε-approximation of ψ ◦ ϕ.

This follows immediately from Theorem 2.3.7 since ϕ−1 is upper semicontin-
uous in the above sense.

The reader will easily formulate and prove a corresponding result concerning
the existence of U -approximations of ψ ◦ϕ when ψ is upper semicontinuous with
closed values and U is a thick neighbourhood of Gr(ψ ◦ ϕ).

As for the existence of U -approximations, we have the following fundamental
result.

Theorem 2.3.11 (Cellina, [18]). Suppose that X is a paracompact space,
A ⊂ X is closed, E is a locally convex space and ϕ:X � E is upper semicon-
tinuous. If U is an open neighbourhood of Gr(ϕ) such that, for any x ∈ A, there
are a neighbourhood Ux of x and a convex neighbourhood Vx of ϕ(x) such that
Ux × Vx ⊂ U (11), then ϕ admits a U -approximation over A.

Proof. For any x ∈ A, take Ux and Vx as above. Diminishing Ux if necessary,
we may assume that Ux is open and ϕ(Ux) ⊂ Vx. Let B be an open star-
refinement of the cover A := {Ux}x∈A of A. Now let {λs}s∈S be a partition of
unity subordinated to B, i.e. for each s ∈ S, suppλs ⊂ Ws for some Ws ∈ B.
Choose ys ∈ ϕ(Ws) and define

f(x) :=
∑
s∈S

λs(x)ys, x ∈ A.

Clearly f is well-defined and continuous. We shall show that f is a U -approxi-
mation of ϕ over A. Take x ∈ A and let S(x) := {s ∈ S | λs(x) �= 0}, then
f(x) =

∑
s∈S(x) λs(x)ys. If s ∈ S(x), then x ∈ suppλs ⊂ Ws ⊂ st (Ws,B) ⊂ Uy

for some y ∈ A; thus ys ∈ ϕ(Ws) ⊂ ϕ(Uy) ⊂ Vy. Therefore f(x) ⊂ Vy because
Vy is convex, i.e. (x, f(x)) ∈ Uy × Vy ⊂ U . �

(11) So again we have a thickness of U of sorts here.
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Theorem 2.3.11 does not hold true for an arbitrary neighbourhood U of Gr(ϕ)
even if values of ϕ are convex and closed. For instance, if ϕ: [0,∞) � R is given
by ϕ(x) = {1/x} for x > 0 and ϕ(0) = [0,∞), then ϕ has closed convex values
and is upper semicontinuous, but it has no continuous U -approximations when
U = {(x, y) ∈ [0,∞) × R | 1/2 < xy < 2 or 3xy < 1}. Observe that the
constructed neighbourhood is not thick.

However, if ϕ:X � E is upper semicontinuous with compact convex values,
the ϕ is approximable over A. Indeed, let U be an arbitrary neighbourhood
of Gr(ϕ); then U is thick, i.e. for any x ∈ A, there are open neighbourhoods Ux
of x and V ′

x of ϕ(x) such that Ux × V ′
x ⊂ U . Since ϕ(x) is compact, there is

a convex neighbourhood V of the origin in E such that Vx := ϕ(x) + V ⊂ V ′
x.

Obviously Ux × Vx ⊂ U and Vx is convex. Therefore Theorem 2.3.11 applies.
In the same spirit we have

Corollary 2.3.12. If X is a metric space and E is a locally convex metric
space (e.g. a normed space), ϕ:A � E is upper semicontinuous with convex
values, then for each ε:X → (0,∞), there exist an ε( · )-approximation of ϕ
over A.

Proof. In E we choose a translation invariant metric such that balls are
convex. Let again U (ε) :=

⋃
(x,y)∈Gr(ϕ) B((x, y), ε(x)). If x ∈ A, then Ux × Vx ⊂

U where Ux := B(x, ε(x)) and Vx := B(ϕ(x), ε(x)). The convexity of ϕ(x)
implies that Vx is a convex neighbourhood of ϕ(x). The assertion follows from
Proposition 2.3.4(a) �

Remark 2.3.13. Observe that in course of the proofs of our existence results
2.2.4, 2.3.11 and 2.3.12, the existing ‘almost’ selections and graph-approxima-
tions of a map ϕ:X � E take values in convϕ(X). Therefore, if E is complete
and ϕ is compact, then so are these single-valued approximations.

Let us end this section mentioning that there are some other concepts of
graph-approximations (see e.g. [66]). For instance, suppose that A and B are
open coverings of Hausdorff spaces X and Y , respectively. We say that f :X → Y

is A × B-approximation of ϕ:X � Y if, for each p ∈ Gr(f), there is q ∈ Gr(ϕ)
such that p and q lie in same element of the cover A × B := {U × V | U ∈
A, V ∈ B} of X × Y . It is clear that if U :=

⋃{W ∈ A × B | W ∩ Gr(ϕ) �= ∅},
then U is a neighbourhood of Gr(ϕ) and each A × B-approximation of ϕ ia a U -
approximation. Observe that the constructed neighbourhood U is thick. Indeed,
for each x ∈ X, Ux × Vx ⊂ U , where Ux := st (x,A) and Vs := st (ϕ(x),B) :=⋃{V ∈ B | V ∩ ϕ(x) �= ∅}.

As indicated in Remark 2.3.8(a), applications of this less general concept
of a graph-approximation being valid for not necessarily metrizable space may
prove useful when dealing with set-valued maps having noncompact values. In
metrizable spaces the use of ε( · )-approximations seems to be totally satisfactory.
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2.4. Relative selections an approximations. Let A ⊂ X, ϕ:X � Y be
a set-valued map and suppose that f :X → Y is a partial selection f :A → Y

of ϕ, i.e. f(x) ∈ ϕ(x) for x ∈ A. The problem is whether there is an extension
F :X → Y of f |A such that F (x) ∈ ϕ(x) for x ∈ X.

Corollary 2.4.1. If A is closed in a paracompact space X, Y is a complete
metric locally convex space, then any continuous partial selection f :A → Y of
a lower semicontinuous set-valued map ϕ:X � Y with closed convex values
admits a continuous extension F :X → Y such that F is a selection of ϕ.

Proof. Consider a set-valued map Φ:X � Y given by

Φ(x) =
{ {f(x)} if x ∈ A,

ϕ(x) if x �∈ A.

It is easy to see that Φ is lower semicontinuous with closed convex values; hence
— in view of the Michael theorem — its admits a continuous selection F :X → Y .
Evidently F |A = f . �

As it is easy to see a similar result for ε-selections of sub-lower semicontinuous
maps does not hold true. However:

Proposition 2.4.2. If X is a metric space, A ⊂ X is closed, ϕ:X � Y ,
where Y is a normed space, is sub-lower semicontinuous, has convex values and
ϕ is H-lower semicontinuous at each point a ∈ A, then for any ε > 0 and
0 < δ < ε any continuous partial δ-selection f :A → Y of ϕ admits a continuous
extension F :X → Y being an ε-selection of ϕ.

Proof. Fix ε > 0 and δ ∈ (0, ε). Let h:X → Y be a continuous extension of
a δ-selection f :A → Y of ϕ|A (existing in view of the Dugundji theorem). The
H-lower semicontinuity of ϕ|A implies that, for each a ∈ A, there is δ(a) > 0 such
that ϕ(a) ⊂ B(ϕ(x), ρ), where ρ := (ε − δ)/2, provided d(x, a) < δ(a). On the
other hand, for each a ∈ A, there is 0 < η(a) ≤ δ(a) such that ‖h(x)−f(a)‖ < ρ

for x ∈ B(a, η(a)). Let
V =

⋃
a∈A

B(a, η(a)).

Then V is an open neighbourhood of A. Let x ∈ V ; there is a ∈ A such
that d(x, a) < η(a) and, hence, ϕ(a) ⊂ B(ϕ(x), ρ), ‖h(x) − f(a)‖ < ρ and
f(a) ∈ B(ϕ(a), δ). Therefore

g(x) ∈ B(f(a), ρ) ⊂ B(ϕ(a), ρ+ δ) ⊂ B(ϕ(x), 2ρ+ δ) = B(ϕ(x), ε).

In other words, h|V is an ε-selection of ϕ|V .
In view of the sub-lower semicontinuity, there is an ε-selection g:X → Y

of ϕ. Take a partition of unity {λ1, λ2} subordinated to the cover {V,X \ A}
of X, i.e. supp λ1 ⊂ V and suppλ2 ⊂ X \A. Define

F (x) = λ1(x)h(x) + λ2(x)g(x), x ∈ X.
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Then F is continuous, F |A = h|A = f and, for x ∈ X, h(x), g(x) ∈ B(ϕ(x), ε).
The convexity of B(ϕ(x), ε) implies that F (x) ∈ B(ϕ(x), ε). �

It is clear that this result stays true if we replace a normed space Y by
an arbitrary locally convex space and ε-selections by V -selections, where V is
a neighbourhood of the origin in Y .

Let us now state a general result concerning ε-approximations (we restrict
ourselves to ε( · )-approximations and leave to the reader generalizations to non-
metrizable case).

Theorem 2.4.3. Let X be a metric space, A ⊂ X be closed, E a normed
space and suppose that ϕ:X � E is upper semicontinuous with convex values.
Let a function ε:X → (0,∞) be continuous. Then:

(a) For any continuous function δ:X → (0,∞) such that δ < ε, any contin-
uous partial δ( · )-selection f :A → E may be extended to a continuous
ε( · )-approximation F :X → E of ϕ.

(b) There exists a continuous function ρ:X → (0,∞) such that any contin-
uous ρ( · )-selection f :A → E of ϕ over A may be extended to a contin-
uous ε( · )-approximation F :X → E.

Proof. Choose an arbitrary continuous function δ:X → (0,∞) such that
δ(x) < ε(x) on X.

Step 1. There exists a continuous function η:X → (0,∞) such that, for each
x ∈ X, there is x′ ∈ X such that d(x′, x) < ε(x) and

B(ϕ(B(x, η(x))), δ(x)) ⊂ B(ϕ(x′), ε(x)).

To see this take a continuous function µ:X → (0,∞) such that 2µ(x)+δ(x) <
ε(x) on X and, for x ∈ X, choose rx ∈ (0, 2µ(x) + δ(x)) such that

ϕ(B(x, 2rx)) ⊂ B(ϕ(x), µ(x))

and
B(x, rx) ⊂ δ−1((0, µ(x) + δ(x))) ∩ ε−1((2µ(x) + δ(x),∞)).

Let {λs}s∈S be a partition of unity subordinated to the cover {B(x, rx)}x∈X , i.e.
for each s ∈ S, there is xs ∈ X such that supp λs ⊂ B(xs, rs) where rs := rxs .
Put

η(x) :=
∑
s∈S

λs(x)rs, x ∈ X.

Then η is well-defined and continuous. Let x ∈ X. There exists s ∈ S such
that λs(x) �= 0 and η(x) ≤ rs. Clearly x ∈ B(xs, rs); hence d(x, xs) < rs <

2µ(xs) + δ(xs) < ε(x). If y ∈ B(x, η(x)), then d(y, x) < η(x) < rs and, hence,
d(y, xs) ≤ d(y, x) + d(x, xs) < 2rs. Therefore B(x, η(x)) ⊂ B(xs, 2rs) and

ϕ(B(x, η(x))) ⊂ ϕ(B(xs, 2rs)) ⊂ B(ϕ(xs), µ(xs)).
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Hence

B(ϕ(B(x, η(x))), δ(x)) ⊂ B(ϕ(xs), µ(xs) + δ(x)) ⊂ B(ϕ(xs), ε(x))

because x ∈ B(xs, rs) and, thus, δ(x) < µ(xs) + δ(xs) and µ(xs) + δ(x) <

2µ(xs) + δ(xs) < ε(x). Putting x′ := xs we end the proof of Step 1.
Step 2. For any (x, y) ∈ X ×E, let

U(x, y) := [η−1((η(x)/2,∞)) ∩B(x, η(x)/2)] ×D(y, δ(x))

and
U :=

⋃
(x,y)∈Gr(ϕ)

U(x, y).

Then U is a neighbourhood of Gr(ϕ).
(i) Observe that if f :A → E is a δ( · )-selection of ϕ, then Gr(f) ⊂ U , i.e. f

is a U -approximation of ϕ over A.
(ii) It is easy to see that if, for some set W ⊂ X, f :W → E is a U -

approximation of ϕ over W , then, for each x ∈ W ,

f(x) ∈ B(ϕ(B(x, η(x))), δ(x)).

(iii) By Proposition 2.3.4(b), there exists a continuous function ρ:X → (0,∞)
such that if f :A → E is a ρ( · )-approximation of ϕ over A, then f is a U -
approximation of ϕ over A.

Step 3. Now let f :A → E be an arbitrary continuous δ( · )-selection (resp.
ρ( · )-approximation) of ϕ|A (resp. of ϕ over A). By condition (i) (resp. (iii)), f is
a U -approximation of ϕ over A. By the Dugundji theorem, there is a continuous
extension g:X → E of f (i.e. g|A = f). Since U is open in X × E, there
exists a neighbourhood W of A such that, for x ∈ W , (x, g(x)) ∈ U . Hence, by
condition (ii), for x ∈ W , g(x) ∈ B(ϕ(B(x, η(x))), δ(x)).

Let V be an open neighbourhood of A such that A ⊂ V ⊂ cl V ⊂ W and
consider a partition of unity {α, β} subordinated to the cover {W,X \ cl V }, i.e.
α, β:X → [0, 1] are continuous function with suppα ⊂ W , suppβ ⊂ X \ cl V
and α(x) + β(x) = 1 for all x ∈ X. Finally let h:X → E be a continuous U -
approximation of ϕ (existing in view of Theorem 2.3.11. By (ii), for each x ∈ X,
h(x) ∈ B(ϕ(B(x, η(x))), δ(x)). Let F :X → E be given by

F (x) = α(x)g(x) + β(x)h(x), x ∈ X.

Then F |A = f . If x ∈ X and α(x) �= 0, then x ∈ W and

g(x) ∈ B(ϕ(B(x, η(x))), δ(x)).

Hence, for such x, by Step 1, g(x), h(x) ∈ B(ϕ(x′), ε(x)) for some x′ with
d(x′, x) < ε(x). Thus, by convexity

F (x) ∈ B(ϕ(x′), ε(x)) ⊂ B(ϕ(B(x, ε(x))), ε(x)).
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If α(x) = 0, then F (x) = h(x) ∈ B(ϕ(B(x, ε(x))), ε(x)), too. This completes the
proof. �

The importance of Theorem 2.4.3 is reflected by the following corollary.

Corollary 2.4.4. Let X be a metric space, E a normed space and ϕ:X � E

an upper semicontinuous map with convex values. To any continuous function
ε:X → (0,∞), there corresponds a continuous function ρ:X → (0,∞) such that
any two continuous δ( · )-approximations f, g:X → E are homotopic through
a continuous homotopy h:X×[0, 1] → E such that, for each t ∈ [0, 1], h(·, t):X →
E is an ε( · )-approximation of ϕ.

Proof. Let X′ := X×[0, 1] and let π:X′ → X be the projection. Define ϕ′ :=
ϕ ◦ π:X′ � E. It is clear that ϕ′ is upper semicontinuous with convex values.
The set A′ := X × {0, 1} is closed in X′. Given a continuous ε:X → (0,∞),
define ε′:X′ → (0,∞) putting ε′(x, t) := ε(x) for any x ∈ X and t ∈ [0, 1]. There
is a function δ′:X′ → (0,∞) such that any continuous δ′( · )-approximation of ϕ′

over A′ extends to a continuous ε′( · )-approximation of ϕ′ (over X′). Let

δ(x) := min{δ′(x, 0), δ′(x, 1)}, x ∈ X,

consider two continuous δ( · )-approximations f, g:X → E of ϕ and let h′:A′ → E

be given for by

h′(x, t) =
{
f(x) if x ∈ X, t = 0,

g(x) if x ∈ X, t = 1.
Then h′ is a δ′( · )-approximation of ϕ′ over A′. There is a continuous extension
h:X × [0, 1] → E of h′ such that h is an ε′( · )-approximation of ϕ′. It is easy to
see that, for each t ∈ [0, 1], h(·, t) is an ε( · )-approximation of ϕ. �

Remark 2.4.5. (a) One says that a map ϕ:X � Y , where X, Y are met-
ric spaces, is weakly homotopy approximable over A if, for any ε > 0, there
is a continuous function δ:X → (0,+∞) such that any two continuous δ( · )-
approximations f, g:A → Y of ϕ over A may be joined by a continuous homo-
topy h:A × [0, 1] → Y such that h(·, t) is a ε-approximation of ϕ over A (12).
Corollary 2.4.4 states actually that an upper semicontinuous map ϕ:X � E,
where X is a metric space and E is a normed space, with convex values is weakly
homotopy approximable.

(b) By inspection of the proof of Theorem 2.4.3, we see that if ϕ is compact,
then for any continuous ε( · ), the constructed ρ( · ) is such that any compact
continuous ρ( · )-approximation f :A → E of ϕ over A extends to a continuous
compact ε( · )-approximation providedE is a Banach space. This follows from the

(12) Analogously a map ϕ: X � Y , between topological spaces, is homotopy approximable
over A if, for any neighbourhood U of Gr(ϕ), there is a neighbourhood V of Gr(ϕ) such that

any two V-approximations of ϕ over A may be joined by a continuous homotopy whose fibres

are U-approximations over A.
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fact that if f is a continuous compact ρ( · )-approximation of ϕ over A (such ap-
proximations exist in view of Remark 2.3.13 and f(A) ⊂ K, where K is compact
convex, then there is a continuous extension g:X → E of f such that g(X) ⊂ K.
On the other hand, again in view of Theorem 2.3.11 and Remark 2.3.13, there is
a compact continuous U -approximation of ϕ. Hence F , as a convex combination
of compact maps is compact. In particular, if in Corollary 2.4.4 ϕ is compact,
then one may produce a compact homotopy.

2.5. Strict approximations. For simplicity assume now that X, Y are
metric spaces. Given ε > 0 we have considered the existence of continuous ε-
approximations f :X → Y of ϕ:X � Y , i.e. such that Gr(f) ⊂ B(Gr(ϕ), ε). It
is clear that in this case the Hausdorff distance

h(Gr(f),Gr(ϕ)) < ε.

Apart from his first result concerning the existence of ε-approximations of an
upper semicontinuous map ϕ:X � E with convex values in a normed space
E, Cellina has shown that if X has no isolated points, then ϕ admits the strict
ε-approximations, i.e. continuous maps f :X → E such that

dH(Gr(f),Gr(ϕ)) < ε

provided values of ϕ are additionally compact. This very interesting result has
the following generalization due to Brodsky and Semenov.

Theorem 2.5.1 (Cellina, [19]). Let ϕ:X � Y be an upper semicontinuous
map such that, for x ∈ X, ϕ(x) is compact and convex. If X has no isolated
points (or isolated points of X are sent to singletons) and Y is locally contractible,
then for each ε > 0 there is a strict ε-approximation of ϕ.

The proof is fairly complicated and will not be reproduced here.

2.6. Approximations without convexity. Existence results provided in
the above sections concern set-valued maps with convex values. From the view-
point of applications this level of generality is not sufficient. Several results
weakening the usual convexity assumption rely on various notions of generalized
convexity or relaxed convexity (see e.g. [65] and references therein). We shall
not dwell upon these results since they have mostly theoretic interest. Here we
shall discuss rather some aspect of the approximation theory for set-valued maps
whose values satisfy some purely geometric and topological assumptions.

Let Y be a Hausdorff topological space. We say that a closed set A ⊂ Y has
UV n-property in Y (see e.g. [59]), where n ≥ 0 is an integer, if any neighbourhood
U of A (in Y ) contains a neighbourhood V of A such that the inclusion V ↪→ U

is homotopy k-trivial for 0 ≤ k ≤ n, i.e. any continuous map f :Sk → V has
a continuous extension F :Dk+1 → U (13).

(13) Here and in what follows, for k ≥ 0, Bk+1 := {x ∈ Rk | ‖x‖ ≤ 1} is the unit closed

ball in Rk+1 and Sk := ∂Dk+1 is the unit sphere in Rk+1.
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For instance A has UV 0-property in Y if and only if, for each neighbourhood
U of A, there is a neighbourhood V ⊂ U of A such that any two points form V

are joined by a path in U . A point y has UV n-property in Y if and only if Y is
locally k-connected at y for all 0 ≤ k ≤ n.

A closed set A ⊂ Y has a UV ω-property in Y if it has UV n-property in Y

for all integers n ≥ 0.
Finally, we say that A ⊂ Y has UV∞-property in Y if any neighbourhood

U of A contains a neighbourhood V of A such that V is contractible in U (i.e.
there is a continuous map h: V × [0, 1] → U such that, for all x ∈ V , h(x, 0) = x

and h(x, 1) = x0 where x0 ∈ U is a constant).
It is clear that UV ∞-property implies UV ω-property which, in turn, implies

UV n-property for each integer n ≥ 0 (14). It is also clear that properties defined
above are properties of the embedding of a given set in the ambient space Y

rather than of the set A itself. For instance a point y ∈ Y has UV ∞-property
in Y if and only if Y is locally contractible at y; if y is considered as a point of
a different space, then it may loose this property. Therefore it makes sense to
consider corresponding absolute properties. Namely we say that a space A has
UV n-property (where n ≥ 0 is an integer, n = ω or n = ∞), written A ∈ UV n, if
there is a closed embedding of A into an absolute neighbourhood retract Y (15),
i.e. there is a homeomorphism e:A → B where B ⊂ Y is closed, such that B has
UV n-property in Y .

It is easy to prove that A ∈ UV n if and only if A has UV n-property in any
Z ∈ ANR in which A is closed. Moreover, the UV n-property is a homotopy type
invariant, i.e. if spaces A and B have the same homotopy type and A ∈ UV n,
then B ∈ UV n, too.

In what follows we shall often speak of the so-called Rδ-sets (see [53]). We
say that a compact metric space A is an Rδ-set, written A ∈ Rδ, if there is a
decreasing sequence {An}∞

n=1 of compact contractible metric spaces such that
A =

⋂∞
n=1 An. One shows that a space A ∈ Rδ if and only if A is compact

metrizable and A ∈ UV ∞. At this point let us also mention that if A is a closed
subset of Y ∈ ANR, then A ∈ UV ∞ if and only if A is contractible in any of its
neighbourhoods (in Y ).

The class of Rδ-sets (and henceforth of sets having UV ∞-property) is quite
reach: for instance any compact convex subset a normed space and, more gen-
erally, a compact contractible metric space belongs to the class of Rδ-sets.

(14) There is an intermediate property: we say that A ⊂ Y is proximally ∞-connected in

Y (or A ∈ PC∞
Y ) if each neighbourhood U of A contains a neighbourhood V of A such that

the inclusion V ↪→ U is homotopy k-trivial for any integer k ≥ 0. It is clear that if A ∈ PC∞
Y ,

then it has UV ω-property in Y , but — in general — not conversely.
(15) A metric space Y is an ANR if given a metric space Z and a closed subset A ⊂ Z, any

continuous map f :A → Y admits a continuous extension f∗: U → Y onto a neighbourhood U

of A in Z. We write Y ∈ ANR. For details on theory of retracts — see [13] and [46].
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We say that a set-valued map ϕ:X � Y , where X, Y are topological spaces,
is a UV n-valued map, n ≥ 0 is an integer, or n = ω,∞, if, for each x ∈ X, the
set ϕ(x) is closed and has UV n-property in Y . If, additionally, ϕ(x) is compact
for any x ∈ X, then we say that ϕ is UV n-compact-valued map.

We start our discussion of the approximation results for UV n-valued maps
with the following result which slightly generalizes a result due to Grniewicz,
Granas and Kryszewski [47] and [56].

Theorem 2.6.1. Suppose that X is a finite dimensional polyhedron and
dimX = N = n + 1, where n ≥ 0 is an integer. Let X0 be a subpolyhedron
of X, dimX0 = N0. Suppose that ϕ:X → Y is an upper semicontinuous UV n-
compact-valued map. Then, for any neighbourhood U of Gr(ϕ) there is a neigh-
bourhood V of Gr(ϕ) such that any continuous V -approximation f0:X0 → Y

of ϕ over X0 extends to a continuous U -approximation of ϕ. In particular ϕ is
approximable and weakly approximable (16).

Proof. First we shall prove the following lemmata:

Lemma 1. Let ϕ:X → Y be an upper semicontinuous set-valued map and
let X be paracompact. Suppose that, for each x ∈ X, Nx is a neighbourhood
of ϕ(x) in Y and let {Ux}x∈X be an open cover of X such that x ∈ Ux for each
x ∈ X. Then there are an open cover {Lx}x∈X of X and a neighbourhood U of
Gr(ϕ) such that Lx ⊂ Ux for all x ∈ X and U (Lx) ⊂ Nx.

Proof. By upper semicontinuity, for each x ∈ X, there is a neighbourhood
x ∈ Vx ⊂ Ux such that ϕ(Vx) ⊂ Nx. Paracompactness of X implies that
there is a locally finite open covering {Lx}x∈X such that clLx ⊂ Vx ⊂ Ux, i.e.
ϕ(clLx) ⊂ Nx. We define U ⊂ X × Y by saying that, for x ∈ X,

U (x) =
⋂

{Nw | w ∈ X and x ∈ clLw}.

Let x ∈ X. If z ∈ Lx, then U (z) ⊂ Nx: thus U (Lx) ⊂ Nx. Observe that if w ∈ X

and x ∈ clLw, then ϕ(x) ⊂ ϕ(clLw) ⊂ Nw. Thus ϕ(x) ⊂ U (x). This proves
that Gr(ϕ) ⊂ U . Finally it is not difficult to show that U is open (in X × Y ).�

Lemma 2. Let X be a paracompact space, ϕ:X � Y be an upper semicontin-
uous UV n-compact-valued map (n ≥ 0 is an integer) and let U be a neighbourhood
of Gr(ϕ). Then there is a sequence {(U i,Ai)}i≥0 such that:

(a) U i+1 ⊂ U i, i ≥ 0, are (open) neighbourhoods of Gr(ϕ) in X × Y ;
(b) Ai, i ≥ 0, are open covers of X;
(c) for each i ≥ 1 and each U ∈ Ai, there is Uϕ ∈ Ai−1 such that st (U,Ai)

⊂ Uϕ (i.e. Ai is a star-refinement of Ai−1) and, for any 0 ≤ k ≤ n, the
inclusion U i(st (U,Ai)) ↪→ U i−1(Uϕ) is homotopy k-trivial;

(d) for any U ∈ A0 and x ∈ U , U 0(U) ⊂ U (x).

(16) Observe that X (being considered with the CW-topology, i.e. Whitehead topology),

as a finite-dimensional polyhedron, is paracompact (even metrizable).
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Proof. Since Gr(ϕ ◦ idX ◦ idX) = Gr(ϕ), by Theorem 2.37, there are neigh-
bourhoods U 0 of Gr(ϕ) and M of ∆X = Gr(idx) in X ×X such that U 0 ◦ M ◦
M−1 ⊂ U . Let A0 := {M(x) | x ∈ X}. Then A0 is an open cover of X and if
x ∈ M(x′) for some x′ ∈ X, then x′ ∈ M−1(x). Hence

U 0(M(x′)) ⊂ U 0 ◦ M ◦ M−1(x) ⊂ U (x).

This shows property (d).
Now let i ≥ 1 and suppose that a neighbourhood U i−1 of Gr(ϕ) and an open

cover Ai−1 of X have been constructed. Let x ∈ X. Choose Ux ∈ Ai−1 such
that x ∈ Ux. Then ϕ(x) ⊂ U i−1(Ux). Since ϕ(x) has the UV n-property in
Y , there is a neighbourhood Nx of ϕ(x) in Y such that Nx ⊂ U i−1(Ux) and the
inclusion Nx ↪→ U i−1(Ux) is homotopy k-trivial for any 0 ≤ k ≤ n. By Lemma 1,
there is an open cover {Lx} of X and a neighbourhood U i of Gr(ϕ) such that
U i ⊂ U i−1 and, for each x ∈ X, Lx ⊂ Ux and U i(Lx) ⊂ Nx. Finally, let Ai be
the star-refinement of {Lx} It is easy to see that this completes the proof. �

We may pass to the proof of the theorem. Fix a neighbourhood U of Gr(ϕ)
and take a sequence {(U i,Ai)}i≥0 as in Lemma 2. Let V = U N and take a V -
approximation f0:X0 → Y of ϕ over X0.

Suppose that (T, T0) is a triangulation of (X,X0) finer than the covering
AN+1, i.e. the bodies |T | = X, |T0| = X0, T0 is a subcomplex of T and given
a simplex σ in X (i.e. σ ∈ T ), there is V ∈ AN+1 such that σ ⊂ V . For any
0 ≤ k ≤ N , let T k be the k-dimensional skeleton of T (in particular TN = T )
and let Xk := |T k|. Then XN = X.

Assume that, for any k-simplex in X, an element Uσ ∈ AN−k+1 has been
selected such that σ ⊂ Uσ . Then if τ is a face of σ, then Uτ ∩ Uσ �= ∅.

Let σ ∈ T0 be a k-simplex in X0, 0 ≤ k ≤ N . Then

f0(σ) ⊂ U N(σ) ⊂ U N (Uσ) ⊂ U N−k(Uϕσ ).

We shall show now that there exists a continuous extension f :X → Y of f0

such that, for any k-simplex σ (i.e. σ ∈ T k), f(σ) ⊂ U N−k(Uϕσ ). We define f
inductively on skeleta of increasing dimension. Let k ≥ 0 and assume that f has
been defined on the (k− 1)-dimensional skeleton of X (recall that, by definition
T (−1) = ∅). Let σ be an arbitrary k-simplex. Thus f is already defined on ∂σ. If
σ ⊂ X0, then we set f |σ = f0|σ. Assume that σ is not a simplex in X0. If k = 0,
i.e. σ = {v} is a vertex, then we choose f(v) ∈ U N(Uϕv ). Suppose that k ≥ 1.
Then σ = τ0 ∪ τ1 ∪ . . .∪ τk where dim τi = k−1 and τi is a face of σ; hence Uτi ∩
Uσ �= ∅ for all i = 0, . . . , k. For all 0 ≤ i ≤ k, we have Uτi ∈ AN−k+2 and Uτi ⊂
Uϕτi

∈ AN−k+1 (AN−k+2 refines AN−k+1). Hence
⋃k
i=0 U

ϕ
τi

⊂ st (Uσ ,AN−k+1).
By inductive hypothesis, f(τi) ⊂ U N−k+1(Uϕτi

) for all 0 ≤ i ≤ k. Therefore
f(∂σ) ⊂ U N−k+1(st (Uσ ,AN−k+1) and f has a continuous extension onto σ such
that f(σ) ⊂ U N−k(Uϕσ ).
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This ends the proof. Indeed, for any x ∈ X, there is a k-simplex in X such
that x ∈ σ ⊂ Uσ ⊂ Uϕσ . Hence f(x) ∈ U N−k(Uϕσ ). There is U ∈ A0 such that
x ∈ Uϕσ ⊂ U . Thus f(x) ∈ U N−k(U) ⊂ U 0(U) ⊂ U (x). �

If we do not control the dimension of the finite dimensional polyhedron X,
then under the assumption that ϕ:X � Y is an upper semicontinuous UV ω-
valued map we get the same conclusion as concerns the existence of graph-
approximations. It is also worthwhile to note that Theorem 2.6.1 stays true if X
is merely a locally finite-dimensional polyhedron (with the CW-topology); the
proof is similar although much more complicated.

Our next results show how approximation of UV -set-valued maps defined on
polyhedra may be ‘lifted’ to more general spaces. First we formulate the simplest
fact; then we shall discuss ways to generalize it.

Theorem 2.6.2 (see [56]). Let (X,A) be a compact ANR-pair (i.e. X and A
are compact ANRs and A ⊂ X) and let Y be a topological space. If ϕ:X � Y is
an upper semicontinuous UV ω-compact-valued map, then for each neighbourhood
U of Gr(ϕ), there is a neighbourhood V of Gr(ϕ) such that any continuous V -
approximation f :A → Y of ϕ over A extends to a continuous U -approximation
of ϕ. In particular ϕ is approximable and weakly approximable.

Proof. We shall need the following lemma which may be of interest on its
own. �

Lemma 2.6.3. Let (X,A) be an ANR-pair and let ϕ:X � Y , where Y

is topological space, be an upper semicontinuous map with compact values. Let
M := X × {0} ∪A× [0, 1]. For any neighbourhood U of Gr(ϕ), there is a neigh-
bourhood U 0 of Gr(ϕ) with the following property: for every continuous map
g:M → Y such that (x, g(x, t)) ∈ U 0 for all (x, t) ∈ M , there is a continuous
extension G:X × [0, 1] → Y of g such that (x,G(x, t)) ∈ U for all x ∈ X and
t ∈ [0, 1].

Proof. Let U ′ := {(x, t, y) ∈ X × [0, 1]× Y | (x, y) ∈ U }. It is clear that U ′ is
a neighbourhood of Gr(ϕ′) where ϕ′ := ϕ ◦ π and π:X × [0, 1] → X. In view of
Theorem 2.3.7, there are a neighbourhood U ′

0 of Gr(ϕ′) and a neighbourhood N
of the diagonal in (X×[0, 1])2 (being the graph of identity X×[0, 1] → X×[0, 1])
such that U ′

0 ◦ N ⊂ U ′.
Obviously M is a neighbourhood retract of X × [0, 1]; hence there is a re-

traction r:U → M where U is a neighbourhood of M in X × [0, 1]. It is easy to
see that there is a neighbourhood V of M (in X × [0, 1]) such that V ⊂ U and
r(x, t) ∈ N (x, t) for all (x, t) ∈ V .

Again by Theorem 2.3.7 (or rather Remark 2.3.8(a)), and since π is perfect,
there is a neighbourhood U 0 of Gr(ϕ) such that {(x, t, y) ∈ X×[0, 1]×Y | (x, y) ∈
U 0} ⊂ U ′

0. Take g:M → Y such that(x, g(x, t)) ∈ U 0) for (x, t) ∈ M and define
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g′ = g ◦ r|V : V → Y . Then, for all (x, t) ∈ V , (x, t, g′(x, t)) ∈ U ′
0 ◦ N ⊂ U ′; hence

(x, g′(x, t)) ∈ U .

Take any neighbourhood N of A such that N × [0, 1] ⊂ V , an Urysohn function
λ:X → [0, 1] such that λ|A ≡ 1 and λ|X\N ≡ 0 and define G:X × [0, 1] → Y

putting G(x, t) := g′(x, λ(x)t) for x ∈ X and t ∈ [0, 1]. For all (x, t) ∈ X × [0, 1],
(x,G(x, t)) ∈ U and G|M = g. �

Let us pass to the proof of Theorem 2.6.2. Take a neighbourhood U of Gr(ϕ)
and a neighbourhood U 0 of Gr(ϕ) as indicated in the lemma. Since ϕ = ϕ ◦ idX
and (obviously) idx is perfect, by Theorem 2.3.7, there are neighbourhoods W
of Gr(ϕ) (in X×Y ) and N of the diagonal X such that W ◦ N ⊂ U 0. Moreover,
let A be an open cover of X such that, for each U ∈ A and x ∈ U , U ⊂ N (x)
(i.e. A is a refinement of the cover {N (x)}x∈X).

Key Step. Since (X,A) is a compact ANR-pair, there are continuous maps
p: (X,A) → (P,Q) and r: (P,Q) → (X,A), where (P,Q) is a finite polyhedral
pair, such that r◦p and idX are joined by a homotopy h: (X,A)× [0, 1] → (P,Q)
such that the family {h({x}×[0, 1])}x∈X refines A. Moreover, since P is compact
r is perfect (or, equivalently, proper).

The map ϕ ◦ r:P � Y is an upper semicontinuous UV ω-valued map and
Gr(ϕ ◦ r) ⊂ U ′ := {(z, y) ∈ P × Y | (r(z), y) ∈ W }. One sees easily that U ′ is a
neighbourhood of Gr(ϕ ◦ r). In view of Theorem 2.6.1, there is a neighbourhood
V ′ of Gr(ϕ ◦ r) such that any continuous V ′-approximation f ′:Q → Y of ϕ ◦ r
over Q extends to a continuous U ′-approximation F ′:P → Y of ϕ ◦ r.

Again by Remark 2.3.8, there is a neighbourhood V of Gr(ϕ) such that V ⊂ W
and {(z, y) ∈ P × Y | (r(z), y) ∈ V } ⊂ V ′.

Take any continuous V -approximation f :A → Y of ϕ over A and let f ′ :=
f ◦ r. Then f ′:Q → Y is a continuous V ′-approximation of ϕ ◦ r. Hence there is
a U ′-approximation F ′:P → Y of ϕ ◦ r extending f ′. Define g:M := X × {0} ∪
A× [0, 1] → Y by

g(x, t) :=
{
F ′ ◦ p(x) if x ∈ X, t = 0,

f ◦ h(x, t) if x ∈ A, t ∈ [0, 1].

Then g is well-defined and continuous. Moreover, for any(x, t) ∈ M , (x, g(x, t)) ∈
U 0. In view of Lemma 2.6.3, and due to the choice of U 0, we gather that there is
a continuous extension G:X × [0, 1] → Y of g such that (x,G(x, t)) ∈ U for all
(x, t) ∈ X × [0, 1].

Finally let F : =G(·, 1). Then F |A = f and Gr(F ) ∈ U . �
Remark 2.6.4. The most important ingredient of the proof is contained in

the Key Step above: the compactness of X implies that:

(a) for any open cover A of X, X as a compact ANR is A-dominated by
a finite polyhedron (in the sense that there is a finite polyhedron P and



Approximation Methods 101

continuous maps p:X → P and r:P → X such that r◦p is A-homotopic
to idX), and

(b) the existing map r is proper.

It is known that any separable or a locally compact X ∈ ANR, is dominated in the
same sense by a locally finite (hence, locally finite dimensional) polyhedron P .
Therefore if (X,A) is a separable or locally compact ANR-pair, then in view of
the remark given after the proof of Theorem 2.6.1, the assertion of Theorem 2.6.2
stays true.

Analogously to Corollary 2.4.4 we get

Corollary 2.6.5. If X is a compact ANR, ϕ:X � Y i a UV ω-compact-
valued upper semicontinuous map, then for each neighbourhood U of Gr(ϕ), there
exists a neighbourhood V of Gr(ϕ) such that if f, g:X → Y are continuous V -
approximations of ϕ, then there is a continuous homotopy h:X× [0, 1] → Y such
that h( · , 0) = f, h( · , 1) = g and, for each t ∈ [0, 1], h( · , t) is a U -approximation
of ϕ. In other words ϕ is homotopy approximable.

Remark 2.6.6. The reader will easily show the analogues of Theorems 2.6.1,
Theorem 2.6.2 and Corollary 2.6.5 for UV ω-valued maps (i.e. with values being
(closed) sets having the UV ω-property) provided the initial neighbourhoods U
are thick. In particular for such maps ε( · )-approximations always exist; hence
they are weakly approximable and weakly homotopy approximable.

Let us finally mention the following:

Theorem 2.6.7 (see [56]). Let X be an ANR and ϕ:X � Y , where Y

is a metric space, be a UV ω-valued upper semicontinuous set-valued map with
compact values. Then, for any continuous ε:X → (0,∞), there is an ε( · )-
approximation of ϕ.

The proof involves different techniques and will not be reproduced here.

2.7. Other types of approximations. So far we have approximated set-
valued maps by single-valued ones. Sometimes it is also convenient to approxi-
mate, in a sense, set-valued maps by more regular set-valued ones.

We shall start by a slight generalization of the result attributed to de Blasi
and Deimling [32] saying that upper semicontinuous maps may be approximated
from above by continuous maps.

Theorem 2.7.1. Let X be a metric space, E a normed space and ε > 0.
Suppose that ϕ:X � E is H-upper semicontinuous with closed convex values.
For any integer n ≥ 1, there is a H-continuous set-valued map ϕn:X � E with
closed convex values such that:

(a) ϕn(x) ⊂ cl convϕ(X) for every n ≥ 1 and x ∈ X;
(b) for all n ≥ 1, ϕ(x) ⊂ ϕn+1(x) ⊂ ϕn(x) ⊂ B(ϕ(x), ε) for every x ∈ X;
(c) limn→∞ dH(ϕn(x), ϕ(x)) = 0 for any x ∈ X.
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Proof. Take a sequence (rn) such that 3rn+1 < rn for n ≥ 1. For each n ≥ 1
and x ∈ X, let Unx := B(x, rn); clearly x ∈ Unx . Let An := {Unx }x∈X . It is easy
to see that An+1 is a star-refinement of An. More precisely st (Un+1

x ,An+1) ⊂ Unx
for all n ≥ 1 and x ∈ X.

Let {λns }s∈Sn be a partition of unity subordinated to An, i.e. for each s ∈ Sn,
there is Uns ∈ An such that suppλns ⊂ Uns . Let F ns := cl convϕ(st (Uns ,An)).

Define

ϕn(x) := cl
( ∑
s∈Sn

λns (x)F ns

)
for x ∈ X

It is clear that ϕn is H-continuous and has closed convex values. We will show
that the sequence {ϕn}n≥1 has properties enlisted above.

(a) For each x ∈ X, F ns ⊂ cl convϕ(X); hence ϕn(x) ⊂ cl convϕ(X) for any
x ∈ X.

(b) Let n ≥ 1 and x ∈ X. If s ∈ Sn and λns (x) �= 0, then x ∈ Uns . Hence
ϕ(x) ⊂ F ns and ϕ(x) ⊂ ϕn(x). Now we shall show that ϕn+1(x) ⊂ ϕn(x). Let
y ∈ ∑

s∈Sn+1
λn+1
s (x)F n+1

s . If s ∈ Sn+1 and λn+1
s (x) �= 0, then x ∈ Un+1

s and
there is V ∈ An such that x ∈ Un+1

s ⊂ st (Un+1
s ,An+1) ⊂ V . Suppose that

t ∈ Sn and λnt (x) �= 0, i.e. x ∈ Unt . Thus V ⊂ st (Unt ,An). This implies that
F n+1
s ⊂ F nt and that ϕn+1(x) ⊂ ϕn(x).

(c) Let x ∈ X; it is clear that h(ϕ(x), ϕn(x)) = 0 for all n ≥ 1. Suppose
to the contrary that there is ε > 0 such that h(ϕnk(x), ϕ(x)) > ε for some
subsequence (nk). Then, for each k ≥ 1 there must exists y ∈ ϕnk(x) such that
d(y, ϕ(x)) > ε. Recall that, without loss of generality, y =

∑
s∈Snk λs(x)F nk

s .
Hence there is s ∈ Snk such that λs(x) �= 0 and yk ∈ F nk

s such that d(yk, ϕ(x)) >
ε (since otherwise, if for all s ∈ Snk , F nk

s ⊂ D(ϕ(x), ε), then y ∈ D(ϕ(x), ε)).
Again without loss of generality we may assume that yk ∈ ϕ(st (Unk

s ,Ank))
where s is such that x ∈ suppλs ⊂ Unk

s . This means that yk ∈ ϕ(zk) where
zk ∈ st (Unk

s ,Ank). There is xs ∈ X such that Unk
s = B(xs, rnk). However it

means that z ∈ B(x, rnk−1), i.e. zk → x as k → ∞. This is a contradiction since
h(ϕ(zk), ϕ(x)) → 0 as k → ∞. �

Remark 2.7.2. An interesting observation is that if X is a metric space, E
is a normed space and ϕ:X � E is an upper semicontinuous with convex values
if and only if there exists a sequence ϕn:X � E of maps satisfying conditions
(a)–(c) from the above theorem. Moreover, it is clear that taking the Lipschitz
partitions of unity subordinated to coverings An we get that ϕn is a locally
Lipschitz map (see Remark 2.0.1.

The next result can be traced back to Michael. It says that upper semicon-
tinuous maps may be sometimes graph-approximated by upper semicontinuous
ones with compact values.

Theorem 2.7.3. Let X be a paracompact space, Y be a Hausdorff space and
let Φ:X � E be upper semicontinuous and have closed values. For any thick
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neighbourhood U of Gr(Φ) there are an upper semicontinuous map ϕ:X � Y

and a lower semicontinuous map ψ:X � Y , both with compact values, such that
ψ(x) ⊂ ϕ(x) for all x ∈ X and Gr(ϕ) ⊂ U .

Proof. Let U be a thick open neighbourhood of Gr(Φ). By Remark 2.3.8(b),
there are a neighbourhood W of Gr(Φ) and a neighbourhood N of the diagonal
in X × X such that W ◦ N ⊂ U . For each x ∈ X, Φ(x) ⊂ W (x). The upper
semicontinuity of Φ implies the existence, for each x ∈ X, of a neighbourhood
Ux of x such that Φ(clUx) ⊂ W (x). Let B := {Vs}s∈S be a locally finite star-
refinement of A := {Ux ∩ N −1(x)}x∈X . For each s ∈ S, choose ys ∈ Φ(Vs) and
define ψ(x) := {ys | x ∈ Vs} and ϕ(x) := {ys | x ∈ cl Vs} for x ∈ X. Then clearly
ψ(x) ⊂ ϕ(x) on X. Observe moreover, that for each x ∈ X, #ψ(x),#ϕ(x) < ∞;
hence both these sets are compact. We shall show that Gr(ϕ) ⊂ U . To this end
take x ∈ X and y ∈ ϕ(x), i.e. y = ys where s ∈ S and x ∈ cl Vs. Thus

x ∈ cl Vs ⊂ st (cl Vs,B) = st (Vs,B) ⊂ Uxs ∩ N −1(xs)

for some xs ∈ X. Therefore

y = ys ∈ Φ(Vs) ⊂ Φ(Uxs) ⊂ W (xs)

and xs ∈ N (x). Hence (x, y) ∈ W ◦ N ⊂ U .
For B ⊂ Y , let S(B) := {s ∈ S | ys ∈ B}. Observe that

ϕ−1(B) =
⋃

s∈S(B)

cl Vs, ψ−1(B) =
⋃

s∈S(B)

Vs.

Therefore ψ−1(B) is open and, since the cover {cl Vs} is locally finite, ϕ−1(B) is
closed. This completes the proof. �

Remark 2.7.4. If Y is a locally convex space and U is a neighbourhood
of Gr(Φ) such that, for each x ∈ X, U (x) is convex, then we may take ϕ(x) =
conv {ys | x ∈ cl Vs} and ψ(x) = conv {ys | x ∈ Vs}. Then ϕ and ψ have
compact convex values, ψ(x) ⊂ ϕ(x) ⊂ U (x) for all x ∈ X since, as above,
{ys | x ∈ cl Vs} ⊂ U (x) and U (x) is convex. This shows that when studying
upper semicontinuous map Φ with closed values in a locally convex space, we may
restrict our attention to compact convex valued upper semicontinuous maps. The
problem is that graphs of these ‘approximations’ lie in special neighbourhoods
of the graph of Φ, which — in general — is too large.

2.8. Approximations with constraints. The problem is as follows: given
spaces X, Y , set-valued maps ϕ, ψ:X � Y , find a continuous ε-approximation
f :X → Y of ϕ such that f(x) ∈ ψ(x) for all x ∈ X.

First we shall prove a result stating the existence of a simultaneous approx-
imation and an almost selection for upper and lower semicontinuous maps.
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Theorem 2.8.1 (see [8]). Let X be a metric space and E a normed space.
Let ψ:X � E be a lower semicontinuous map with convex values and ϕ:X � E

an upper semicontinuous map with convex values such that ϕ(x) ∩ ψ(x) �= ∅ for
all x ∈ X. Then for each ε > 0, there is a continuous function f :X → E such
that f is an ε-selection of ψ and an ε-approximation of ϕ.

Proof. Let, for x ∈ X, U(x) := B(x, ε) ∩ ϕ+1(B(ϕ(x), ε)) and let an open
covering A be a star-refinement of {U(x)}x∈X . For any x ∈ X, choose zx ∈
ϕ(x) ∩ ψ(x) and consider the open covering B := {BV (x)}V ∈A,x∈V of X, where
BV (x) := {y ∈ V | ψ(y) ∩ B(zx, ε) �= ∅}. Let {λ}s∈S be a partition of unity
subordinated to B, i.e. for each s ∈ S, there are Vs ∈ A, xs ∈ Vs such that
suppλs ⊂ Bs := BVs(xs). The map

f(x) :=
∑
s∈S

λs(x)zs, x ∈ X,

where zs := zxs , is well-defined and continuous. If x ∈ X and λs(x) �= 0, then
x ∈ Bs, i.e. there is z′

s ∈ ψ(x) such that ‖zs − z′
s‖ < ε. Thus, by convexity

of ψ(x), y :=
∑
s∈S λs(x)z′

s ∈ ψ(x). Moreover,

‖f(x) − y‖ ≤
∑
s∈S

λs(x)‖zs − z′
s‖ < ε.

On the other hand, given x ∈ X and s ∈ S, λs(x) �= 0, then x ∈ Bs ⊂ Vs and
xs ∈ Vs. Since A is a star refinement of {U(z)}z∈X , xs ∈ st (x,A) ⊂ U(z) for
some z ∈ X. Therefore zs ∈ φ(xs) ⊂ B(ϕ(z), ε) and ‖x− z‖ < ε. The convexity
of ϕ(z) implies that

f(x) ∈ B(ϕ(z), ε) ⊂ B(ϕ(B(x, ε)), ε). �

Remark 2.8.2. The reader will easily get a similar result concerning the
existence of an ε( · )-approximation of ϕ being an ε( · )-selection of ψ, where
ε:X → (0,∞) is a continuous function as well as its version valid for nonmetriz-
able spaces.

Corollary 2.8.3. In addition to assumptions of the Theorem 2.8.1, suppose
that ψ has closed values and E is complete. Then, for each ε > 0, there is
a continuous selection of ψ being an ε-approximation of ϕ.

Proof. Fix ε > 0. By the above theorem there exists a continuous map
g:X → E such that g(x) ∈ B(ψ(x), ε/4) and g(x) ∈ B(ϕ(B(x, ε)), ε/2). We
shall construct a sequence {fn}n≥1 of continuous maps fn:X → E such that,
for x ∈ X and n ≥ 1:

(1) d(fn(x), ψ(x)) < 2−n−1ε;
(2) ‖fn+1(x) − fn(x)‖ < 2−n−1ε.
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Let f1 := g. Suppose that continuous functions fi:X → E, i = 1, . . . , n has
been constructed. In order to define fn+1, let

ψn(x) := ψ(x) ∩B(fn(x), 2−n−2ε), x ∈ X.

Then ψn is lower semicontinuous and has convex values. Exactly as in the
proof of the Michael theorem we show that there is a continuous fn+1:X → E

such that fn+1(x) ∈ B(ψn(x), 2−n−2ε). Then d(fn+1(x), ψ(x)) < 2−n−2ε and
‖fn+1(x) − fn(x)‖ < 2−n−1ε for all x ∈ X. Since E is complete (fn) converges
uniformly to a continuous selection f :X → E of ψ. At the same time, for all
x ∈ X,

‖g(x) − f(x)‖ = lim
n→∞

‖f1(x) − fn+1(x)‖ ≤ lim
n→∞

n∑
k=1

‖fk(x) − fk+1(x)‖ < ε

2
.

Thus f(x) ∈ B(ϕ(B(x, ε)), ε). �

Note that while in Theorem 2.8.1 the existing map f may be proven to be
locally Lipschitz (see Remark 2.0.1), in Corollary 2.8.3 the resulting f , as the
uniform limit of locally Lipschitz map, is not locally Lipschitz in general.

Our next result is similar, but now ψ is specified; however, we need no
completeness.

Theorem 2.8.4 (see [6]). Let K be a closed subset of a normed space E

Suppose that ϕ:X � E is an upper semicontinuous map with closed convex
values. If ϕ is weakly tangent to K, i.e. for each x ∈ K, ϕ(x) ∩ TK(x) �= ∅,
then, for any ε > 0, there exists a locally Lipschitz map f :K → E being an
ε-approximation of ϕ and, for all x ∈ K, f(x) ∈ TK(x).

Obviously if E is complete, then the existence of a continuous map f :K → E

follows from Corollary 2.8.3 since the map K � x � TK (x) is lower semicontin-
uous and has convex closed values (see Remark 1.3.10).

Proof. Take ε > 0 and x ∈ K. There is v(x) ∈ E such that

v(x) ∈ B(ϕ(x), ε/4) ∩ SK (x),

since, by Remark 1.3.10,

CK(x) = TK(x) = clSK (x)

where

SK(x) :=
⋃
h>0

K − x

h
.

Hence, there is α(x) > 0 such that

x+ α(x)v(x) ∈ K.

By the upper semicontinuity choose a number γ(x), 0 < γ(x) < ε/4 such that
ϕ(B(x, 2γ(x))) ⊂ B(ϕ(x), ε/2) and a number 0 < δ(x) < min{γ(x), γ(x)/α(x)}.
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Let {λs}s∈S be a locally finite locally Lipschitzian partition of unity refining
the open cover {B(x, δ(x)α(x))}x∈K. For any s ∈ S, there is xs ∈ K such
that supp λs ⊂ B(xs, δsαs) where we have put δs := δ(xs) and αs := α(xs).
Additionally let us set vs := v(xs) and γs := γ(xs).

For any s ∈ S, we define a map fs:K → E by the formula

fs(x) :=
1
αs

(xs − x) + vs, x ∈ K.

Observe, that for s ∈ S, x ∈ X,

x+ αsfs(x) = xs + αsvs ∈ K.

Hence, for all x ∈ X,
fs(x) ∈ SK (x) ⊂ TK(x).

It is clear that fs, s ∈ S, is Lipschitz continuous (with the Lipschitz constant
α−1
s ).

Now we define f :K → E by the formula

f(x) :=
∑
s∈S

λs(x)fs(x), x ∈ K.

Observe that f is locally Lipschitz because so are all functions λs, fs for s ∈ S,
and the covering {suppλs}s∈S is locally finite.

Moreover, since, for x ∈ K, f(x) is a (finite) convex combination of vectors
fs(x) ∈ TK(x) and since TX(x) is convex, we see that f(x) ∈ TK(x) for all
x ∈ K.

Take x ∈ K and let S(x) = {s ∈ S | x ∈ suppλs}. It is clear that S(x) is
a finite set and

f(x) =
∑
s∈S(x)

λs(x)fs(x).

For any s ∈ S(x), we have x ∈ suppλs ⊂ B(xs, δsαs), i.e.

‖x− xs‖ < δsαs < γs and ‖fs(x) − vs‖ < δs < γs.

There is s0 ∈ S(x) such that γs0 = maxs∈S(x) γs. If s ∈ S(x), then

‖xs − xs0‖ ≤ ‖xs − x‖ + ‖xs0 − x‖ < γs + γs0 ≤ 2γs0 .

Therefore, for any s ∈ S(x),

fs(x) ∈ B(vs, γs0) ⊂ B(ϕ(xs), ε/4 + γs0) ⊂ B(ϕ(B(xs0 , 2γs0)), ε/4 + γs0 )

⊂ B(ϕ(xs0 ), ε/4 + ε/2 + γs0) ⊂ B(ϕ(xs0), ε).

Hence, by convexity of B(ϕ(xs0 ), ε),

f(x) ∈ B(ϕ(xs0 ), ε) ⊂ B(ϕ(B(x, γs0 )), ε) ⊂ B(ϕ(B(x, ε)), ε).

This concludes the proof. �
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Note that in the course of the proof we have not used the lower semicon-
tinuity of TK( · ). Instead we have applied the following, astonishingly simple,
observation: if K is a convex closed set in a normed space E, then for every
x0 ∈ K, v0 ∈ SK (x0) and α0 > 0 such that x0 + α0v0 ∈ K (existing in view
of the very definition of SK (x0)), an affine mapping g(x) = 1

α0
(x0 − x) + v0,

x ∈ K, provides a selection of SK(x). This proves the lower semicontinuity of
both SX( · ) and TX( · ).

In the similar spirit we have the next result. In order to state it and under-
stand the assumption we need some more concepts.

Let E be a normed space. Given an open set U ⊂ E, a locally Lipschitz
continuous function g:U → R, by g◦(x; u) we denote the Clarke generalized
directional derivative of g at x ∈ U in the direction u ∈ E

g◦(x; u) := lim sup
y→x, h→0+

g(y + hu) − g(y)
h

.

It is well-known that, for each x ∈ E, the function E � u �→ g◦(x; u) is Lipschitz,
subadditive and positively homogeneous. The generalized gradient of g at x ∈ U

is defined by

∂g(x) := {p ∈ E∗ | 〈p, u〉 ≤ g◦(x; u) for all u ∈ E}.

Hence g◦(x; · ) is the support function ∂g(x):

g◦(x; u) = σ∂g(x)(u) := sup
p∈∂g(x)

〈p, u〉, u ∈ E,

and, the (negative) polar cone

∂g(x)⊥ = {u ∈ E | g◦(x; u) ≤ 0}.

Hence, for all x ∈ U , the set ∂g(x) is convex and weak∗-compact. The function
U×E � (x, u) �→ g◦(x; u) is upper semicontinuous; in other words the set-valued
map U � x �→ ∂f(x) ⊂ E∗ is upper hemicontinuous and upper demicontinuous
(see Subsection 2.9).

If K ⊂ E is closed, x ∈ K, then — by the very definition — CK(x) =
∂dK(x)⊥ and NK (x) = ∂dK(x)−− where dK(x) := d(x,K) := infy∈K ‖x − y‖
for x ∈ E. Proofs for all facts mentioned above and other details can be found
in e.g. [21], [3].

Let K ⊂ E be closed. We say that K is an epi-Lipschitz set (see [67]) if there
exists a locally Lipschitz function g:U → R (the so-called representing function),
where U is an open neighbourhood of K such that

K = {x ∈ U | g(x) ≤ 0}

and, for all x ∈ bdK,
0 �∈ ∂g(x).
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It is easy to show that if K is epi-Lipschitz, then ∂g(x)⊥ ⊂ CK(x) for all x ∈
bdK. Hence the normal cone

NK (x) ⊂ ∂f(x)−− =
⋃
λ≥0

λ∂g(x)

because 0 �∈ ∂g(x).

Theorem 2.8.5 (see [6]). Assume that K is an epi-Lipschitz subset of
a normed space E represented by a locally Lipschitz function g:U → R, ϕ: T ×
K � E, where (T,M, µ) is a complete measurable space, is a set-valued map
such that, for each x ∈ bdK, ϕ( · , x) ∩ ∂g(x)⊥ has a (strongly) measurable se-
lection and, for each x ∈ K, the set ϕ(T × {x}) is relatively compact. If, for
almost all t ∈ T , ϕ(t, · ):K � E is upper semicontinuous with closed convex
values, then for each ε > 0, there is a continuous map f : T ×K → E such that,
for almost all t ∈ T , f(t, · ) is locally Lipschitz, for all x ∈ K, f( · , x) is strongly
measurable, f(t, x) ∈ ∂g(x)⊥ and f(t, x) ∈ convϕ(t, B(x, ε)) + B(0, ε) for all
t ∈ T and x ∈ X.

Proof. Let x ∈ bdK. There is a strongly measurable function vx: T → E

such that vx(t) ∈ ϕ(t, x) ∩ ∂g(x)⊥ on T . Hence, for all t ∈ T , g◦(x; vx(t)) ≤ 0.
Since 0 �∈ ∂f(x),

0 < inf
p∈∂g(x)

‖p‖ = inf
p∈∂g(x)

sup
‖u‖≤1

〈p, u〉 = sup
‖u‖≤1

inf
p∈∂g(x)

〈p, u〉

in view of the von Neumann–Sion minimax equality (17). Next, we know that,
for all u ∈ E, g◦(x; u) = supp∈∂g(x)〈p, u〉. Thus inf‖u‖≤1 g

◦(x; u) < 0. Hence
there is ux ∈ E, ‖ux‖ = ε/2 such that g◦(x; ux) < 0. The set vx(T ) is relatively
compact; thus there is a simple (i.e. measurable and having finite number of
values) function v′

x: T → E such that v′
x(T ) ⊂ vx(T ) and ‖vx(t) − v′

x(t)‖ < ε/2
on T . Hence g◦(x; v′

x(t)) ≤ 0 for all t ∈ T . Let wx(t) = v′
x(t) + ux, t ∈ T . Then

wx is a simple function and, for all t ∈ T ,

g◦(x;wx(t)) < 0

because g◦(x; · ) is subadditive. Since wx admits a finite number of values and,
for each w ∈ E, the function g◦( · ;w) is upper semicontinuous, there is 0 < rx < ε

such that, for all y ∈ B(x, rx) and t ∈ T ,

g◦(y;wx(t)) < 0.

(17) See [69]; it states that given a convex subset X of a topological vector space, a convex

compact subset Y of a topological vector space, a function F : X × Y → R such that F ( · , y)
is concave and upper semicontinuous for all y ∈ Y and F (x, · ) is convex and lower semicon-

tinuous for all x ∈ X, the min-max equality supx∈X infy∈Y F (x, y) = infy∈Y supx∈X F (x, y)
holds true. This theorem applies in our case since ∂g(x) is convex and weakly∗-compact,

D := {u ∈ E | ‖u‖ ≤ 1} is convex and the function F × ∂g(x) � (u, p) 	→ 〈p, u〉 ∈ R is linear,

weakly∗-continuous with respect to p and continuous with respect to u.
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If x ∈ intK, then we choose 0 < rx < ε such that B(x, rx) ⊂ intK and let
wx: T → E be ab arbitrary strongly measurable selection of ϕ( · , x).

We have constructed an open covering {B(x, rx)}x∈K of K; let {λs}s∈S be
a locally Lipschitz partition of unity subordinated to this cover. Hence, for each
s ∈ S, there is xs ∈ K such that suppλs ⊂ B(xs, rs) where rs := rxs . Let
ws := wxs and define

f(t, x) =
∑
s∈S

λs(x)ws(t), x ∈ K, t ∈ T.

It is easy to check that f has all the required properties. �

Both results 2.8.4, 2.8.5 have immediate applications concerning the existence
and the structure of solutions of differential inclusions — see [5], [6].

2.9. Acute-angled approximations. Finally we discuss the existence of
approximations under conditions weaker than upper semicontinuity.

Let X be a topological space and let E be a normed space. We say that
a set-valued map ϕ:X � E (resp. ϕ:X � E∗) is upper hemicontinuous if, for
each p ∈ E∗ (resp. y ∈ X), the real (extended) function

X � x �→ σϕ(x)(p) := sup
y∈ϕ(x)

〈p, y〉 ∈ R ∪ {∞}
(

resp. X � x �→ σϕ(x)(y) := sup
p∈ϕ(x)

〈p, y〉 ∈ R ∪ {∞}
)

is upper semicontinuous (as a real-valued function). It is clear that if ϕ:X → E

(resp. ϕ:X � E∗) is upper semicontinuous or upper demicontinuous (in the
sense that it is upper semicontinuous when E (resp. E∗) is endowed with the
weak (resp. weak∗) topology), then ϕ is upper hemicontinuous. The converse
result is not valid in general.

Example 2.9.1. Let ϕ: R � R
2 be given by ϕ(x) := {(y1, y2) ∈ R

2 | y2 =
xy1}, then is neither upper semicontinuous nor H-upper semicontinuous, but it
is upper hemicontinuous.

However if ϕ has convex and weakly (resp. weak∗) compact values, then any
upper hemicontinuous map is upper demicontinuous. It is easy to show that if
ϕ is upper hemicontinuous with bounded values and X is compact, then ϕ(X)
is bounded in E (resp. in E∗). The graph Gr(ϕ) of a hemicontinuous set-valued
map with closed (resp. weak∗-closed) convex values is closed in X × E (resp.
X × E∗) provided E (resp. E∗) has weak (resp. weak∗) topology (for other
results on upper hemicontinuous maps — see [3]).

Our aim is to study the existence of continuous (in the original topology of E
or E∗) approximations of a given upper hemicontinuous map. Since the question
concerning the existence of the usual graph-approximations is not clear we shall
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establish the availability of other types of ‘approximations’, the so-called acute
angled approximations.

Theorem 2.9.2 (see [55]). Suppose that X is paracompact and ϕ:X � E

(resp. X � E∗) is upper hemicontinuous with convex closed (resp. weakly∗-
closed) values and such that 0 �∈ ϕ(x) for x ∈ X. Then there are continu-
ous maps f :X → E (resp. X → E∗) and g:X → E∗ (resp X → E) such
that f(X) ⊂ convϕ(X) and, for any x ∈ X, 0 �∈ cl conv ({f(x)} ∪ ϕ(x)) and
infz∈ϕ(x)〈g(x), z〉 > 0 (resp. infz∈ϕ(x)〈z, g(x)〉 > 0).

Proof. For any y ∈ E∗ (resp. y ∈ E), let

Uy :=
{
x ∈ X

∣∣∣ inf
z∈ϕ(x)

〈y, z〉 > 0
(

resp. inf
z∈ϕ(x)

〈z, y〉 > 0
)}
.

Since ϕ is upper hemicontinuous, Uy is open for any y ∈ E∗ (resp. y ∈ E).
Moreover, B := {Uy}y∈E∗ (resp. B := {Uy}y∈E) is a covering of X: for if x ∈ X,
then 0 �∈ ϕ(x) and there is y ∈ E∗ (resp. y ∈ E) such that supz∈ϕ(x)〈y, z〉 < 0
(resp. supz∈ϕ(x)〈z, y〉 < 0). Let A be an open point-star-refinement of B. Take
a partition of unity {λs}s∈S subordinated to A, i.e. for each s ∈ S there is Vs ∈ A

such that suppλs ⊂ Vs. Take any zs ∈ ϕ(xs) where xs ∈ Vs and let

f(x) :=
∑
s∈S

λs(x)zs, x ∈ X.

Then f is continuous and, for x ∈ X, if λs(x) �= 0, then x ∈ Vs and there is
yx ∈ E∗ (resp. yx ∈ E) such that xs ∈ st (x,A) ⊂ Uyx . Therefore, for some ε > 0,
〈yx, zs〉 > ε (resp. 〈zs, yx〉 > ε) for s from (a finite set) S(x) := {s ∈ S | λs(x) >
0} and infz∈ϕ(x)〈yx, z〉 > ε (resp. infz∈ϕ(x)〈z, yx〉 > ε). Hence inf{〈yx, z〉 | z ∈
conv ({f(x)} ∪ ϕ(x))} ≥ ε (resp. inf{〈z, yx〉 | z ∈ conv ({f(x)} ∪ ϕ(x))} ≥ ε).

Similarly, let {λs}s∈S be a partition of unity subordinated to the cover B,
i.e. for any s ∈ S, there is ys ∈ E∗ (resp. ys ∈ E) such that supp λs ⊂ Uys . Let

g(x) :=
∑
s∈S

λs(x)ys, x ∈ X.

Then it is easy to see that infz∈ϕ(x)〈g(x), z〉 > 0 (resp. infz∈ϕ(x)〈z, g(x)〉 > 0)
for each x ∈ X. �

The constructed map f may have nothing to do with ϕ (i.e. the distance
of f(x) from ϕ(x) may be large). However it is easy to see that given two
continuous maps f1, f2:X → E (resp. X → E∗) satisfying properties described
above, then they are homotopic through 0-avoiding homotopy. Hence, as we
shall see later, they reflect homotopical properties of ϕ. The map g:X → E∗

(resp. X → E) is called an acute-angled approximation of ϕ; it seems that the
origin of this terminology is clear.

Finally let us make the following observation.
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Lemma 2.9.3 (see [28]). Let X be a metric space, E a normed space and
ε:X → (0,∞). If ϕ:X � E be a set-valued map with convex values, then
f :X → R is an ε( · )-approximation of ϕ if and only if, for any x ∈ X, there is
x′ ∈ X such that ‖x− x′‖ < ε(x) and

sup
p∈E∗,‖p‖≤1

(〈p, f(x)〉 − σϕ(x′)(p)) < ε(x).

Proof. A map f :X → E is an ε( · )-approximation of ϕ if and only if, for
each x ∈ X, there is x′ ∈ X such that ‖x−x′‖ < ε(x) and ‖f(x)−y′‖ < ε(x) for
some y′ ∈ ϕ(x′), i.e. by the von Neumann–Sion min-max equality (recall that
{p ∈ E∗ | ‖p‖ ≤ 1} is weakly∗-compact in view of the Banach–Alaoglu theorem),

ε(x) > ‖f(x) − y′‖ ≥ inf
y∈ϕ(x′)

‖f(x) − y‖

= inf
y∈ϕ(x′)

sup
p∈E∗,‖p‖≤1

〈p, f(x) − y〉 = sup
‖p‖≤1

(〈p, f(x)〉 − σϕ(x′)(p)).

This completes the proof. �

It is doubtful whether Lemma 2.9.3 may be a source of a proof of the ex-
istence of graph-approximations for upper-hemicontinuous set-valued maps (or
a different proof of the Cellina theorem). It is, however, a starting point for
the following important fact being a generalization of the celebrated Whitney
theorem.

Theorem 2.9.4 (see [28]). Let U ⊂ R
n and let f :U → R be a locally

Lipschitz function. For any continuous ε:U → (0,+∞), there is a C∞-function
g:U → R such that ‖f(x) − g(x)‖ < ε(x) for all x ∈ U and the gradient ∇g is
an ε( · )-approximation the generalized gradient ∂f (18).

The proof of this results is fairly complicated and will not be reproduced
here.

3. Selections, approximations and fixed points of set-valued maps

As mentioned in the introduction approximation methods may be useful in
the study of the existence of fixed points of set-valued maps. Here we shall study
only global results; local theories (such as the availability different homotopy
invariants monitoring the existence of fixed points) will not be discussed.

The idea of the approximation approach is simple: given a set-valued map
ϕ:X � X acting in a space X having the fixed point property (for a certain
class F of single-valued maps), if ϕ admits arbitrarily close approximations by
maps from F , then one may expect to derive fixed points of ϕ (i.e. points x ∈
X such that x ∈ ϕ(x)) as limits of appropriate sequences of fixed points of

(18) Recall that ∂f :U → (Rn)∗ = Rn; ∂f is upper semicontinuous with compact convex

values.
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approximations. The idea is simple, but in concrete situations, it requires some
care.

The simplest (and, therefore, in general not interesting) is the case when ϕ

admits selections. For if ϕ admits a selection f :X → X, f ∈ F , then there is
x0 ∈ X such that x0 = f(x0) ∈ ϕ(x0). In the same spirit one can get fixed point
results for maps admitting ε-selections.

For example let us prove the Browder–Fan fixed point theorem.

Theorem 3.0.1 (Browder, [16], [38]). Let K be a compact convex subset of
a topological vector space E and let ϕ:K � K has convex values and open fibres
(i.e. for each y ∈ K, ϕ−1(y) is open in K). Then ϕ has a fixed point.

Proof. In view of Theorem 2.1.3, ϕ admits a selection which is produced via
partition of unity subordinated to an open covering of the form {ϕ−1(y)}y∈K .
Since K is compact, one can choose a finite partition of unity which gives a con-
tinuous finite-dimensional selection f :K → K of ϕ (i.e. f(K) ⊂ K′ := K ∩ E′

where E′ is a finite dimensional subspace of E) Thus f :K′ → K′ and, by the
Brouwer fixed point theorem f , f and, therefore, ϕ has a fixed point. �

Theorem of Browder–Fan gives a nice bonus. Namely it allows the following
simple proof of the Tikhonov fixed point theorem: if K is a compact convex
subset of a locally convex space E and f :K → K is continuous, then Fix (f) :=
{x ∈ K | x = f(x)} �= ∅. Indeed, for any convex open neighbourhood V of
the origin in E, let ϕV (x) := f(x) + V , x ∈ K. Then ϕ−1

V (y) = f−1(y − V ) is
open. Since values ofϕV are convex, we infer that there is xV ∈ K such that
xV ∈ ϕV (xV ), i.e. xV − f(xV ) ∈ V . The continuity of f and the compactness
of K, implies the existence of a fixed point of f .

In what follows we shall provide some other applications of the Browder–Fan
theorem.

3.1. Fixed points via graph-approximations. Graph approximations
play a similar role as selections; however the general remark is that when dealing
with graph-approximations of approximable maps one has to be careful. To
illustrate the situation consider the following general results.

Theorem 3.1.1. Let X be a compact absolute retract (X ∈ AR — see [13])
and let ϕ:X � X be a weakly approximable set-valued map with closed graph
(i.e. upper semicontinuous). Then it has fixed points.

Proof. For any integer n ≥ 1, there is a continuous n−1-approximation
fn:X → X of ϕ. By the (generalized) Schauder theorem, there is xn ∈ X

such that xn = f(xn). Since xn = f(xn) ∈ B(ϕ(B(xn, n−1)), n−1), there is
x′
n ∈ X, d(xn, x′

n) < n−1 and yn ∈ ϕ(x′
n) such that d(yn, xn) < n−1. Passing

to a subsequence if necessary we may assume that xn → x0 ∈ X. Therefore
(x′
n, yn) → (x0, x0). Since the graph Gr(ϕ) is closed we see that x0 ∈ ϕ(x0). �

The situation is a bit more difficult if we X is not compact.
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Theorem 3.1.2. Suppose that X ∈ AR and ϕ:X � X is a weakly approx-
imable compact map with closed graph. Then ϕ has fixed points.

Proof. Without loss of generality we may assume that X is a retract of
a normed space E. Let r:E → X be a retraction. Let K := clϕ(X); K is
compact. For any integer n ≥ 1, there is a continuous map (a so-called Schauder
projection) πn:U → En, where U is an open neighbourhood of K (in E) and En
is a linear subspace of E, dimEn < ∞, such that ‖πn(x)−x‖ < n−1 for all x ∈ U .
Let fn:X → X be a continuous n−1-approximation of ϕ. For large n (for n ≥ N

say), fn(X) ⊂ U . For n ≥ N , let gn := πn ◦ fn ◦ r:E → En. Then gn is well-
defined and compact (as a bounded finite-dimensional map). By the Schauder
theorem, for each n ≥ N , there is xn ∈ E such that xn = gn(xn). Then r(xn) =
r ◦ πn ◦ fn(r(xn)), i.e. yn := r(xn) is a fixed point of r ◦ πn ◦ fn:X → X. There
is y′

n ∈ X, d(yn, y′
n) < n−1 and zn ∈ ϕ(y′

n) ⊂ K such that d(zn, fn(yn)) < n−1.
The compactness ofK implies that (for a subsequence), zn → z0 ∈ K ⊂ X. Then
fn(yn) → z0. Since ‖πn(fn(yn)) − fn(yn)‖ < n−1, we see that πn(fn(yn)) → z0.
Thus yn = r(πn(fn(yn))) → r(z0) = z0. Therefore y′

n → z0 and z0 ∈ ϕ(z0). �

Remark 3.1.3. The above proof may be simplified. To this end let us
proceed as follows (the assumptions and notation are sustained). Since K is
compact, we may assume that i:K ↪→ I

∞, where I
∞ is the Hilbert cube (and,

henceforth, a compact AR), is the continuous embedding. Since X ∈ AR, the
inclusion j′:K ↪→ X extends to a continuous map j: I

∞ → X. Therefore we
have a map ψ := i ◦ ϕ′ ◦ j: I

∞ � I
∞, where ϕ′:X � K is given by ϕ′(x) =

ϕ(x) ⊂ K for x ∈ X. Now the point is that ϕ is approximable: is that true
that i ◦ ϕ′ is approximable? In general this might not be true. However if we
assume, for instance, that, for each x ∈ X, ϕ(x) has (the absolute) UV ω-property
(or, in particular, is convex), then so does i ◦ ϕ′(x) and, since i ◦ ϕ′ is upper
semicontinuous, it is approximable in view of Theorem 2.6.2. Next, since I

∞ is
compact, we see that ψ is approximable. Thus, in view of Theorem 3.1.1, there
is x0 ∈ I

∞ such that x0 ∈ ψ(x0). It is clear that x0 ∈ K, hence ψ(x0) = ϕ(x0).

It is also worthwhile to note that the approach presented in Theorem 3.1.2
is quite general. For instance, in place of ϕ we may take the composition ϕ =
g ◦ Φ where Φ:X � Y , Y is a topological space, is approximable and upper
semicontinuous with compact values and g: Y → X is continuous. Then ϕ is
upper semicontinuous with compact values (hence its graph is closed) and weakly
approximable and in view of Proposition 2.3.6.

Taking the above into account we have the following general result that
follows immediately from Theorem 2.6.2.

Theorem 3.1.4. Let X ∈ AR and let ϕ:X � X be compact upper semi-
continuous and let ϕ(x) ∈ UV ω for all x ∈ X. Then ϕ has fixed points.
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Of course the same proof (with almost immediate changes) applies to the
case of the following result that generalizes the Tikhonov fixed point theorem
(the so-called Fan-Glicksberg [42] or Bohnenblust–Karlin theorem [11]).

Theorem 3.1.5. Let K be a closed convex subset of a locally convex space
E and let ϕ:K � E be an upper semicontinuous compact set-valued with closed
(i.e. a posteriori compact) convex values. Then ϕ admits fixed points.

Theorem 3.1.5 may be generalized to the case of upper semicontinuous maps
with closed convex values. The only difference is that the usual compactness
(which, in the context of Theorem 3.1.5, says that clϕ(K) is compact) should
be replaced with some less restrictive assumption.

Corollary 3.1.6. Under the hypotheses of Theorem 3.1.5, assume that there
is a compact convex set L ⊂ K such that ϕ(x) ∩ L �= ∅, where ϕ:K � K is
upper semicontinuous with closed convex values. Then ϕ has fixed points.

Proof. Consider ϕ′:K � K given by ϕ′(x) = ϕ(x) ∩ L for x ∈ K. Then ϕ′

satisfies assumptions of Theorem 3.1.5 and, therefore, has fixed points. Clearly
Fix (ϕ′) ⊂ Fix (ϕ). �

3.2. Homotopy invariants via approximations. There is a variety of
homotopy invariants detecting zeros of fixed points of set-valued maps that may
be defined and studied by means of approximations. We shall provide a number
of sketches of such constructions in order to illustrate the relevance of different
approximations techniques. The presented approach i modelled mainly after [20],
[47] and in the most general case [7].

A. The finite-dimensional degree theory. Suppose U is an open set in
the Euclidean space R

n and let ϕ:U � R
n be a set-valued map such that:

(A1) ϕ is weakly approximable and weakly homotopy approximable over any
compact polyhedron K ⊂ U ;

(A2) Z(ϕ) = {x ∈ U | 0 ∈ ϕ(x)} is compact;
(A3) ϕ has closed graph.

Example 3.2.1. (a) If ϕ is upper semicontinuous, has convex values (resp.
ϕ is UVm-valued with m ≥ n − 1), then ϕ is weakly approximable and weakly
homotopy approximable over any subset of U (resp. over any compact polyhedron
K ⊂ U) in view of Corollary 2.3.12, Corollary 2.4.4 and Remark 2.4.5 (resp.
Theorem 2.6.1, Corollary 2.6.5 and Remark 2.6.6).

(b) If ϕ = g ◦ Φ, where Φ:X � Y , Y is a topological space, is approximable
and homotopy approximable, then ϕ is weakly approximable in view of Proposi-
tion 2.3.6. Moreover, we see easily that ϕ is ‘weakly homotopy approximable’ in
the following sense: given ε > 0, there is a neighbourhood U of the graph Gr(Φ)
such that, for any two continuous U -approximations f, f ′:X → Y of Φ, the maps
there is a homotopy h:X× [0, 1] → Y such that g ◦h( · , t) is an ε-approximation



Approximation Methods 115

of ϕ for any t ∈ [0, 1]. We shall see that this sort of ‘weak homotopy approx-
imability’ is sufficient for our aims. Using Theorem 2.3.7 we consider even more
complicated compositions.

(c) If ϕ is upper semicontinuous, then always Z(ϕ) = ϕ−1(0) is closed in U .
Hence, Z(ϕ) is compact if and only if there is an open bounded V such that
Z(ϕ) ⊂ V ⊂ cl V ⊂ U . In particular, if U is bounded, an upper semicontinuous
ϕ is defined on clU and ϕ has no zeros on bdU , then (A2) is satisfied.

(d) If ϕ is upper semicontinuous with closed values, then Gr(ϕ) is closed.

Thus we see that the class of maps satisfying assumptions (A1)–(A3) is rich.
By (A2) (see also Example 3.2.1(b), it is easy to see that there is an open

set V such that cl V is a compact polyhedron and Z(ϕ) ⊂ V ⊂ clV ⊂ U .
There is ε > 0 such that, if f : cl V → R

n is an ε-approximation of ϕ over
K, then Z(f) ∩ bdV = ∅, where here Z(f) := {x ∈ cl V | f(x) = 0}. For
otherwise, for each n ∈ N, there is xn ∈ bdV , x′

n ∈ U and y′
n ∈ ϕ(x′

n) such
that ‖xn − x′

n‖ ≤ n−1, ‖y′
n‖ < n−1. By the compactness of bdV (and passing

to a subsequences if necessary), we may assume that xn → x ∈ bdV ; thus
(x′
n, y

′
n) → (x, 0), i.e. 0 ∈ ϕ(x) in view of (A3): a contradiction. By (A1), there

is a continuous function δ:U → (0,∞) (recall that clV is compact; thus we may
assume without loss of generality that δ > 0 is a constant and δ < ε) such that
any two δ-approximations f, g: cl V → R

n of ϕ over cl V are homotopic through
a continuous homotopy h: clV × [0, 1] with the property that h( · , t) is an ε-
approximation of ϕ over cl V . In particular {x ∈ cl V | 0 ∈ h(x, t) for some t ∈
[0, 1]} ∩ bdV = ∅.

Let f : cl V → R
n be an arbitrary δ-approximation of ϕ over cl V . Then

Z(f) ∩ bdV = ∅ and, thus, the Brouwer degree degB(f, V, 0) is well-defined (see
e.g. [36]).

Let us define
Deg(ϕ, U, 0) := degB(f, V, 0).

The above argument show that this definition does not depend on the choice of f .
Let us show that it is independent of the choice of V , as well. To see this take
another open set V ′ such that cl V ′ is a compact polyhedron and Z(ϕ) ⊂ V ′ ⊂
cl V ′ ⊂ U . Obviously we may assume that V ′ ⊂ V . Without loss of generality
(arguing as above) we may assume that given a δ-approximation f : cl V → R

n

of ϕ over cl V , Z(f) ∩ (cl V \ V ′) = ∅. Thus, by the additivity property of the
Brouwer degree, deg(f, V, 0) = deg(f, V ′, 0).

The reader will easily check that the defined degree Deg satisfies all the usual
properties of the topological degree.

Now we shall outline the construction of the topological degree for upper
hemicontinuous set-valued maps with closed convex values. Suppose that U ⊂
R
n is open bounded, ϕ: clU � R

n is upper hemicontinuous with closed convex
values and ϕ−1(0) ∩ bdU = ∅. By Theorem 2.9.2, there is a continuous map
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f : bdU → R
n such that, for any x ∈ bdU , 0 �∈ cl conv ({f(x)} ∪ ϕ(x)). In

particular 0 �∈ f(bdU). Let f∗: clU → R
n be an arbitrary continuous extension

of f onto clU . We define

Deg(ϕ, U, 0) := degB(f, U, 0).

This definition is correct since it does not depend on the choice of f and f∗. To
see this suppose that a continuous g: bdU → R

n is such that 0 �∈ cl conv ({g(x)}∪
ϕ(x)) for x ∈ bdU and let g∗: clU → R

n be a continuous extension of g onto
clU . It is easy to see that set-valued maps ψ1, ψ2: bdU × [0, 1] � R

n given by
ψ1(x, t) := (1 − t)f(x) + tϕ(x), ψ2(x, t) = tg(x) + (1 − t)ϕ(x). It is clear that ψi,
i = 1, 2, has closed convex values, is upper hemicontinuous and 0 �∈ ψi(x, t) for
x ∈ bdU and t ∈ [0, 1]. Define ψ: bdU × [0, 1] � R

n by

ψ(x, t) :=
{
ψ1(x, 2t) for t ∈ [0, 1/2],

ψ2(x, 2t− 1) for t ∈ [1/2, 1],

for x ∈ bdU . Then again ψ has convex closed values, is upper hemicontinuous
and 0 �∈ ψ(x, t) for x ∈ bdU and t ∈ [0, 1]. Therefore, again by Theorem 2.9.2,
there is a continuous h: bdU × [0, 1] → R

n such that h(x, t) �= 0 on bdU × [0, 1].
Let h∗: clU × [0, 1] → R

n be a continuous extension of a map h′: clU × {0, 1} ∪
bdU × [0, 1] → R

n given by

h′(x, t) =



f∗(x) for x ∈ clU, t = 0,

h(x, t) for x ∈ bdU, t ∈ [0, 1],

g∗(x) for x ∈ clU, t = 1.

Therefore h∗ provides a homotopy joining f∗ to g∗ such that h∗(x, t) �= 0 on
bdU × [0, 1]. Hence

degB(f∗, U, 0) = degB(g∗, U, 0).

Again it is not difficult to show that the defined degree has all the usual proper-
ties. For instance, if Deg(ϕ, U, 0) �= 0, then 0 ∈ ϕ(x) for some x ∈ U . Indeed if
it is not the case, then there is a continuous f : clU → R

n such that 0 �∈ f(clU)
is view of Theorem 2.9.1; hence Deg(ϕ, U, 0) = degB(f, U, 0) = 0 in virtue of the
existence property of the Brouwer degree.

Both defined degrees have the infinite-dimensional versions, too.

B. The Leray–Schauder fixed point index. Suppose E is a normed
space, U ⊂ E is open, ϕ:U � E and let W ⊆ U be open. Assume that

(A1) ϕ is weakly approximable and weakly homotopy approximable over any
compact ANR contained in U ;

(A2) Gr(ϕ) is closed;
(A3) The set clϕ(U) is compact and contained in U ;
(A4) Fix (ϕ) ∩ bdW = ∅.
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As before one sees easily that, for instance, conditions (A1) and (A2) are
satisfied if ϕ is upper semicontinuous with closed convex values or ϕ is an upper
semicontinuous UV ω-valued map (see Example 3.2.1).

Let K := clϕ(U). By (A3), K ⊂ U . By a theorem due to J. Girolo [41], there
is a compact absolute neighbourhood retract X such that K ⊂ X ⊂ U . Since X
is an ANR in E, there is an open neighbourhood V of X in E and a retraction
r: V → X. Since X is compact, there is ε > 0 such that B(X, ε) ⊂ V . It is clear
that (diminishing ε if necessary) that if f :X → E is an ε-approximation of ϕ
over X, then

f(x) ∈ B(K, ε) ⊂ B(X, ε) ⊂ V

and, moreover, neither f nor r ◦ f (being well-defined) have fixed points in
bdW ∩ X. Indeed: otherwise, for each sufficiently large n ∈ N, say n ≥ N ,
take an arbitrary n−1-approximation fn:X → E of ϕ over X and suppose that
fn (or r ◦ fn) has a fixed point xn ∈ bdW ∩ X; for each n ≥ N , there are
x′
n ∈ U , ‖xn − x′

n‖ < n−1 and y′
n ∈ ϕ(x′

n) (hence y′
n ∈ K ⊂ X) such that

‖fn(xn) − y′
n‖ < n−1. Since d(fn(xn), X) < n−1 and X is compact, we gather

(passing to a subsequence if necessary) that fn(xn) → z ∈ X and xn → x ∈
bdW ∩X. Therefore x′

n → x and y′
n → z. Hence z ∈ ϕ(x). But remember that

xn = fn(xn), i.e. x = z (or xn = r(fn(xn)) → r(z) = z, i.e. again x = z); this
means that x ∈ ϕ(x): a contradiction.

Next there is 0 < µ < ε such that, for y ∈ B(X, µ), ‖r(y) − y‖ < ε/2.
By (A1), there is 0 < δ < min{µ, ε} such that given continuous δ-approxima-

tions f, f ′:X → E of ϕ over X, there is a continuous homotopy h:X× [0, 1] → E

joining f to f ′ and such that, for any t ∈ [0, 1], h( · , t) is an ε-approximation
of ϕ over X.

Let f :X → E be a δ-approximation of ϕ over X. Then, for each x ∈ X,
f(x) ⊂ B(K, δ) ⊂ B(X, ε) ⊂ V . Let us consider the composition g := r◦f :X →
X. Our construction shows that g has no fixed points on bdW ∩X.

We may define

Ind (ϕ,W ) := ind(X, g,W ∩X)

where ind(X, g,W∩X) stands for the fixed point index of a continuous g:X → X

over an open subset W ∩X of a compact ANR X (see [36]).
We shall check that this definition is correct, i.e. does not depend on auxiliary

objects: compact ANR X, a retraction r: V → X and a continuous (sufficiently
close) approximation f of ϕ over X. First regarding X and r being fixed, suppose
that f ′:X → E is a different continuous δ-approximation of ϕ over X. Due to
our choice of δ, there is a continuous homotopy h:X × [0, 1] → E, joining f to
f ′, such that, for any t ∈ [0, 1], h( · , t) is an ε-approximation. Thus r ◦ h:X ×
[0, 1] → X is well-defined and the set {x ∈ bdW ∩ X | x ∈ x = h(x, t) or x =
r ◦ h(x, t) for some t ∈ [0, 1]} is empty. The homotopy invariance of ind implies
that ind(X, r ◦ f,W ∩X) = ind(X, r ◦ f ′,W ∩X).
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Let X′ be a compact ANR such that K ⊂ X′ ⊂ U . Choose a neighbourhood
V ′ of X′ in E, a retraction r′: V ′ → X′ and numbers ε′, µ′, δ′ > 0 having the
same properties as ε, µ and δ constructed above. We are to show that ind(X, r ◦
f,W ∩ X) = ind(X′, r′ ◦ f ′,W ∩ X) where f :X → E and f ′:X′ → E are
continuous δ- and δ′-approximations ϕ over X and X′, respectively. Without
loss of generality we may suppose that X′ ⊂ X, ε′ < ε, µ′ < µ and δ′ < δ.
Let f :X → E be a continuous δ′-approximation f :X → E of ϕ over X; then
f ′ := f |X′ is δ′-approximation of ϕ over X′. For each x ∈ X, f(x) ∈ B(K, µ′) ⊂
B(X′, µ′) ⊂ B(X, µ); hence ‖r′(f(x))−f(x)‖ < ε′ < ε and ‖r(f(x))−f(x)‖ < ε.
Consider a map h:X× [0, 1] → E given by h(x, t) = r((1 − t)r(f(x))+ tr′(f(x)))
for x ∈ X and t ∈ [0, 1]. This map is well-defined for if x ∈ X, then

d((1 − t)r(f(x)) + tr′(f(x)), X) ≤ t‖r(f(x)) − r′(f(x))‖
≤ ‖r(f(x)) − f(x)‖ + ‖r′(f(x)) − f(x)‖ < ε.

Observe that h( · , 0) = r ◦ f and h( · ) = r′ ◦ f . Moreover it is easy to see that,
for each t ∈ [0, 1], h( · , t) has no fixed points in bdW ∩X. Thus, in view of the
homotopy invariance of ind, ind(X, r ◦ f,W ∩X) = ind(X, r′ ◦ f,W ∩X). But,
for x ∈ X, r′(f(x)) ∈ X′. Thus, by the restriction property of ind,

ind(X, r′ ◦ f,W ∩X) = ind(X′, r′ ◦ f |X′ ,W ∩X′) = ind(X′, r′ ◦ f ′,W ∩X′).

Remark 3.2.2. (a) The part of assumption (A3) stating that clϕ(U) ⊂ U

may be avoided. However this involves much more tedious technical arguments,
at least in case of ϕ with UV ω values. If E is a Banach space, ϕ:U � E has
closed convex values, is upper semicontinuous compact, Fix (ϕ) := {x ∈ U | x ∈
ϕ(x)} is compact, then one may argue as follows. Let X := cl convϕ(U). Then
X is compact convex and, therefore, X is a compact ANR. Take an arbitrary
open V ⊂ U such that Fix (ϕ) ⊂ V ⊂ cl V ⊂ U . For each ε > 0 there is an
ε-approximation f :U ∩ X → X of ϕ over W ∩ X. If ε is sufficiently small,
then Fix (f) ∩ bd V = ∅ and the index ind(X, f, V ) is defined. Hence one may
put Ind (ϕ, U) := ind(X, f, V ). It is not difficult to show that this definition is
correct since it does not depend on the choice of f and V . It is also clear that
if ϕ is not compact, but there is a compact convex L such that ϕ(x) ∩L �= ∅ for
all x ∈ U , then replacing ϕ by ϕ ∩ L we may also define the respective index,
whose nontriviality implies the existence of fixed points of ϕ.

(b) Suppose that ϕ:U � E is compact upper hemicontinuous with closed
(a posteriori compact) values. Hence ϕ is upper demicontinuous and the above
construction does not apply. The definition of the fixed-point index in this case
is provided in [55]; it involves some modification of Theorem 2.9.2.

C. Fixed point index on arbitrary ANRs. Suppose that X is an arbi-
trary ANR and let ϕ:X � X be a compact upper semicontinuous UV ω-valued
map. If W ⊂ X is open and Fix (ϕ) ∩ bdU = ∅, then the fixed point index



Approximation Methods 119

Ind (X,ϕ, U) is defined. The idea is simple. There is an embedding s:X → E,
where E is a normed space, onto a closed set s(X). By the very definition of ANR,
there is an open neighbourhood U ⊂ E of s(X) and a retraction r′:U → s(X).
Consider r = s−1 ◦ r′:U → X. Then r ◦ s = idX . Hence ψ := s ◦ ϕ ◦ r:U � U ,
clψ(U) ⊂ U and Fix (ψ) ∩ bd r−1(W ) = ∅. Using the constructions from para-
graph B. we are in a position to define

Ind (X,ϕ, U) = Ind (ψ, r−1(W )).

The justification of this definition is technically involved; the reader should con-
sult [7] (for this and much more general approach).

3.3. Fixed points and equilibria under constraints. The best known
equilibrium (or fixed point) under constraints result is the following pioneering
result of Browder (with some modification due to Halpern [48], [50]).

Theorem 3.3.1 (Browder, [16]). Assume that K is a compact convex subset
of a normed space E and ϕ:K � E is upper semicontinuous with closed convex
values. If ϕ satisfies the weak tangency condition with respect to K (19), i.e. for
all x ∈ K,

ϕ(x) ∩ TK(x) �= ∅,
then ϕ has an equilibrium: there is x0 ∈ K such that 0 ∈ ϕ(x0).

In particular, we get the following corollary yielding a generalization of the
Kakutani, Bohnenblust and Karlin theorems [11].

Corollary 3.3.2. Given a convex compact set K ⊂ E and an upper semi-
continuous map vp:K � E with closed convex values, if ϕ is weakly inward, i.e.
for all x ∈ K,

(ϕ(x) − x) ∩ TK (x) �= ∅,
or weakly outward

(x− ϕ(x)) ∩ TK (x) �= ∅,
then ϕ has a fixed point. �

Observe that weak tangency (inwardness or outwardness) conditions are in
fact boundary conditions: if x ∈ intK, then TK (x) = E and they hold automat-
ically. It is also clear that if, for x ∈ K, ϕ(x) ⊂ K (i.e. ϕ:K � K), then the ϕ
is weakly inward since then, for each x ∈ K, ϕ(x) ⊂ K − x ⊂ TK (x).

Theorem 3.3.1 and Corollary 3.3.2 were generalized many times: Ky Fan
proved that Browder’s result remains true under weaker assumptions concerning
regularity of ϕ. Finally Cornet [24] has shown that the weak tangency condi-
tion may be substantially relaxed. Below we present the result of Cornet with
a different proof using the Browder–Fan fixed point theorem.

We start with a next result essentially due to Browder.

(19) The terminology given here and below may differ from the one used elsewhere.
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Theorem 3.3.3. If an upper hemicontinuous map ϕ:K � E∗ has weak∗-
compact convex values, then it admits a generalized equilibrium, i.e. there is
x0 ∈ K such that ϕ(x0) ∩NK (x0) �= ∅.

Proof. Observe that x0 ∈ K is a generalized equilibrium of ϕ if and only if

sup
y∈K

inf
p∈ϕ(x0)

〈p, y− x0〉 ≤ 0.

Indeed, the necessity of the above condition is clear; if this condition holds, then
by the von Neumann-Sion min-max theorem,

0 ≥ inf
p∈ϕ(x0)

sup
y∈K

〈p, y − x0〉 = sup
y∈K

〈p0, y − x0〉

for some p0 ∈ ϕ(x0), since the function E∗ � p �→ supy∈K〈p, y − x0〉 is weak∗

lower semicontinuous and ϕ(x0) is weak∗-compact. Since NK(x0) = {p ∈ E∗ |
for all y ∈ K 〈p, y− x0〉 ≤ 0}, we see that p0 ∈ NK(x0).

Suppose to the contrary that ϕ has no generalized equilibria, i.e. by for any
x ∈ K, there is y ∈ K such that infp∈ϕ(x)〈p, y− x〉 > 0, i.e.

S(x) :=
{
y ∈ K

∣∣∣ σϕ(x)(x− y) = sup
p∈ϕ(x)

〈p, x− y〉 < 0
}

�= ∅.

It is clear that, for each x ∈ K, S(x) is convex and, for any y ∈ K, S−1(y)
is open in view of the upper hemicontinuity of ϕ. Hence, by the Browder–Fan
Theorem 3.0.1, there is x0 ∈ K such that x0 ∈ S(x0): a contradiction. �

A similar result holds for proximal normal cones (see the lecture by Plaskacz
[64] and Remark 1.3.10).

Proposition 3.3.4. Let K ⊂ E be compact convex and let ϕ:K � E be
upper semicontinuous with compact convex values. Then there is x0 ∈ K such
that ϕ(x0) ∩ (π−1

K (x0) − x0) �= ∅; in particular ϕ(x0) ∩N(x0, K) �= ∅.

Proof. It is clear that, for each y ∈ E, πK(y) is nonempty compact convex
and πK :E � K is upper semicontinuous. The map ψ:K × E � K × E, given
by ψ(x, y) = πK(y) × (ϕ(x) + x) for x ∈ K and y ∈ E, is upper semicontinuous,
compact and has compact convex values. Hence, by the Bohnenblust-Karlin (or
Fan–Glicksberg) fixed point theorem (see Theorem 3.1.5, there is (x0, y0) ∈ K×E
such that (x0, y0) ∈ ψ(x0, y0). Hence x0 ∈ πK(y0) and y0 ∈ ϕ(x0) + x0, i.e.
ϕ(x0) ∩ (π−1

K (x0) − x0) �= ∅. �

Application of the above proposition to the map ϕ− idK yields immediately
the next result of Ky Fan [39].
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Theorem 3.3.5. For any upper semicontinuous map ϕ:K � E with com-
pact convex values, where K ⊂ E is convex compact, there are points x0 ∈ K

and y0 ∈ ϕ(x0) such that ‖y0 − x0‖ = dK(y0).

Our next result, being a modification of a result essentially due to Cornet,
provides the above mentioned direct generalization of the Browder–Fan Theo-
rem 3.3.1.

Theorem 3.3.6 (Cornet, [24]). Suppose that K is a convex compact subset
of a Banach space E, F is a Banach space, A ∈ L (E, F ) (i.e. A:E → F is
a bounded linear operator) and let M := A(K). If an upper hemicontinuous map
ϕ:K � E with closed convex values satisfies the normality condition, i.e. for all
x ∈ K,

sup
p∈NM (A(x))

inf
y∈ϕ(x)

〈p, y〉 ≤ 0,

then there is x0 ∈ K such that 0 ∈ ϕ(x0).

Before we give a proof let us discuss the normality condition and its relation
to the usual (weak) tangency condition. First observe that, for all x ∈ K,

A∗−1(NK (x)) = NA(K)(A(x)) and clA(TK(x)) = TA(K)(A(x)).

Lemma 3.3.7. Let K, A and M = A(K) be as above. Consider the follow-
ing conditions:

(a) for all x ∈ K, ϕ(x) ∩ TM (A(x)) �= ∅;
(b) for all x ∈ K, ϕ(x) ∩ clA(TK (x)) �= ∅;
(c) for all x ∈ K, supp∈A∗−1(NK(x)) infy∈ϕ(x)〈p, y〉 ≤ 0;
(d) for all x ∈ K, supp∈A∗−1(∂dK(x)) infy∈ϕ(x)〈p, y〉 ≤ 0;
(e) for all x ∈ K, supp∈∂dM (Ax) infy∈ϕ(x)〈p, y〉 ≤ 0;
(f) for all x ∈ K, infy∈ϕ(x) d

◦
M(A(x); y) ≤ 0.

Then (a) ⇔ (b) ⇒ (normality) ⇔ (c) ⇒ (d), (normality condition) ⇒ (e) ⇔
(f). If values of ϕ are bounded, then (d) ⇒ (c) and (e) ⇒ (normality condition).
All these conditions are equivalent if ϕ has weakly compact values.

In particular if E = F and A = I is the identity, then (normality) is weaker
than the weak tangency condition. Hence the Cornet theorem may indeed be
considered as an extension of the Browder theorem.

Proof of Theorem 3.3.6. Suppose to the contrary that ϕ has no equilibria, i.e.
for each x ∈ K, 0 �∈ ϕ(x). Theorem 2.9.2 implies the existence of a continuous
map p:K → F ∗ is continuous such that, for each x ∈ K,

inf
y∈ϕ(x)

〈p(x), y〉 > 0.

By Theorem 3.3.3, there is x0 ∈ K such that A∗p(x0) ∈ NK(x0). Hence, by
Lemma 3.3.7(c),

inf
y∈ϕ(x0)

〈p(x0), y〉 ≤ 0,
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a contradiction. �
Remark 3.3.8. (a) It would be interesting to prove the Cornet theorem

under assumption (f) (from Lemma 3.3.7) replacing the normality. In view of
Lemma 3.3.7, it holds when values of ϕ are additionally bounded. If E = F and
A = I, then condition (f) reads

(3.1) inf
y∈ϕ(x)

d◦
K(x; y) ≤ 0 for all x ∈ K

and is weaker than the normality and the usual weak tangency conditions. Below
we shall see that (3.1) is sufficient for the existence of equilibria.

(b) Note that in the course of the above proof we have used the upper hemi-
continuity of ϕ only in a very restrictive manner. It is sufficient that given p ∈ F ∗,
the set {x ∈ K | infy∈ϕ(x)〈p, y〉 > 0} is open; the “full” upper hemicontinuity is
not necessary.

Theorem 3.3.6 yields some consequences in the theory of the constrained
coincidences. Replacing ϕ by ϕ −A we get

Corollary 3.3.9. If K, M , A and ϕ are as in Theorem 3.3.6, for all x ∈ K

and p ∈ NM (A(x)),
inf

y∈ϕ(x)
〈p, y〉 ≤ 〈p, A(x)〉,

then there is x ∈ K such that A(x) ∈ ϕ(x).

Now we shall try to discuss the possibilities to relax the assumption of com-
pactness in the above results. As we shall see this requires a more delicate
treatment. Perhaps the first result in this direction is that of Aubin.

Proposition 3.3.10 (Aubin, [3]). Suppose that K ⊂ R
n is closed and con-

vex, an upper hemicontinuous ϕ:K � R
n has closed convex values, satisfies the

weak tangency condition and is coercive in the following sense:

(3.2) lim sup
x∈K, ‖x‖→∞

σϕ(x)(x) < 0.

The ϕ has an equilibrium in K.

Proof. By (3.2), there is r > 0 such that B(0, r) ∩K �= ∅ and

sup
x∈K, ‖x‖≥r

σϕ(x)(x) < 0.

Hence, for all x ∈ K, ‖x‖ = r and all y ∈ ϕ(x), 〈x, y〉 ≤ 0, i.e. ϕ(x) ⊂ TD(x)
where D := D(0, r) is the closed ball of radius r around 0. Observe that, for all
x ∈ K ∩D, ϕ(x) ∩ TK∩D(x) since, as it is easy to see,

(3.3) TK∩D(x) = TD(x) ∩ TK(x).

Thus, by Theorem 2.1.3, there is x0 ∈ K ∩D such that 0 ∈ ϕ(x0). �

A general principle implying this result is the following:
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Lemma 3.3.11 (see [4]). Given a continuous operator A:E → F , closed
convex sets K ⊂ E, C ⊂ F , if the transversality condition holds, i.e. 0 ∈
int (A(K) −C), then

TK∩A−1(C)(x) = TK(x) ∩A−1(TC(A(x)))

for each x ∈ K ∩A−1(C).

It immediately gives the next result.

Proposition 3.3.12 (see [58]). Suppose that K ⊂ E is closed convex and
intK �= ∅. If an upper hemicontinuous ϕ:K � E with compact convex values
is compact (i.e. clϕ(K) is compact) weakly inward, i.e. for each x ∈ K, ϕ(x) ∩
(x+ TK(x)) �= ∅, then ϕ has a fixed point.

Proof. Suppose, without loss of generality, that 0 ∈ intK. There is a com-
pact convex set C ⊂ E such that 0 ∈ C and ϕ(K) ⊂ C. Hence, for any x ∈ K∩C,
ϕ(x) ⊂ x + TC(x). Since C ∩ intK �= ∅, we see by Lemma 3.3.11 (with A = I)
that, for each x ∈ K∩C, TK(x)∩TC(x) = TK∩C(x) and (ϕ(x)−x)∩TK∩C(x) �= ∅.
By Theorem 2.1.3 we conclude the proof. �

The above results motivate the following definition: we say that a bounded
linear operator A:E → F and a closed convex set C ⊂ F control directions
admitted by ϕ:K � F if, for each x ∈ K∩A−1(C), we have ϕ(x)∩TC(A(x)) �= ∅.

For instance, if K ⊂ E, C ⊂ F are closed convex, ϕ:K � F and, for each
x ∈ K, ϕ(x) ∩ C �= ∅, then C and A control directions admitted by Φ = ϕ− A.

This allows the following non-compact generalization of the results of Cornet
and Browder–Fan 3.3.1, 3.3.6

Theorem 3.3.13. Suppose that K ⊂ E is closed convex, F is a Banach
space, A:E → F is a linear bounded operator which, together with a compact
set C ⊂ F , controls directions admitted by an upper hemicontinuous ϕ:K � F

having closed convex values. If the restriction A|K is proper (20), 0 ∈ int (A(K)−
C) and, for all x ∈ K ∩A−1(C) and all p ∈ A∗−1(NK (x)),

inf
y∈ϕ(x)∩TC(A(x))

〈p, y〉 ≤ 0,

then ϕ has an equilibrium.

Proof. By Lemma 3.3.11, for any x ∈ K ∩A−1(C),

NK∩A−1(C)(x) = TK∩A−1(C)(x)⊥

= (TK(x) ∩A−1TC(A(x)))⊥ = NK (x) +A∗(NC(A(x)).

(20) This holds for instance if A is a semi-Fredholm operator and K is bounded. Recall

that A ∈ L(E,F ) is semi-Fredholm if the range Im (A) is closed and dimKer (A) < ∞.
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Let x ∈ K ∩A−1(C) and A∗(p) ∈ NK∩A−1 (C)(x). Then, there are p1 ∈ NK (x)
and q ∈ NC(A(x)) such that A∗(p) = p1 + A∗(q). Hence p − q ∈ A∗−1(NK(x))
and, for any y ∈ ϕ(x) ∩ TC(A(x)),

inf
y∈ϕ(x)

〈p, y〉 ≤ inf
y∈ϕ(x)∩TC(A(x))

〈p, y〉 ≤ inf
y∈ϕ(x)∩TC(A(x))

〈p − q, y〉 ≤ 0.

The properness of A implies that A−1(C) is compact; this, by Theorem 3.3.6,
ends the proof. �

The result stated above, although sufficient on many occasions, in practice
requires to know that intK �= ∅. From that reason stems the necessity to
establish a result which relaxes this assumption, too. To discuss and explain an
approach due to Deimling, let us make the following observations.

Let, as usual, K ⊂ E be a closed set of a Banach space E and let x ∈ K.
If ε > 0 and u: [0, ε] → K is a continuous function such that u(0) = x and the
right derivative v = u′

+(0) exists, then it is easy to see that v ∈ TK(x). Given
an upper semicontinuous map ϕ:K � E with compact convex values such that
there exists a solution u: [0, ε] → K of the Cauchy problem:

(3.4)
{
u′(t) ∈ ϕ(u(t)),

u(0) = x,

i.e. there is an (Bochner) integrable function w: [0, ε] → K such that w(t) ∈
ϕ(u(t)) and u(t) = x +

∫ t
0 w(s) ds on [0, ε], then ϕ(x) ∩ TK(x) �= ∅. Indeed, for

an arbitrary sequence hn → 0+ and any n ∈ N, u(hn) = x+ hnvn ∈ K where

vn =
1
hn

∫ hn

0
w(s) ds.

It is clear that vn ∈ cl conv {w(s) | s ∈ [0, hn]} ⊂ cl convϕ({u(s) | s ∈ [0, hn]}).
The upper semicontinuity of ϕ and the compactness of its values implies that,
passing to subsequences if necessary, vn → v ∈ ϕ(x). Hence v ∈ ϕ(x) ∩ TK(x).

This means that in order to verify the weak tangency condition for ϕ it is
sufficient to show that, for each x ∈ K, problem (3.4) admits a solution. The
converse implication does hold under some additional assumptions. In particular
one has the following result.

Proposition 3.3.14 (see [32]). Suppose that K is closed, bounded in E, an
upper semicontinuous ϕ:K � E with convex compact values is k-set-contractive
(k ≥ 0) with respect to the Kuratowski or Hausdorff measure of noncompact-
ness γ. If ϕ is weakly tangent to K, then problem (3.4) admits a solution.

Theorem 3.3.15 (Deimling, [31]). Let K be a closed bounded convex subset
of a Banach space E and let an upper semicontinuous map ϕ:K � E with
compact convex values be condensing with respect to the Kuratowski or Hausdorff
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measure of noncompactness γ (21). If ϕ is weakly inward, i.e. for each x ∈ K,
ϕ(x) ∩ x+ TK(x) �= ∅, then ϕ has a fixed point.

Proof. We may assume that 0 ∈ K since a translation does not destroy any
of the assumptions. Moreover, we may suppose that ϕ is a set-contraction. For
if we take k ∈ (0, 1), then it easy to see that kϕ is a set-contraction which also
satisfies the weak inwardness condition. Assuming that the result holds for set-
contractions and taking a sequence kn → 1⊥, for each n ∈ N we get xn ∈ K

such that xn ∈ knϕ(xn). For any ε > 0 there is N ∈ N such that k−1
n − 1 < ε

for n ≥ N . For such n, xn ∈ B(k−1
n xn, ε) ⊂ B(ϕ(xn), ε). Hence

γ({xn}∞
n=1) = γ({xn | n ≥ N}) ≤ ε+ γ(ϕ({xn | n ≥ N})) ≤ ε+ γ(ϕ({xn}∞

n=1).

This show that the set cl {xn}∞
n=1 is compact. Passing to a subsequence if nec-

essary, we may assume that xn → x0 and x0 ∈ ϕ(x0).
Suppose that, for a bounded set B ⊂ K, γ(ϕ(B)) ≤ kγ(B), where 0 ≤ k < 1.

Let εn = 2−n and

K0 = K, Kn = Cn ∩Kn−1 where Cn := cl conv [B(ϕ(Kn−1), εn) ∪B(0, εn)]

for n ∈ N. It is clear that, for all n ≥ 0, 0 ∈ Kn, Kn+1 ⊂ Kn ⊂ K and

γ(Kn) ≤ γ(Cn) ≤ γ(ϕ(Kn−1)) + 2εn ≤ kγ(Kn−1) + 2εn.

Thus, by induction

γ(Kn) ≤ knγ(K0) + 2
n∑
i=1

kn−iεi.

This shows that γ(Kn) → 0; hence, by the Kuratowski theorem, the set

C :=
∞⋂
n=0

Kn

is nonempty and compact convex. The map ϕ is weakly inward to K = K0;
suppose that so it does with respect to Kn−1 (n ≥ 1). We shall show that
ϕ is weakly inward to Kn as well. Let x ∈ Kn and take y ∈ ϕ(x) such that
y − x ∈ TKn−1 (x). Since 0 ∈ intCn ∩ Kn−1 and ϕ(x) ⊂ Cn, we have that
y − x ∈ TCn (x) and, by Lemma 3.3.11,

y − x ∈ TCn (x) ∩ TKn−1 (x) = TKn (x).

Having this we shall prove that ϕ is weakly inward to C. To see this take x ∈ C

and observe that the Cauchy problem

(3.5)
{
u′(t) ∈ ϕ(u(t)) − u(t),

u(0) = x,

(21) Measures of noncompactness are treated e.g. in [1].
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has a solution un: [0, 1] → Kn in view of Proposition 3.3.14. It is easy to see
that the family {un}∞

n=1 is equicontinuous and, for each t ∈ [0, 1], the orbit
{un(t)}∞

n=1 is relatively compact. Hence, by the Ascoli–Arzela theorem, we may
assume that un → u ∈ C([0, 1], C) uniformly on [0, 1]. Obviously u(0) = x. It is
also standard (see e.g. [6, Appendix] for an argument in a more general situation)
to see that, for almost all t ∈ [0, 1], the orbit {u′

n(t)}∞
n=1 is relatively compact.

By a result due to Diestel [35], passing to a subsequence if necessary, we infer
that un ⇀ w ∈ L1([0, 1], E) weakly in L1. Hence u(t) = x +

∫ t
0 w(s) ds, i.e.

u′ = w almost everywhere on [0, 1]. The application of the so-called convergence
theorem [3] (or [4]) shows that w(s) ∈ ϕ(u(s))−u(s) almost everywhere on [0, 1],
i.e. u is a solution to (3.5). By the remarks preceding Proposition 3.3.14, this
implies that (ϕ(x) − x) ∩ TC(x) �= ∅. In virtue of Theorem 3.3.1, ϕ has a fixed
point. �

Theorem of Deimling gives sufficient conditions for the so-called essential-
ity of set-valued maps which generalizes the so-called Leray–Schauder nonlinear
alternative of Granas and a result due to Aubin (see [3], [58]).

Proposition 3.3.16. Suppose that K ⊂ E is closed convex and intK �= ∅.
If a compact map ϕ:K � E has compact convex values and is weakly inward to
K, then it is essential with respect to the boundary bdK, i.e. any compact map
ψ:K � E with compact convex values such that ψ|bdK = ϕ|bdK has a fixed
point. In particular, if a compact map Φ:K × [0, 1] � E with compact convex
values is such that Φ( · , 0) = ϕ, for all x ∈ bdK and t ∈ [0, 1], x �∈ Φ(x, t), then
Φ( · , 1) has a fixed point.

Proof. The first part is obvious. For each x ∈ K, ψ(x) ∩ (x + TK(x)) �= ∅:
for x ∈ bdK it follows by assumption; if x ∈ intK, then TK(x) = E.

As concerns the second assertion, the proof uses the method of Borsuk. Let
B = {x ∈ K | x ∈ Φ(x, t) for some t ∈ [0, 1]}. The upper semicontinuity of Φ
implies that B is closed; moreover bdK ∩ B = ∅. Take an Urysohn function
t:K → [0, 1] separating bdK from A, i.e. t is continuous and t|bdK ≡ 1, t|B ≡ 1.
It is easy to see that ψ(x) = Φ(x, t(x)) defines a compact map ψ:K � E with
compact convex values and ψbdK = ϕ|bdK . Therefore there is x0 ∈ K such that
x0 ∈ ψ(x0) = Φ(x0, t(x0)). Hence x0 ∈ B, t(x0) = 1 and x0 ∈ Φ(x0, 1). �

The next result follows in the same spirit.

Theorem 3.3.17 (see [58]). Suppose K is convex closed, U ⊂ K is open,
a set-valued ϕ:K → E is compact, for all x ∈ K, ϕ(x) ∩ (x + TK(x)) �= ∅ and
the fixed point set {x ∈ K | x ∈ ϕ(x)} ⊂ U . If ψ: clKU � E is compact (22), for

(22) In what follows cl KU , bd KU denotes the closure and the boundary of U relative

to K.
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each x ∈ U , ψ(x) ∩ (x+TK(x)) �= ∅, then at least one of the following properties
is satisfied:

(a) there is x ∈ bdKU and t ∈ (0, 1) such that x ∈ (1 − t)ϕ(x) + tψ(x);
(b) there is x0 ∈ clKU such that x0 ∈ ψ(x0).

Proof. Suppose that (a) does not hold and x �∈ ψ(x) for x ∈ bdKU . The
homotopy Φ: clKU × [0, 1] � E given by Φ(x, t) = (1 − t)ϕ(x) + tψ(x) is
compact and has compact convex values. The set B = {x ∈ clKU | x ∈
Φ(x, t) for some t ∈ [0, 1]} is clearly closed and B ∩ (K \ U) = ∅. Take an
Urysohn function t:K → [0, 1] such that t|K\U ≡ 0 and t|B ≡ 1. The map
Φ( · , t( · )) is actually defined on K, has compact convex values, is compact
and satisfies the weak tangential inwardness condition, i.e. for each x ∈ K,
Φ(x, t(x)) ∩ (x + TK(x)) �= ∅. Indeed, for x ∈ K \ U , Φ(x, t(x)) = ϕ(x); for
x ∈ U , there are y1 ∈ ϕ(x) and y2 ∈ ψ(x) such that yi ∈ x + TK (x), hence
y = (1 − t(x))y1 + t(x)y2 ∈ x + TK (x) and y ∈ Φ(x, t(x)). By Theorem 3.3.15
there is x0 ∈ K such that x0 ∈ Φ(x0, t(x0)). Thus x0 ∈ B, t(x0) = 1 and
x0 ∈ ψ(x0). �

Remark 3.3.18. A much more involved arguments lead to the definition of
the constrained fixed-point index. In [30] the following situation was studied:
let K ⊂ E be closed convex, U ⊂ E be open and let Φ:U � E be a compact
upper semicontinuous map with compact convex values such that, for all x ∈ U ,
Φ(x)∩ (x+TK (x)) �= ∅ (i.e Φ is weakly inward to K). Then the index Ind (Φ, U)
detecting fixed points of Φ is defined provided Fix (Φ) := {x ∈ U | x ∈ Φ(x)} is
compact. As usual this index has all the standard properties. If U = K, then
Ind (Φ, K) = 1. This, together with the existence property of the index implies
the ‘compact’ version of Theorem 3.3.15.

3.4. Beyond convexity. Let us consider the following examples showing
that the weak tangency or weak inwardness is not sufficient for the existence of
equilibria or fixed points om maps defined on nonconvex sets.

Example 3.4.1. Let

K :=
{
x = (x1, x2, x3) ∈ R

3
∣∣∣ |x| ≤

√
2 and

√
x2

1 + x2
2 ≥ x3

}
,

S := {x ∈ K | x2
1 + x2

2 = 1 and x3 = 1},
Z := {x ∈ R

3 | x2
1 + x2

2 ≤ 1 and x3 = 1}.

It is easy to see that K is a compact retract. Next, for x ∈ K, put

ϕ(x) =
{
Z for x ∈ D \ S,
conv {Z ∪ {(−x2, x1, 0}} for x ∈ S.

Clearly ϕ:K � E is upper semicontinuous with compact convex values and
ϕ(x) ∩ TK (x) �= ∅ on D. But is easy to see that ϕ has no equilibria. Observe
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also that, for x = 0, the set S(x) of all solutions to the Cauchy problem (3.4)
is homeomorphic to the unit sphere S1; hence it is not an Rδ-set (this will be
explained later on). Notice that, for all x ∈ K, x �= 0, the Bouligand and the
Clarke tangent cones TK(x) and CK(x) coincide; however TK(0) �= CK(0) and
ϕ(0) ∩ CK(0) = ∅.

Below we shall see that if, in the above example, should we take another map
ϕ that satisfies the weak tangency condition with the Bouligand cones replaced
by the Clarke cones, then ϕ would possess equilibria. However, it is not true
that such a procedure would be a general remedy.

Example 3.4.2. Let K := S1 ∪ S−1 where Si := {z = (x, y) ∈ R
2 | (x −

i)2 + y2 = 1}. It is readily seen that K is a neighbourhood retract in R
2 and

χ(K) �= 0. Let

f(x, y) =
{

(y, 1 − x) for (x, y) ∈ S1,

(−y, 1 + x) for (x, y) ∈ S−1.

For all z ∈ K, f(z) ∈ TK(z) = CK(z) but f has no zeros. At the same time
the set of all solutions to (3.4) (with ϕ replaced by f and x = (0, 0)) is even not
connected.

We shall see that apart form the necessity to consider Clarke cones (instead of
Bouligand ones), one should impose certain topological conditions on the set K.

Let (X, d) be a metric space. We say that a set K ⊂ X is an L -retract (of X)
if there is a neighbourhood retraction r:U → K and a constant L ≥ 1 such that,
for all x ∈ U ,

(3.6) d(r(x), x) ≤ LdK(x).

Clearly any L -retract is a neighbourhood retract and is closed. The class of L -
retracts has been introduced and studied in [8]. It is clear that an L -retract
K is an ANR; hence if K is compact, then the Euler characteristic χ(K) is
well-defined (see [17]).

Before we study the existence of equilibria on L -retracts, let us provide some
examples of such sets.

Example 3.4.3. (a) Suppose that K ⊂ X is closed and bi-Lipschitz homeo-
morphic with a closed convex set A ⊂ E (i.e. there is a Lipschitz homeomorphism
h:K → A with Lipschitz inverse g = h−1:A → K). Then K is an L -retract.

To see this let f :X → A be an extension of h given by the Arens-Dugundji
formula (see [10]) and put r(x) = g ◦ f(x) for x ∈ X. In [8] it is shown that
(3.6) holds for all x ∈ X and L = 3LgLh + 1 where Lh and Lg are the Lipschitz
constants of h and g, respectively.

(b) If K ⊂ E is closed and convex, then for each ε > 0, there is r:E → K

such that ‖r(x) − x‖ ≤ (1 + ε)dK (x).
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To see this, for x ∈ E, let ψ(x) := {y ∈ K | ‖y − x‖ ≤ (1 + ε)dK(x)}. It is
easy to see that ψ has closed convex values and is lower semicontinuous and, for
x ∈ K, ψ(x) = {x}. In view of the Michael selection theorem, ψ has a continuous
selection r:E → K.

(c) Following [63] (where the finite-dimensional case was presented) we say
that K ⊂ E is a proximate retract if there are a neighbourhood U of K and
a retraction r:U → K such that ‖r(x) − x‖ = dK(x) (we say that r is a met-
ric retraction or projection). Proximate retracts in a Hilbert space (under the
name ϕ-convex sets) have been studied in detail in [23] (see also the exten-
sive bibliography therein) and some equivalent conditions were formulated. In
particular, proximate retracts are tangentially regular. For instance, sets with
C1,1-boundary are proximate retracts. Obviously each proximate retract is an
L -retract.

(d) If K ⊂ E is a neighbourhood retract with Lipschitz continuous neigh-
bourhood retraction r:U → K. Then (3.6) holds with L = �+ 1 where � is the
Lipschitz constant of r. In particular, if K is a compact neighbourhood with
a locally Lipschitz retraction r:U → K, then K is an L -retract.

(e) Above after Rockafellar [67] we have introduced the class; each epi-
Lipschitz set is an L -retract.

As we see the class of L -retracts is pretty large and, as it appears, it behaves
well as concerns the constrained equilibrium theory.

The first result in this direction is due to Plaskacz [63] who proved that
if K ⊂ R

n is a compact proximate retract with nontrivial Euler characteristic,
ϕ:K � R

n is upper semicontinuous with compact convex values satisfying the
weak tangency condition (involving Bouligand or Clarke cones: it is equivalent
in view of the tangential regularity of K), then ϕ has an equilibrium.

The next step was done by Clarke, Ledyaev and Stern [22] (see also [70])
who proved that given K ⊂ E such that either

(i) K is bi-Lipschitz homeomorphic with a compact convex set, or
(ii) E = R

n and K is epi-Lipschitz and homeomorphic with a compact con-
vex set, an upper semicontinuous ϕ:K � E with closed convex values
satisfying the weak tangency condition (i.e. ϕ(x) ∩ CK(x) �= ∅ for each
x ∈ K), then ϕ has an equilibrium (23).

Observe that above, the set K is a compact L -retract and χ(K) = 1. The
decisive contribution to the problem was done by Ben-El-Mechaiekh and the
present author in [8] and the following result was obtained.

Theorem 3.4.4 (see [8]). Let K ⊂ E be a compact L -retract with χ(K) �= 0.
If ϕ:K � E is upper semicontinuous with closed convex values and weakly

(23) Epi-Lipschitz in Rn having nontrivial Euler characteristic have been studied in [25]

in the context of generalized equilibria.
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tangent to K, i.e.

(3.7) ϕ(x) ∩CK(x) �= ∅, for all x ∈ K

then ϕ has an equilibrium.

This result constitutes a direct generalization of the Browder, Plaskacz,
Clarke, Ledyaev and Stern and others. We shall prove a result even more gen-
eral due to Ćwiszewski and the author [27]. We start with a generalization of
Theorem 3.3.3.

Theorem 3.4.5 (see [27]). Suppose K ⊂ E is a compact L -retract with
the nontrivial Euler characteristic. Any upper hemicontinuous set-valued map
ϕ:K � E∗ with convex weak∗ compact values admits a generalized equilibrium
i.e. a point x0 ∈ K such that ϕ(x0) ∩NK(x0) �= ∅.

In fact in [27] the following fact was established.

(GE) There is x0 ∈ K and δ > 0 such that, for all y ∈ E, if d◦
K(x0; y) < δ,

then infp∈ϕ(x0)〈p, y〉 ≤ 1.

It is not difficult to see that (GE) implies

sup
y∈CK(x)

inf
p∈ϕ(x)

〈p, y〉 ≤ 0

being equivalent to the existence of a generalized equilibrium.
Now we ready for an extension of Theorem 3.4.4.

Theorem 3.4.6 (see [27], [58]). Suppose that K ⊂ is a compact L -retract
with χ(K) �= 0.

(a) Let F be a Banach space, A ∈ L (E, F ) and let ϕ:K � F be an up-
per hemicontinuous mapping with closed convex values satisfying the
normality condition, i.e. infy∈ϕ(x)〈p, y〉 ≤ 0 for all x ∈ K and p ∈
A∗−1(NK(x)).

(b) Let an upper hemicontinuous map ϕ:K � E have closed convex values
and, for all x ∈ K,

inf
y∈ϕ(x)

d◦
K(x; y) ≤ 0.

Then, in both cases (a) and (b), ϕ admits an equilibrium.

Proof. The proof of the first part is identical to that of Theorem 3.3.6 (instead
of Theorem 3.3.3 one applies Theorem 3.4.5).

When (b) holds, then again suppose to the contrary that 0 �∈ ϕ(x) on K.
The separation theorem implies the existence of a bounded linear form (of a suf-
ficiently large norm) px ∈ E∗ such that infy∈ϕ(x)〈px, y〉 > 1. As in the proof of
Theorem 3.3.6, one constructs a continuous p:K → E∗ such that, for all x ∈ K,

(3.8) inf
y∈ϕ(x)

〈p(x), y〉 > 1.
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Condition (GE) (with p replacing ϕ) is satisfied for some x0 ∈ K and δ > 0. By
the assumption, there is y ∈ ϕ(x0) such that d◦

K(x0; y) < δ; hence 〈p(x0), y〉 ≤ 1:
a contradiction with (3.8). �

In both Theorems 3.4.5 and 3.4.4 the nontriviality of χ(K) is crucial. In
[25] the authors show that this topological assumption is, in a sense, necessary
for the existence of equilibria. Namely, they prove that if K is a compact epi-
Lipschitz subset of R

n (hence a compact L -retract), then there exists a nonzero
single-valued continuous map tangent to K. The corresponding result for general
L -retracts in E (or even in R

n) is not known; however we conjecture it to be
true.

Unfortunately there is still no way to proceed with the constrained fixed
problem of set-valued maps defined on arbitrary (noncompact) L -retracts. The
method proposed above strongly relies on the compactness. That is why criteria
for the existence of equilibria of maps defined on sets of a slightly less general
nature than L -retracts have been established in [27], [58], [26]. The authors were
able to relax the compactness assumption which was yet unavoidable in above
theorems.

3.5. Homotopy invariants in the constrained case. Let K ⊂ E be
a locally compact L -retract, let U ⊂ K be open and suppose that ϕ:U � E be
an upper hemicontinuous map with closed convex values such that, for all x ∈ U ,
ϕ(x)∩CK(x) �= ∅ and (i.e. ϕ is weakly tangent) ϕ−1(0) is compact. Under these
assumptions the integer-valued degree deg(ϕ, U) has been defined in [29]. The
construction is provided in three steps.

At first one assumes that ϕ has compact values and is upper semicontinuous.
For any ε > 0, let Cε:K � E be given by

Cε(x) =
{
u ∈ E

∣∣∣∣ lim sup
y

K−→ x, h→0+

dK(y + hu)
h

< ε

}
, x ∈ K.

It is quite simple to show that Cε is lower semicontinuous and has convex values.
Moreover, for each x ∈ U ,ϕ(x)∩Cε(x) �= ∅. Therefore, in view of Theorem 2.8.1,
there is a continuous map fε:U → E being and ε-approximation of ϕ and an ε-
selection of Cε. It may be shown that if ε and t > 0 are sufficiently small, then
the map gε:U → K given by

gε(x) = r(x+ tfε(x)), x ∈ U,

where r: Ω → K is the L -retraction (defined on an open neighbourhood Ω of K)
is well-defined; moreover the fixed-point index ind(K, gε, U) is well-defined and
does not depend on ε, t and r. Hence one may put

Deg(ϕ, U) := lim
ε,t→0+

ind(K, gε, U).
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In the second step one considers an upper hemicontinuous set-valued map
Φ:U � E∗ with weak∗-compact convex values such that the set Z∗(Φ) := cl {x ∈
U | Φ(x) ∩ NK(x) �= ∅} (i.e. the closure of the set of all generalized equilibria)
is compact. In this case [29] defines the so-called co-degree ∗deg(Φ, U) which
detects the existence of points in Z∗(Φ).

Finally, having all these we consider the general situation: ϕ:U � E is upper
hemicontinuous with closed convex values. Using approximation constructions
similar to those from Theorems 2.1.3 and 2.9.2, the existence of a continuous map
q:U → E∗ such that, for x ∈ U \ϕ−1(0), infy∈ϕ(x)〈q(x), y〉 > 0 and Z∗(q) ⊂ ϕ−1.
Therefore, one may put

Deg(ϕ, U) := deg(q, U).

This definition is correct since, as it is shown in [29], it does not depend on
the choice of q. The whole construction relies heavily on various approximation
techniques (graph-approximations, constrained graph-approximations as well as
acute-angled approximations). The constructed degree (considered for weakly
inward maps instead of weakly tangent ones) can be easily converted to a well-
defined constrained fixed-point index.
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[68] L. Rybiński, Measurable and continuous selections, this volume.

[69] M. Sion, On general minimax theorem, Pacific J. Math. (1958), 171–176.

[70] R. J. Stern, On zeros of multifunctions in non-lipschitzian sets, manuscript (1996).

[71] D. W. Walkup and R. Wets, Continuity of some convex-cone-valued mapping, Proc.

Amer. Math. Soc. 18, 229–235.

[72] Y. Zheng, Approximation selection theorems and their applications, L. Math. Anal.
Appl. 212 (1997), 88–97.

Wojciech Kryszewski

Faculty of Mathematics and Informatics
Nicolaus Copernicus University

Chopina 12/18
87-100 Toruń, POLAND

E-mail address : wkrysz@mat.uni.torun.pl





Juliusz Schauder Center Winter School
on Methods in Multivalued Analysis
Lecture Notes in Nonlinear Analysis
Volume 8, 2006, 137–167

SET-VALUED ANALYSIS IN OPTIMAL CONTROL PROBLEMS

S�lawomir Plaskacz

Abstract. In the lecture differential techniques in set-valued analysis are
presented. Several applications to the control theory are given.

One of the main problems in optimal control theory is to describe the value
function as a solution to the corresponding Hamilton–Jacobi–Bellman (H-J-B)
equation. The value function is, in general, not differentiable. So, the value func-
tion is not a classical solution to the H-J-B equation. The crucial role is played
by the notion of viscosity solutions introduced by Crandall and Lions in [8]. In
the definition of viscosity solution the gradient is replaced by subgradient and
supergradient — two basic notions of nonsmooth analysis. The subdifferential is
the set of subgradients. In this way we obtain the set valued map that associates
to any element in the domain of the value function its subdifferential (superdif-
ferential). Methods of set valued analysis are deeply used in the differential
inclusion approach initiated by Frankowska [11]. Our aim is to present the self
contained series of three lectures that start with some elements of convex and
nonsmooth analysis and through differential inclusion finish with weak solutions
of H-J-B equations corresponding to the Mayer problem.

In the first section we introduce some basic notions of convex and nonsmooth
analysis. We compare normal and tangent cones to convex sets. In the nonconvex
case we study the Bouligand tangent cone, the Clarke tangent cone and the
proximal normal cone. We show that the lower limit of Bouligand’s cones is
a subset of the Clarke cone. We study the subdifferential to a convex function

2000 Mathematics Subject Classification. 93B05, 34A60, 47H04.

Key words and phrases. Control problems, differential inclusions, tangent cone, subdiffe-

rential.

c©2006 Juliusz Schauder Center for Nonlinear Studies



138 S�lawomir Plaskacz

and show the connections with normals to the epigraph. A similar connection
we obtain also for noncovex functions.

In the second section we consider differential inclusions. We consider the
problem of the existence of a solution to the Cauchy problem, we characterize the
set of solutions to the Cauchy problem and study the invariance and the viability
problems. First we consider differential inclusions with Lipschitz continuous right
hand side. Then we pass to differential inclusions with upper semicontinuous
(u.s.c.) right hand side using the approximation theorem of u.s.c. maps.

In the last section we consider the value function in the Mayer problem. We
follow the Frankowska viability approach. We show that if a lower semicontinu-
ous function is a weak solution to the H-J-B equation and satisfies the terminal
condition then it is equal to the value function. We show that the epigraph of the
function is forward viable and backward invariant to a corresponding differential
inclusion. It follows the desired conclusion.

1. Elements of convex and nonsmooth analysis

1.1. Proximal projection. Suppose that K ⊂ R
d is a closed set. The

proximal projection ΠK from R
d onto the set K is defined by

ΠK(y) = {x ∈ K : dist(y,K) = |y − x|}.

If x ∈ K and n ∈ R
d \ {0} then

(1.1) x ∈ ΠK(x+ n) ⇔ B(x + n, |n|) ∩K = ∅

where B(z, r) denote a ball with the center at the point z ∈ R
d and a radius

r > 0.
If x ∈ ΠK(x+ n) and α ∈ (0, 1) then x ∈ ΠK(x+ αn).

We have B(x + αn, |αn|) ⊂ B(x + n, |n|). Thus, if B(x + n, |n|) ∩ K = ∅ then
B(x + αy, |αy|) ∩K = ∅.

In general, the proximal projection is a set-valued map. We easy see that if
K is a sphere and x is the center then ΠK (x) is the whole sphere. If K is convex
then the proximal projection is single-valued and posses more regular properties.

Proposition 1.1. Suppose that K ⊂ R
d is convex and closed. Then ΠK : R

d

→ K is a single-valued nonexpansive map

|ΠK(y1) − ΠK(y2)| ≤ |y1 − y2|.

Moreover,

(1.2) x ∈ ΠK(x+ n) ⇔ ∀z ∈ K, 〈z − x, n〉 ≤ 0.

Proof. If x1, x2 ∈ ΠK(y) and x1 �= x2 then |y−(x1 + x2)/2| < |y−x1|. Thus
ΠK is a single-valued map.
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Suppose that x ∈ ΠK(x+ n) and z ∈ K. Then

|z − (x+ n)|2 ≥ |n|2.
Thus 〈

z − x

|z − x| , n
〉

≤ 1
2

|z − x|.

For h > 0 we set zh = x + h(z − x)/|z− x|. For sufficiently small h we have
zh ∈ K. Thus 〈

z − x

|z − x| , n
〉

=
〈
zh − x

|zh − x| , n
〉

≤ 1
2

|zh − x|.

Taking the limit with h → 0 we obtain 〈z − x, n〉 ≤ 0.
To obtain the reverse implication in (1.2) let us take an arbitrary z ∈ K.

Then
|z− (x+ n)|2 = |z − x|2 + 2〈z − x, n〉 + |n|2 ≥ |n|2.

Thus x ∈ ΠK(x+ n).
Now, we show that the proximal projection is a nonexpansive map. Let

y1, y2 ∈ R
d and xi = ΠK(yi), i = 1, 2. By (1.2),we have

〈x1 − x2, y2 − x2〉 ≤ 0 and 〈x2 − x1, y1 − x1〉 ≤ 0.

Thus
〈x1 − x2, y2 − x2 + x1 − y1〉 ≤ 0.

By the Cauchy inequality

|x1 − x2|2 ≤ |x1 − x2||y1 − y2|. �

1.2. Normal and tangent cones to a convex set. We assume that K ⊂
R

d is a closed convex nonempty set. We say that a n ∈ R
d is a normal vector to

the set K at the point x ∈ K if ΠK(x + n) = x. The set of normal vectors we
denote by NK (x). That is

n ∈ NK (x) ⇔ ΠK (x+ n) = x.

Proposition 1.2. The set NK (x) is a closed convex cone. The set-valued
map NK :K � R

d has a closed graph.

Proof. By (1.2), n is a normal vector to K at x if and only if

(1.3) 〈z − x, n〉 ≤ 0 for all z ∈ K.

It follows that NK (x) is a closed convex cone.
Suppose that nm ∈ NK (xm) and nm = n, limm→∞ xm = x. Thus x =

limm→∞ xm = limm→∞ ΠK(xm + nm) = Πk(x+ n). �

The polar cone S⊥ to a set S ⊂ R
d is given by

v ∈ S⊥ ⇔ ∀s ∈ S 〈s, v〉 ≤ 0.
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It is easy to see that S⊥ = (clS)⊥ and S⊥ is a closed convex cone. If S1 ⊂ S2,
then S⊥

2 ⊂ S⊥
1 .

Lemma 1.3 (Fenchel). If S ⊂ R
d is a closed convex cone then (S⊥)⊥ = S.

Proof. It is obvious that S ⊂ (S⊥)⊥.
To show the reverse inclusion assume to the contrary that there exists v ∈

(S⊥)⊥ such that v /∈ S. By the separation theorem, there exists p ∈ R
d \ {0}

such that
〈p, v〉 > sup{〈p, w〉 : w ∈ S}.

Thus sup{〈p, w〉 : w ∈ S} = 0 and p ∈ S⊥. But v ∈ (S⊥)⊥, so 〈p, v〉 ≤ 0. A
contradiction. �

By Walkup–Wets formulaa (see Lemma 1.3.7 in [16]) we obtain:

Lemma 1.4. If a set valued map N :K � R
d has closed graph then the set

valued map S:K � R
d given by S(x) = (N(x))⊥ is lower semicontinuous.

We define the tangent cone SK(x) to the set at x ∈ K by

SK (x) = cl
( ⋃

h>0

K − x

h

)
.

Theorem 1.5. If K ⊂ R
d is a closed convex set then for x ∈ K

SK(x) = NK(x)⊥, NK(x) = SK(x)⊥.

The set valued map SK : � R
d is lower semicontinuous.

Proof. We have

(1.4)
( ⋃

h>0

K − x

h

)⊥
= NK (x).

Indeed,

p ∈
( ⋃

h>0

K − x

h

)⊥
⇔ ∀z ∈ K ∀h > 0,

〈
z − x

h
, p

〉
≤ 0

⇔ ∀z ∈ K, 〈z − x, p〉 ≤ 0 ⇔ p ∈ NK (x).

We have ⋃
h>0

K − x

h
is a convex cone.

If v = (z − x)/h and α > 0 then αv = (z − x)/(h/α) ∈ (K − x)/(h/α).
If zi ∈ K and vi = (zi − x)/hi , i = 1, 2, then

v1 + v2 =
h2z1/(h1 + h2) + h1z2/(h1 + h2) − x

h1h2/(h1 + h2)
∈

⋃
h>0

K − x

h
.
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By (1.4) and (1.4), we obtain NK(x) = SK (x)⊥. By Fenchel Lemma 1.3, we
have SK(x) = NK(x)⊥. By Proposition 1.2 and Lemma 1.4, the set valued map
SK is lower semicontinuous. �

1.3. A subdifferential to a convex function. The condition (1.3) char-
acterising a normal vector n �= 0 to a convex set K at a point x ∈ K can be
formulating as

sup
z∈K

〈n, z〉 = 〈n, x〉 (=: c).

It can be geometrically interpreted as follows: the set K is located on one side
of the hyperplane {y ∈ R

d : 〈n, y〉 = c}. This hyperplane is a supporting
hyperplane the set K at the point x. The same geometrical idea is used to
define the subdifferential to a convex function.

A function f : R
d → R ∪ {∞} is convex if its epigraph

Epi(f) = {(x, y) : x ∈ R
d and y ≥ f(x)}

is a convex subset of R
d×R. The domain of the extended function f is dom(f) =

{x ∈ R
d : f(x) < ∞}. The subdifferential ∂f(x0) of the convex function f at

x0 ∈ dom(f) is defined by

∂f(x0) = {p ∈ R
d : f(x) ≥ f(x0) + 〈p, x− x0〉 for all x ∈ R

d}.

Proposition 1.6. Suppose that f : R
d → R ∪ {∞} is a function with non-

empty closed convex epigraph and f(x0) �= ∞. Then

p ∈ ∂f(x0) ⇔ (p,−1) ∈ NEpi(f)(x0, f(x0)).

Proof. Let p ∈ ∂f(x0) and w ≥ f(x). Then

〈(x, w) − (x0, f(x0)), (p,−1)〉 = (f(x0) + 〈p, x− x0〉) − w ≤ 0.

Thus (p,−1) ∈ NEpi(f)(x0, f(x0)).
Suppose that (p,−1) ∈ NEpi(f)(x0, f(x0)). Then

〈(p,−1), (x, f(x)) − (x0, f(x0))〉 ≤ 0

for every x ∈ dom(f). Thus p ∈ ∂f(x0). �

Example 1.7. We define f : R → R ∪ {∞} by

f(x) =
{ −

√
1 − x2 for |x| ≤ 1,

∞ for |x| > 1.

If |x| = 1 then the subdifferential ∂f(x) is an empty set. But the normal cones
to the epigraph are nonempty, NEpi(f)(1, 0) = {(n1, 0) : n1 ≥ 0}.
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1.4. Tangent and normal cones to a closed set. We suppose that K ⊂
R

d is a nonempty closed set. There exists several concept of tangent cones
to a nonsmooth, nonconvex set. We present Bouligant tangent cone TK(x) and
Clarke tangent cone CK . Systematic presentation of different concepts of tangent
cones can be find in [3].

We define the Bouligand tangent cone to the set K at a point x ∈ K by

TK(x) = lim sup
h→0+

K − x

h

where lim supAh denote the set upper limit of the family {Ah}, i.e.

a ∈ lim sup
h→0+

Ah ⇔ lim inf
h→0+

dist(a, Ah) = 0.

Proposition 1.8. If K ⊂ R
d and x ∈ K then the following conditions are

equivalent:

(a) v ∈ TK(x);
(b) lim infh→0+ dist(x+ hv,K)/h = 0;
(c) there exists hn → 0+ and vn → v such that x+ hnvn ∈ K.

Proof. (a) ⇒ (b) If v ∈ TK (X) then lim infh→0+ dist(v, (K − x)/h) = 0. For
every h > 0 there exists zh ∈ K such that dist(v, (K − x)/h) = |v − (zh − x)/h|
We have

dist(x+ hv,K)
h

≤ |zh − (x+ hv)|
h

=
∣∣∣∣v − zh − x

h

∣∣∣∣.
Thus

lim inf
h→0+

dist(x + hv,K)
h

≤ lim inf
h→0+

dist
(
v,
K − x

h

)
= 0.

(b) ⇒ (c) We choose hn → 0+ such that limn→∞ dist(x+ hnv,K)/hn = 0.
Let zn ∈ K and dist(x + hnv,K) = |x + hnv − zn|. We set vn = (zn − x)/hn.
Then

|vn − v| =
|zn − x− hnv|

hn

n→∞−−−−→ 0.

(c) ⇒ (a) If x+ hnvn ∈ K then

dist
(
v,
K − x

hn

)
≤

∣∣∣∣v − (x+ hnvn) − x

hn

∣∣∣∣ = |v − vn|.

If vn → v then lim infh→0+ dist(v, (K − x)/h) = 0. �

The Bouligand tangent cone TK(x) is a closed cone. In general, it is not
convex.

Example 1.9. Let K = {(x, y) : x ≥ 0, y ≥ 0 and xy = 0}. We have
TK(0, 0) = K, so it is not convex.

The set valued map TK :K � R
d is not lower semicontinuous.
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Example 1.10. Let K =
⋃∞

n=1 Sn ∪ {(0, 0)}, where Sn is a sphere in R
2

with the radius rn and the center at (xn, 0). We choose sequences xn → 0+

and rn → 0+ such that xn = xn+1 + rn+1 + rn and x2
n = 2r2

n. We have
TK(0, 0) = {(v1, v2) : v1 ≥ 0 and − v1 ≤ v2 ≤ v1}. And the set valued map TK

is not lower semicontinuous at (0, 0).

We define the proximal normal cone PNK(x) to a closed set K ⊂ R
d at

a point x ∈ K by

PNK(x) = {n ∈ R
d : there exists α > 0 such that x ∈ ΠK(x+ αn)}.

We have

(1.5) TK(x) ⊂ (PNK(x))⊥.

Let v ∈ TK(x) and n ∈ PNK(X). Then there exists vn → v, hn → 0+ such that
x+hnvn ∈ K. Without loss of generality we can assume that x ∈ ΠK(x+n). By
(1.1), we have K ∩B(x+ n, |n|) = ∅. So, we obtain |x+ hnvn − (x+ n)|2 ≥ |n|2
and hn|vn|2 − 2〈vn, n〉 ≥ 0. Passing to the limit we obtain −2〈v, n〉 ≥ 0, which
follows (1.5).

Lemma 1.11. Suppose that a function x: (a, b) → R
d and the function

g(t) = dist(x(t), K) are differentiable at t0 ∈ (a, b), where K ⊂ R
d is a closed

set. If g(t0) > 0 and y ∈ ΠK(x(t0) then

g′(t) ≤
〈
x′(t0),

n

|n|

〉
,

where n = x(t0) − y.

Proof. We have
x(t0 + h) = x(t0) + hv + o(h),

where v = x′(t0) and limh→0 o(h)/h = 0. Thus

1
h

(g(t0 + h) − g(t0)) ≤ 1
h

(|x(t0 + h) − y| − |x(t0) − y|)

≤ |x(t0) + hv + o(h) − y|2 − |x(t0) − y|2
h(|x(t0) + hv + o(h) − y| + |x(t0) − y|)

and

g′(t0) ≤ lim
h→0+

2〈hv + o(h), h〉 + |hv + o(h)|2
h(|x(t0) + hv + o(h) − y| + |x(t0) − y|) =

〈
v,

n

|n|

〉
. �

We define the Clarke tangent cone CK(x) to the set K at a point x ∈ K by

(1.6) CK(x) = Lim inf
h→0+, y→Kx

K − y

h
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where Lim inf z→z0 Az denotes the set lower limit, i.e.

a ∈ Lim inf
z→z0

Az ⇔ lim sup
z→z0

dist(a, Az) = 0

and the symbol y →K x denotes that y belongs to K and tends to x.
The definition of the Clarke tangent cone can be formulated equivalently as

follows.

Proposition 1.12. If K ⊂ R
d is a closed set and x ∈ K then the following

conditions are equivalent:

(a) v ∈ CK(x);
(b) lim infh→0+, y→Kx dist(y + hv,K)/h = 0;
(c) for all hn → 0+ and all yn →K x tehre exists vn → v such that yn +

hnvn ∈ K.

The proof of Proposition 1.12 is similar to the proof of Proposition 1.8.

Proposition 1.13. If K ⊂ R
d is a closed set and x ∈ K then the Clarke

tangent cone CK(x) is a closed convex cone.

Proof. By (1.6) we obtain that it is a closed cone. To show that CK(x) is
a convex set we shall use the condition (c) in Proposition 1.12.

Let v, w ∈ CK(x) and λ ∈ (0, 1). We set z = λv + (1 − λ)w. Let us
take an arbitrary hn → 0+ and yn →K x. Then, there exist vn → v such
that yn + λhnvv ∈ K. Since yn + λhnvn →K x and w ∈ CK(x) then there exist
wn → w such that (yn+λhnvn)+(1−λ)hnwn ∈ K. Thus, we obtained a sequence
λvn + (1 − λ)wn converging to z such that yn + hn(λvn + (1 − λ)wn) ∈ K. So,
z ∈ CK(x). �

The main result concerning the connection between the Bouligand cone and
the Clarke cone is that

(1.7) Lim inf
y→Kx

convTK(y) ⊂ CK(x).

Theorem 1.14. If K ⊂ R
d is a closed set and x ∈ K then

Lim inf
y→Kx

(PNK(y))⊥ ⊂ CK(x).

Proof. We show that if v ∈ Lim inf y→Kx (PNK(y))⊥ then the condition (b)
in Proposition 1.12 holds true.

Let ε > 0. We choose δ > 0 such that

∀|z − x| < δ, z ∈ K, ∃vz ∈ (PNK(z))⊥, |v − vz| < ε.

We choose δ1 > 0 such that for |y−x| < δ1 and 0 < t < δ1 it holds |y+ tv−x| <
δ/2. Fix y. Let us consider the function g(t) = dist(y + tv,K). The function
g is lipchitz continuous. We choose t such that g is differentiable at t. Let
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z ∈ ΠK(y + tv). Then |z − x| < δ. We set n := (y + tv) − z ∈ PNK(z). By
Lemma 1.11, we have

g′(t) ≤
〈
v,

n

|n|

〉
=

〈
vz ,

n

|n|

〉
+

〈
v − vz ,

n

|n|

〉
≤ ε.

Let th = sup{t ∈ [0, h] : g(t) = 0}. Thus

dist(y + hv,K) =
∫ h

th

g′(s) ds ≤ εh

for y ∈ K, |y− x| < δ1, 0 < h < δ1. �
Remark 1.15. (a) Since (PNK(x))⊥ is a convex cone then convTK(x) ⊂

(PNK(x))⊥. By Theorem 1.14, we obtain (1.7).
(b) Suppose that K ⊂ R

d is a closed convex set. Then PNK(x) = NK(x).
Since the set-valued map NK ( · ) has the closed graph then, by Proposition 1.4,
the set-valued map NK( · ))⊥ is lower semicontinuous. Thus

(NK(x))⊥ ⊂ Lim inf
y→Kx

(NK(y))⊥ .

By (1.5) and (1.7) we obtain

TK(x) ⊂ (NK(x))⊥ = SK(x) ⊂ Lim inf
y→Kx

(NK(y))⊥ ⊂ CK(x) ⊂ TK(x).

Thus the Bouligand tangent cone and the Clarke tangent cone coincide if the set
K is convex, i.e.

TK (x) = CK(x) = SK (x).

(c) If the set-valued map TK( · ) is lower semicontinuous then TK (x) = CK(x)
for all x ∈ K. In particular, if K is a proximal neighbourhood retract then the
set-valued map TK ( · ) is lower semicontinuous (see [17]).

1.5. A subdifferential to a lower semicontinuous function. In the
section we assume that the function u: R

d → R ∪ {∞} is lower semicontinuous.
Equivalently we can say that the epigraph Epi (u) is a closed subset of R

d+1.

Definition 1.16. We say that p ∈ R
d is a subgradient of the function u( · )

at the point x0 if there exists an open neighbourhood V of x0 and a C2 function
ϕ: V → R such that

ϕ(x) ≤ u(x) for x ∈ V and ϕ(x0) = u(x0)

and
p = gradϕ(x0).

The subdifferential ∂u(x0) of the function u at the point x0 is the set of all
subgradients p of u at x0.

We use the same notation to denote the subdifferential of an arbitrary lower
semicontinuous function and the subdifferential of a convex function. As one can
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expect the two notions coincide if the function u is convex. Also Proposition 1.6
has an analog in the non-convex case.

Proposition 1.17. If u: R
d → R ∪ {∞} is a lower semicontinuous function

and u(x0) < ∞ then

p ∈ ∂−u(x0) ⇔ (p,−1) ∈ PNEpi (u)(x0, u(x0)).

Proof. Suppose that p ∈ ∂u(x0) and

ϕ(x) = ϕ(x0) + 〈p, x− x0〉 +
1
2

(x− x0)�D2ϕ(x0)(x− x0) + o(|x− x0|2) ≤ u(x).

For x sufficiently close to x0 we have

ϕ(x) ≥ ϕ(x0) + 〈p, x− x0〉 − 1
2

‖D2ϕ(x0)‖|x− x0|2 − ε|x− x0|2.

Thus there exists C > 0 such that

u(x) ≥ ϕ(x0) + 〈p, x− x0〉 −C|x− x0|2

on a neighbourhood of x0.
Let α < 1/2C. We define

ψ(x) := ϕ(x0) − α+
√
α2(|p|2 + 1) − |x− x0 − αp|2.

The function ψ is defined on the ball centered at x0 + αp with the radius
|α(p,−1)|. The graph of ψ is the upper hemisphere in R

d+1 centered at the
point (x0, ϕ(x0)) + α(p,−1) with the radius |α(p,−1)|.

By the Cauchy inequality we have

2C〈p, x− x0〉 ≤ |p|2 + c2|x− x0|2.

Since 2Cα < 1 then

2C(〈p, x− x0〉|x− x0|2 + α|x− x0|2) ≤ |x− x0|2(1 + |p|2 +C|x− x0|2)

and
0 ≤ |x− x|2(1 + |p|2 − 2Cα+C2|x− x0|2) − 2C〈p, x− x0〉.

So
α2(|p|2 + 1) ≤ |x− x0 − αp|2 + (α+ 〈p, x− x0〉 − C|x− x0|2)2

and √
α2(|p|2 + 1) − |x− (x0 + αp)|2 ≤ α+ 〈p, x− x0〉 −C|x− x0|2.

It follows that for sufficiently small |x− x0| we have ϕ(x) ≤ ψ(x).
If we take α sufficiently small we obtain that the ball centered at (x0, ϕ(x0))+

α(p,−1) with the radius |α(p,−1)| has a nonempty intersection with the epigraph
of the function u. Thus (p,−1) ∈ PNEpi (u)(x0, u(x0)).
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Now, suppose that (p,−1) ∈ PNEpi (u)(x0, u(x0)) and let α > 0 be such that

dist((x0, u(x0)) + α(p,−1),Epi (u)) = α|(p,−1)|.

Consider the function

ϕ(x) := u(x0) − α+
√
α2(|p|2 + 1) − |x− x0 − αp|2

at the ball B(x0 + αp, α|(p,−1)|). We have ϕ(x0) = u(x0) and gradϕ(x0) = p.
Since the intersection of the ball B((x0 + αp, u(x0) − α), α|(p,−1)|) with the
epigraph of the function u is empty then ϕ(x) ≤ u(x). The function ϕ is C∞

smooth, so p ∈ ∂u(x0). �
Remark 1.18. Usually authors take the function ϕ from the class C1 in the

definition of the subgradient (comp. [8]). In Definition 1.16 we assumed that
the funtion ϕ supporting the epigraph Epi (u) from below is C2 smooth. From
the proof of Proposition 1.17 we conclude that replacing the class C2 by C∞ in
Definition 1.16 we obtain an equivalent notion of subgradient. Below we provide
an example showing that taking ϕ from the class C1 instead of C2 we essentially
change the notion of subgradient.

Example 1.19. Let α ∈ (1, 2). We define u(x) = −|x|α. Since the function
u is C1 smooth then 0 is a C1-subgradient of u at x0 = 0. But we have that the
cone of proximal normals PNEpi (u)(0, 0) to the epigraph of u at (0, 0 consists of
one element(0, 0). Indeed, the Bouligand tangent cone TEpi (u)(0, 0) is the half
space {(v1, v2) : v2 ≥ 0}. The proximal normal cone PNEpi (u)(0, 0) is a subset
of the polar cone to the Bouligand tangent cone. Thus

PNEpi (u)(0, 0) ⊂ {(0, n2) : n2 ≤ 0}.

If n2 < 0 then dist((0, n2),Epi (u)) < |n2|. Thus PNEpi (u)(0, 0) = {(0, 0)} and
by Proposition 1.17, we obtain that the set of C2 subgradients is an empty set,
i.e. ∂u(0) = ∅.

The following example shows that the horizontal proximal normals to the
epigraph have not a counterpart in the subdifferential.

Example 1.20. Let g: R → R be defined by g(x) = sign(x)
√

|x|. Then
the subdifferential ∂g(0) is an empty set. But the proximal normal cone to the
epigraph of g at (0, 0) is nonempty. Namely

PNEpi (g)(0, 0) = {(x, 0) : x ≥ 0}.

If a function g: R
d → R is locally Lipschitz continuous then no horizontal

normal to the epigraph exists and we have

PNEpi (g)(x, g(x)) = {α(p,−1) : p ∈ ∂g(x), α ≥ 0}.
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If g is lower semicontinuous then a horizontal normal can be approximated by
downward directed normals in the following way. The proof of the following
lemma was communicated the author by Pierre Cardaliaguet [5]

Lemma 1.21 ([22]). Suppose that g: R
d → R is lower semicontinuous ,

(p, 0) ∈ PNEpi (g)(x, g(x)) and p �= 0. Then there exist xn → x, pn → p and
vn → 0, vn < 0 such that

(pn, vn) ∈ PNEpi (g)(xn, g(xn)).

We procede the proof by some simple geometrical lemmas.

Lemma 1.22. If n, b ∈ R
d and |n| = 1, |b| < 1 then

〈n+ b, n〉 ≥
√

1 − |b|2|n+ b|.

Proof. We have

1 = |n|2 = |(n+ b) − b|2 ≤ |n+ b|2 + |b|2 − 2〈n+ b, b〉 +
〈
n+ b

|n+ b| , b
〉2

.

Thus

|n+ b|2 − 2〈n+ b, b〉 +
〈
n+ b

|n+ b| , b
〉2

≥ 1 − |b|2.

So 〈
n + b

|n+ b| , n
〉

= |n+ b| −
〈
n+ b

|n+ b| , b
〉

≥
√

1 − |b|2. �

If 0 < c < 1, n ∈ R
d and |n| = 1 then the set {v ∈ R

d : 〈v, n〉 ≥ c|v|} is
a revolving cone with the axis n and with the angle α at the vertex such that
cosα = c. From Lemma 1.22 we obtain that ball centered at n (|n| = 1) with the
radius r < 1 is a subset of the cone with the axis n and the constant c =

√
1 − r2.

Lemma 1.23. If |n| = 1, 0 < c < 1 and z: [0, t] → R
d is an integrable

function such that

〈z(s), n〉 ≥ c|z(s)| for a.a. s ∈ [0, t]

then 〈 ∫ t

0
z(s)ds, n

〉
≥ c

∣∣∣∣
∫ t

0
z(s) ds

∣∣∣∣.
Lemma 1.24. Suppose that r, c > 0 and |n| = 1. If 〈z, n〉 ≥ c|z| and

0 < |z| < 2rc then |z − rn| < r.

The proofs of Lemmas are obvious. Geometrically, Lemma 1.24 means that
the intersection of the revolving cone with the axis n and the angel at the vertex
α < Π/2 with a sufficiently small ball centered at the origin is contained in the
ball centered at rn with the radius r.
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Proof of Lemma 1.21. The proof base on the Viability Theorem for locally
compact sets (see Theorem 2.9 and Remark 2.11(b)). Since (p, 0) is a proximal
normal to the epigraph Epi (g) at the point (x0, g(x0)) then there exists r > 0
such that

B((x0 + rn, g(x0)), r) ∩ Epi (g) = ∅
where n = p/|p|. It follows that

(1.8) g(x) > g(x0) for |x− (x0 + rn)| < r.

Suppose to the contrary that there exists ε > 0 such that if |x − x0| < ε and
(px, vx) ∈ PNEpi (g)(x, g(x)) then either vx = 0 or

(1.9) px = 0 or
∣∣∣∣ px

|px| − n

∣∣∣∣
2

≥ 2ε.

By (1.9), we have
〈px, n〉 − (1 − ε)|px| ≤ 0.

Thus

(1.10) inf
|b|≤1

〈px, n+ (1 − ε)b〉 ≤ 0.

We set

F := {u(n+ (1 − ε)b, 0) + (1 − ε)(0,−1) : u ∈ [0, 1], |b| ≤ 1}.

F is a compact convex set. We define

K := {(x, v) : |x− x0| < ε, v ≥ g(x)}.

K is a locally compact set. (K is the intersection of the epigraph of g (closed)
and the open set B(x0, ε)×R). We claim that K, F satisfies (2.4). Let (px, pv) ∈
PNK(x, v). Then (px, pv) ∈ PNEpi (g)(x, g(x)). If pv = 0 then for f = (0,−1) ∈
F we have

〈(px, 0), f〉 ≤ 0.

If pv < 0 then by (1.10) there exists |b| ≤ 1 such that for f = (n+(1−ε)b, 0) ∈ F

(we take u = 1) we have
〈(px, pv), f〉 ≤ 0.

By the viability Theorem 2.9, there exists t0 > 0 and a solution (x, v): [0, t0] →
R

d+1 of the Cauchy problem{
(x′, v′) ∈ F,

(x(0), v(0)) = (x0, g(x0)),

such that (x(t), v(t)) ∈ K for t ∈ [0, t0]. There exist measurable functions
u: [0, t0] → [0, 1] and b: [0, t0] → D (D denotes the unit disk in R

d) such that

(x′(t), v′(t)) = u(t)(n+ (1 − ε)b(t), 0) + (1 − u(t))(0,−1).
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If u(s) = 0 for almost all t ∈ [0, t] then x(t) ≡ x0 and v(t) = g(x0) − t. Thus
(x(t), v(t)) /∈ K and we have obtained a contradiction.

Now, consider the case when the Lebesgue measure of the set {s ∈ [0, t] :
u(s) > 0} is positive. By Lemma 1.22, we have

〈n+ (1 − ε)b(s), n〉 ≥ c|n+ (1 − ε)b(s)|,

where c =
√

1 − (1 − ε)2 > 0.
By Lemma 1.23, we obtain〈 ∫ t

0
u(s)(n+ (1 − ε)b(s))ds, n

〉
≥ c

∣∣∣∣
∫ t

0
u(s)(n+ (1 − ε)b(s)) ds

∣∣∣∣.
If t < rc, then |

∫ t

0 u(s)(n+ (1 − ε)b(s)) ds| < 2rc and by Lemma 1.24 we obtain∣∣∣∣x0 +
∫ t

0
u(s)(n+ (1 − ε)b(s)) ds− (x0 + rn)

∣∣∣∣ < r.

Thus x(t) − (x0 + rn)| < r. But v(t) = g(x0) +
∫ t

0 (1 − u(s)(−1) ds ≤ g(x0) and
we have obtained a contradiction with (1.8). �

2. Differential inclusions

This section is just a refreshed and shortened version of some parts of the
books “Differential inclusions” by Aubin and Cellina and “Viability theory” by
Aubin. We provide some simplification in the proof of the Filippov Theorem.
We formulate the Convergence Theorem (Theorem 1.4.1 in [1]) in a different way.
We consider the Cauchy problem for differential inclusions with an u.s.c. right
hand side with compact convex values. The proof of the existence of a solution to
the Cauchy problem makes extensive use of an approximation theorem of u.s.c.
mappings. The invariance and viability problems we study first for Lipschitz
continuous right hand side. Next we use an approximation theorem of u.s.c.
mappings to extend viability result to differential inclusions with an u.s.c. right
hand side.

Let F : [a, b]× R
d � R

d be a set valued map with nonempty compact values.
We shall consider the differential inclusion

(2.1) x′(t) ∈ F (t, x).

A funtion x: [a, b] → R
d is absolutely continuous if there exists a Lebesque in-

tegrable function y: [a, b] → R
d such that for every t ∈ [a, b] we have x(t) =

x(a) +
∫ t

a y(s) ds. An absolutely continuous function x is almost everywhere
differentiable and x′(t) = y(t) for almost all t ∈ [a, b]. More interesting facts
concerning absolutely continuous functions can be find in [14].

An absolutely continuous function x: [a, b] → R
d is a solution to (2.1) if

x′(t) ∈ F (t, x(t)) for almost all t ∈ [a, b]. We shall consider the Cauchy problem
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of the existence of a solution to the differential inclusion (2.1) that satisfies a
given initial condition

(2.2) x(t0) = x0.

We start with the Fillipov Theorem concerning the existence of solution to the
Cauchy problem for the Lipschitz continuous right hand side . Next we show that
if the right hand side F (t, x) is a convex valued map then the set of solutions to
the Cauchy problem is closed. Moreower we study the invariance and the viability
problem for differential inclusions. Let K ⊂ R

d. The Invariance Theorem states
that if the right hand side F : R

d � R
d is Lipschitz continuous and satisfies

a strong boundary condition

(2.3) ∀x ∈ K ∀n ∈ PNK(x), ∀f ∈ F (x), 〈f, n〉 ≤ 0

then any solution to (2.1) starting at the time t0 from a point x0 ∈ K remains in
the set K, i.e. x(t) ∈ K for t > t0. If the right hand side is upper semicontinuous
and satisfies a weak boundary condition

(2.4) ∀x ∈ K, ∀n ∈ PNK(x), ∃f ∈ F (x), 〈f, n〉 ≤ 0

then for any x0 ∈ K there exist a solution to (2.1) satisfying the initial condi-
tion(2.2) such that x(t) ∈ K for t > t0. This is the Viability Theorem.

2.1. The Fillippov Theorem.

Theorem 2.1. Suppose that a set valued map F : [0, T ]×R
d � R

d satisfies:

(a) t � F (t, x) is mesurable for every x ∈ R
d,

(b) dH(F (t, x), F (t, y)) ≤ l(t)|x− y| for x, y ∈ R
d,

(c) F (t, x) is a closed nonempty set for every (t, x),
(d) |F (t, x)| ≤ µ(t),

where the functions l, µ: [0, T ] → R are integrable (l, µ ∈ L1). Assume that
y: [0, T ] → R

d is an absolutely continuous function such that

dist(y′(t), F (t, y(t)) ≤ c(t)

where c ∈ L1. If xo ∈ R
d then there exists a solution to

(2.5)
{
x′(t) ∈ F (t, x(t)),

x(0) = x0,

that satisfies

|x(t) − y(t) ≤ |x0 − y(0)|e
∫ t

0 l(s) ds +
∫ t

0
c(s)e

∫ t
s

l(τ)dτ ds.
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Lemma 2.2. If l, c: [a, b] → R are integrable functions then

(2.6)
∫ b

a

l(x1)
( ∫ x1

a

l(x2) . . .
( ∫ xn−1

a

l(xn) dxn

)
. . . dx2

)
dx1

=
1
n!

( ∫ b

a

l(s) ds
)n

and

(2.7)
∫ t

0
l(x1)

( ∫ x1

0
l(x2) . . .( ∫ xn−1

0
l(xn)

( ∫ xn

0
c(xn+1 dxn+1

)
dxn

)
. . . dx2

)
dx1

=
∫ t

0
c(s)

1
n!

( ∫ t

s

l(τ) dτ
)n

ds.

Proof. We start with the proof of (2.6).
Method 1. We denote a simplex ∆ := {(x1, . . . , xn) : a < xn < . . . < x2 <

x1 < b}. The Lebesque measure |∆| of the simplex ∆ equals

|∆| =
1
n!

=
∫

∆
1.

Let σ ∈ Sn be a permutation of the set {1, . . . , n}. We denote

∆σ := {(xσ(1), . . . , xσ(n)) : (x1, . . . , xn) ∈ ∆}.

If σ, δ are permutations from Sn and σ �= δ then ∆δ ∩ ∆σ = ∅ and |∆σ| = |∆δ|.
We have∫ b

a

l(x1)
( ∫ x1

a

l(x2) . . .
( ∫ xn−1

a

l(xn) dxn

)
. . . dx2

)
dx1

=
∫

∆
l(x1) . . . l(xn) dx1 . . . dxn.

The integrated function is symmetric. Thus∫
∆σ

l(x1) . . . l(xn) =
∫

∆
l(x1) . . . l(xn).

Thus ( ∫ b

a

l(s) ds
)n

=
∫

[a,b]n
l(x1) . . . l(xn) = n!

∫
∆
l(x1) . . . l(xn).

Method 2. We set L(x) :=
∫ x

a l(s) ds. The function L( · ) is an absolutely
continuous primitive function to the function l( · ). We inductively prove the
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formula (2.6). Indeed, we have

∫ b

a

l(x1)
( ∫ x1

a

l(x2) . . .
( ∫ xn

a

l(xn+1) dxn+1

)
. . . dx2

)
dx1

=
∫ b

a

l(x1)
1
n!

( ∫ x1

a

l(s) ds
)n

dx1 =
1
n!

1
n+ 1

Ln+1(x)|ba.

To obtain (2.7) we use Fubini Theorem and (2.6):

∫ t

0
l(x1)

( ∫ x1

0
l(x2) . . .

( ∫ xn−1

0
l(xn)

( ∫ xn

0
c(xn+1) dxn+1

)
dxn

)
. . . dx2

)
dx1

=
∫ t

0
c(xn+1)

( ∫ t

xn+1

l(x1)
∫ x1

xn+1

l(x2) . . .
∫ xn−1

xn+1

l(xn) dxn . . . dx1

)
dxn+1

=
∫ t

0
c(xn+1)

1
n!

( ∫ t

xn+1

l(s) ds
)n

dxn+1. �

Proof of Theorem 2.1. We set v0(t) = y′(t) and x0(t) = y(t). By the selection
theorem (see Theorem 1.4 in [24]) there exists a measurable function v1(t) ∈
F (t, x0(t)) such that |v1(t) − y′(t)| ≤ c(t). We set

x1(t) = x0 +
∫ t

0
v1(s) ds.

We inductively construct two sequences vk( · ), xk( · ) such that: vi+1: [0, t] → R
d

is a measurable selection vi+1(t) ∈ F (t, xi(t)) such that

|vi+1(t) − vi(t)| ≤ dH(F (t, xi(t)), F (t, xi−1(t)))

and

xi+1(t) = x0 +
∫ t

0
vi+1(s) ds.

We have

|x1(t) − x0(t)| ≤ |x0 − y(0)| +
∫ t

0
c(s) ds,

|xi+1(t) − xi(t)| ≤
∫ t

0
l(s)|xi(s) − xi−1(s)| ds,

for i ≥ 1. Thus

|xn+1(t) − xn(t)|

≤
∫ t

0
l(s1)

∫ s1

0
l(s2) . . .

∫ sn−1

0
l(sn)

(
|x0−y(0)|+

∫ sn

0
c(sn+1) dsn+1

)
dsn . . . ds1.
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By (2.6) and (2.7) we obtain

(2.8) |xn+1(t) − xn(t)|

≤ |x0 − y(0)| 1
n!

( ∫ t

0
l(s) ds

)n

+
∫ t

0
c(s)

1
n!

( ∫ t

s

l(τ) dτ
)n

ds

≤ 1
n!

( ∫ t

0
l(s) ds

)n(
|x0 − y(0)| +

∫ t

0
c(s) ds

)
.

We obtained that |xn+1(t) − xn(t)| ≤ cn for t ∈ [0, T ] and
∑∞

n=0 cn < ∞. Thus
the sequence xn( · ) satisfies the uniform Cauchy condition on the interval [0, T ].
So, it is uniformely convergent to a function x: [0, T ] → R

d.
We have

|vn+2(t) − vn+1(t)| ≤ l(t)|xn+1(t) − xn(t)| ≤ l(t)cn

for almost all t ∈ [0, T ]. Thus the sequence vn(t) is convergent for almost all t
to a measurable function v(t). We have

|vn(t)| ≤ |vn(t) − vn−1(t)| + . . .+ |v2(t) − v1(t)| + |v1(t) − v0(t)| + |v0(t)|

≤ l(t)
∞∑

n=0

cn + c(t) + |y′(t)|.

By the Lebesque dominated convergence theorem

xn(t) = x0 +
∫ t

0
vn(s) ds n→∞−−−−→ x0 +

∫ t

0
v(s) ds = x(t).

So

vn+1(t) ∈ F (t, xn(t))�
�

v(t) x(t)

Since the graph of the set valued map F (t, · ) is closed then x′(t) = v(t) ∈
F (t, x(t)) for almost all t ∈ [0, T ]. By (2.8) we obtain

|x(t) − y(t)| ≤
∞∑

n=1

|xn(t) − xn−1(t)| ≤ |x0 − y(0)| +
∫ t

0
c(s) ds

+
∞∑

n=1

(
|x0 − y(0)| 1

n!

( ∫ t

0
l(s) ds

)n

+
∫ t

0
c(s)

1
n!

( ∫ t

s

l(τ) dτ
)n

ds

)

= |x0 − y(0)|e
∫ t

0 l(s) ds +
∫ t

0
c(s)e

∫ t
s

l(τ) dτ ds. �
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2.2. Closedness of the solution set. In the section we show that the set
of solutions to the Cauchy problem is a closed subset of the space of continuous
function with the supremum norm C([a, b],Rd). Convexity of the right hand
sides F (t, x) is an essential assumption to obtain closedness of the solution set.

We start with a convergence lemma

Lemma 2.3. Suppose that xn: [a, b] → R
d are absolutely continuous and

their derivatives are bounded by an integrable function c ∈ L1(a, b), i.e. x′(t)| ≤
c(t) for n ∈ N. If the sequence (xn) converge uniformely to a function x: [a, b]→R

xn ⇒ x on [a, b]

then x( · ) is absolutely continuous, |x′(t)| ≤ c(t) for almost all t ∈ [a, b] and

(2.9) x′(t) ∈
∞⋂

n=1

conv {x′
m(t) : m ≥ n} for almost all t.

Proof. The sequence yn = x′
n/c is bounded in L∞. By the Alaoglu Theorem,

there exists a subsequence (denoted again by) yn that weakly converge in L∞ to
a y ∈ L∞. By the Mazur Theorem, the strong and the weak closure of the set
{yk : k ≥ n} coincide. Thus, there exists a convex combination

zn = a0nyn + a1nyn+1 + . . .+ asnnyn+sn

such that ‖zn − y‖L∞ < 1/n. Thus the sequence wn

wn := czn = a0x
′
n + . . .+ asx

′
n+s

converges in the L1 norm to cy ∈ L1. There exists a subsequence (denoted again
by) wn that converges to cy almost everywhere. By the Lebesque Dominated
Convergence Theorem we have∫ t

a

wn
n→∞−−−−→

∫ t

a

cy.

Moreover,∫ t

a

wn = a0n(xn(t)−xn(a))+ . . .+aknn(xkn+n(t)−xkn+n(a)) n→∞−−−−→ x(t)−x(a).

Thus x(t) = x(a)+
∫ t

a
cy and x( · ) is an absolutely continuous function satisfying

|x′(t)| ≤ c(t).
Fix t such that limn→∞wn(t) = x′(t) and take an arbitrary k ∈ N. For n ≥ k

we have
wn(t) ∈ conv {x′

m(t) : m ≥ k}.
Thus

x′(t) ∈ conv {x′
m(t) : m ≥ k}. �



156 S�lawomir Plaskacz

Proposition 2.4. Suppose that a set valued map F : [0, T ]× R
d � R

d satis-
fies:

(a) F (t, · ) is an u.s.c. map for every t,
(b) F (t, x) is a compact convex nonempty set for every (t, x),
(c) F is integrably bounded, i.e. |F (t, x)| ≤ µ(t), µ ∈ L1.

If xn: [a, b] → R
d are solutions of the differential inclusion (2.1) and xn ⇒ x on

[a, b] then x is a solution to (2.1).

Proof. We choose t such that (2.9) holds true and x′
n(t) ∈ F (t, xn(t)) for

every n. Let ε > 0. Choose δ > 0 such that

F (t, y) ⊂ F (t, x(t)) + εB for |y − x(t)| < δ.

For sufficiently large m (m > n)

x′
m(t) ∈ F (t, xm(t)) ⊂ F (t, x(t)) + εB.

Thus
x′(t) ∈ conv {x′

m(t) : m ≥ n} ⊂ F (t, x(t)) + εB.

Since ε > 0 was arbitrary, we obtain x′(t) ∈ F (t, x(t)). �

If F (t, x) is integrably bounded then, by the Arzeli–Ascoli Theorem, the set
of solutions to the Cauchy problem (2.5) is precompact in the space of continuous
functions C([a, b], Rd). By Theorems 2.1 and 2.4 we obtain the following

Corollary 2.5. If F : R
d � R

d is a bounded Lipschitz continuous map with
compact convex nonempty values then the set of solutions to the Cauchy problem

(2.10)
{
x′ ∈ F (x),

x(0) = x0,

is compact in C([0, T ],Rd).

Theorem 2.6. If F : R
d � R

d is a bounded u.s.c. map with compact convex
nonempty values then the set of solutions to the Cauchy problem (2.10) is compact
in C([0, T ],Rd).

Proof. By the Cellina Theorem (see Theorem 2.3.11 in [16]) we find a se-
quence of set valued maps Fn: R

d � R
d such that

• Fn satisfies assumptions of Corollary 2.5,
• F (x) ⊂ Fn+1(x) ⊂ Fn(x) for x ∈ R

d,
• F (x) =

⋂∞
n=1 Fn(x) for x ∈ R

d.

Then the set S of solutions of the Cauchy problem (2.10) is the intersection of
the set Sn, where Sn is the set of solutions to (2.10) with the right hand side Fn.
The sequence Sn is a decreasing sequence of compact sets. So, S is a nonempty
compact set. �
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Proposition 2.7. Suppose that F : R
d � R

d is a bounded Lipschitz contin-
uous map with nonempty closed values. If v ∈ F (x0) then the problem



x′ ∈ F (x),

x(0) = x0,

x′(0) = v,

has an absolutely continuous solutions that is differentiable at t = 0.

Proof. We set y(t) = x0 + tv. By Theorem 2.1, there exists a solution x to
(2.10) such that

|x(t) − y(t)| ≤
∫ t

0
2ce(t−s)l ds

where l is the Lipschitz constant for F and c is an upper bound of F .Thus

|x(t) − x0 − tv|
t

≤ 2c
(

1
t

∫ t

0
se(t−s)l ds

)
t→0+

−−−−→ 0

which follows that the right derivative x′(0) = v. �

2.3. Invariance and viability.

Theorem 2.8 (Invariance Theorem). Suppose that K ⊂ R
d is closed and

F : R
d � R

d is a nonempty compact valued Lipschitz continuous map. If the
strong boundary condition (2.3) holds true and x: [0, T ] → R

d is a solution to the
differential inclusion x′ ∈ F (x) and x(0) ∈ K then x(t) ∈ K for t ∈ [0, T ].

Proof. We set g(t) := dist(x(t), K). The function g is the composition of
the absolutely continuous function x( · ) and a Lipschitz continuous function
dist( · , K). So, it is absolutely continuous. Suppose that x(t) /∈ K. We set
t0 = inf{s < t : x(τ) /∈ K for all τ ∈ (s, t)}. We have g(t0) = 0 and g(τ) > 0
for τ ∈ (t0, t]. Fix τ ∈ (t0, t) such that the derivatives g′(τ) and x′(τ) exists and
choose an y ∈ ΠK(x(τ)). By Lemma 1.11, we have

g′(τ) ≤
〈
x′(τ),

n

|n|

〉

where n := x(τ) − y. There exists f ∈ F (y) such that |f − x′(τ)| ≤ lg(τ), where
l is the Lipschitz constant of the set valued map F . Thus

g′(τ) ≤
〈
x′(τ) − f,

n

|n|

〉
+

〈
f,

n

|n|

〉
≤ lg(τ).

By the Gronwall Lemma we obtain that g ≡ 0. �
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Theorem 2.9 (Viability Theorem). Suppose that K ⊂ R
d is closed and

F : R
d � R

d is a nonempty compact convex valued Lipschitz continuous map
with a constat l. If the weak boundary condition (2.4) holds true and x0 ∈ K

then there exists a solution x: [0, T ] → R
d to the differential inclusion x′ ∈ F (x)

such that x(t) ∈ K for t ∈ [0, T ].

Proof. The set S of solutions of Cauchy Problem (2.10) is compact in the
space C([0, T ],Rd). Since F (x0) is compact then there is C > 0 such that |f | ≤ C

for f ∈ F (x0). If x ∈ S then x(t) − x(0)| ≤
∫ t

0 l|x(s) − x(0)|ds. By Gronwall
Lemma, we have |x(t) − x0| ≤ Ctelt. Thus we obtain |x′(t) ≤ C + lCTelT := L.
Thus S is a family of Lipschitz continuous functions with a common Lipschitz
constant L.

We define g(t) = inf{dist(x(t), K) : x ∈ S}. The function g is Lipschtz
continuous with the constant L. We choose t such that the derivative g′(t)
exists. Suppose that g(t) > 0. Since S is compact then there exists x ∈ S

such that dist(x(t) = g(t). We choose y ∈ ΠK(x(t)). By (2.4), there exists
f ∈ F (y) such that 〈f, x(t) − y〉 ≤ 0. Since F is l-Lipschitz continuous then
there exists f1 ∈ F (x(t) such that |f1 − f | ≤ lg(t). By Proposition 2.7, there
exists x̃: [t, T ] → R

d that is a solution to

x′ ∈ F (x),

x(t) = x0,

x′(t) = f1.

By Lemma 1.11

g′(t) ≤
〈
f1,

n

|n|

〉
≤ lg(t)

where n := x(t) − y. By Gronwall Lemma we obtain that g ≡ 0.
The above consideration imply that for every t1 < t2 and x1 ∈ K there exists

a solution to x′ ∈ F (x) satisfying the initial condition x(t1) = x1 such that
x(t2) ∈ K. Thus, for every n we can construct xn ∈ S such that xn(kT/2n ∈ K

for k = 1, . . . , 2n. Since S is compact there exists a subsequence (denoted again
by) xn that converge uniformely to x ∈ S. Obviousily, the obtained x is a desired
viable solution, i.e. x(t) ∈ K for t ∈ [o, T ]. �

Using the approximation theorem of u.s.c. maps we can easy generalize the
Viability Theorem. We repeat the same arguments as in the proof of Theo-
rem 2.6.

Corollary 2.10. Suppose that K ⊂ R
d is closed and F : R

d � R
d is a

nonempty compact convex valued upper semicontinuous bounded map. If the
weak boundary condition (2.4) holds true and x0 ∈ K then there exists a solution
x: [0, T ] → R

d to the differential inclusion x′ ∈ F (x) such that x(t) ∈ K for
t ∈ [0, T ].
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Proof. By the Antosiewicz–Cellina Theorem we find a sequence of set valued
maps Fn: R

d � R
d such that

• Fn satisfies assumptions of Theorem 2.9,
• F (x) ⊂ Fn+1(x) ⊂ Fn(x) for x ∈ R

d,
• F (x) =

⋂∞
n=1 Fn(x) for x ∈ R

d.

Every Fn satisfies the weak boundary condition (2.4). By Theorem 2.9, the set
Sn(K) of K-viable solutions to the differential inclusion x′ ∈ Fn(x) satisfying the
initial condition x(0) = x0 is nonempty. The set Sn(K) is compact as a closed
subset of the compact set Sn. The set S(K) of K-invariant solutions to the
Cauchy problem (2.10) is the intersection of decreasing sequence of sets Sn(K).
So, S(K) is a nonempty compact set. �

Remark 2.11. (a) The boundary conditions (2.4) and (2.3) in many papers
appear in a stronger form using the Bouligand tangent cone (or its convexifica-
tion):

F (x) ∩ TK(x) �= ∅, F (x) ⊂ TK(x).

The possibility of use of proximal normals in the boundary conditions was ob-
served by Cardaliaguet and appear in [4] in the framework of differential games.

(b) Theorems 2.9 and 2.8 remain true if we replace the assumption that K
is closed by the assumption that K is locally compact, i.e. for every x ∈ K there
exists r > 0 such that the intersection of K with the closed ball centered at x
with the radius r is closed. If K is locally compact then the viable (invariant)
solution x( · ) satisfies x(t) ∈ K for t ∈ [0, ε], where ε > 0 depends to the initial
condition x(0) = x0.

Now we consider the viability and invariance problem in the case when the
set of state constraints K varies in time. Let P : [0, T ] � R

d be a set valued
map. We say that P is a tube. The invariance or/and viability problem can be
considered forward in time

(2.11)



x′ ∈ F (t, x),

x(t0) = x0,

x(t) ∈ P (t) for t ∈ [t0, T ),

or backward in time 

x′ ∈ F (t, x),

x(t0) = x0,

x(t) ∈ P (t) for t ∈ (0, t0],

for an initial condition x0 ∈ P (t0), t0 ∈ (0, T ).

Theorem 2.12 (Backward Invariance Theorem). Suppose that F : [0, T ] ×
R

d �R
d is a nonempty compact valued Lipschitz continuous map and P : [0, T ]�
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R
d is a tube with nonempty values and a closed graph. If the strong boundary

condition

∀t ∈ (0, T ), ∀x ∈ P (t), ∀(nt, nx) ∈ PNGraph(P)(t, x), ∀f ∈ F (x),

〈(−1,−f), (nt, nx)〉 ≤ 0

holds true and x: [0, t0] → R
d is a solution to the differential inclusion x′ ∈ F (x)

and x(t0) ∈ P (t0) then x(t) ∈ P (t) for t ∈ (0, t0].

To obtain the forward invariance result we have to assume that

〈(1, f), (nt, nx)〉 ≤ 0

holds true. To prove Theorem 2.12 we reduce the nonautonomous case to
the autonomous one by treating the variable t as a state variable. We set
K = {(t, x) : t ∈ (0, T ), x ∈ P (t)}. The set K is locally compact (see Re-
mark 2.11). Extending maximally backward in time a solution x( · ) we easy see
that it remains in the tube P on the whole interval (0, t0). It can leave the tube
at the earliest at the time 0.

Using similar arguments we obtain from the autonomous viability Theo-
rem 2.9. the nonautonomous one for tubes.

Theorem 2.13 (Forward Viability Theorem). Suppose that F : [0, T ]×R
d �

R
d is a nonempty compact convex valued Lipschitz continuous map and P : [0, T ]

� R
d is a tube with nonempty values and a closed graph. If the weak boundary

condition

∀t ∈ (0, T ), ∀x ∈ P (t), ∀(nt, nx) ∈ PNGraph(P)(t, x), ∃f ∈ F (x)

〈(1, f), (nt, nx)〉 ≤ 0

holds true and x0 ∈ P (t)), t0 ∈ (0, T ) then there exist a solution to (2.11).

3. Hamilton–Jacobi equations

3.1. The value function in the Mayer problem. Viability approach to
the problem of the description of a discontinuous value function was initiated by
Frankowska in [11]. This method is based on the fact that the value function
is uniquely determined by invariance properties of its epigraph with respect to
an appropriate dynamical system. In the Mayer problem for control systems
the epigraph of value function is forward (in time) viable and backward invari-
ant. These two properties of the epigraph and a terminal condition uniquely
characterize the value function. Viability theory provides geometric conditions
which are equivalent to viability or invariance properties. These conditions can
be expressed with contingent cones or with normal cones.
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Denote by SF (t0, x0) the set of solutions to the Cauchy problem{
x′(t) ∈ F (t, x(t)),

x(t0) = x0,

that are defined on the interval [t0, T ]. Let g: R
d → R be a function. We consider

the following Mayer problem

minimize g(x(T )) over x ∈ SF (t0, x0).

The value function in the Mayer problem is a function V : [0, T ] × R
d → R such

that

(3.1) V (t0, x0) = inf
x∈SF (t0,x0)

g(x(T )).

A solution x ∈ SF (t0, x0) is optimal if

g(x(T )) = V (t0, x0).

The set valued map R: [0, T ] × R
d � R

d is given by

R(t0, x0) := {x(T ) : x ∈ SF (t0, x0)}.

The regularity of the value function V is inherited from the regularity of F and g.

Proposition 3.1. Suppose that F ( · , · ) is a convex valued map satisfing
conditions (a)–(d) of Theorem 2.1. If g is lower semicontinuous (continuous,
Lipschitz continuous) then V is lower semicontinuous (continuous or Lipschitz
continuous, respectively).

By Theorems 2.1 and 2.4, the set valued map R is Lipschitz continuous and
has nonempty compact values. We have

V (t0, x0) = inf{g(x) : x ∈ R(t0, x0)}.

The conclusion of Proposition 3.1 can be easy obtained by standard methods.

Example 3.2. Suppose that d = 1, F (t, x) = [−1, 1] and g(x) = −x2. By
easy calculation we obtain

V (t, x) =
{ −(x+ (T − t))2 if x ≥ 0,

−(x− (T − t))2 if x < 0.

The value function V is not differentiable at points (t, 0).

If the value function is differentiable then it is a classical solution to the
following first order partial differential equation

(3.2)
∂V

∂t
+H

(
t, x,

∂V

∂x

)
= 0
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where
H(t, x, p) = sup

f∈F(t,x)
〈f, p〉.

Usually the value function is not differentiable as we see in the above Example.
The natural problem that appear is, “How define a solution to (3.2)”. A “good”
definition should imply that a solution W (t, x) to (3.2) satisfying an additional
terminal condition

W (T, · ) = g( · )

is unique and equels to the value function. Lions and Souganidis introduced
in [8] the notion of viscosity solutions. This notion became very usefull for a
large class of first and secod order PDE. In particular, the value function V

in the Mayer problem is a viscosity solution to the Hamilton–Jacobi–Bellman
equation (3.2) if g is a continuous function. We consider the case when g is only
lower semicontinuous. We follow the viability approach that was initiated by
Frankowska [11].

Theorem 3.3. Suppose that F ( · , · ) is a convex valued map satisfying condi-
tions (a)–(d) of Theorem 2.1 and g: R

d → R is a lower semicontinuous function.
If W : (0, T ] × R

d → R is a lower semicontinuous function such that

∀(t, x) ∈ (0, T ) × R
d, ∀(pt, px) ∈ ∂−W (t, x), −pt +H(t, x,−px) = 0

and
lim inf

t→T −, y→x
W (t, y) = W (T, x) = g(x) for all x ∈ R

d

then we have W ≡ V when V is the value function given by (3.1).

Proof. The proof of Theorem 3.3 base on the Viability Theorem and the
Invariance Theorem. First we have to deduce from the assumption (3.3) the
weak and strong boundary condition for the tube PW : [0, T ] � R

d given by

PW (t) = EpiW (t, · )

and for the differential inclusion (x′, v′) ∈ F̃ (t, x, v), when

F̃ (t, x, v) = F (t, x) × {0}.

Let (nt, nx, nv) ∈ PNEpi (W)(t, x, v), where v ≥ W (t, x). Then (nt, nx, nv) ∈
PNEpi (W)(t, x,W (t, x)). We claim that

(3.5) −nt +H(t, x,−nx) = 0.

First consider the case nv < 0. By Proposition 1.17, we have (nt/−nv, nx/−nv)
∈ ∂W (t, x). By (3.3),

− nt

−nv
+H

(
t, x,− nx

−nv

)
= 0.
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The hamiltonian H is positively homogenous with respect to the last variable
and it follows (3.5).

Now, consider the case nv = 0. By Lemma 1.21, there exists sequences
(tk, xk) → (t, x) and (nt,k, nx,k, nv,k) ∈ PNEpi (W)(tk, xk,W (tk, xk)) such that
nv,k < 0 and (nt,k, nx,k, nv,k) → (nt, nx, 0). As above we conclude that

−nt,k +H(tk, xh,−nx,k) = 0.

The hamiltonian H is continuous and it follows (3.5).
From (3.5), in particular, we obtain

−nt + sup
f∈F(t,x)

〈f,−nx〉 ≥ 0.

The set F (t, x) is compact. So there exists f ∈ F (t, x) such that

〈(nt, nx, nv), (1, f, 0)〉 ≤ 0.

Thus we have obtained that the epitube PW is forward viable for the differential
inclusion with the right hand side F̃ . By Theorem 2.13, there exists a solution
(x, v) to the Cauchy problem{

(x′, v′) ∈ F (t, x) × {0},
(x(t0), v(t0)) = (x0,W (t0, x0)),

such that (x(t), v(t)) ∈ PW (t) for t ∈ [t0, T ). We have v(t) ≡ W (t0, x0) and
v(t) ≥ W (t, x(t)) for t ∈ (t0, T ). By the assumption (3.4) and the definition
(3.1), we obtain

V (t0, x0) ≤ g(x(T )) = lim inf
t→T −, x→x(T )

W (t, x)

≤ lim
t→T −

W (t, x(t)) ≤ lim
t→T −

v(t) = W (t0, x0).

Since the reachable set R(t0, x0) is compact and the function g is lower semi-
continuous then there exists an optimal solution x ∈ SF (t0, x0) to the Mayer
problem, i.e.

V (t0, x0) = g(x(T )).

By (3.4), there exists sequences xn → x(T ) and tn → T− such that

lim
n→∞

W (tn, xn) = g(x(T ).

From (3.5), we conclude that for every (t, x) ∈ (0, T )×R
d and every (nt, nx, nv) ∈

PNEpi (W)(t, x,W (t, x)) we have

〈(nt, nx, nv), (−1,−f, 0)〉 ≤ 0 for all f ∈ F (t, x).



164 S�lawomir Plaskacz

Thus the tube PW is backward invariant for F̃ . By Theorem 2.12, every solution
to the Cauchy problem{

(x′, v′) ∈ F̃ (t, x, v),

(x(tn), v(tn)) = (xn,W (tn, xn)),

satisfies (x(t), v(t)) ∈ PW (t) for t ∈ [t0, tn]. By Theorem 2.1, there exists a solu-
tion xn: [t0, tn] → R

d to {
x′ ∈ F (t, x),

x(tn) = xn,

such that
|xn(t) − x(t)| ≤ |xn − x(tn)|eL(tn−t).

The function (xn, v) is a solution to (3.6), where v ≡ W (tn, xn).
Since (xn(t0), v(t0)) ∈ PW (t0), then W (tn, xn) ≥ W (t0, x0). The function W

is lower semicontinuous. So

W (t0, x0) ≤ lim inf
n→∞

W (t0, xn(t0)) ≤ lim
n→∞

W (tn, xn) = g(x(T )) = V (t0, x0).

Thus we obtained W = V . �

Some generalizations of results presented in the section can be find in [12],
[13], [20], [21] and in [18].

3.2. Value functions in differential games. In this section we only sketch
one possible generalization of the results that has been presented in the previous
section. We skip all proofs. We consider zero-sum differential games with dy-
namics given by x′(t) = f(t, x(t), y, z). By x( · ; t0, x0, y( · ), z( · )) we denote the
solution of the Cauchy problem{

x′(t) = f(t, x(t), y(t), z(t)) for a.e. ∈ [0, T ],

x(t0) = x0,

where y: [0, T ] → Y , z: [0, T ] → Z are measurable controls (open loops) of player
I and II, respectively and Y , Z are compact metric spaces.

Let Mt = {y: [t, T ] → Y : y is measurable} and Nt = {z: [t, T ] → Z :
z is measurable}. We say that a map α:Nt → Mt is a nonanticipative strat-
egy of the first player if for every control z1, z2 ∈ Nt such that

z1(s) = z2(s) for almost all s ∈ [t, τ ]

we have
α(z1)(s) = α(z2)(s) for almost all s ∈ [t, τ ].

We say that a map β:Mt → Nt is a nonanticipative strategy of the second player
if for every control y1, y2 ∈ Mt such that

y1(s) = y2(s) for almost all s ∈ [t, τ ]



Set-Valued Analysis in Optimal Control Problems 165

we have
β(y1)(s) = β(y2)(s) for almost all s ∈ [t, τ ].

Let Γt, ∆t denote the set of all nonanticipative strategies of the first and of the
second player, respectively.

We shall consider a terminal time payoff functional

Q(y, z) = Qt0x0(y, z) = g(x(T , t0, x0, y, z)),

where g:Rn → R is a terminal cost function, y ∈ Mt0 , z ∈ Nt0 . The aim of
the first player is to maximize the payoff, the aim of the second player is to
minimize it.

The value function of the first player is given by

U+(t0, x0) = sup
α∈Γt0

inf
z∈Nt0

Qt0x0(α(z), z).

The value function of the second player is given by

U−(t0, x0) = inf
β∈∆t0

sup
y∈Mt0

Qt0,x0(y, β(y)).

The value of the first player U+ is also called an upper value and U− is called
a lower value. If the upper value is equal to the lower value then we say the game
has a value. The main problem in zero sum differential games is the existence
of value. It has been considered by many authors. A pioneering work was that
of Isaacs [15]. He introduced condition (3.7) which provides the existence of the
value in the case where both values are smooth,

(3.7) max
y∈Y

min
z∈Z

〈f(t, x, y, z), p〉 = min
z∈Z

max
y∈Y

〈f(t, x, y, z), p〉

for every t, x and p ∈ R
n.

Evans and Souganidis in [10] proved that if g is Lipschitz continuous and f is
continuous and Lipschitz continuous with respect to x then the upper value U+

is the viscosity solution of the upper Isaacs equation

(3.8)
{
Ut +H+(t, x, Ux) = 0 for 0 ≤ t ≤ T, x ∈ R

n,

U(T, x) = g(x) for x ∈ R
n.

where the upper Hamiltonian H+ is given by

H+(t, x, p) = min
z∈Z

max
y∈Y

〈f(t, x, y, z), p〉

and the lower value U− is the viscosity solution to the lower Isaacs equation

(3.9)
{
Ut +H−(t, x, Ux) = 0 for 0 ≤ t ≤ T, x ∈ R

n,

U(T, x) = g(x) for x ∈ R
n,
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where the lower Hamiltonian H− is defined by

H−(t, x, p) = max
y∈Y

min
z∈Z

〈f(t, x, y, z), p〉.

The Isaacs condition (3.7) says that H− = H+. Thus the upper and the lower
Isaacs equations are the same. A direct conclusion from uniqueness of viscosity
solutions to (3.8) and to (3.9) is that the value of the game exists.

The proof of the existence of value for a game with dynamics given by a right-
hand side f(t, x, u, v) is based on the notions of discriminating and leadership
domains. Briefly speaking, we say that a tube P (t) has discriminating property
for the first player if for every initial condition at the tube there exists a strategy
of the first player such that whatever control is chosen by the second player the
corresponding trajectory remains in the tube P .

Detailed results concerning value functions for differential can be find in [6]
and [19]
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MEASURABLE AND CONTINUOUS SELECTIONS

Longin Rybiński

Abstract. We present several selected methods of applying classical selec-
tion theorems: Aumann measurable selection theorem, Kuratowski–Ryll-

Nardzewski measurable selection theorem and Michael continuous selection
theorem (or the ideas from the proofs of these results) in order to get:

• the results on Carathéodory selections (i.e. selections that are

measurable in first and continuous in second varaiable),
• simple random fixed point principle,

• retractive representation for fixed point map associated with con-
tractive set valued map,

• continuous selection results for set valued maps which are not
lower semicontinuous.

Some applications are outlined.

1. Preliminaries

For a relation F ⊆ X × Y , let us denote:

F (x) = {y ∈ Y : (x, y) ∈ F },

F (W ) =
⋃

x∈W

F (x),

Dom F = {x ∈ X : F (x) �= ∅},

F −(V ) = {x ∈ X : F (x) ∩ V �= ∅},

F +(V ) = {x ∈ X : F (x) ⊆ V }.
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Key words and phrases. Measurable selection, continuous selection, set-valued map, fixed

point theorem.
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170 Longin Rybiński

A relation F ⊆ X × Y , such that Dom F = X we call a multimap and denote
by F : X � Y . We use symbol Gr F when we refer to a multimap as a subset of
Cartesian product X × Y .

A map f : X → Y such that f(x) ∈ F (x) for x ∈ X is called a selection of a
multimap F : X � Y .

We presume the Axiom of Choice.
Let (Ω, F) be a measurable space, (Y, τ)-topological space, by B(Y ) we de-

note the σ-algebra of Borel sets in Y , and by F ⊗B(Y ) — the product σ-algebra
in Ω × Y , i.e. σ-algebra generated by rectangles A × B, where A ∈ Ω, B ∈ B(Y ).

We say that a multimap F : Ω � Y :

• is measurable if F −(V ) ∈ F for V ∈ τ ,
• has measurable graph if GrF ∈ F ⊗ B(Y ).

A measurable space (Ω, F) is complete if F = F̂, where F̂ =
⋂

µ∈prob(Ω,F) Fµ,

and Fµ denotes µ-complement of σ-algebra F . Let us observe that F = F̂ , when-
ever F = Fµ for some σ-finite measure, hence every complete σ-finite measure
space is a complete measurable space. The following lemma is a final conclusion
when one compares various notions of measurability of multimaps. The details
can be found e.g. in [30] or [32]. Recall that a topological space Y is called a
Polish space if Y can be a metrized so that it becomes a separable and complete
metric space.

Lemma 1.1. Any measurable multimap F : Ω � Y with closed values has
measurable graph. If the measurable space (Ω, F) is complete and Y is a Polish
space, then a multimap F : Ω � Y with measurable graph is measurable.

Let (X, τX) and (Y, τY ) be topological spaces and F : X � Y be a multimap.
We say that F :

• is lower semicontinuous (l.s.c.) if F −(V ) ∈ τX for V ∈ τY ,
• is upper semicontinuous (u.s.c.) if F +(V ) ∈ τX for V ∈ τY ,
• has closed graph if Gr F is closed in product topology on X × Y .

Lemma 1.2. An u.s.c. multimap F : X � Y with closed values has closed
graph. If F has closed graph and every point x ∈ X has a neighbourhood U such
that the set F (U) is compact, then F is u.s.c..

When (Y, ρ) is a metric space, then for r > 0, y ∈ Y and nonempty sets
A, C ⊆ Y , we denote:

B(y, r) = {v ∈ Y : ρ(v, y) < r},

d(y, A) = inf
a∈A

ρ(y, a),

B(A, r) = {v ∈ Y : d(v, A) < r},

d(C, A) = sup
c∈C

d(c, A),
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D(C, A) = max{d(C, A), d(A, C)} = sup
y∈Y

|d(y, C) − d(y, A)|.

In this case, a multimap F : X � Y is lsc if and only if all real-valued
functions x �→ d(v, F (x)), v ∈ Y are upper semicontinuous in classical sense, i.e.
for every v ∈ Y , x ∈ X, ε > 0 there exists δ > 0 such that

ρ(x, x′) < δ ⇒ d(v, F (x′)) < d(v, F (x)) + ε.

We say that F is H-l.s.c., if the functions x �→ d(v, F (x)), v ∈ Y are equi-
upper semicontinuous, i.e. for every x ∈ X, ε > 0 there exists δ > 0 such that
for all v ∈ Y

ρ(x, x′) < δ ⇒ d(v, F (x′)) < d(v, F (x)) + ε.

When the functions x �→ d(v, F (x)), v ∈ Y are lower semicontinuous (resp.
equi-lower semicontinuous) in classical sense, we say that a multimap F is W -
u.s.c. (resp.: H-u.s.c.).

It is easy to verify that if F is u.s.c. then it is H-u.s.c., hence also W -u.s.c.
and if F is W -u.s.c. then has closed graph.

We say that a multimap F is W -continuous if it is l.s.c. and W -u.s.c. and we
say that F is H-continuous if it is H-l.s.c. and H-u.s.c.

Let us recall now two fundamental measurable selection theorems.

Theorem 1.3 (Aumann–Yankov–von Neumann). Let (Ω, F) be a complete
measurable space, Y be a Polish space. If a multimap F : Ω � Y has measurable
graph, then it has a measurable selection. Moreover, there exist a countable fam-
ily of measurable selections fn: Ω → Y for F , such that F (ω) ⊆ {fn(ω) : n ∈ N}
for every ω ∈ Ω.

Theorem 1.4 (Kuratowski–Ryll-Nardzewski [39]). Let (Ω, F) be a measur-
able space, Y be a Polish space. If a multimap F : Ω � Y has closed values and is
measurable, then it has a measurable selection. Moreover, a multimap F : Ω � Y

with closed values is measurable if and only if there exist a countable family of
measurable selections fn: Ω → Y for F , such that F (ω) = {fn(ω) : n ∈ N} for
every ω ∈ Ω.

The family of measurable selections fn: Ω → Y , such that

F (ω) = {fn(ω) : n ∈ N}

for every ω ∈ Ω is called Castaing representation for F ,
The range of applications of measurable selection theorems is very wide. At

the moment, following [30], we recall only an illustrative example of short proof
that can be given to famous Filipov Lemma connecting control theory with
differential inclusions.
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Theorem 1.5 (Filipow, 1959). Let (Ω, F) be a measurable space, X be
a metric space, and Y be a separable metric space. If h: Ω × X → Y is a
Carathéodory map, F : Ω � Y is a measurable multimap with compact values
and g: Ω → Y is a measurable map such that g(ω) ∈ h(ω, F (ω)) for ω ∈ Ω, then
there exist a measurable selection f for F such that g(ω) = h(ω, f(ω)) for ω ∈ Ω.

Proof. We define a multimap H: Ω � X by letting

H(ω) = F (ω) ∩
∞⋂

n=1

{x ∈ X : ρY (h(ω, x), g(ω)) < 1/n}.

One can check that H is measurable, hence by virtue of Kuratowski–Ryll-
Nardzewski Theorem, has a measurable selection f . This selection has required
properties. �

Paracompact (compact) Hausdorff topological space will be called paracom-
pact (compact) space. We recall now (50 years old) theorem on continuous selec-
tions of lower semicontinuous multimaps.

Theorem 1.6 (Michael, [44], 1956). Let X be a paracompact space, Y be
a Banach space. Lower semicontinuous multimap F : X � Y with closed and
convex values has a continuous selection. Moreover, if X is a metric space and
Y is separable, then a multimap F : X � Y with closed and convex values is lsc
if and only if there exists a countable family of continuous selections fn: X → Y

of multimap F , such that F (x) = {fn(x) : n ∈ N}.

By applying Michael Theorem, an easy proof of Bartle–Graves result can be
given.

Theorem 1.7 (Bartle–Graves, 1952). Let X and Y be Banach spaces. If
u: Y → X is a continuous and surjective linear operator, then there exists a
continuous map f : X → Y such that u(f(x)) = x for x ∈ X and f(0) = 0.

Proof. Consider a multimap F : X � Y defined by F (x) = u−1(x). It has
closed, convex values and for every set U ⊆ Y we have F −(U) = {x ∈ X :
u−1(x) ∩ U �= ∅} = u(U). It follows from Banach Open Mapping Theorem, that
for open set U also u(U) is an open set. Hence F is l.s.c. By Michael Theorem, F

has a continuous selection ϕ. By letting f(x) = ϕ(x)−ϕ(0) we define a mapping
satisfying the statement of theorem. �

Finally let us mention a different, continuous selection (or approximation)
theorem for upper semicontinuous multimaps.

Theorem 1.8 (Cellina, [17]). Let X be metric space, Y be a Banach space.
If a multimap F : X � Y with closed and convex values is u.s.c. then for every
ε > 0 there exists continuous (locally Lipschitz) map fε: X → Y such that Gr fε ⊂
B(Gr F ; ε).
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Basing on that result, a short proof of Kakutani (Bochnenblust–Karlin) Fixed
Point Theorem can be given.

Theorem 1.9 ([17], [5]). Let K be a compact convex subset of a Banach
space. If a multimap F : K � K with closed and convex values is u.s.c. then
there exists x ∈ K such that x ∈ F (x).

Proof. For εn = 1/n choose continuous maps fn: X → Y such that Gr fn ⊂
B(Gr F ; εn). By Schauder Theorem, there are xn ∈ K, n ∈ N, such that xn =
fn(xn). A subsequence of the sequence (xn) is convergent to some x ∈ K, and
we have x ∈ F (x). �

Let us mention an obvious extension of Kakutani (Fan–Glicksberg) Fixed
Point Theorem. We define

(Ls F )(x) = Ls x′→xF (x′) =
⋂

U∈U(x)

F (U) =
⋂

U∈U(x)

⋃
x′∈U

F (x′).

Theorem 1.10 [59]). Let K be a compact convex subset of a locally convex
Hausdorff topological vector space. If a multimap F : K � K satisfies condition:

for every x ∈ K there hold: x /∈ F (x) ⇒ x /∈ co(Ls F )(x),

then there exists x̃ ∈ K such that x̃ ∈ F (x̃).

Proof. Define a multimap G: K � K by

G(x) = co(Ls F )(x).

Clearly, G has convex compact values and maps K into K. We will verify
that G is u.s.c. First observe that Ls (Ls F )) = (Ls F ), since Graph Ls (Ls F ) =
Graph(Ls F ) = Graph F . Then, since (Ls F )(x) ⊆ K, the mapping (Ls F ) is
u.s.c. (see e.g. [8, Proposition 6.3.2]), i.e. continuous as a single valued map into
the space Comp(Y ) of nonempty compact subsets of Y equipped with the upper
Vietoris topology (generated by the sets V + = {A : A ⊆ V } for V ∈ τ). It
remains to recall that the mapping A �→ coA is a continuous self mapping on
Comp(Y ), (to see that, assume that W is an open set such that coA ⊂ W ,
V ∈ U(0) is chosen so that coA + V ⊂ W , and choose convex U ∈ U(0) such
that U ⊂ V ; then, if B ⊂ A + U it follows that coB ⊂ co(A + U) ⊂ coA + U ⊂
coA + V ⊂ W ). Now, being upper semicontinuous and convex compact valued,
G has a fixed point, by virtue of Kakutani–Fan–Glicksberg Theorem. But by
the hypothesis, any fixed point of G is a fixed point of F . �

Obviously, for any u.s.c. multimap F : K � K with convex closed values we
have co(Ls F )(x) ⊆ F (x), hence the hypothesis is satisfied. When K is a compact
convex subset of a normed space and F has closed values, above theorem may
be rephrased in the following equivalent form (compare with [60, Theorem 4]):
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Corollary 1.11. K be a compact convex subset of a normed space (X, ‖ · ‖).
If a multimap F : K � K with closed values satisfies the following condition:

for every x ∈ K there exists p ∈ X∗ such that

sup
U∈U(x)

inf〈F (U) − x, p〉 ≥ inf ‖F (x) − x‖,

then there exists x̃ ∈ K such that x̃ ∈ F (x̃).

Proof. We will show that the condition from preceding theorem is actually
equivalent to above condition. First, suppose that the condition

for every x ∈ K there hold: x /∈ F (x) ⇒ x /∈ co(Ls F )(x),

is satisfied and there exists some x ∈ K such that for all p

sup
U∈U(x)

inf〈F (U) − x, p〉 < inf ‖F (x) − x‖.

Since supU∈U(x) inf〈F (U) − x, 0〉 = 0, then α = inf ‖F (x) − x‖ > 0, i.e. x /∈
F (x). By the hypothesis and convex separation theorem, there exists some
q such that inf〈co (Ls F )(x) − x, q〉 = c > 0. Then for r = 2αq/c we have
inf〈co (Ls F )(x) − x, r〉 ≥ 2α, i.e.

inf
〈 ⋂

U∈U(x)

F (U) − x, r

〉
≥ 2α.

But since supU∈U(x) inf〈F (U) − x, p〉 < α for all p, then for each U ∈ U (x) there
exists some z ∈ F (U) such that 〈z − x, r〉 < α and therefore

AU = (F (U) − x) ∩ {w : 〈w, r〉 ≤ α} �= ∅.

Since K − x ⊃ AU1 ∩ . . . ∩ AUn ⊃ AU1∩...∩Un �= ∅, for every finite family
{U1, . . . , Un} ⊂ U (x), by the finite intersection property we have

⋂
U∈U(x) AU �=

∅, and then it follows that

inf
〈 ⋂

U∈U(x)

F (U) − x, r

〉
≤ α,

a contradiction. Suppose now that the condition in Corollary is satisfied and
x /∈ F (x), so α = inf ‖F (x) − x‖ > 0. Then there exist p and U ∈ U (x) such
that inf〈F (U) − x, p〉 ≥ α/2. This implies

inf
〈

co
⋂

U∈U(x)

F (U) − x, p

〉
≥ α

2
,

consequently x /∈ co(Ls F )(x). �
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2. Carathéodory selections

Common idea for both the proofs of Michael Theorem and Kuratowski– Ryll-
Nardzewski Theorem can be described as follows. Given a multimap F : W � Y ,
then:

(1) construct continuous/measurable ε-selection, i.e. a map fε: W → Y

such that F (w) ∩ B(fε(w); ε) �= ∅ for w ∈ W and verify the lower
semicontinuity/measurability of the multimap w �→ F (w)∩B(fε(w); ε),

(2) construct a sequence of continuous/measurable 1/2n-selections, which is
uniformly Cauchy, and get a required continuous/measurable selection
as a limit.

One can ask for each of unified statement of measurable and continuous selection
results, covering each the two theorems as particular case. An approach unifying
the notion of measurable space and paracompact topological space on one side,
and the notion of convex sets and closed convex sets on the second side has been
proposed e.g. in [43]. However, it does seem that such unification gain much
interest. We will consider quite different way of unifying selection theorems.
This approach is strongly supported by applications.

Let (Ω, F) be a measurable space, X, Y topological spaces. A selection
f : Ω×X → Y of a multimap F : Ω×X � Y will be called Carathéodory selection,
if the following Carathéodory’s conditions are fulfilled:

(1) a map ω �→ f(ω, x) is measurable for every x ∈ X,
(2) a map x �→ f(ω, x) is continuous for every ω ∈ Ω.

When X is a separable metric space and Y is a metric space, then a map satis-
fying Carathéodory’s conditions is F ⊗ B(X)-measurable.

The desired “unified-extended” statement of Michael Theorem and Kuratow-
ski–Ryll-Nardzewski Theorem, would be the result on the existence of Carathé-
odory selections and countable Michael–Castaing representation:

F (ω, x) = {fn(ω, x) : n ∈ N},

for a multimap F : Ω × X � Y , where a measurable space Ω is arbitrary, X is a
separable metric space, F has convex closed values in separable Banach spaceY

and is of Carathéodory type, i.e. a multimap ω �→ F (ω, x) is measurable for
every x ∈ X, as well as a multimap x �→ F (ω, x) is lsc for every ω ∈ Ω. Such
conditions however does not imply F ⊗ B(X)-measurability of a multimap (see
e.g. [32], [53]), while a countable representation does. So we accept the following
definition. We say that a multimap F : Ω × X � Y is a Carathéodory multimap
if:

(1∗) F is F ⊗ B(X)-measurable,
(2∗) a multimap x �→ F (ω, x) is lsc for every ω ∈ Ω.
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When Ω is assumed to be a locally compact metric space with F a σ-algebra of
the sets measurable for Radon measure on Ω, the existence of countable represen-
tation by Carathéodory selections can be derived from Scorza–Dragoni property
(see [15], [16] and [18], see also [3]).

When (Ω, F) is an abstract measurable space, two simple and natural ap-
proaches to derive Carathéodory selection results from continuous selection the-
orem and measurable selection theorem are:

(A) define a multimap ω �→ CF (ω) = {f : X → Y : f continuous selection
of x �→ F (ω, x)} ⊂ C(X; Y ), with nonempty (by Michael Theorem)
closed values, then apply Kuratowski–Ryll-Nardzewski Theorem to this
multimap, or

(B) define a multimap x �→ MF (x) = {f : Ω → Y : f measurable selection
of ω �→ F (ω, x)} ⊂ M(Ω; Y ) (this should be a Banach space), with
nonempty (by Kuratowski–Ryll-Nardzewski Theorem) closed and con-
vex values, then apply Michael Theorem to this multimap.

Scheme (A) has been used e.g. by Castaing [15], Fryszkowski [24], Kucia [40].
We recall Fryszkowski’s result.

Theorem 2.1 (Fryszkowski, [24]). Let Y be a separable Banach space, X be
a separable, locally compact metric space, and let a measurable space (Ω, F) be
such that PrΩ(A) ∈ F for every A ∈ F ⊗B(Y ). A Carathéodory multimap F : Ω×
X � Y with closed and convex values has a Carathéodory selection. Moreover,
any multimap F : Ω×X � Y with closed and convex values is Carathéodory if and
only if there exists a countable family of Carathéodory selections fn: Ω × X → Y

of F , such that F (ω, x) = {fn(ω, x) : n ∈ N}.

In order to obtain Carathéodory selections proceeding along scheme (B), one
has to equip the space M(Ω; Y ) with the norm such that ‖φn‖ → 0 implies
φn(ω) → 0 for every ω ∈ Ω, for instance with L∞-norm ‖φ‖∞ = sup{‖φ(ω)‖ :
ω ∈ Ω}.

Scheme (B) has been used by Ricceri [50] who obtained two Carathéodory
selection results. In the first result he assumed that multimaps x �→ F (ω, x), ω ∈
Ω, are almost equi-uniformly lower semicontinuous, the hypothesis essentially
stronger than lower semicontinuity of all these multimaps. In the second result
these multimaps are assumed to be lower semicontinuous, however a measurable
space Ω is a countable set. A simplified statement of this result reads as follows.

Theorem 2.2 ([50]). Let Y be a Banach space, X be a paracompact space,
and let a measurable space Ω be countable. Then Carathéodory multimap F : Ω ×
X � Y with closed and convex values and such that the set F (Ω, x) is separable
for every x ∈ X, has a Carathéodory selection.

Let us mention that continuous selections of lower semicontinuous multimaps
of the form x �→ MF (x) = {f ∈ Lp(Ω; Y ) : f is a selection of ω �→ F (ω, x)},
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with 1 ≤ p < ∞, do not give rise to Carathéodory selections of F . However,
they are important and useful in the theory of differential inclusions. Mul-
timaps x �→ MF (x) have decomposable values, i.e. if A ∈ F , f, g ∈ MF (x),
then χAf + (1 − χA)g ∈ MF (x). The result on continuous selections of lower
semicontinuous multimaps with decomposable (not convex) values is due to An-
tosiewicz and Cellina [2], and its subsequent extensions — to compact space X

is due to Fryszkowski [25], and to separable metric space X is due to Bressan
and Colombo [9].

Yet another natural idea of “measurable parametrized” proof of Michael The-
orem give rise to Carathéodory selections (see [53]). We state the result with the
sketch of the proof.

Theorem 2.3 ([53]). Let Y be a separable Banach space, X be a Polish
space, and let a measurable space (Ω, F) be complete. A Carathéodory mul-
timap F : Ω × X � Y with closed and convex values has a Carathéodory selec-
tion. Moreover, any multimap F : Ω × X � Y with closed and convex values
is Carathéodory if and only if there exists a countable family of Carathéodory
selections fn: Ω × X → Y of F , such that F (ω, x) = {fn(ω, x) : n ∈ N} for
(ω, x) ∈ Ω × X.

First we extract a random partition of unity, which is the basic tool in the
proof.

Lemma 2.4 ([54]). If Uk: Ω � X, k ∈ N, is a countable family of multimaps
with measurable graphs and such that for every ω ∈ Ω the family {Uk(ω)}k∈N

is an open cover of X, then there exists countable family of multimaps with
measurable graphs V m

k : Ω � X, k, m ∈ N, such that the family {V m
k (ω)}k,m∈N

is a locally finite refinement of {Uk(ω)}k∈N (with V m
k (ω) ⊆ Uk(ω) for k ≤ m,

ω ∈ Ω). Consequently, there exists a random partition of unity, i.e. a countable
family of functions pm

k : Ω × X → [0; 1], k ≤ m, such that

(a) the functions ω �→ pm
k (ω, x), x ∈ X, k, m ∈ N are measurable,

(b) for every ω ∈ Ω the family of functions {x �→ pm
k (ω, x): k, m ∈ N} forms

a locally finite partition of unity on X and

{x ∈ X : pm
k (ω, x) > 0} ⊂ Uk(ω)}.

Proof. Let us define functions fk: Ω × X → [0; 1] by

fk(ω, x) =
d(x, X \ Uk(ω))

1 + d(x, X \ Uk(ω))
.

Since the multimaps ω �→ X \ Uk(ω) have measurable graphs, the functions
ω �→ fk(ω, x) are measurable. The functions x �→ fk(ω, x) are continuous. By
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letting

f(ω, x) =
∞∑

k=1

2−kfk(ω, x)

we define a Carathéodory function. Let us define multimaps V m, W m, V m
k : Ω �

X for k ≤ m:

V m(ω) = {x ∈ X : f(ω, x) > 1/m},

W 0(ω) = ∅, W m(ω) = {x ∈ X : f(ω, x) ≥ 1/m},

V m
k (ω) = Uk(ω) ∩ (V m+1(ω) \ W m−1(ω)).

For every ω ∈ Ω the family {V m
k (ω)}k≤m is a locally finite open cover of X

such that V m
k (ω) ⊆ Uk(ω) for k ≤ m. Since f is F ⊗ B(X)-measurable, then

multimaps V m, W m, W m
k have measurable graphs. We define now a random

partition of unity pm
k : Ω × X → [0; 1] by

fm
k (ω, x) =

d(x, X \ V m
k (ω))

1 + d(x, X \ V m
k (ω))

, pm
k (ω, x) =

fm
k (ω, x)

∞∑
l=1

∑
i≤l

f l
i (ω, x)

. �

Proof of Theorem2.3. (1) ε-selection.
Let {yk}k∈N be a countable dense subset of Y and let ε > 0. We define

multimaps Uk: Ω � X, k ∈ N, by letting Uk(ω) = {x : F (ω, x) ∩ B(yk , ε) �= ∅}.
Since F is F ⊗ B(Y )-measurable, it follows that Uk, k ∈ N, have measurable
graphs. Since x �→ F (ω, x) is lsc, the family {Uk(ω)}k∈N is an open cover of X.
Choose a random partition of unity pm

k : Ω × X → [0; 1], k ≤ m inscribed into
{Uk(ω)}k∈N

and define Carathéodory ε-selection fε: Ω × X → Y by

fε(ω, x) =
∞∑

m=1

∑
k≤m

pm
k (ω, x)yk.

As in the proof of Michael Theorem one can verify that for every ω ∈ Ω the
map x �→ fε(ω, x) is continuous, the sets Gε(ω, x) = F (ω, x) ∩ B(fε(ω, x); ε)
are nonempty and the multimap x �→ Gε(ω, x) is l.s.c. Moreover, the map
fε is F ⊗ B(Y )-measurable as a limit of a sequence of measurable maps given
by the formula Sn(ω, x) =

∑n
m=1

∑
k≤m pm

k (ω, x)yk. This implies F ⊗ B(Y )-

measurability of the multimap (ω, x) �→ Gε(ω, x).
(2) Uniformly convergent sequence of 1/2m-selections.
Basing on the first part of the proof, just like in the proof of Michael Theorem,

we define inductively a sequence (fm)m∈N of Carathéodory maps fm: Ω×X → Y

such that

‖fm+1(ω, x) − fm(ω, x)‖ < 2−m+1,

F (ω, x) ∩ B(fm(ω, x); 2−m) �= ∅.
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Since this sequence is uniformly Cauchy, its limit f is a Carathéodory map, and
since F has closed values the map f is a selection of F .

(3) Michael–Castaing representation.
If F (ω, x) = {fn(ω, x) : n ∈ N} for (ω, x) ∈ Ω×X, then it is easy to check that

F is a Carathéodory multimap. Assume that F is a Carathéodory multimap.
Let {yk}k∈N be a separable dense subset of Y and let Bm

k = B(yk; 2−m) for
k, m ∈ N. By letting

Um
k (ω) = {x ∈ X : F (ω, x) ∩ Bm

k �= ∅},

we define multimaps Um
k : Ω � X with open values and F ⊗ B(Y )-measurable

graphs. Next, by letting

W m
kj (ω) = {x ∈ X : d(x, X \ Um

k (ω)) ≥ j−1}

we define multimaps W m
kj : Ω � X with closed values and F ⊗ B(Y )-measurable

graphs, such that
⋃

j Gr W m
kj = Gr Um

k . Now let

Gm
kj(ω, x) = F (ω, x) ∩ Bm

k for (ω, x) ∈ Gr W m
kj ,

Gm
kj(ω, x) = F (ω, x) for (ω, x) /∈ Gr W m

kj ,

and finally
F m

kj(ω, x) = Gm
kj(ω, x).

One can check that every multimap F m
kj is a Carathéodory multimap with closed

and convex values, hence has a Carathéodory selection fm
kj. By the definition of

F m
kj we obtain

F (ω, x) = {fm
kj(ω, x) : m, k, j ∈ N}

for every (ω, x) ∈ Ω × X. �

The same result with slightly different proof has been given by Kim, Prikry
and Yannelis [38] (see also [37], [32]).

3. Random fixed points

Let (Ω, F) be a measurable space, X be a topological space, F : Ω × X � X

be a multimap. A random fixed point of F is a measurable map f : Ω → X such
that

f(ω) ∈ F (ω, f(ω))

for every ω ∈ Ω, i.e. a measurable selection of the multimap

ω �→ FixF (ω) = FixF(ω, · ) = {x ∈ X : x ∈ F (ω, x)}.

Obviously, if F has a random fixed point, then FixF (ω) �= ∅ for every ω ∈ Ω, i.e.
every multimap x �→ F (ω, x) has a fixed point.

There are numerous papers, where the proofs of classical fixed point theorems
are parametrized step by step in order to get random fixed point results. We do



180 Longin Rybiński

not recommend such approach, whenever the existence of random fixed points
can be deduced easily from the existence of fixed points, via some universal
measurable selection rule. Such idea had appeared e.g. in the proofs at [22].
First, following [32], we formulate a rule based on Kuratowski–Ryll-Nardzewski
Theorem.

Theorem 3.1 ([32]). Let X be a σ-compact Polish space and (Ω, F) be a
measurable space. If a multimap F : Ω × X � Y has closed values, FixF (ω) �= ∅
for ω ∈ Ω and

(a) the multimap ω �→ F (ω, x) is measurable for every x ∈ X,
(b) the multimap x �→ F (ω, x) is H-continuous for every ω ∈ Ω,

then there exists a measurable map f : Ω → X such that f(ω) ∈ F (ω, f(ω)) for
every ω ∈ Ω.

If (Ω, F) is a complete measurable space, Aumann–Yankov–von Neumann
Theorem leads to the following rule.

Theorem 3.2 ([55]). Let X be a Polish space and (Ω, F) be a complete
measurable space. If a multimap F : Ω × X � Y is F ⊗ B(X)-measurable and
has closed values, a multimap K: Ω � X has measurable graph and FixF (ω) ∩
K(ω) �= ∅ for ω ∈ Ω, then there exists a measurable map f : Ω → X such that
f(ω) ∈ F (ω, f(ω)) ∩ K(ω) for ω ∈ Ω.

Proof. Let us define the function f : Ω × X → [0; ∞) by letting

f(ω, x) = d(x, F (ω, x)).

Since a multimap F is F ⊗ B(Y )-measurable, then the map f is F ⊗ B(Y )-
measurable. Since F has closed values, then x ∈ FixF(ω, · ) if and only if f(ω, x) ≤
0. Therefore the multimap ω �→ FixF (ω)∩K(ω) has measurable graph. By virtue
of Aumann–Yankov–von Neumann Theorem, this multimap has a measurable
selection, which is a random fixed point of F in a random set K. �

4. Retractive representation of a multimap

For a multimap F : X � Y , where X is a measurable space or topological
space or the Cartesian product of measurable and topological space, and Y is a
topological space, together with countable representations F (x)={fn(x): n ∈ N}
(Michael representation — for l.s.c. multimap, Castaing representation — for
measurable multimap), there were considered representations of the form F (x) =
f(x, Z), where f : X × Z → Y is a map, which is continuous with respect to
variable z from some topological space Z. Such representations for continuous
multimaps as well as Carathéodory multimaps with closed values in compact
subset of separable normed space has been studied by Ekeland and Valadier
([23]). Their idea was to embed compact set into Hilbert space l2, and then use
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continuous representation of convex sets in Hilbert space, by means of metric
projections.

For measurable or Carathéodory multimaps, systematic study of similar rep-
resentations has been done by Ioffe ([33], [34]).

We outline some simple idea, which helps one to identify topological proper-
ties of the values of a multimap on one side, and gives continuous selections on
the other side.

Let X, Y be topological (or metric) spaces. We say that a multimap F : X �
Y has a retractive representation, if there exists a set Z ⊆ Y such that F (X) ⊆ Z

and continuous map f : X × Z → Y such that:

(i) f(x, y) ∈ F (x),
(ii) f(x, y) = y if and only if y ∈ F (x),

for (x, y) ∈ X × Z. Retractive representation f : X × Z → Y is equicontinuous,
respectively: uniformly, equi-uniformly continuous, if the maps x �→ f(x, y),
y ∈ Z, are equicontinuous, respectively: uniformly, equi-uniformly continuous.

Since for a multimap F with retractive representation (Z, f) there holds

F (x) = f(x, Z) = {y ∈ Y : f(x, y) = y},

we then have:

(1) for every (x0, y0) ∈ Gr F , the multimap F has a continuous selection
f0: x �→ f(x, y0) such that f0(x0) = y0,

(2) F is l.s.c.,
(3) GrF is closed,
(4) for every x ∈ X the set F (x) is a retract of Z,
(5) if (Y, ρ) is metric space, then for Hausdorff distance we have

D(F (x1), F (x2)) ≤ sup
z∈Z

ρ(f(x1, z), f(x2, z)),

hence equicontinuity (equi-uniform continuity) of the representation f

implies H-continuity (uniform H-continuity) of the multimap F .

Straightforward application of Michael Theorem gives general sufficient con-
ditions for the existence of a retractive representation.

Lemma 4.1 ([56]). Let Y be a Banach space, X be a paracompact and per-
fectly normal topological space (e.g. metric). If a multimap F : X � Y has closed
convex values and is W -continuous (i.e. functions x �→ d(y, F (x)), y ∈ Y are
continuous), then for every L > 1 a multimap F has a retractive representation
(Y, fL) such that

‖fL(x, y) − y‖ ≤ Ld(y, F (x)).

for all (x, y) ∈ X × Y .
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Proof. Let us define H: X × Y � Y and mL: X × Y → [0; ∞) by letting

H(x, y) = F (x) − y,

mL(x, y) = Ld(y, F (x)) = Ld(0, H(x, y)).

Since the functions x �→ d(y, F (x)), y ∈ Y are continuous and ‖d(y, A)−d(v, A)‖
≤ ‖y − v‖, then the function

(x, y) �→ Ld(y, F (x)) = mL(x, y)

is continuous. Since the space X × Y is paracompact, a multimap

(x, y) �→ H(x, y) ∩ B(0; mL(x, y))

is l.s.c. and has closed convex values, then by virtue of Michael Theorem there
exists a continuous map h: X × Y → Y such that

h(x, y) ∈ H(x, y), ‖h(x, y)‖ ≤ mL(x, y).

By letting fL(x, y) = h(x, y) − y we define required retractive representation. �

For every nonempty closed and convex set A ⊆ Y , L > 1 and mL(A) =
Ld(0, A), the intersection A ∩ B(0; mL(A)) is the subset of A consisting of the
elements with “almost” minimal norm, while A ∩ B(0; m1(A)) consists of the
elements of minimal norm (this set is the metric projection of 0 onto A). When
Y is reflexive and strictly convex, this set is a singleton. In this case we have a
unique minimal selection A �→ s(A) ∈ A, where ‖s(A)‖ = mina∈A ‖a‖. Therefore
a multimap F : X � Y has in this case unique retractive representation (Y, f1)

f1(x, y) = s(F (x) − y) + y,

satisfying (i), (ii) and inequality ‖f1(x, y) − y‖ ≤ d(y, F (x)).
However, since the metric projection onto infinite dimensional convex set in

reflexive and strictly convex space need not to be continuous, a map f1 may be
not continuous, even if a multimap F is H-continuous. Let us mention that this
cannot happen if the metric projection is taken with respect to the norm in Y

having Kadec–Klee property (see e.g. [31]):

(KK) if ‖yn‖ → ‖y‖ and yn ⇀ y (weakly), then ‖yn − y‖ → 0.

By virtue of Kadec–Klee Theorem, every separable Banach space admits an
equivalent strictly convex norm with the property (KK).

In [52] and [21] an elementary proof of almost uniform continuity of minimal
selection in uniformly convex Banach space has been given. Let us recall that a
normed space (Y, ‖ · ‖) is uniformly convex, if for every ε > 0 there exists δ > 0
such that x, y ∈ B(0; 1) and ‖x − y‖ > ε, implies ‖(x + y)/2‖ < 1 − δ. Recall
that the spaces Lp and lp are uniformly convex, whenever 1 < p < ∞.

We then have the following refinement of the Lemma given above for L = 1,
basing on the norm properties, instead of Michael Theorem.
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Lemma 4.2 ([52]). Let Y be a uniformly convex Banach space, X be a topo-
logical (metric) space. If a multimap F : X � Y has closed convex values and is
H-continuous, then (Y, f1), (where f1(x, y) = s(F (x) − y) + y), is a retractive
representation for F such that

‖f1(x, y) − y‖ = d(y, F (x))

for all (x, y) ∈ X × Y . If F is uniformly H-continuous, then f1 is uniformly
continuous on sets Wr = {(x, y) ∈ X × Y : d(y, F (x)) ≤ r}, r ≥ 0.

We will apply now above results to contractive multimaps with convex values
and obtain retractive representations for fixed point multimaps associated with
them. Notice that fixed point multimaps, resulting from contractive multimaps
with convex values, need not have convex values. Simple examples can be given
in R2 (see e.g. [56]).

Theorem 4.3 ([54], [56]). Let Y be Banach space, X be a paracompact and
perfectly normal topological space. If a multimap H: X × Y � Y has closed
convex values and:

(a) for every y ∈ Y the multimap x �→ H(x, y) is W -continuous,
(b) there exists K > 1 such that D(H(x, y1), H(x, y2)) ≤ K‖y1 − y2‖ for

every x ∈ X,

then the multimap FixH : x �→ FixH(x, · ) has a retractive representation (Y, h).

Proof. Cartesian product X ×Y is paracompact and perfectly normal. From
(a), (b) and the inequality

|d(z, H(x, y) − d(z, H(x0, y0)|
≤ D(H(x, y), H(x, y0)) + |d(z, H(x, y0) − d(z, H(x0, y0)|

it follows that a multimap H is W -continuous with respect to (x, y). Let us fix
L ∈ (1; 1/K). By virtue of the first retractive representation lemma, there exists
a continuous map hL: X × Y × Y → Y satisfying (i), (ii) and the inequality

‖hL(x, y, z) − z‖ ≤ Ld(z, H(x, y))

for (x, y, z) ∈ X × Y × Y . Let us define gn: X × Y → Y , n ∈ N, by letting

g1(x, y) = h(x, y, y),

gn+1(x, y) = g1(x, gn(x, y)).

By induction, one can prove that all maps gn, n ∈ N, are continuous and there
hold

gn+1(x, y) ∈ H(x, gn(x, y)),∥∥gn+1(x, y) − gn(x, y)
∥∥ ≤ Ld(gn(x, y), H(x, gn(x, y)).
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The last inequality and the assumptions (a), (b) give

‖gn+1(x, y) − gn(x, y)‖ ≤ LD(H(x, gn−1(x, y)), H(x, gn(x, y))

≤ LK‖gn−1(x, y) − gn(x, y)‖
≤ (LK)nd(y, H(x, y)).

Hence, (gn(x, y))n∈N is a Cauchy sequence for every (x, y) ∈ X × Y . We define
h: X × Y → Y by letting

h(x, y) = lim
n→∞

gn(x, y).

By standard reasoning we obtain

‖h(x, y) − gn(x, y)‖ ≤
∞∑

n=m

(LK)nd(y, H(x, y)),

and then d(h(x, y), H(x, y)) ≤ 0, which in turn implies that h(x, y) ∈ H(x, y), i.e.
y ∈ FixH(x) for every (x, y) ∈ X ×Y . If h(x, y) = y, then certainly y ∈ FixH(x).
If y ∈ FixH(x), then gn(x, y) = y for n = 1, 2, . . . , hence h(x, y) = y.

It remains to show the continuity of the map h. For (x0, y0) ∈ X × Y , ε > 0
let us choose m ∈ N such that

∞∑
n=m

(LK)n(2d(y0, H(x0, y0)) + 1) <
ε

2

and a neighbourhood W of (x0, y0) such that d(y, H(x, y)) < d(y0, H(x0, y0))+1
and ‖gm(x, y) − gm(x0, y0)‖ < ε/2 for (x, y) ∈ W . Then for (x, y) ∈ W we have

‖h(x, y) − h(x0, y0)‖ ≤ ‖h(x, y) − gn(x, y)‖
+ ‖gn(x, y) − gn(x0, y0)‖ + ‖gn(x0, y0) − h(x0, y0)‖

≤
∞∑

n=m

(LK)nd(y, H(x, y))+
ε

2
+

∞∑
n=m

(LK)nd(y0, H(x0, y0)) < ε. �

Using the retractive representation lemma for uniformly convex Banach space,
one can repeat above proof to obtain the following refinement of retractive rep-
resentation result for fixed point set valued multimap.

Theorem 4.4 ([21]). Let Y be a uniformly convex Banach space, X be
a topological (metric) space. If a multimap H: X × Y � Y has closed convex
values and:

(a) r(x) = supy∈Y d(y, H(x, y)) < ∞ for every x ∈ X,
(b) the multimaps x �→ H(x, y), y ∈ Y are equi-H-continuous (equi-uni-

formly H-continuous on the sets Xr = {x ∈ X : r(x) ≤ r}, r > 0),
(c) there exists K > 1 such that D(H(x, y1), H(x, y2)) ≤ K‖y1 − y2‖ for

every x ∈ X,
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then a multimap FixH : x �→ FixH(x, · ) has equicontinuous (equi-uniformly H-
continuous on the sets Xr) retractive representation (Y, h).

From above retractive representation theorems it follows in particular that
the fixed point sets of contractive multimaps with convex values are the absolute
retracts. This property has been proved by Ricceri [51].

On the other hand, retractive representation provides an information on con-
tinuity of the multimap FixH : x �→ FixH(x, · ). The distance between fixed point
sets of contractive multimaps with closed values in complete metric spaces can
be estimated as follows

D(FixH(x1), FixH(x2)) ≤ 1
1 − K

sup
y∈Y

D(H(x1, y), H(x2, y))

(see Lim [42]).
The same idea as in above retractive representation result, has been used

by Bressan, Cellina and Fryszkowski [10], for the fixed point sets of contractive
multimaps with decomposable values. The selection theorem for lsc multimaps
with decomposable values due to Bressan–Colombo has been used there, in-
stead of Michael Theorem. Further extensions, covering both convex and decom-
posable valued contractive multimaps are due to Górniewicz and Marano [27],
Górniewicz, Marano, Ślosarski [28], as well as Andres and Górniewicz [1].

5. Continuous selections of non l.s.c. multimaps

We assume further that X is a paracompact space and Y is a normed space.
If a multimap F : X � Y has a continuous selection representation F (x) =
f(x, W ), where W is an arbitrary set and f : X × W → Y is a mapping such
that for every w ∈ W the map x �→ f(x, w) is continuous, then F is l.s.c. The
existence of some continuous selections does not imply the lower semicontinuity
of a multimap. The set of continuous selections

CF = {f : X → Y continuous : f(x) ∈ F (x) for x ∈ X}
defines in natural way lower semicontinuous submultimap (multiselection)

x �→ CF (x) = {f(x) : f ∈ CF }
of F . Under the assumptions of Michael Theorem we have F (x) = CF (x) for
every x ∈ X.

The study of continuous selections of convex valued, but not l.s.c., multimaps
in approximation (optimization), has been motivated by the stability problems
in algorithms of best approximation, when normed space is not strictly convex.
Recall that for a convex subset A of a normed space Y and y ∈ Y the set

PA(y) = A ∩ B(y; d(y, A)) = P (0; A − y) + y

is a metric projection of y onto A.
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Elementary examples of metric projections onto one dimensional linear sub-
space A in three dimensional space show that the multimap y �→ PA(y):

(a) may be not l.s.c. and admit continuous selections:

Example 5.1. Let ‖y‖ =
√

y2
1 + y2

2 + |y3| = 1, A = Lin{(0, 1, −1)}, y(t) =
(cos t, sin t, 0), t ∈ [0, π]. Then

PA(y(t)) =
{ {(0, 0, 0)} for t �= π/2,

co{(0, 0, 0), (0, −1, 1)} for t = π/2,

hence, the multimap t �→ PA(y(t)), has a continuous selection t �→ (0, 0, 0).

(b) may not admit continuous selections

Example 5.2. Let

B = co{y : max{|y2|, |y3|} = 1

∨ (y2
1 + y2

2 = 1, y1 ≤ 0, y3 = 1) ∨ (y2
1 + y2

2 = 1, y1 ≥ 0, y3 = −1)},

‖y‖ = µB(y) = inf{λ : (1/λ)y ∈ B},

A = Lin{(0, 0, 1)},

y(t) = (cos t, sin t, 0), t ∈ [0, π].

Then

PA(y(t)) =




{(0, 0, −1)} for t ∈ [0, π/2),

co{(0, 0, −1), (0, 0, 1)} for t = π/2,

{(0, 0, 1)} for t ∈ (π/2, π],
hence the multimap t �→ PA(y(t)) has no continuous selection.

In contrast to above examples, where unit balls are hybrids of polyhedral and
Euclidean balls of lower dimension, the following property of the norm introduced
in [11], should be mentioned:

(P) for every y, d ∈ Y such that ‖y +d‖ ≤ ‖y‖ there exists δ > 0, α > 0 such
that ‖z + αd‖ ≤ ‖z‖ for all z ∈ B(y; δ).

Brown proved that the property (P) implies the lower semicontinuity of metric
projections onto finite dimensional subspaces, hence the existence of continuous
selections. Every polyhedral norm in finite dimensional space as well as any
strictly convex norm has the property (P).

We will discuss some concepts weaker than lower semicontinuity, but still
sufficient for the existence of continuous selections. These concepts are inspired
by the work of Brown [12], [13] and Gel’man [26], as well as by the papers due
to Deutsch and Kenderov [20], Beer [7], De Blasi and Myjak [19].

Brown on one side and Deutsch and Kenderov on the other side, had revised
carefully different aspects Michael Theorem, with regard to its relevance in the
study of continuous selections of metric projections.
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For a multimap F : X � Y and x ∈ X let

F0(x) = Li
x′→x

F (x′) = {y ∈ F (x): d(y, F (x′)) → 0 for x′ → x}.

By the very definition, we have F0(x) ⊆ F (x) for all x ∈ X. A multimap F is
lsc if and only if F = F0. The sets of continuous selections of the multimap F

and its submultimap F0 always are identical (see [12]):

CF0 = CF .

By iterating an operator F �→ F0 one can generate a transfinite sequence of
relations (F (λ) : λ — an ordinal)

F (0)(x) = F (x), F (λ+1)(x) = (F (λ))0(x),

F (µ)(x) =
⋂

λ<µ

F (λ)(x), when µ is a limit ordinal

The sequence (Gr F (λ) : λ — an ordinal) of subsets of the Cartesian product
X × Y is decreasing, until it becomes constant. Then, a relation F ∗ defined by
the condition

F ∗ = F (λ) if F (λ+1)(x) = F (λ)(x) for x ∈ X

is such that CF ∗ = CF (see [13], [14]).
Brown has proved that for Y = Rn, there holds F ∗ = F (n+1), and if moreover

F (n)(x) �= ∅ for every x ∈ X, then F ∗ = F (n).
Consequently, Michael Theorem admits the following restatement.

Theorem 5.3 ([13]). Let X be a paracompact space, Y be a Banach space.
A multimap F : X � Y with closed and convex values has a continuous selection
if and only if F ∗(x) �= ∅ for every x ∈ X (hence F ∗(x) = CF ∗ (x) = CF (x) for
every x ∈ X). If Y = Rn, then CF �= ∅ if and only if F (n)(x) �= ∅ for every
x ∈ X.

Brown ([13]) has also constructed an u.s.c. multimap F : [0, 1]n � R
n with

compact and convex values such that F (n)(x) �= ∅ for x ∈ X, but F (k) �= F (k−1)

for k ≤ n. Using this multimap, he has shown that for any n, there is a real
normed space Y of dimension 2n + 1 having a subspace M of dimension n, such
that P

(n−1)
M (x) �= ∅ for every x ∈ X, but P

(n)
M �= P

(n+1)
M , (hence PM has no

continuous selection).
A modification of Brown’s example has been given in [57]. A multimap

F : [0, 1] � [0, 1]n with the above mentioned properties can be defined as follows.

Example 5.4. For x ∈ (0, 1] let

x =
∞∑

i=1

2−iδi, δi ∈ {0, 1},
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be a unique infinite binary expansion, and let

i1(x) = min{i : δi �= 0}, ik(x) = min{i > ik−1(x) : δi �= 0},

for k = 1, 2, . . . and {e1, . . . , en} denote the standard basis in Rn. Let us put

Hn(0) = {0}, Hn(x) = {2−i1(x)e1, . . . , 2−in(x)en},

Fn(x) = co(Hn(x) ∪ Hn(x+)).

Then we have F
(n)
n (0) = {0} as well as F

(n+1)
n (0) = ∅.

Using this multimap and idea from [13] and [61], we obtain the following
information about possible continuous selection properties of metric projections
onto subspaces of codimension 2 in finite dimensional spaces.

Corollary 5.5 ([57]). For every n ∈ N, a linear space M , of dimension n is
a subspace of some normed space Y of dimension n +2, with the norm such that
the metric projection PM : Y � M satisfies condition P

(n−1)
M (y) �= ∅ for every

y ∈ Y , but has no continuous selection (since P
(n)
M �= P

(n+1)
M ).

Proof. Let a multimap Fn be as in above example and let us define a mul-
timap F : [−π, π] � [0, 1]n by letting

F (t) = Fn(2t/π) for t ∈ [0, π/2],

F (t) = F (π − t) for t ∈ (π/2, π],

F (t) = −F (−t) for t < 0.

Parametrize one dimensional sphere S1 ⊂R2 by letting s=s(t)=(cos t, sin t),
t ∈ (−π, π] for s ∈ S1 and define Φ: S1 � [0, 1]n ⊂ M , by letting Φ(s) = F (t)
for s = s(t). Let Y = R2 ⊕ M and let D be the closed unit Euclidean ball in Y .
Define compact convex symmetric neighbourhood of 0 as the convex hull of 1

2D

and the graph Φ:

K = co
(

1
2

D ∪
⋃

s∈S1

(s − Φ(s))
)

.

Norm ‖y‖ = µK(y) is such that for s ∈ S1 we have PM (s) = Φ(s). Therefore
the properties of PM follow immediately from the properties of Fn. �

Considering Brown’s result:

• If Y = Rn, then for a multimap F : X � Y we have CF �= ∅ if and only
if F (n)(x) �= ∅ for every x ∈ X,

one can ask whether for some multimaps F : X � Y with values in infinite
dimensional spaces the same property hold true. The answer is yes for Y =
C(S, R

n) and Y = L∞(Ω, R
n) provided that F has “rectangular” values.

A subset D ⊆ C(S, R
n) (respectively, D ⊆ Lp(Ω, R

n)) will be called C-convex
(respectively, L-convex), if pf + (1 − p)g ∈ D for f, g ∈ D and any continuous
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(resp. measurable) function p: S → [0, 1]. Closed subset D ⊂ L∞(Ω, R
n) is

L-convex if and only if it is convex and decomposable ([35], [45], [46]). The
following selection theorem of Michael–Brown type is due to A. Kisielewicz.

Theorem 5.7 ([35], [36]). Let X be a paracompact space, S be a compact
space, (Ω, µ) be a measure space and let Y = C(S, Rn) or Y = L∞(Ω, Rn). If a
multimap F : X � Y has closed and C-convex or respectively L-convex values,
then admits a continuous selection if and only if F (n)(x) �= ∅ for every x ∈ X.

Proof. The necessity of the condition F (n)(x) �= ∅ for every x ∈ X is obvious.
We sketch the proof of sufficiency. First consider the case F : X � C(S, Rn).
By hypothesis, the sets F (n)(x) are nonempty. It can be proved inductively
that these sets are closed and C-convex, in particular convex. Hence, it suffices
to show the lower semicontinuity of a multimap F (n), and then apply Michael
Theorem. To see that F (n) is l.s.c., it suffices to know that for every x0 ∈ X

and y0 ∈ F (n)(x0) there exists a continuous selection f of a multimap F (n)

such that f(x0) = y0. For fixed x0, y0 define a multimap G: X � C(S, Rn)
by letting G(x0) = {y0} and G(x) = F (x) if x �= x0. We have G(n)(x0) =
{y0} and G(n)(x) = F (n)(x) if x �= x0. Next we define a multimap H: X ×
S � Rn by letting H(x, s) = G(x)(s). Since the sets G(x) are C-convex, then
y ∈ G(x) if and only if y(s) ∈ H(x, s) for s ∈ S. We therefore know that
G has a continuous selection if and only if H has a continuous selection. The
multimap H closed and convex values in Rn, and it can be proved inductively
that G(n)(x)(s) ⊆ H(n)(x, s) for (x, s) ∈ X × S, hence H(n)(x, s) �= ∅. By
the result of Brown, H(n) has a continuous selection g: X × S → R

n. Since
g(x, s) ∈ H(n)(x, s) ⊆ G(x)(s), then f : X → C(S, Rn) defined by f : x �→ g(x, · ),
is a required continuous selection.

For Y = L∞(Ω, Rn) the result follow from the case Y = C(S, Rn), by ap-
plying Gelfand’s transformation, which is used to define an isomorphism of the
space L∞(Ω, Rn) with the space C(∆, Rn), where ∆ is the set of complex ho-
momorphism of commutative Banach algebra L∞(Ω, C), equipped with Gelfand
topology. �

Let us mention that for every k ∈ N one can construct a multimap F : [0, 1] �
L1([0, 1], R), with closed L-convex values and such that F (k)(x) �= ∅ for every
x ∈ [0, 1], but F (k+1)(0) = ∅, hence F does not admit a continuous selection
(see [35]).

Now, we discuss briefly some applications of Michael–Brown Theorem to
multimaps, which assign to each variable x ∈ X an epigraph of real valued
function. Much exhaustive exposition can be found in [57].

Assume that X is a paracompact space. For a variational system g, i.e. for
a family of functions gx: R

n → R, x ∈ X, let us define a multimap E(g): X �
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R
n × R, by letting

E(g)(x) = epigx = {(y, r) ∈ R
n × R : gx(y) ≤ r}.

We assume that the functions gx are proper, i.e. E(g)(x) �= ∅ and lower
semicontinuous (in classical sense), i.e. the sets E(g)(x) are closed We define
epigraphical upper limit (epils g)x: R → R of the system g at x ∈ X by:

(epils g)x(y) = sup
V ∈U(y)

inf
W∈U(x)

sup
x′∈W

inf
y′∈V

gx′(y′),

or equivalently
E(epils g)(x) = Li

x′→x
F (x′) = E(g)(1)(x).

Epigraphical lower limit (epili g)x: Rn → R is defined by

(epili g)x(y) = sup
V ∈U(y)

sup
W∈U(x)

inf
x′∈W

inf
y′∈V

gx′(y′),

equivalently
E(epili g)(x) = Ls x′→xF (x′) =

⋂
U∈U(x)

F (U).

By the definition we have

(epili g)x(y) ≤ sup
W∈U(x)

inf
x′∈W

gx′(y) ≤ gx ≤ (epils g)x(y) ≤ inf
W∈U(x)

sup
x′∈W

gx′(y).

The motivation for studying epigraphical limits comes from the basic variational
property (see [4]):

• Assume that (epili g)x = gx = (epils g)x. Then for εm → 0, (xm, ym) →
(x, y) and gxm(ym) < inf gxm +εm, there hold gxm(ym) → inf gx = gx(y).

The iterates g(k), k = 1, 2, . . . of epigraphical upper limit are defined by the
equality

E(g(k))(x) = (E(g))(k)(x)

for every x ∈ X. Certainly

gx(y) ≤ g(1)
x (y) ≤ . . . ≤ g(k)

x (y) ≤ inf
W∈U(x)

sup
x′∈W

gx′(y)

for y ∈ Rn, k ∈ N. Moreover, if g(k) = g(k+1), then g(k) = g(l) for l > k.
An example of a multimap F : [0, 1] � [0, 1]n such that F (n) �= F (n+1), which

we have considered above, allows us to define a system gx: Rn → R, x ∈ [0, 1],
with the property:

• (E(g))(n−1)(x) �= ∅ for every x ∈ X, but g(n) �= g(n+1).

Indeed, one can define gx by letting gx(y) = 0 if y ∈ F (x), and gx(y) = +∞
if y /∈ F (x).

When the functions gx are convex, i.e. the sets E(g)(x) are convex, then
Brown’s result applied to a multimap x �→ E(g)(x) says that g(n+2) = g(n+3),
and if (E(g))(n+1)(x) �= ∅ for every x ∈ X, then g(n+1) = g(n+2). However, one
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may expect the equality g(n+1) = g(n+2) should hold true, since the epigraphs
are not arbitrary, but rather special convex sets in Rn × R. This equality is
true indeed, even for the system of quasi-convex functions, i.e. for functions with
convex sublevel sets L(g; α)(x) = {y ∈ Rn : gx(y) ≤ α}. The proof can be done
by applying Brown’s result to the iterates of a multimap L(g; α): x �→ L(g; α)(x),
and with the help of generalized Wets formula for sublevel sets of epigraphical
limits:

L(g; α)(k)(x) = L(g(k); α)(x) =
⋂

β>α

L(g; β)(k)(x).

Let us give an elementary example showing that even for convex functions
we can have (E(g))(n+1)(x) �= ∅ for every x ∈ X, as well as g(n) �= g(n+1).

Example 5.8. For x ∈ [0, 1] we define gx: R1 → R by letting

gx(y) =




max
{

y

x
, 0

}
if

1
x

∈ N,

−1 if x = 0,

max
{

2 − y

x
, 0

}
if

1
x

/∈ N.

We have

g0(0) = −1 < g
(1)
0 (0) = 0 < g

(2)
0 (0) = 1 < inf

W∈U(0)
sup

x′∈W
gx′(0) = 2.

In contrast to this example, for convex functions gx: S → R, which are uni-
formly bounded on convex set with nonempty relative interior, there must hold
g(1) = g(2) ([57]).

The properties we have just discussed together with Michael–Brown Theorem
lead in particular to the following result (that can be easily restated as a result
on continuous selection of “almost minimizers”).

Theorem 5.9 ([58]). Let X be a paracompact space, S be a convex subset of
Rn, and assume that the functions gx: S → R are proper, lower semicontinuous
and quasi-convex. There exists a continuous map f : X → S such that gx(f(x)) <

0 for x ∈ X if and only if inf g
(n)
x < 0 for x ∈ X. If the functions gx are uniformly

bounded and convex the same statement is true with the condition inf g
(1)
x < 0

for x ∈ X.

Let us turn back to lower limit iterates F (k), k ∈ N, of arbitrary convex
valued multimap and discuss general conditions under which they are constant
starting from k = 1. Recall that the equality F = F (1) = F0 is equivalent to the
lower semicontinuity of a multimap F : X � Y .

Assume further that F has closed values and for ε > 0, x ∈ X, define:

Fε(x) =
⋃

U∈U(x)

⋂
x′∈U

B(F (x′); ε).
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Then

F0(x) =
⋂
ε>0

Fε(x),

and the lower semicontinuity of F is also equivalent to the condition: Fε(x) =
B(F (x); ε) for every x ∈ X, ε > 0.

The set of continuous ε-selections of F is the set

Cε
F = {f : X → Y continuous : f(x) ∈ B(F (x); ε) for x ∈ X}.

A multimap F will be called almost lower semicontinuous (a.l.s.c.) (see [20])
if Fε(x) �= ∅ for all ε > 0, x ∈ X. Certainly almost lower semicontinuity is
necessary for the existence of continuous selection. But almost lower semicon-
tinuity is not sufficient even for the existence of Borel selection for a multimap
F : [0, 1] � R2 with convex closed values (see [7, Example 2]). Deutsch and
Kenderov extracted from Michael Theorem the following property of a multimap
with convex values:

• Cε
F �= ∅ for every ε > 0 if and only if F is a.l.s.c.

Thanks to that the relations Fε have open lower sections, i.e. the sets F −
ε (y),

y ∈ Y , are open, it is not hard to establish the following properties hold true for
x ∈ X, ε, δ > 0 and arbitrary continuous map f : X → Y (see [48], [57]):

(1) CFε ⊆ Cε
F ⊆ CFδ for ε < δ,

(2)
⋂

ε>0 CFε =
⋂

ε>0 Cε
F = CF ,

(3) CFε(x) = Fε(x),
(4) d(f(x), Cε

F (x)) = d(f(x), Fε(x)),
(5) dsup(f, Cε

F ) = supx d(f(x), Fε(x)),
(6) D(Cδ

F (x), Cε
F (x)) = D(Fδ(x), Fε(x)),

(7) Dsup(Cδ
F , Cε

F ) = supx D(Fδ(x), Fε(x)).

The idea to give a sufficient condition for CF �= ∅, by means of convergence
of the sets (Fε(x))ε↘0 in Hausdorff metric, locally uniformly with respect to
x ∈ X, has appeared in [7]. Let us mention several notions of relaxed lower
semicontinuity implying that “F0 has nonempty values and is l.s.c.” These no-
tions are expressed by the properties of a multimap Fε, and weaker than notions
of lower semicontinuity considered by De Blasi and Myjak [19] Gutev [29] (see
also Przes�lawski and Rybiński [47] and the book by Repovš and Semenov [49]).
We list below three conditions guaranteeing that CF �= ∅ and determining the
mode of convergence of the sets of continuous ε-selections (Cε

F : ε ↘ 0) to the set
of continuous selections CF :

(I) ∅ �= Fδ(x) ⊆ B(Fµ(x); Kδ) for δ, µ > 0, x ∈ X and some K ≥ 1,
(II) for every ε > 0 there exists δ > 0 such that ∅ �= Fδ(x) ⊆ B(Fµ(x); ε) for

µ > 0, x ∈ X,
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(III) for every x ∈ X, y ∈ Y , ε > 0 there exist a neighbourhood U of x

and δ > 0 such that for every x′ ∈ U there exists r′ > 0, such that
∅ �= B(y; r′) ∩ Fδ(x′) ⊂ B(Fµ(x′); ε).

Certainly, if F is l.s.c. then satisfies condition (I), since in this case Fδ(x) =
B(F (x); δ) �= ∅. Moreover, (I) ⇒ (II) ⇒ (III) and there are simple examples of
multimaps F : R � R2 showing that in general (III) � (II) � (I). We give below
only a sample of such multimaps.

Example 5.10. (a) A multimap Fα for α ∈ (0, π] defined by

Fα(x) =
{ {(s, 0) : 0 ≤ s ≤ 1} if x is irrational,

{(s, s tg α) : 0 ≤ s ≤ 1} if x is rational,

satisfies condition (I) for K ≥ (sin α
2 )−1.

(b) A multimap F defined by

F (x) =
{ {(s, 0) : 0 ≤ s ≤ 1} if x is irrational,

{(s, t) : s2 ≤ t ≤ 1} if x is rational,

satisfies condition (II) and does not satisfies condition (I).

If a multimap F satisfies condition (III), then it has the following property:

• for every x ∈ X, y ∈ Y , ε > 0 there exist a neighbourhood U of x and
δ > 0 such that

d(y, Fδ(x′)) ≤ d(y, F0(x′)) < d(y, Fδ(x′)) + ε,

for x′ ∈ U .

Therefore we have the following conclusion.

Corollary 5.11 ([57]). Let X be a topological space and Y be a Banach
space. If a multimap F : X � Y has closed values and satisfies condition (III),
then F0(x) �= ∅ for every x ∈ X and the multimap F0 is l.s.c. (hence F(1) = F (2)).

Invoking Michael Theorem we can extend retractive representation lemma.

Lemma 5.12 ([57]). Let Y be a Banach space, X be a paracompact and
perfectly normal (e.g. metric) topological space. If a multimap F : X � Y has
closed convex values, satisfies condition (III) and the multimaps x �→ Fε(x),
ε ≥ 0, are W -u.s.c. then for every L > 1 the multimap (x, ε) �→ Fε(x) has a
retractive representation (Y × [0, ∞), fL) such that

‖fL(x, y, ε) − y‖ ≤ Ld(y, Fε(x)).

Let us finally characterize the convergence of the sets of continuous ε-selec-
tions Cε

F under each of the hypothesis (I)–(III).
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Theorem 5.13 ([57]). Let X be a paracompact space,Y be a Banach space
and F : X � Y be a multimap with closed convex values such that F (x) �= Y for
some x ∈ X. If F satisfies condition (III), then CF �= ∅ and for every continuous
map f : X → Y , x ∈ X, γ > 0, there exist a neighbourhood U of x and ε > 0
such that for x′ ∈ U there hold

d(f(x′), Cε
F (x′)) ≤ d(f(x′), CF (x′)) < d(f(x′), Cε

F (x′)) + γ.

If F satisfies condition (II), then ε ≤ D(Cε
F , CF ) → 0 as ε → 0 and the function

ε → D(Cε
F , CF ) is locally Lipschitz in (0, ∞). If F satisfies condition (I) for

K ≥ 1, then ε ≤ D(Cε
F , CF ) ≤ Kε.
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[49] D. Repovš and P. Semenov, Continuous Selections of Multivalued Mappings, Kluwer,

1998.
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NONLINEAR EVOLUTION INCLUSIONS
WITH CONSTRAINTS

Aleksander Ćwiszewski

Abstract. The paper is aimed to introduce the reader into nonlinear evo-
lutions equations governed by perturbations of accretive operators and ap-

plications of topological tools to that sort of problems. We consider differ-
ential inclusions of the form

(P )

{
u̇(t) ∈ −Au(t) + F (t, u(t)),

u(t) ∈ M,

where A: D(A) � E is a m-accretive operator on a Banach space E,

F : [t0, T ] × M � E is an upper semicontinuous set-valued map with com-
pact convex values, where M ⊂ E is a closed subset of constraints. For

the initial value problem associated to (P ) existence, continuity with re-
spect to initial data and topological structure of solution set problems shall

be studied. The results on the solution set structure shall be used in the
construction of the topological degree for maps of the form −A+F and ap-

plications of the degree to continuation and bifurcation of equilibria as well
as branching of periodic points associated to (P ) shall be provided. More-

over, the obtained results shall be applied to a class of partial differential
equations involving nonlinear diffusion operator.
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1. Introduction

1.1. Presentation of main problems. Inclusions with constraints of the
form

(P )
{

0 ∈ −Au+ F (u),

u ∈ M,

where M is a closed subset of a Banach space E, A:D(A) � E a m-accretive
operator and F :M � E an upper semicontinuous map, are abstract formu-
lations of many partial differential equations, inclusions and systems in which
additional conditions on the state are imposed. One of typical examples is the
reaction-diffusion equation

−∆ρ(u(x)) = f(x, u(x)), x ∈ Ω,

where Ω ⊂ R
N , ρ: R → R and f : Ω × R → R. And if, in this equation, u(x)

is interpreted as the concentration of some chemical at the point x ∈ Ω, then
it is natural to expect that 0 ≤ u(x) ≤ cmax for a.e. x ∈ Ω where cmax is
some maximal concentration of the chemical, in other words u ∈ M where the
constraint set is given by M := {v ∈ L1(Ω) | 0 ≤ v(x) ≤ cmax for a.e. x ∈ Ω}.
Observe that the set of constraints M has empty interior (in the L1-topology).

The existence of solutions for the constrained problem in the form (P ) has
been studied by many authors who used various methods (see e.g. [34], [24], [8]
or [3]). To address continuation and bifurcation problems for (P ) or the exis-
tence of periodic solutions and other related phenomena for differential equation
(or inclusion) governed by −A + F , one usually has to employ proper (local)
homotopy invariants such as topological degree. But, in the constrained prob-
lems of the form (P ), as we could see, constraint sets often have empty interiors,
which does not allow to apply directly classical topological degrees. Topolog-
ical degrees for nonlinear maps of this kind, in situations with no constraints,
are usually defined as the Leray–Schauder degree of I − (I + λA)−1(I + λF )
or I − (I + λ)−1F , for λ > 0, as well as by an approximation scheme of the
Galerkin type (e.g. [10], [22], [27], [26] and [20]). However, these methods fail in
the presence of the constraint set M , even if M is convex.

We construct a suitable homotopy invariant of the topological degree type for
the class of maps having the form −A+F on M ∩D(A) where A:D(A) � E is a
m-accretive operator such that u̇ ∈ −Au generates a compact semigroup of con-
tractions, M ⊂ E is a closed set being resolvent invariant (i.e. (I +λA)−1(M) ⊂
M for λ > 0) with some regularity property and F :M � E is compact con-
vex valued, upper semicontinuous and tangent to M in the Clarke sense, i.e.
F (x) ∩ CM(x) �= ∅ for x ∈ M , where CM (x) is the Clarke tangent cone.

In the paper we overcome geometric difficulties by using a different approach.
This idea is consistent with the Krasnosel’skĭı formula for the finite dimensional
equation u̇ = f(u), stating that the Brouwer degree of −f is equal to the
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fixed point index of the translation along trajectories operator. Namely, roughly
speaking, we shall consider the semiflow {Φt:M ∩D(A) → M ∩D(A)}t≥0 gener-
ated by u̇ ∈ −Au + F (u) (under our assumptions it is well-defined). It appears
that if U ⊂ M is open and bounded such that −A+F has no zeros on the bound-
ary ∂MU (of U with respect to M), then, for sufficiently small t > 0, the map
Φt has no fixed points on the boundary ∂MU . Then as the topological degree
of −A+F with respect to U ⊂ M we take the fixed point index of Φt. It has all
the expected properties and it can be effectively applied to differential inclusions
of the type u̇ ∈ −Au + F (t, u) in studying such problems as continuation and
bifurcation of equilibria as well as branching of periodic points.

Nevertheless, in order to carry out this program of studying periodic problem
and construction of the topological degree, we have to use a version of the fixed
point index for set-valued maps Φt, which admit a decomposition Φt = et ◦ L,
where L is the solution operator for (P ), i.e. assigning to each x ∈ M the set
L(x) of solutions for (P ) starting from x, and et is the evaluation at time t.
But, usually theories of fixed point indices require that L should have properly
regular values. If M = E, then it is sufficient that L(x) is acyclic for each x ∈ E,
but, if M is an ANR, then some additional regularity is needed. The proper
assumption on L is to require that L(x) is a cell-like set (see the definition in
Section 4). Therefore, it is of great importance to assure the proper regularity
of the set of solutions for (P ).

It should be stressed that the main intention of the author is to present the
results as well as ideas and techniques used while studying nonlinear inclusions
(with or without constraints). So as to fit the material in a reasonable capacity,
some proofs, which are either classical or not related with our approach or exceed
the scope of the paper, have been omitted (nevertheless in such situations proper
references to proofs are indicated).

1.2. Notation. Let (X, d) be a metric space. If B ⊂ A ⊂ X, then ∂ AB

denotes the boundary of B in (A, d|A) where d|A is the metric induced from
(X, d). The distance function dA:X → [0,∞) from the set A ⊂ X is defined
by dA(x) = d(x, A) := inf{d(x, y) | y ∈ A}. If x ∈ X and r > 0, then we
put BA(x, r) := {y ∈ A | d(x, y) < r}, DA(x, r) := {y ∈ A | d(x, y) ≤ r},
B(A, r) := {y ∈ X | dA(y) < r} and D(A, r) := {y ∈ X | dA(y) ≤ r}. If (Xn)
is a sequence of subsets of X, then we consider the inferior and superior limits,
given by

Liminf
n→∞

Xn :=
{
x ∈ X

∣∣∣ lim
n→∞

d(x,Xn) = 0
}

and

Limsup
n→∞

Xn :=
{
x ∈ X

∣∣∣ liminf
n→∞

d(x,Xn) = 0
}
,

respectively.
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Let E be a normed space and M ⊂ E. By convM and convM one denotes
the convex envelope and the closed convex envelope of M , respectively. In prob-
lems with constraints various tangent cones enable to express conditions assuring
existence of solutions in a set of constraint. Here we shall use the Bouligand cone
and the Clarke one. The Bouligand tangent cone to M at a point x ∈ M is given
by

TM (x) :=
{
u ∈ E

∣∣∣∣ liminf
h→0+

dM (x+ hu)
h

= 0
}
.

It is clearly a closed cone (but in general nonconvex). The Clarke tangent cone
to M at x ∈ M is given by

CM(x) :=
{
u ∈ E

∣∣∣∣ lim
y

M→x, h→0+

dM(y + hu)
h

= 0
}
.

CM (x) is a closed convex cone and, in general, CM (x) ⊂ TM (x) and

(1.1) Liminf
y

M→x

TM (x) ⊂ CM (x).

For more details and information concerning tangent cones we refer to [2].

2. Accretive operators, differential inclusions
and semigroups of contractions

2.1. Accretive operators. A set-valued map A:D(A) � E, where E is a
Banach space and D(A) ⊂ E, is called an accretive operator if, for any x, y ∈
D(A), u ∈ Ax, v ∈ Ay and λ > 0,

‖x− y‖ ≤ ‖x− y + λ(u − v)‖.

If, additionally, R(I + A) = E, where R(I +A) :=
⋃
x∈D(A)(I + A)x, then A is

called m-accretive.

Remark 2.1. (a) It is easy to observe that if E is a Hilbert space with
the scalar product 〈 · , · 〉, then A is accretive if, and only if, it is monotone, i.e.
〈x− y, u− v〉 ≥ 0 for any x, y ∈ D(A), u ∈ Ax and v ∈ Ay.

(b) If E is a Hilbert space and A is linear, then the accretivity coincides with
the positivity of A.

(c) If R(I + λ0A) = E for some λ0 > 0, then R(I + λA) = E for all λ > 0
(see e.g. [36]).

(d) If E is reflexive and A:D(A) � E is m-accretive, then the set D(A) is
convex (see e.g. [23]).

If A:D(A) � E is an accretive operator, then, for λ > 0, one defines an
operator Jλ:R(I + λA) → E by Jλu = JAλ u := (I + λA)−1u. It is called
the resolvent of A. It follows straightforward from the definition of accretive
operators that Jλ is a well-defined single-valued operator.
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Proposition 2.2 (e.g. [37], [23]). If A:D(A) � E is m-accretive operator,
then:

(a) ‖Jλu− Jλv‖ ≤ ‖u− v‖ for u, v ∈ E and λ > 0;
(b) limλ→0+ Jλu = u for u ∈ D(A);
(d) Jµ = Jλ((λ/µ)I + (1 − λ/µ)Jµ) for µ, λ > 0;
(d) Aλu ∈ AJλu, for any λ > 0 and u ∈ E, where Aλ := λ−1(I − Jλ).

To get the better feeling of accretivity, we provide some facts on scalar
semiproducts in arbitrary Banach spaces. It appears useful in handling accre-
tive operators. The duality 〈 · , · 〉:E∗ × E → R in a Banach space E is given
by 〈p, u〉 := p(u) for p ∈ E∗ and u ∈ E, and the duality map J :E � E∗ is
given by J(x) := {p ∈ E∗ | 〈p, x〉 = ‖p‖2 = ‖x‖2}, for x ∈ E. The semiprod-
ucts 〈 · , · 〉+:E × E → R and 〈 · , · 〉−:E × E → R are defined by the formulae
〈x, y〉+ := supp∈J(x)〈p, y〉, 〈x, y〉− := infp∈J(x)〈p, y〉, x, y ∈ E. They admit the
following properties:

Proposition 2.3 ([34]). If x, y, z ∈ E, then:

(a) 〈x, y〉+ ≤ ‖x‖‖y‖;
(b) 〈x, y〉+ = −〈x,−y〉− = −〈−x, y〉−, 〈x, x〉+ = 〈x, x〉− = ‖x‖2;
(c) 〈ax, by〉+ = ab〈x, y〉+ for a, b > 0;
(d) 〈x, y + ax〉+ = 〈x, y〉+ + a‖x‖2 for a ∈ R;
(e) 〈x, y + z〉+ ≤ 〈x, y〉+ + 〈x, z〉+;
(f) 〈x, y + z〉− ≤ 〈x, y〉− + 〈x, z〉+;
(g) The function 〈 · , · 〉+:E × E → R (resp. 〈 · , · 〉−:E × E → R) is upper

semicontinuous (resp. lower semicontinuous).

Lemma 2.4. If un → u in C([t0, T ], E) and wn → w in L1([t0, T ], E), then

lim sup
n→∞

∫ T

t0

〈un(τ), wn(τ)〉+ dτ ≤
∫ T

t0

〈u(τ), w(τ)〉+ dτ.

The semiproducts allow to express accretivity in a sometimes more conve-
nient form, for instance, one may prove that A:D(A) � E is accretive if, and
only if,

〈y1 − y2, v1 − v2〉+ ≥ 0,

for any (y1, v1), (y2, v2) ∈ Gr(A) := {(y, v) ∈ E × E | y ∈ D(A), v ∈ Ay} (see
e.g. [36] or [23]).

Moreover, it appears that m-accretive operators are maximal one among all
accretive operators in the sense of their graphs.

Proposition 2.5 (see [36] or [23]). Let A:D(A) � E be a m-accretive
operator. If for some pair (x, u) ∈ E × E one has 〈x − y, u − v〉+ ≥ 0 for any
(y, v) ∈ Gr(A), then (x, u) ∈ Gr(A).

Observe that, in view of Proposition 2.5 and Proposition 2.3(g), for any
m-accretive operator A:D(A) � E, the graph Gr(A) is closed in E × E.



204 Aleksander Ćwiszewski

For more on accretive operators the reader is referred to [4], [32] or [36].

2.2. Semigroups and solution operator. A family of maps {S(t):D →
D}t≥0, where D ⊂ E, is called a semigroup of contractions provided that

• S(0) = idD;
• S(t)S(s) = S(t + s) for any t, s ≥ 0;
• ‖S(t)x − S(t)y‖ ≤ ‖x− y‖ for any x, y ∈ D and t ≥ 0;
• limt→0+ S(t)x = x.

The notion of semigroup is strictly related to accretive operators, which is subject
to our further study. Namely, consider the following differential inclusion

(2.1)
{
u̇(t) ∈ −Au(t), t > 0,

u(0) = x,

where A:D(A) � E is a m-accretive operator and x ∈ D(A). In general,
without additional assumptions, the inclusion (2.1) may possess no pointwise (or
almost everywhere pointwise) solutions. Therefore, another notion of solution is
introduced (in more general setting).

Definition 2.6 (see [4] or [36]). Let A:D(A) � E be a m-accretive opera-
tor, w ∈ L1([t0, T ], E) and x0 ∈ D(A). A continuous function u: [t0, T ] → E is
said to be an integral solution of the problem{

u̇(t) ∈ −Au(t) + w(t), t ∈ [t0, T ],

u(t0) = x0,

if and only if u(t0) = x0, u(t) ∈ D(A), for all t ∈ [t0, T ], and

‖u(t) − y‖2 ≤ ‖u(s) − y‖2 + 2
∫ t

s

〈u(τ) − y, w(τ) − v〉+ dτ

for any t0 ≤ s < t ≤ T and (y, v) ∈ Gr(A).

Remark 2.7. (a) If a linear operator A:D(A) → E is such that −A is a
generator of a C0 semigroup of contractions, then every mild solution of u̇(t) =
−Au(t) +w(t) is an integral solution, in the sense of Definition 2.6.

(b) One may show that if u is an integral solution of u̇(t) ∈ −Au(t) + w(t),
then, for any (y, u) ∈ Gr(A) and t0 ≤ s < t ≤ T , one has

‖u(t) − y‖ ≤ ‖u(s) − y‖ +
∫ t

s

‖w(τ) − v‖ dτ.

Proposition 2.8 (see e.g. [37] or [23]). Let A:D(A) � E be such that A−ωI
is m-accretive for some ω ≥ 0. Then for any x ∈ D(A) and w ∈ L1([t0, T ], E)
the problem

(PA,w,x)
{
u̇(t) ∈ −Au(t) + w(t) on [t0, T ],

u(t0) = x,
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has a unique integral solution u = ΣA(x, w): [t0, T ] → E. Moreover, for any
x1, x2 ∈ D(A), w1, w2 ∈ L1([t0, T ], E) and all t0 ≤ s < t ≤ T ,

‖ΣA(x1, w1)(t) − ΣA(x2, w2)(t)‖
≤ e−ω(t−s)‖ΣA(x1, w1)(s) − ΣA(x2, w2)(s)‖

+
∫ t

s

e−ω(t−τ)‖w1(τ) −w2(τ)‖ dτ.

In particular, if w := 0, t0 := 0 and T := +∞, by Proposition 2.8, for
every operator A:D(A) � E with A−wI m-accertive, the differential problem
u̇ ∈ −Au determines the semigroup of contractions SA(t):D(A) → D(A) (with
the constants e−ωt). This semigroup (generated by A) is denoted by {SA(t)}t≥0

or SA.

Remark 2.9. If a constant map u ≡ x0 is an integral solution of u̇ ∈
−Au + v0 on [t0, T ], for some v0 ∈ E, then x0 ∈ D(A) and 0 ∈ −Ax0 + v0.
Indeed, since u ≡ x0 is an integral solution, one has, for t ∈ [t0, T ],

0 ≤
∫ t

t0

〈x0 − y, v0 − v〉+ dτ = (t− t0)〈x0 − y, v0 − v〉+

for all (y, v) ∈ Gr(A) and t ∈ [t0, T ], which, in view of Proposition 2.5, gives
(x0, v0) ∈ Gr(A).

Below the notion convergence for m-accretive operators is briefly introduced.
It enables to consider homotopy in the family of perturbations of m-accretive
operators with the accretive part changing.

Definition 2.10 (see e.g.[36] or [24]). A sequence (An:D(An) � E)n≥1

of m-accretive operators is said to be G-convergent (or graph convergent) to a

m-accretive operator A:D(A) � E, which is written as An
G−→ A, if

Gr (A) ⊂ Liminf n→∞Gr (An).

Remark 2.11 (see [24]). The graph-convergence can be also characterized

as follows: An
G−→ A if, and only if, for each µ > 0 JAn

µ u → JAµ u for all
u ∈ E. Moreover, one may show that if there exists at least one µ0 > 0 such
that JAn

µ0
u → JAµ0

u, for any u ∈ E, then An
G−→ A.

Example 2.12 (see [13]). (a) Let A:D(A) � E be a m-accretive operator.

If q ≥ 0 is a fixed parameter and λn → λ0 > 0, then qI + λnA
G−→ qI + λ0A.

(b) Let A and B be m-accretive operators such that D(A) = D(B) and
the operator C(λ) := λA + (1 − λ)B is m-accretive, for all λ ∈ [0, 1], then

C(λn) G−→ C(λ0) if λn → λ0.

The solution operator has the following continuity properties.
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Proposition 2.13 (see [36]). If An
G−→ A, xn → x, where xn ∈ D(An),

for n ≥ 1, x ∈ D(A), and wn → w in L1([t0, T ], E), then ΣAn (xn, wn)(t) →
ΣA(x, w)(t) uniformly on [t0, T ].

Proposition 2.14. If the dual space E∗ is uniformly convex, An
G−→ A

and xn → x, where xn ∈ D(An), for n ≥ 1, x ∈ D(A), wn ⇀ w weakly in
L1([t0, T ], E), and ΣAn(xn, wn) → u in C([t0, T ], E), then u = ΣA(x, w).

Remark 2.15. If E∗ is uniformly convex, then E is reflexive and the duality
mapping J is single-valued and uniformly continuous on bounded sets (Kato’s
theorem, see [4]). It is mainly these properties that make us assume the uniform
convexity of E∗.

In the proof of Proposition 2.14, we need the following property of the
semiproduct, which is a consequence of properties mentioned in Remark 2.15
(for the detailed proof see e.g. [37], also [13]).

Lemma 2.16. If E∗ is uniformly convex, un → u in C([t0, T ], E) and wn ⇀
w weakly in L1([t0, T ], E), then

lim
n→∞

∫ T

t0

〈un(τ), wn(τ)〉+ dτ =
∫ T

t0

〈u(τ), w(τ)〉+ dτ.

Proof of Proposition 2.14. Set un := ΣAn (xn, wn) and take any t0 ≤ s < t ≤
T and (y, v) ∈ Gr(A). Then, by the definition of the G-convergence, there exist
sequences yn → y and vn → v such that vn ∈ Anyn for n ≥ 1. By the definition
of integral solution

‖un(t) − yn‖2 ≤ ‖un(s) − yn‖2 + 2
∫ t

s

〈un(τ) − yn, wn(τ) − vn〉+ dτ.

Passing to the limits and using Lemma 2.16, one obtains

‖u0(t) − y‖2 ≤ ‖u0(s) − y‖2 + 2
∫ t

s

〈u0(τ) − y, w0(τ) − v〉+ dτ,

which, by the uniqueness of integral solutions, implies u = ΣA(x, w). �

2.3. Compactness properties of solution operator. A family (or a
sequence) A of m-accretive operators on a Banach space E is called relatively G-
compact, if any sequence of operators in A contains a subsequence G-convergent
to some m-accretive operator. The following criterion is a general tool for check-
ing compactness of solution sets for (PA,w,x).

Theorem 2.17 (see [13]). Let a family A of m-accretive operators be rela-

tively G-compact and such that, for any sequence (An) ⊂ A with An
G−→ A0, the
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equality holds

(2.2) D(A0) = Limsup
n→∞

D(An). (1)

If the set K ⊂ E is relatively compact and W ⊂ L1([t0, T ], E) is uniformly
integrable (2), then the following conditions are equivalent:

(a) the set

ΣA(K ×W ) :=
⋃
A∈A

{ΣA(x, w) | x ∈ K ∩D(A), w ∈ W}

is relatively compact in C([t0, T ], E);
(b) there exists a dense set P ⊂ [t0, T ] such that, for all t ∈ P ,

ΣA(K ×W )(t) :=
⋃
A∈A

{ΣA(x, w)(t) | x ∈ K ∩D(A), w ∈ W}

is relatively compact in E.

A semigroup {S(t):D → D}t≥0, where D is a closed subsets of a Banach
space E, is called compact, if the set S(t)(Ω ∩ D) is relatively compact for any
t > 0 and any bounded Ω ⊂ E. A family (or a sequence) of semigroups S =
{S(t) : DS → DS}S∈S , where DS are closed subsets of E, is called compact,
if, for any t > 0 and any bounded set Ω ⊂ E, the set

⋃
S∈S S(t)(Ω ∩ DS) is

relatively compact.

Example 2.18. Let A:D(A) � E be a m-accretive operator such that the
semigroup SA is compact. The family A := {λA}λ∈[α,β], where 0 < α < β, is
relatively G-compact and the family of semigroups S := {SλA:D(A) → D(A) |
λ ∈ [α, β]} is compact. To see the G-compactness, observe that if λn → λ ∈
[α, β], then, by the resolvent’s properties, JλnA

µ u = JAµλn
u → JAµλu = JλAµ u for

any µ > 0 and u ∈ E, which, in view of Remark 2.11, implies λnA
G−→ λA. To

show the compactness of the family S, observe that SλA(t)x = SA(λt)x for any
λ > 0, t ≥ 0 and x ∈ D(A). Hence, for any bounded Ω ⊂ E and t > 0, one gets

(2.3)
⋃

λ∈[α,β]

SλA(t)(Ω∩D(A)) =
⋃

λ∈[α,β]

SA(λt)(Ω∩D(A)) ⊂ SA(αt)(Ω0∩D(A)),

(1) Note that the inclusion D(A0) ⊂ Liminf n→∞ D(An) ⊂ Limsup n→∞ D(An) follows

from the definition of G-convergence. Hence, to verify (2.2) just the converse inclusion must
be checked.

(2) A subset (or a sequence) W ⊂ L1([t0, T ],E) is said to be uniformly integrable, if for
every ε > 0 there is δ > 0 such that

∫
J
‖w(τ )‖dτ < ε for any J ⊂ [t0, T ] with the Lebesgue

measure µ(J) < δ and any w ∈ W . Moreover, W ⊂ L1([t0, T ],E) is said to be integrally

bounded, if there exists q ∈ L1([t0, T ]) such that, for all w ∈ W , ‖w(t)‖ ≤ q(t) for a.e.

t ∈ [t0, T ]. Observe that if W is integrally bounded, then it is uniformly integrable.
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where Ω0 := {SA(s)x | x ∈ Ω ∩ D(A), s ∈ [0, (β − α)t]}. It is clear that Ω0

is bounded, and note that the relative compactness in (2.3) follows from the
compactness of SA.

The following compactness criterion is a direct consequence of Theorem 2.17.

Proposition 2.19 (see [12]). Let (An) be a relatively G-compact sequence of
m-accretive operators such that the corresponding sequence of semigroups (SAn )
is compact and D(An) = D(Am) for any n,m ≥ 1. Then:

(a) If (xn)⊂D(A1) is a bounded sequence, (wn)⊂L1([t0, T ], E) is uniform-
ly integrable, then, for any t ∈ (t0, T ], the sequence (ΣAn(xn, wn)(t)) is
relatively compact.

(b) If, additionally, (xn) is relatively compact, then the sequence of func-
tions (ΣAn (xn, wn)) is relatively compact in C([t0, T ], E).

2.4. Resolvent invariant sets. A set M ⊂ E is called resolvent invariant
with respect to a m-accretive operator A:D(A) � E if, and only if,

JAλ (M) ⊂ M, for each λ > 0.

Remark 2.20. (a) In general, if a closed M ⊂ E is resolvent invariant, then
M is invariant with respect to the semigroup SA, i.e.

SA(t)(M ∩D(A)) ⊂ M ∩D(A) for any t > 0.

It follows immediately from the Crandall–Liggett exponential formula saying
that SA(t)x = limn→∞(JAt/n)nx for x ∈ D(A) and t > 0. Hence, the resolvent
invariance, in the case when w ≡ 0 is sufficient, for existence of integral solutions
of u̇ ∈ −Au staying in M .

(b) If A is such that −A is a m-accretive generator of a C0 semigroup of
bounded linear operators and M is closed and convex, then the converse impli-
cation is true, that is invariance with respect to semigroups implies resolvent
invariance (see [32, Proposition VII.5.3]). For nonlinear A some additional con-
dition on the position of M with respect to D(A) is needed (see [4, Chapter IV,
Theorem 1.7]).

The following proposition collects basic facts concerning resolvent invariant
sets.

Proposition 2.21 (see [13]). Let A be a m-accretive operator.

(a) If M ⊂ E is resolvent invariant, then MA := M ∩D(A) is a retract of
M .

(b) If M is a resolvent invariant neighbourhood retract in E, then MA is a
neighbourhood retract in E.

(c) If M is a resolvent invariant neighbourhood retract in E, MA is bounded
and the semigroup {SA(t):MA → MA}t≥0 is compact, then χ(MA) is
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well-defined and Λ(SA(t)|MA) = χ(MA) for any t > 0, where Λ( · )
stands for the generalized Lefschetz number of a compact self-map of an
absolute neighbourhood retract.

Example 2.22. Suppose H is a Hilbert space and ϕ:H → R∪{∞} is a lower
semicontinuous convex functional with the proper domain D(ϕ) := {x ∈ H |
ϕ(x) < +∞} �= ∅. Define Ax := ∂ ϕ(x) for x ∈ D(A) := {x ∈ D(ϕ) | ∂ ϕ(x) �= ∅}
(see [37]). The operator A is m-accretive and D(A) = D(ϕ) (see [4]). For any
a ∈ R, put Ma := {x ∈ D(ϕ) | ϕ(x) ≤ a}. It is clear that Ma are closed convex
and invariant with resolvent invariant. Indeed, the convexity is immediate and
the closeness is a consequence of lower semicontinuity. By the definition of
subgradient and the inclusion Aλx ∈ AJλx (see Proposition 2.2(d)), for any x ∈
D(ϕ) and λ > 0, one has ϕ(x)−ϕ(Jλx) ≥ 〈Aλx, x−Jλx〉 = λ−1‖x−Jλx‖2 ≥ 0.
Hence, ϕ(Jλx) ≤ ϕ(x), i.e. Jλ(Ma) ⊂ Ma, for any λ > 0 and a ∈ R.

An example for the nonlinear diffusion operator is provided in Section 7.

3. Existence for constrained differential inclusions
and properties of solution operators

Consider the inclusion

(PA,F,x)



u̇(t) ∈ −Au(t) + F (t, u(t)),

u(t) ∈ MA := M ∩D(A),

u(t0) = x,

where A:D(A) → E is m-accretive, M ⊂ E is closed and F : [t0, T ] ×M � E is
a set-valued map. A continuous function u: [t0, T ] → E is said to be an integral
solution of (PA,F,x) if, and only if, u(t0) = x and there exists a measurable a.e.
selection w: [t0, T ] → E of the set-valued map F ( · , u( · )) (i.e. w(t) ∈ F (t, u(t))
for a.e. t ∈ [t0, T ]) such that ΣA(x, w) = u. The set of all integral solutions shall
be denoted by L(x,−A+ F ).

We divide this section into two parts, in the first one we consider the case
when F is a single-valued locally Lipschitz map with some other standard prop-
erties and in the second one, the case with set-valued upper semicontinuous F
with other necessary properties.

3.1. Solution operator for inclusions with single-valued perturba-
tions. Due to our further needs, we shall deal from the very beginning with
parameterized differential problem

(Pλ)
{
u̇ ∈ −A(λ)u + F (t, u, λ) for λ ∈ Λ,

u(t) ∈ M,
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where

(M1) the family {A(λ)}λ∈Λ, with a compact metric space Λ, is G-continuous,

i.e. A(λn) G−→ A(λ0) as λn → λ0;
(M2) M ⊂ E is closed and resolvent invariant with respect to each A(λ),

λ ∈ Λ, i.e. JA(λ)
µ (M) ⊂ M for any µ > 0 and λ ∈ Λ;

(M3) the family of semigroups {SA(λ)}λ∈Λ is compact,

and a continuous map F : [t0, T ] ×M×Λ → E satisfies the following conditions:

(F1) for any x ∈ M there are δx > 0 and Lx > 0 such that

‖F (t, x1, λ) − F (t, x2, λ)‖ ≤ Lx‖x1 − x2‖,
for any x1, x2 ∈ B(x, δx), t ∈ [t0, T ] and λ ∈ Λ;

(F2) there exists c ∈ L1([t0, T ]) such that ‖F (t, x, λ)‖ ≤ c(t)(1 + ‖x‖), for
any (t, x, λ) ∈ [t0, T ] ×M × Λ;

(F3) F (t, x, λ) ∈ TM (x) for any (t, x, λ) ∈ [t0, T ] ×M × Λ.

Theorem 3.1.

(P1) (Existence) For any λ ∈ Λ and x ∈ Mλ := M ∩D(A(λ)), there exists a
unique integral solution u: [t0, T ] → E of (Pλ) with u(t0) = x.

(P2) (Continuity) The map L:
⋃
λ∈Λ Mλ × {λ} → C([t0, T ], E), given by

L(x, λ) = L(x,−A(λ) + F ( · , · , λ)) := u,

where u is the unique solution of (Pλ) on [t0, T ] with u(a) = x, is
continuous. Moreover, for sn → s0 in [t0, T ], xn → x0 in M and
λn → λ0 in Λ, if un is the solution of (Pλn) on [sn, T ] with un(sn) = xn,
n ≥ 0, then

sup
t∈[max{sn,s0},T ]

‖un(t) − u0(t)‖ → 0 as n → ∞.

(P3) (Compactness) Suppose the family {A(λ)}λ∈Λ has the additional prop-
erty D(A(λ1)) = D(A(λ2)) for any λ1, λ2 ∈ Λ. Then, for any t ∈
(t0, T ], the translation along trajectories operator Φt:MD × Λ → MD,
with MD := M ∩ D(A(λ)) for λ ∈ Λ, given by Φt(x, λ) := et(L(x, λ)),
where et:C([t0, T ],MD) → MD is the evaluation map, is compact, i.e.
for any bounded Ω ⊂ MD the set Φt(Ω × Λ) is relatively compact.

Remark 3.2. (a) Fix λ ∈ Λ and x ∈ Mλ. Suppose that u ∈ C([t0, T ], E) is
an integral solution of (Pλ) with u(t0) = x. Observe that, by Proposition 2.8,
‖u(t) − ΣA(λ)(x, 0)(t)‖ ≤

∫ t
t0

‖F (τ, u(τ), λ)‖ dτ and, consequently, by (F2),

‖u(t)‖ ≤ ‖SA(λ)(t− t0)x‖ +
∫ t

t0

c(τ)(1 + ‖u(τ)‖) dτ

≤ Kx,λ + ‖c‖L1 +
∫ t

t0

c(τ)‖u(τ)‖ dτ
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where Kx,λ := maxτ∈[0,T−t0] ‖SA(λ)(τ)x‖. Hence, the Gronwall inequality pro-
vides the estimate

‖u(t)‖ ≤ (Kx,λ + ‖c‖L1) exp
( ∫ t

t0

c(τ) dτ
)
.

(b) We claim that, for any R > 0, KR := sup{Kx,λ | λ ∈ Λ, x ∈ D(A(λ)) ∩
B(0, R)} < ∞. Indeed, fix λ ∈ Λ and take any xλ ∈ D(A(λ)). By the defini-
tion of G-convergence and Proposition 2.13, there exists 0 < δ < 1 such that,
for all µ ∈ B(λ, δ), B(xλ, δ) ∩ D(A(µ)) �= ∅ and maxτ∈[0,T−t0] ‖SA(µ)(τ)y −
SA(λ)(τ)xλ‖ ≤ 1 for any y ∈ B(xλ, δ) ∩ D(A(µ)). Further, for any µ ∈ B(λ, δ),
z ∈ D(A(µ)) ∩B(0, R) and τ ∈ [0, T − t0], one has

‖SA(µ)(τ)z‖ ≤ ‖SA(µ)(τ)z − SA(µ)(τ)y‖
+ ‖SA(µ)(τ)y − SA(λ)(τ)xλ‖ + ‖SA(λ)(τ)xλ‖

≤ ‖z − y‖ + 1 + ‖SA(λ)(τ)xλ‖

where y ∈ B(xλ, δ) ∩D(A(µ)) is arbitrary. This implies

sup{Kz,µ | µ ∈ B(λ, δ), z ∈ D(A(µ)) ∩B(0, R)}
≤ 2R+ δ + 1 +Kxλ,λ < 2(R+ 1) +Kxλ,λ.

Since Λ is compact, we see that KR < ∞.
(c) If one combines (a) and (b), then it is clear that the set of solutions of

(Pλ) starting from a bounded set is bounded.

Proof of Theorem 3.1. The part (P1) is proved in [8].
As for the part (P2), we show the short prove in the case sn ≡ t0 (in

general case the prove is similar but more technical). Take any sequence of
parameters λn → λ0 in Λ and (xn) such that xn ∈ Mλn , for n ≥ 1, and
xn → x0 ∈ Mλ0 . Let un := L(xn, λn), for n ≥ 1. In view of Remark3.2(c),
un is bounded in C([t0, T ], E) and, by (F2), the sequence (F ( · , un( · ), λn)) is
integrally bounded. Hence, in view of Proposition 2.19(b), each subsequence of
(un) contains a subsequence (ukl) convergent to some u0 ∈ C([t0, T ], E). Then
wkl := F ( · , ukl( · ), λkl) → w0 := F ( · , u0( · ), λ0) in L1([t0, T ], E), which, due
to Proposition 2.13, implies ukl = ΣA(λkl

)(xkl , wkl) → ΣA(λ0)(x0, w0) = u0.
Summing up, it has been showed that, each subsequence of (un) contains a sub-
sequence convergent to u0 = L(x0, λ0), which proves that L(xn, λn) → L(x0, λ0).

To prove the part (P3), take a bounded sequence (xn) ⊂ Ω and (λn) ⊂ Λ.
Let, for any n ≥ 1, un be the solution of (Pλn) with un(t0) = xn. In view of
Remark 3.2(c),the sequence (un) is bounded in C([t0, T ], E) and, by (F2), the
functions F ( · , un( · ), λn) are integrally bounded, and, by Proposition 2.19(a),
the sequence (un(t)) is relatively compact for any t ∈ (t0, T ]. �

Remark 3.3. (a) Under the above assumptions, the existence part (P1) is
true without the assumption of the compactness of the semigroup (see [8]).
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(b) Theorem 3.1 holds, if the assumptions (M2) and (F3) is replaced by the
following weaker condition

F (t, x, λ) ∈ T
A(λ)
M (x) for any (t, x, λ) ∈ [t0, T ] ×Mλ × Λ

where for a m-accretive operator A:D(A) � E

TAM (x) :=
{
u ∈ E

∣∣∣∣ liminf
h→0+

dMA(ΣA(x, u)(h))
h

= 0
}

and ΣA(x, u) stands for the solution of v̇ ∈ −Av + u with v(0) = x (see [8]).
Hence, some of the results in the sequel also remain true under this weaker
condition.

3.2. Solution operator for inclusions with set-valued perturbations.
We settle a set-valued version of Theorem 3.1. Consider (Pλ) with {A(λ)}λ∈Λ

and M ⊂ E satisfying (M1)–(M3) and a set-valued map F : [t0, T ] ×M × Λ � E

satisfying the following conditions:

(F̃1) F is compact convex valued and upper semicontinuous,
(F̃2) there exists c ∈ L1([t0, T ]) such that supu∈F(t,x,λ) ‖u‖ ≤ c(t)(1 + ‖x‖)

for any (t, x, λ) ∈ [t0, T ] ×M × Λ,
(F̃3) F (t, x, λ) ∩ TM (x) �= ∅ for any (t, x, λ) ∈ [t0, T ] ×M × Λ.

Moreover, if F is single-valued, then there is no additional assumptions on E,
otherwise, if F is set-valued, then we assume that the dual E∗ is uniformly
convex.

Theorem 3.4.

(P1) (Existence) For any λ ∈ Λ and x ∈ Mλ := M ∩D(A(λ)) there exists an
integral solution u: [t0, T ] → E of (Pλ) with u(t0) = x.

(P2) (Continuity) The map L:
⋃
λ∈Λ Mλ × {λ} � C([t0, T ], E), given by

L(x, λ) = L(x,−A(λ) + F ( · , · , λ))

:= {u ∈ C([t0, T ], E) | u is an integral solution of (Pλ) and u(t0) = x}
is upper semicontinuous and has compact values.

(P3) (Compactness) Suppose the family {A(λ)}λ∈Λ has the additional prop-
erty D(A(λ1)) = D(A(λ2)) for any λ1, λ2 ∈ Λ. Then, for any t ∈
(t0, T ], the translation along trajectories operator Φt:MD × Λ � MD,
where MD := M ∩D(A(λ)), for λ ∈ Λ, given by Φt(x, λ) := et(L(x, λ)),
is compact, i.e. for any bounded Ω ⊂ MD, the set Φt(Ω×Λ) is relatively
compact.

Remark 3.5. (a) The assumption of the uniform convexity of E∗ allows to
use Proposition 2.14. Moreover, if E∗ is uniformly convex, then, in particular,
E is reflexive, which means that bounded subsets of E are relatively weakly
compact.
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(b) The conclusion of Remark 3.2(c) remains valid in the set-valued case with
suitable adjustments.

(c) Observe that a set-valued map ϕ:X � Y is upper semicontinuous if and
only if for any xn → x0 in X and any (un) ⊂ Y such that un ∈ ϕ(xn), for any
n ≥ 1, there is a subsequence unk → u0 ∈ ϕ(x0).

The proof of Theorem 3.4 is very similar to those for inclusions with bounded
right hand sides. The following general rules are crucial for the proof of Theo-
rem 3.4.

Lemma 3.6 (L1-compactness criterion, see [18]). Let W ⊂ L1([t0, T ], E)
be a uniformly integrable set such that there exists a family {C(t)}t∈[t0,T ] of
relatively compact subsets of E such that, for each w ∈ W ,

w(t) ∈ C(t) for a.e. t ∈ [t0, T ].

Then W is relatively weakly compact in L1([t0, T ], E).

Lemma 3.7 (Convergence theorem, see [1]). Suppose that:

(a) un → u in C([t0, T ], X) where X is a metric space,
(b) wn ⇀ w weakly in L1([t0, T ], E),
(c) G: [t0, T ] ×X � E is an upper semicontinuous map with closed convex

values,
(d) for any ε > 0 there exists n0 ≥ 1 such that, for each n ≥ n0 and a.e.

t ∈ [t0, T ],

wn(t) ∈ conv [G(([t− ε, t+ ε] ∩ [t0, T ]) × B(un(t), ε)) + B(0, ε)].

Then w(t) ∈ F (t, u(t)) for a.e. t ∈ [t0, T ].

Proof of Theorem 3.4. The part (P1) is proved in [8] (even under weaker
assumptions).

To prove (P2) we shall show that, for any xn → x0 ∈ Mλ0 , λn → λ0 ∈ Λ
and un ∈ L(xn, λn), n ≥ 1, (un) contains a subsequence convergent to some
u0 ∈ L(x0, λ0) (see Remark 3.5(c)).

Consider the case when F is set-valued (then E∗ is assumed to be uni-
formly convex). Since, un are integral solutions, there exist integrable selections
wn: [t0, T ] → E of F ( · , un( · ), λn). By (F̃2) and the fact that there is R > 0 such
that ‖un‖ ≤ R for n ≥ 1 (see Remark 3.5), we see that (wn) is integrally bounded
by c( · )(1 + R). Hence, in view of Proposition 2.19(b), (un) is relatively com-
pact, i.e. it contains a subsequence convergent to some u0 ∈ C([t0, T ], E) with
u0(t0) = x0; furthermore, by Lemma 3.6, (wn) contains a subsequence weakly
convergent in L1([t0, T ], E) to some w0. Therefore passing to subsequences, if
necessary, un → u0 and wn ⇀ w0 weakly in L1([t0, T ], E). Finally, by use of
Lemma 3.7 (applied to (un, λn) ∈ C([t0, T ],M × Λ), (wn, 0) ∈ L1([t0, T ], E× R)
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and G(t, (x, λ)) := (F (t, x, λ), 0)), we get w0 ∈ F ( · , u0( · ), λ0), which together
with Proposition 2.14 implies that u0 ∈ L(x0, λ0).

If F is single-valued, then the proof is analogical to the proof of the part
(P2) of Theorem 3.1.

To see (P3) one needs to proceed exactly like in the proof of the part (P3)
of Theorem 3.1. �

4. Topological structure of solution sets
for constrained evolution problems

We shall study the structure of the set of all solutions of the inclusion

(PA,F,x0)



u̇ ∈ −Au+ F (t, u),

u(t) ∈ MA := M ∩D(A),

u(t0) = x0,

where A:D(A) � E is a m-accretive operator, F : [t0, T ] ×M � E is an upper
semicontinuous with compact convex values and x0 ∈ D(A). We intend to show
that, under some general conditions, the set of solutions for (PA,F,x0) is a cell-like
set (see for the definition below).

The regularity of solution set is a problem involving the geometry of both
the mapping F and the constraint set M . It appears that even in some finite
dimensional problems with A := 0 solution sets of (PA,F,x0) are not connected
or acyclic, that is neither cell-like (see examples in [29]). It is either the lack
of proper regularity of the shape of M or too weak tangency of F with respect
to M , which is the reason of that phenomenon. However, if M is of a proper
regularity and F is tangent to M in the sense of Clarke’s cones (that is F satisfies
a more restrictive condition), then solution sets have the required structure.

Definition 4.1. A (nonempty) compact metric space L is called a cell-like
set, if there exists a metrizable ANR X and an embedding i:L → X such that
i(L) is contractible in any neighbourhood of i(L) in X (or, equivalently, for any
neighbourhood U of i(L), there exists a neighbourhood V ⊂ U of the set i(L)
such that the set V is contractible in U).

Remark 4.2. (a) The property of being cell-like is an absolute property,
that is if L is a cell-like set and i′:L → X′ is an embedding into an ANR X′,
then i′(L) is contractible in any its neighbourhood in X′.

(b) Being a cell-like set is a topological invariant (cf. [31]). One may also
show that this property is even a homotopic invariant.

(c) A cell-like set is acyclic with respect to the Čech cohomology with integer
coefficients (by the continuity property of the Čech cohomology functor).

Example 4.3. (a) By the definition, it is obvious, that contractible compact
metric spaces are cell-like sets. Hence, in particular, compact convex subsets of
normed spaces are cell-like.
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(b) Let X ⊂ Y be a compact subset of a metric space Y . X is said to be
of Rδ type if X =

⋂
n≥1Xn where {Xn}n≥1 is a descending family of compact

AR’s (absolute retracts). It is easy to see that sets of Rδ type are cell-like. And
conversely, one may show that each compact cell-like set is of Rδ type (see [25]).
Hence, for compact sets these two properties are equivalent.

(c) In practice, the following characterization of Rδ type sets is useful: If
(Ln)n≥1 is a sequence of closed and bounded subsets of a metric space X

such that Ln+1 ⊂ Ln for n ≥ 1, Ln is contractible, for n ≥ 1, and β(Ln) →
0, as n → ∞, where β denotes the Hausdorff measure of noncompactness, then
L :=

⋂
n≥1Ln is of Rδ type.

(d) If (Ln) is a descending sequence of Rδ sets, then
⋂
n≥1Ln is also of Rδ

type.

4.1. Structure of solution set — convex constraints. This is the ability
of approximating F with locally Lipschitz mappings inheriting the tangency to
M , which plays the key rule in studying the structure of solutions sets. As
one encounters different difficulties connected with approximations, each of the
situations when M is convex, M is epi-Lipschitz and M is a proximate retract are
considered separately. Here, we assume that F is upper semicontinous (jointly,
i.e. with respect to both variables). The more general case when F is just
upper Caratheodory or M is strictly regular sets, can be obtained by use of the
techniques due to Bader and Kryszewski (see [3]) where A was assumed to be
a linear generator of C0 semigroup. The adaptation to the nonlinear case is
straightforward and the arguments from this section apply.

In the convex case we use the following approximation result .

Lemma 4.4 ([28], [3]). Let M ⊂ E be a closed convex set in a Banach space
E and Ω be a metric space. If F : Ω × M � E is upper semicontinuous with
closed convex values such that

F (ω, x) ∩ TM (x) �= ∅ for (ω, x) ∈ Ω ×M,

then, for any ε > 0, there exists a locally Lipschitz map fε: Ω × M → E such
that, for any ω ∈ Ω and x ∈ M ,

fε(ω, x) ∈ conv [F (B(ω, ε) ×BM (x, ε)) +B(0, ε)],

fε(ω, x) ∈ TM (x).

Theorem 4.5. Let A:D(A) � E be a m-accretive operator such that the
semigroup SA is compact and M ⊂ E be a resolvent invariant closed convex set.
If F : [t0, T ] × M � E is an upper semicontinuous map with compact convex
values and sublinear growth such that F (t, x) ∩ TM (x) �= ∅, for each (t, x) ∈
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[t0, T ] × M , then, for any x0 ∈ MA, the set L(x0,−A + F ) of solutions for
(PA,F,x0) is cell-like in each of the following cases:

(a) F is a single-valued map;
(b) E∗ is uniformly convex.

Proof. Step 1. For any n ≥ 1, by Lemma 4.4, there exists a locally Lipschitz
fn: [t0, T ] ×M → E such that, for each t ∈ [t0, T ] and x ∈ M ,

fn(t, x) ∈ TM (x),(4.1)

fn(t, x) ∈ Fn(t, x),(4.2)

where Fn(t, x) := conv [F (((t−1/n, t+1/n)∩ [t0, T ])×BM (x, 1/n))+B(0, 1/n)].
Step 2. We shall show that, for any n ≥ 1, the set L(x0,−A+ Fn) is con-

tractible.
By Theorem 3.1 (P1) and (4.1), for any (s, x) ∈ [t0, T ] ×MA the problem

(Pn)



u̇ ∈ −Au+ fn(t, u),

u(t) ∈ MA,

u(s) = x,

has a unique solution u( · ; s, x): [s, b] → MA. In view of (4.2), it is clear that
the solution u( · ; s, x0) of (Pn) belongs to L(x0,−A + Fn). Define M̂ := {u ∈
C([t0, T ], E) | u(t) ∈ MA for any t ∈ [t0, T ]} and H: M̂ × [t0, T ] → M̂ by

H(v, s)(t) :=
{
v(t) for t ∈ [t0, s),

u(t; s, v(s)) for t ∈ [s, T ].

The map H is continuous. Indeed, suppose that vm → v and sm → s as m → ∞.
Without loss of generality one may assume that either sm > s for all m ≥ 1 or
sm < s for all m ≥ 1. In the first case, if sm > s, then,

• for t ∈ [t0, s), one has ‖H(vm, sm)(t) −H(v, s)(t)‖ = ‖vm(t) − v(t)‖ ≤
‖vm − v‖ → 0;

• for t ∈ [s, sm), by continuity,

‖H(vm, sm)(t) −H(v, s)(t)‖ = ‖vm(t) − u(t; s, v(s))‖
≤ ‖vm − v‖ + sup

τ∈[s,sm]
‖v(τ) − v(s)‖ + sup

τ∈[s,sm ]
‖v(s) − u(τ ; s, v(s))‖ → 0;

• for t ∈ [sm, T ], by use of Theorem 3.1(P2),

‖H(vm, sm)(t) −H(v, s)(t)‖ = ‖u(t; sm, vm(sm)) − u(t; s, v(s))‖ → 0,

since vm(sm) → v(s).

In the other case when sm < s for all m ≥ 1, one has:

• for t ∈ [t0, sm), ‖H(vm, sm)(t) −H(v, s)(t)‖ = ‖vm(t) − v(t)‖ ≤ ‖vm −
v‖ → 0;
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• for t ∈ [sm, s),

‖H(vm, sm)(t) −H(v, s)(t)‖ = ‖u(t; sm, vm(sm)) − v(t)‖
≤ sup

t∈[sm,s)
‖u(τ ; sm, vm(sm)) − vm(sm)‖

+ ‖vm − v‖ + sup
τ∈[sm,s)

‖v(sm) − v(τ)‖;

• for t ∈ [s, T ], by Theorem 3.1(P2),

‖H(vm, sm)(t) −H(v, s)(t)‖ ≤ sup
τ∈[s,T ]

‖u(τ ; sm, vm(sm)) − u(τ ; s, v(s))‖ → 0.

Hence H is continuous.
Further observe that

(4.3) if v ∈ L(x0,−A+Fn), then H(v, s) ∈ L(x0,−A+Fn) for each s ∈ [t0, T ].

Indeed, if w( · ) ∈ Fn( · , v( · )) is a measurable selection such that ΣA(x0, w) = v,
then H(s, v) = ΣA(x0, w) with w ∈ L1([t0, T ], E) given by

w(τ) :=
{
w(τ) for τ ∈ [t0, s)

fn(τ, u(τ ; s, v(s))), for τ ∈ [s, T ].

Since w is a selection of Fn( · , H(v, s)( · )), one has H(v, s) ∈ L(x0,−A+ Fn).
It follows, by the continuity of H and (4.3), that if v ∈ L(x0,−A+ Fn), then

H(v, s) ∈ L(x0,−A+ Fn). Hence, the homotopy H shows that L(x0,−A+ Fn)
is contractible to {u( · ; t0, x0)}.

Step 3. We shall prove that, any sequence (un) of integral solutions such
that un ∈ L(x0,−A + Fn), n ≥ 1, contains a subsequence convergent to some
u0 ∈ L(x0,−A+ F ).

First, we show that (un) is relatively compact. Let wn: [t0, T ] → E be a mea-
surable selection wn( · ) ∈ Fn( · , un( · )) such that un = ΣA(x0, wn) for n ≥ 1.
By (4.2) and Remark 3.5, there exists a constant R > 0 such that ‖un(t)‖ ≤ R

for any t ∈ [t0, T ] and n ≥ 1. This and the sublinear growth condition implies
that (wn) is integrally bounded. Hence, in view of Proposition 2.19(b) (un) is
relatively compact and, without loss of generality, we may assume that (un) con-
verges in C([t0, T ], E) to some u0. One needs to show that u0 ∈L(x0,−A+ F ).

In the case (a). It is easy to see that wn := fn( · , un( · )) converges in
C([t0, T ], E) to w0 := F ( · , u0( · )), and, by the growth condition on F , wn → w0

in L1([t0, T ], E). By Proposition 2.13, u0 = ΣA(x0, w0), i.e. u0 ∈ L(x0,−A+F ).
In the case (b), in view of Lemma 3.6, one may assume that (passing to a

subsequence) wn ⇀ w0 (weakly in L1([t0, T ], E)). Hence, by Lemma 3.7, one
has

w0(t) ∈ F (t, u0(t)) for a.e. t ∈ [t0, T ]

and, finally, in view of Proposition 2.14, one obtains ΣA(x0, w0) = u0, i.e. u0 ∈
L(x0,−A+ F ).
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Step 4. For any n ≥ 1, L(x0,−A+ Fn+1) ⊂ L(x0,−A+ Fn) and

L(x0,−A+ F ) =
⋂
n≥1

L(x0,−A + Fn).

Indeed, it follows from the definition of Fn that, for n ≥ 1, F (t, x) ⊂ Fn+1(t, x) ⊂
Fn(t, x) and

L(x0,−A+ F ) ⊂ L(x0,−A+ Fn+1) ⊂ L(x0,−A+ Fn)

and, consequently, L(x0,−A + F ) ⊂ ⋂
n≥1L(x0,−A+ Fn). In order to prove

the converse inclusion, take any u ∈ ⋂
n≥1L(x0,−A+ Fn). Then there exists a

sequence (un) such that un ∈ L(x0,−A+Fn) and ‖u−un‖ ≤ 1/n for n ≥ 1. By
Step 3, we infer that u ∈ L(x0,−A+ F ), which proves the claim of Step 4.

Step 5. Finally, we shall show that

β(L(x0,−A+ Fn)) → 0 as n → ∞,

which, by Example 4.3(c), Steps 2 and 4, will imply that L(x0,−A + F ) is
cell-like.

By Step 3, L(x0,−A+ F ) is a nonempty compact set, therefore

β(L(x0,−A+ Fn)) = β(L(x0,−A+ Fn)) ≤ sup
u∈L(x0,−A+Fn)

d(u, L(x0,−A + F )).

For n ≥ 1, choose un ∈ L(x0,−A+ Fn) such that

sup
u∈L(x0,−A+Fn)

d(u, L(x0,−A+ F )) ≤ d(un, L(x0,−A+ F )) + 1/n.

By Step 3, without loss of generality, one may assume that the sequence (un)
converges to some u0 ∈ L(x0,−A + F ), which gives β(L(x0,−A + Fn)) → 0 as
n → ∞. �

Remark 4.6. (a) Theorem 4.5 is, in particular, an existence theorem for
set-valued F (obtained independently of Theorem 3.4(P1).

(b) Theorem 4.5 is a generalization of results from [7], where some additional
assumption on the convex set M was imposed.

4.2. Structure of solution set — epi-Lipschitz constraints. We shall
consider the case when M is a set given by functional constraints satisfying some
regularity assumption.

Definition 4.7. A closed set M is said to be epi-Lipschitz, if there exist an
open V ⊂ E and a locally Lipschitz function f : V → R such that M = {x ∈ V |
f(x) ≤ 0}, inf∂ V f > 0 and 0 �∈ ∂ f(x) (3) for any x ∈ f−1(0). The function f is
called a representing function for the set M .

(3) ∂ f(x) ⊂ E∗ is a generalized gradient given by ∂ f(x) := {p ∈ E∗ | 〈p, u〉 ≤ f◦(x;u)
for all u ∈ E} where f◦(x;u) := lim supy→x, h→0+ (f(y + hu) − f(y))/h is the directional

derivative of f at x in the direction u ∈ E. For these notions and other basic elements of

nonsmooth analysis the reader is referred to textbooks [11] or [2].
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Remark 4.8. (a) For a closed set M represented by locally Lipschitz con-
straint f : V → R it is natural to consider a tangent cone at x ∈ M being the
polar cone of the generalized gradient ∂ f(x), i.e. the cone given by

∂ f(x)◦ = {u ∈ E | 〈p, u〉 ≤ 0 for all p ∈ ∂ f(x)} = {u ∈ E | f◦(x; u) ≤ 0}.

In particular, if f := dM , then ∂ dM(x)◦ = CM(x) where CM(x) is the Clarke
cone (see [11]).

(b) If x ∈ M , f(x) = 0 and 0 �∈ ∂ f(x), then ∂ f(x)◦ ⊂ CM (x) (see [11]).

A set-valued map F : [t0, T ] × M � E, where M is an epi-Lipschitz set
represented by f , is said to be tangent to M with respect to f if

(4.4) F (t, x) ∩ ∂ f(x)◦ �= ∅ for (t, x) ∈ [t0, T ] × ∂M.

As it was mentioned, to address the solution set structure problem one needs
to approximate F : [t0, T ] × M � E with locally Lipschitz maps satisfying the
tangency condition. For mappings on epi-Lipschitz sets we use the following
approximation method.

Lemma 4.9 (see [3] and [28]). If M ⊂ E is epi-Lipschitz with a representing
function f : V → R and F : [t0, T ]×M � E is an upper semicontinuous map with
compact convex values, satisfying (4.4), then, for any ε > 0, there exists a locally
Lipschitz map fε: [t0, T ] ×M → E such that

fε(t, x) ∈ conv [F (I(t, ε) ×BM (x, ε)) +B(0, ε)] for (t, x) ∈ [t0, T ] ×M,

f◦(x; fε(t, x)) < 0 for (t, x) ∈ [t0, T ] × ∂M

where I(t, ε) := (t− ε, t+ ε) ∩ [t0, T ].

Theorem 4.10. Let A:D(A) � E an m-accretive operator, M ⊂ E be a
resolvent invariant epi-Lipschitz set represented by f. If an upper semicontinuous
map F : [t0, T ] × M � E with compact convex values, has sublinear growth and
is tangent to M in the sense of (4.4), then for any x0 ∈ MA, the solution set
L(x0,−A+ F ) for (PA,F,x0) is a cell-like set provided one of the conditions: (a)
or (b) from Theorem 4.5 holds.

Proof. can be carried out along the lines of the proof of Theorem 4.5, but
instead of Lemma 4.4 one uses Lemma 4.9. Moreover, to show that the inclusion
(Pn) has solutions it is sufficient to observe that fn(t, x) ∈ ∂ f(x)◦ ⊂ CM(x) for
t ∈ [t0, T ], x ∈ ∂M (see Remark 4.8). �

4.3. Structure of solution set — proximate retract constraints. It
was observed in [35] that so-called proximate retracts in R

n are sets, in which
viable solutions of inclusions make a set of proper topological structure. This
observation can be extended to inclusions in Banach spaces.
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Definition 4.11. A closed set M ⊂ E is a proximate retract provided there
exists a continuous function r:B(M, ρ) → M with ρ > 0 such that

‖x− r(x)‖ = dM(x) for any x ∈ B(M, ρ).

Theorem 4.12. Let A:D(A) � E be a m-accretive operator and M ⊂
E be a resolvent invariant proximate retract. If an upper semicontinuous map
F : [t0, T ] ×M � E with compact convex values has sublinear growth and

F (t, x) ∩ CM (x) �= ∅ for (t, x) ∈ [t0, T ] ×M, (4)

then, for any x0 ∈ MA, the solution set L(x0,−A+F ) of (PA,F,x0) is a cell-like
set provided one of the conditions (a) or (b) from Theorem 4.5 holds.

Lemma 4.13. The map F : [t0, T ] × B(M, ρ) � E defined by F (t, x) :=
F (t, r(x)) has the following properties:

(a) F is upper semicontinuous;
(b) if c ∈ L1([t0, T ]) is such that supu∈F(t,x) ‖u‖ ≤ c(t)(1 + ‖x‖), for any

(t, x) ∈ [t0, T ] ×M , then

sup
u∈F (t,x)

‖u‖ ≤ (1 + ρ)c(t)(1 + ‖x‖)

for any t ∈ [t0, T ] × B(M, ρ);
(c) for any x ∈ B(M, ρ) \M , F (t, x) ∩ ∂ dM(x)◦ �= ∅.

Proof. (a) The upper semicontinuity follows immediately from the decompo-
sition F = F ◦ (id[t0,T ] × r): [t0, T ] ×B(M, ρ) � E.

(b) For any (t, x) ∈ [t0, T ] × B(M, ρ),

sup
u∈F(t,x)

‖u‖ ≤ c(t)(1 + ‖r(x)‖) ≤ c(t)(1 + ‖r(x) − x‖ + ‖x‖)

= c(t)(1 + dM(x) + ‖x‖) ≤ (1 + ρ)c(t)(1 + ‖x‖).

(c) By assumption, there is u ∈ F (t, r(x)) ∩CM (r(x)). Observe that, by the
definition of proximate retract and the Lipschitz property of dM ,

d◦
M (x; u) = lim sup

y→x, h→0+

dM (y + hu) − dM(y)
h

= lim sup
y→x, h→0+

dM (y + hu) − ‖r(y) − y‖
h

≤ lim sup
y→x, h→0+

dM (r(y) + hu)
h

≤ lim sup
y→r(x), h→0+

dM(y + hu)
h

= 0,

which implies u ∈ F (t, x) ∩ ∂ dM (x)◦ (see Remark 4.8(a)). �

(4) If M is a proximate retract, then it can be shown that TM(x) = CM (x) for any x ∈ M .
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Lemma 4.14 (see [14]). For any x ∈ B(M, ρ) \M , 0 �∈ ∂ dM(x).

Proof of Theorem 4.12. Let n0 ≥ 1 be such that 1/n0 ≤ ρ. And put Mn :=
B(M, 1/n) for n ≥ n0. The sets Mn are represented by fn := dM − 1/n and,
in view of Lemma 4.14, are epi-Lipschitz with fn as the representing functional.
Moreover, Lemma 4.13 implies that F |[t0,T ]×Mn

are tangent to Mn, i.e.

F (t, x) ∩ ∂ fn(x)◦ �= ∅ for (t, x) ∈ [t0, T ] × ∂Mn = [t0, T ] × f−1
n (0).

By Theorem 4.10, the sets L(x0,−A+F |[t0,T ]×Mn
) are cell-like. Since it is clear

that

L(x0,−A+ F ) =
⋂
n≥n0

L(x0,−A + F |[t0,T ]×Mn
),

it follows, by Example 4.3(d), that L(x0,−A+ F ) is cell-like. �

5. Topological degree for perturbations of m-accretive operators

5.1. Fixed point index for c-admissible set-valued maps. To perform
the construction of degree by use of our approach, one needs an adequate fixed
point index for set-valued maps. Therefore we briefly present such a version of
fixed point index coming from [15], which is an extension of the earlier fixed
point indices (see [21] and [30]).

A map Φ:X � Z, where X and Z are metric spaces, is called c-admissible
if it admits a decomposition

Φ(x) = f(ϕ(x)) for any x ∈ X,

where ϕ:X � Y takes cell-like values in a metric space Y and is upper semi-
continuous, and f : Y → Z is a continuous map. If Φ is c-admissible, then the
corresponding diagram

D:X
ϕ

−� Y
f→ Z

is called a c-decomposition of Φ. Obviously, in general, one map may admit
many decompositions. For that reason a c-admissible map is referred to as a
pair (Φ, D) where D is a given c-decomposition of Φ.

Definition 5.1. Two c-admissible maps (Φk, Dk) with decompositions

Dk:X
ϕk−� Yk

fk−→ Z, k = 0, 1,

are said to be homotopic if there exist a c-admissible map Ψ:X× [0, 1] � Z with
the decomposition

D:X × [0, 1]
ψ

−� Y
g−→ Z
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and continuous maps jk: Yk → Y such that the diagram

X

i0

��

ϕ0 ◦Y0

f0

���
��

��
��

�

j0

��

X × [0, 1]
ψ

◦Y
g

�� Z

X

i1

��

ϕ1
◦Y1

f1

����������
j1

��

where ik:X → X × [0, 1], for k = 0, 1, are given by ik(x) := (x, k), commutes. It
is written as (Φ0, D0) � (Φ1, D1).

In practice, the following method of establishing a homotopy relationship is
useful.

Proposition 5.2. Let Φ:X × [0, 1] � Z be such that

Φ(x, t) = ft(ϕt(x)) for each (x, t) ∈ X × [0, 1],

where ϕ:X × [0, 1] � Y is an upper semicontinuous map with cell-like values
and f : Y × [0, 1] → Z is continuous (and ϕt := ϕ( · , t), ft := f( · , t)). Then the

pairs (Φk, Dk) with Dk:X
ϕk−� Y

fk−→ Z, for k = 0, 1, are homotopic.

Proof. Define Ỹ := {(t, y) ∈ [0, 1] × Y | y ∈ ϕ(x, t), x ∈ X}, ψ(x, t):X ×
[0, 1] � Ỹ by ψ(x, t) := {t} × ϕ(x, t), g: Ỹ → Z by g(t, y) := f(y, t) and
jk: Y → Ỹ by jk(y) := (k, y), k = 0, 1. It is easy to verify that ψik = jkϕk and
gjk = fk, k = 0, 1. �

Denote by C the class of pairs (Φ, D), where Φ:U � X, with an ANR X

and an open subset U ⊂ X, is a locally compact c-admissible map with a c-
decomposition

D:U
ϕ

−� Y
f−→ X

and such that Fix(Φ, U) := {x ∈ U | x ∈ Φ(x)} is compact.

Theorem 5.3. There is a correspondence assigning to any (Φ, D) ∈ C an
integer IndX((Φ, D), U) — the fixed point index of (Φ, D) with respect to U —
having the following properties:

(IND1) (Existence) If Ind((Φ, D), U) �= 0, then there exists x ∈ U such that
x ∈ Φ(x).

(IND2) (Additivity) If Fix(Φ, U) ⊂ U1 ∪ U2 \ (U1 ∩ U2), where U1, U2 ⊂ U are
open, then

IndX((Φ, D), U) = IndX((Φ|U1, DU1), U1) + IndX((Φ|U2, DU2), U2)

where DU1 and DU2 have obvious meaning.



Nonlinear Evolution Inclusions with Constraints 223

(IND3) (Homotopy invariance) If (Φ0, D0) and (Φ1, D1) are homotopic via a

compact homotopy (Ψ, D), with the decomposition D:U × [0, 1]
ψ

−�
Y

g−→ X, such that the set
⋃
t∈[0,1] Fix(Ψ( · , t), U) is compact, then

IndX((Φ0, D0), U) = IndX((Φ1, D1), U).

(IND4) (Normalization) If U = X and Φ is compact, then

IndX((Φ, D), X) = Λ((Φ, D))

where Λ((Φ, D)) is the Lefschetz number of the pair (Φ, D).

Remark 5.4. (a) For more information on the Lefschetz number we refer
to [21] and in this particular case to [15].

(b) At this point it should mentioned that if a compact c-admissible map
(Φ, D) is homotopic to the identity map idX (with the trivial decomposition),
then Λ((Φ, D)) = χ(X).

5.2. Construction of topological degree. By A(M,E) denote the class
of maps −A+F :M ∩D(A) � E where A:D(A) � E is a m-accretive operator
and F :M � E is such that:

(A1) a closed set M ⊂ E is either convex, epi-Lipschitz or a proximate retract;
(A2) JAλ (M) ⊂ M for any λ > 0;
(A3) the semigroup {SA(t):D(A) → D(A)}t≥0 is compact;
(A4) F :M � E is an upper semicontinuous with compact convex values and

sublinear growth, i.e. such that there exists c > 0 such that

sup
u∈F(x)

‖u‖ ≤ c(1 + ‖x‖) for x ∈ M ;

(A5) for any x ∈ M

F (x) ∩ CM (x) �= ∅ if M is a convex set or a proximate retract;

F (x) ∩ ∂ f(x)◦ �= ∅ if M is an epi-Lipshitz set represented by f ;

(A6) if F is not single-valued, then the dual E∗ is assumed to be uniformly
convex.

Remark 5.5. If M is either closed convex, epi-Lipschitz or a proximate
retract, then M is strictly regular in the sense of [14] and, therefore, it is a
neighbourhood retract. Furthermore, if additionally, M is a resolvent invariant
with respect to some m-accretive A, then, in view of Proposition 2.21, MA :=
M ∩D(A) is a neighbourhood retract, too.

If U ⊂ M is an open (in M) and bounded set, then one defines the class

AU (M,E) := {−A+ F ∈ A(M,E) | 0 �∈ (−A + F )(∂MU ∩D(A))}.
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A homotopy in the class AU (M,E) (or in A(M,E)) is a mapping (x, λ) �→
−A(λ)x + F (x, λ) where F :M × [0, 1] � E is upper semicontinuous, with sub-
linear growth uniform with respect to λ and {A(λ)}λ∈[0,1] is a family of operators
such that

• −A(λ) + F ( · , λ) ∈ AU (M,E) (resp. A(M,E)) for each λ ∈ Λ;
• D(A(λ1)) = D(A(λ2)) for any λ1, λ2 ∈ [0, 1];

• A(λn) G→ A(λ0) as λn → λ0;
• the family of semigroups {SA(λ)}λ∈[0,1] is compact.

The following lemmata are the main steps in the construction of the degree.

Lemma 5.6. Suppose (x, λ) �→ −A(λ)x+F (x, λ) is a homotopy in A(M,E).
Then:

(a) the set {(x, λ) ∈ M × [0, 1] | x ∈ D(A(λ)), 0 ∈ −A(λ)x + F (x, λ)} is
closed in M × [0, 1];

(b) if U ⊂ M is a bounded open subset of M , then the set

Z :=
⋃

λ∈[0,1]

{x ∈ U ∩D(A(λ)) | 0 ∈ −A(λ)x + F (x, λ)}

is compact.

Proof. (a) Suppose (xn, λn) → (x0, λ0) and 0 ∈ −A(λn)xn + F (xn, λn) for
n ≥ 1. The constant functions un ≡ xn on [0, 1], for n ≥ 1, are integral solutions
of the problem u̇ ∈ −A(λn)u + F (u, λn). Therefore, by Theorems 3.1(P2) and
3.4(P2), (un) converges to a solution of u̇ ∈ −A(λ0)u+ F (u, λ0), i.e. u0 ≡ x0 is
an integral solution, which, in view of Remark 2.9, means that 0 ∈ −A(λ0)x0 +
F (x0, λ0).

(b) Let (xn) ⊂ U and (λn) ⊂ [0, 1] be sequences such that 0 ∈ A(λn)xn +
F (xn, λn), for n ≥ 1. One may assume that λn → λ0 ∈ [0, 1]. The constant
functions vn ≡ xn, n ≥ 1, are integral solutions of the inclusions u̇ ∈ −A(λn)u+
F (u, λn). This, in particular, means that {xn}n≥1 ⊂ Φ1([MD ∩ U ] × [0, 1])
where MD := M ∩A(λ) (independently of λ ∈ [0, 1]). By Theorems 3.1(P3) and
3.4(P3), the sequence (xn) is relatively compact. Hence, by (a), we gather that
Z is compact. �

Remark 5.7. In view of Lemma 5.6, it is clear that the set-valued mapping
λ �→ {x ∈ U ∩D(A(λ)) | 0 ∈ −A(λ)x + F (x, λ)} is upper semicontinuous (as it
has closed graph and all values are contained in the compact set Z).

Lemma 5.8. Under the assumptions of Lemma 5.6(b), for any ε > 0 there
exists t > 0 such that for t ∈ (0, t]⋃

λ∈[0,1]

{x ∈ U ∩D(A) | x ∈ Φt(x, λ)} ⊂ Z +B(0, ε).
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Proof. We proceed by contradiction. Suppose that there exist ε > 0 and
sequences (λn) ⊂ [0, 1], tn → 0+ and (xn) ⊂ U ∩MD such that, for any n ≥ 1,
xn ∈ Φtn(xn, λn) and

(5.1) d(xn,Z) ≥ ε.

Observe that xn ∈ Φktn(xn, λn) for any integers k ≥ 1 and n ≥ 1, which implies
that

{xn}n≥1 ⊂ Φ1/2(Ω0 × [0, 1]),

with Ω0 := {Φt(x, λ) | x ∈ U ∩ MD , t ∈ [0, 1/2], λ ∈ [0, 1]}. Since, in view
of Remarks 3.2 and 3.5(b), the set Ω0 is bounded, by Theorems 3.1(P3) and
3.4(P3), the set {xn}n≥1 is relatively compact. Without loss of generality, one
may assume that xn → x0 ∈ U and λn → λ0.

Clearly, for any n ≥ 1, there exists a tn-periodic solution un: [0, 1] → E of
u̇ ∈ −A(λn)u + F (u, λn) with un(0) = xn and un(t) ∈ M for t ∈ [0, 1]. By
Theorem 3.4(P2), (un) is convergent in C([0, 1], E) to some solution u0 with
u0(0) = x0. Therefore, for any t ∈ (0, 1] and n ≥ 1, one has

‖u0(0) − u0(t)‖ ≤ ‖u0(0) − un([t/tn]tn)‖
+ ‖un([t/tn]tn) − un(t)‖ + ‖un(t) − u0(t)‖.

Since un([t/tn]tn) = xn = un(0), un → u0 in C([0, 1], E) and {un} is equicontin-
uous, we infer that u0 ≡ x0. Finally, in view of Remark 2.9, x0 ∈ U ∩D(A(λ0))
and 0 ∈ −A(λ0)x0 + F (x0, λ0), i.e. x0 ∈ Z. This is a contradiction to (5.1). �

In order to define the degree take any −A+F ∈ AU (M,E). In view of The-
orems 3.1(P3) and 3.4(P3), Φt is compact for t > 0 and admits a decomposition

Dt:U ∩D(A)
L( · ,−A+F)

◦C([t0, T ],MA)
et �� MA.

L( · ,−A + F ) has cell-like values, in view of Theorem either 4.5, 4.10 or 4.12
and, by Remark 5.5, MA is ANR. By the compactness of Z (see Lemma 5.6(b))
there exists ε > 0 such that [Z +B(0, ε)]∩M ⊂ U . By Lemma 5.8, there is t > 0
such that {x ∈ U | x ∈ Φt(x)} ⊂ U for t ∈ (0, t], which means that (Φt, Dt)
is admissible in the fixed point index theory for c-admissible maps. Moreover,
observe that, in virtue of Proposition 5.2 and Theorem 5.3, for each t1, t2 ∈ [0, t],
the pairs (Φt1 , Dt1) and (Φt2 , Dt2) are homotopic and IndMA((Φt1 , Dt1), U ∩
D(A)) = IndMA((Φt2 , Dt2), U ∩D(A)).

Thus, the following definition is correct

(5.2) degM (−A + F, U) := lim
t→0+

IndMA((Φt, Dt), U ∩D(A)).
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Theorem 5.9. The correspondence defined by (5.2) has all the properties of
the topological degree, i.e.

(DEG1) (Existence) If degM (−A + F, U) �= 0, then there exists x ∈ U ∩ D(A)
such that 0 ∈ −Ax+ F (x).

(DEG2) (Additivity) If U1, U2 are open disjoint subsets of U and 0 �∈ (−A +
F )([U \ (U1 ∪ U2)] ∩D(A)), then

degM (−A+ F, U) = degM (−A+ F, U1) + degM (−A + F, U2).

(DEG3) (Homotopy invariance) If (x, λ) �→ A(λ)x+F (x, λ) is an admissible ho-
motopy in AU (M,E), then degM(−A(λ)+F ( · , λ), U) does not depend
on λ ∈ [0, 1].

(DEG4) (Normalization) If MA is bounded, then degM (−A + F,M) = χ(MA).

Proof. (DEG1) If degM (−A + F, U) �= 0, then, by definition, there is an
integer n0 ≥ 1 such that, for tn := 2−n with n ≥ n0, IndMA ((Φtn , Dtn), U ∩
D(A)) �= 0, which, by Theorem 5.3(IND1), gives the existence of xn ∈ U such
that xn ∈ Φtn(xn), for each n ≥ n0. Hence, by use of Lemmas 5.6 and 5.8, the
sequence (xn) contains a subsequence convergent to some x0 ∈ Z, i.e. satisfying
0 ∈ −Ax0 + F (x0).

(DEG2) Since {x ∈ U ∩ D(A) | 0 ∈ −Ax + F (x)} = Z ⊂ U1 ∪ U2, using
Lemmata 5.6 and 5.8, one gets t > 0 such that, for t ∈ (0, t],

{x ∈ U ∩D(A) | x ∈ Φt(x)} ⊂ U1 ∪ U2.

Hence, by the additivity property of the fixed point index (Theorem 5.3(IND2)),
one obtains, for t ∈ (0, t],

IndMA((Φt, Dt), U ∩D(A))

= IndMA((Φt, Dt), U1 ∩D(A)) + IndMA((Φt, Dt), U2 ∩D(A)),

which, by the definition of the degree, implies (DEG2).
(DEG3) By Theorems 3.1(P2), (P3) and 3.4(P2), (P3), the maps Φt: [U ∩

MD] × [0, 1] � MD with MD := M ∩D(A(λ)), where λ ∈ [0, 1], are c-admissible
and compact for t > 0. By Lemmas 5.6 and 5.8, there is t > 0 such that, for
t ∈ (0, t],

⋃
λ∈[0,1]{x ∈ U | x ∈ Φt(x, λ)} ⊂ U . Hence, by use of the homotopy

invariance of the fixed point index (Theorem 5.3(IND3)) and the definition of
the degree, one obtains (DEG3).

(DEG4) Note that degM (−A + F,M) = IndMA((Φt, Dt),MA) for t > 0.
Since MA is bounded Φt are compact and homotopic to the identity idMA (via
the homotopy (x, λ) �→ Φλt(x)). Hence, by the normalization property of the
fixed point index and Remark 5.4, degM (−A + F,M) = χ(MA). �
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An immediate implication of the existence and normalization property of
the degree is the following existence criterion being an extension of the result
obtained in [5] where A := 0 and M is a compact L -retract.

Corollary 5.10. If −A + F ∈ A(M,E), MA is bounded and χ(MA) �= 0,
then there exists x0 ∈ MA such that 0 ∈ −Ax0 + F (x0).

6. Applications of topological degree

6.1. Continuation and bifurcation of equilibria. Let the family of m-
accretive operators {A(λ)}λ∈[a,b], a neighbourhood retract M ⊂ E and F :M ×
[a, b] � E be such that the map (x, λ) �→ −A(λ)x + F (x, λ) is a homotopy in
the class A(M,E). We are concerned with the following continuation problem

(CM,λ)




0 ∈ −A(λ)x + F (x, λ),

x ∈ M ∩D(A(λ)),

λ ∈ [a, b].

Let W be an open and bounded subset of M × [a, b] and let, as before,

Z := {(x, λ) ∈ W | 0 ∈ −A(λ)x + F (x, λ)}.

Observe that, in view of Lemma 5.6, the set Z is compact. By use of the
topological degree and the proper topological lemma (the so-called separation
lemma), one derives the following criterion for continuation.

Theorem 6.1 (Continuation of equilibria). If Za ∩ [∂M×[a,b]W ]a = ∅ (5)
and degM (−A(a) + Fa,Wa) �= 0, then there exists a connected component Σ of
Z such that

Σ ∩ [Wa × {a}] �= ∅
and either Σ ∩ ∂M×[a,b]W �= ∅ or Σ ∩ [Wb × {b}] �= ∅.

For the proof see [13]. It is an adaptation of the classical arguments (e.g.
[33]).

To pass to bifurcation, suppose, additionally, that a branch Σ0 of (“trivial”)
solutions of (CM,λ) is given, and Σ0 is a closed connected subset of Z such that
Σ0
a �= ∅ and Σ0

b �= ∅. One says that a point λ0 ∈ [a, b] is a bifurcation value, if

[Σ0
λ0

× {λ0}] ∩ Z \ Σ0 �= ∅,

i.e. there is (x0, λ0) ∈ Σ0 being a cluster point of a sequence of (”nontrivial”)
solutions ((xn, λn)) ⊂ Z \ Σ0. The set of all bifurcation values of (CM,λ) is
denoted by B.

Suppose that a, b �∈ B. Then Σa × {a} and Σb × {b} are isolated in Z.
Hence, there are open V (a) ⊂ Wa and V (b) ⊂ Wb such that V (a) ∩ Za = Σ0

a,

(5) If A ⊂ X × Y , y ∈ X, then Ay := {x ∈ X | (x, y) ∈ A}.
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V (b) ∩Zb = Σ0
b and the degrees degM (−A(a)+Fa, V (a)), degM(−A(b)+Fb, V (b))

are well-defined.

Theorem 6.2 (Bifurcation of equilibria). Under the above assumptions, if

degM (−A(a) + Fa, Va) �= degM (−A(b) + Fb, Vb),

then B �= ∅ and there exists a connected set Σ ⊂ Z \ Σ0 such that Σ ∩ Σ0 �= ∅
and

(a) either Σ ∩ ∂M×[a,b]W �= ∅, if ∂M×[a,b]W �= ∅,
(b) or Σ ∩ [(Wa \ Σ0

a) ∪ (Wb \ Σ0
b)] �= ∅.

6.2. Periodic solutions — existence and branching. Start with the
global criterion for the existence of periodic solutions for problems

(6.1)



u̇ ∈ −Au + F (t, u),

u(t) ∈ M,

u(0) = u(T ),

where A:D(A) � E and F : [0, T ] × M � E satisfy (A1), (A2), (A3) and the
following conditions hold:

(A′
4) F is upper semicontinuous with compact convex values and of sublinear

growth, i.e. there exists c ∈ L1([0, T ]) such that

sup
u∈F(t,x)

‖u‖ ≤ c(t)(1 + ‖x‖)

for any x ∈ M and almost all t ∈ [0, T ];
(A′

5) F is T -periodic in t, i.e. F (0, x) = F (T, x) for x ∈ M , and tangent to
M , i.e. for any (t, x) ∈ [0, T ] ×M ,

F (t, x) ∩ CM (x) �= ∅ if M is a convex set or a proximate retract;

F (t, x) ∩ ∂ f(x)◦ �= ∅ if M is an epi-Lipschitz set represented by f .

(A′
6) One the following conditions is satisfied:

(a) E∗ is uniformly convex;
(b) F is single-valued and does not depend on t.

Theorem 6.3. If A, F and M are as above and MA is bounded with χ(MA)
�= 0, then the periodic problem (6.1) admits at least one solution.

Proof. Since ΦT :MA � MA is homotopic to the identity map idMA via a
homotopy MA × [0, 1] � (x, s) �→ ΦsT (x), by Theorem 5.3, IndMA(ΦT ,MA) =
χ(MA) �= 0. This, by the existence property of the fixed point index, implies
the existence of x ∈ MA such that x ∈ ΦT (x), which means that there exists a
corresponding solution u: [0, T ] → E of (6.1) with u(T ) = x = u(0). �
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Remark 6.4. A version of the existence criterion for convex M with some
additional property was obtained in [7]. For the case when A is a generator of a
C0 semigroup and F is an upper Carathéodory map see [3].

Before passing to branching of periodic points, we state a branching result
for fixed points, which makes an abstract setting for studying periodic points
of differential inclusions. Suppose that Φ:U × [0,∞) � M is a set-valued map
where is U is a bounded open subset of the metric ANR M (see Remark 5,5).
A point (x, λ) ∈ U × [0,∞) is said to be a resting point, if x ∈ Φ(x, λ). The
set of all resting points for Φ is denoted by R(Φ). A point x ∈ U is called a
branching point, if (x, 0) ∈ R(Φ) \ [M × {0}]; the set of all branching points of
Φ is denoted by B(Φ).

Proposition 6.5 (see [12]). Let an upper semicontinuous map Φ:U ×
[0,∞) � M be such that

(H1) there are an upper semicontinuous cell-like valued ϕ:U × [0,∞) � Y ,
where Y is a metric space, and a continuous g: Y → M such that Φ =
g ◦ ϕ;

(H2) for any λ1, λ2 ∈ (0,∞), the set Φ(U × [λ1, λ2]) is relatively compact;
(H3) Φ has the property: if λn → 0+ and xn ∈ Φ(xn, λn), for n ≥ 1, then

(xn) is relatively compact;
(H4) B(Φ) ∩ bdMU = ∅ and

IndM (Φ( · , λ), U) �= 0, (6)

for sufficiently small λ > 0.

Then there exists a connected set Σ ⊂ R(Φ)∩ [U × (0,∞)] such that Σ ∩ [B(Φ)×
{0}] �= ∅ (in particular B(Φ) �= ∅) and Σ is not contained in any compact subset
of [U × (0,∞)] ∪ [B(Φ) × {0}].

The proof uses the basic properties of the fixed point index and a proper
topological lemma allowing to obtain the existence of a branch of resting points
(see [12] for the single-valued version).

Now we are be concerned with periodic points of the parameterized problems
of the form

(Bλ)
{
u̇ ∈ −λAu + λF (t, u) for λ ≥ 0,

u(t) ∈ MA,

where a m-accretive operator A:D(A) � E, a closed set M ⊂ E and an upper
semicontinuous compact convex valued map F : [0, T ] ×M � E (T > 0) satisfy
(A1)–(A3) and (A′

4)–(A′
6).

(6) The condition B(Φ)∩ bd M U = ∅ together with (H3) implies that there is λ0 > 0 such

that x 	∈ Φ(x, λ) for any x ∈ bd M U and λ ∈ (0, λ0].
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A point (x, λ) ∈ MA × [0,∞) is called a T -periodic point if there exists an
integral solution u: [0, T ] → E of (Bλ) such that u(0) = u(T ) = x. Note that any
(x, 0) with x ∈ MA is a T -periodic point. For a given K ⊂ M , by PT (K) denote
the set of all T -periodic points in K × [0,∞). A point x0 ∈ K is a branching
point if (x0, 0) ∈ PT (K) \MA × {0}. The set of all branching points in K is
denoted by BT (K).

The necessary condition for branching is provided below.

Theorem 6.6. Under the above assumptions, if x0 ∈ BT (M), then 0 ∈
−Ax0 + F̂ (x0) where F̂ :M � E is defined by

F̂ (x) :=
1
T

∫ T

0
F (t, x) dt. (7)

Lemma 6.7. Let A:D(A) � E be a m-accretive operator. If xn → x0 in
D(A), (wn) ⊂ L1([0, T ], E) is bounded and λn → 0+, then ΣλnA(xn, λnwn) → x0

(in C([0, T ], E)).

Proof. By Remark 2.7, for any (y, v) ∈ Gr(A),

max
t∈[0,T ]

‖ΣλnA(xn, λnwn)(t) − y‖ ≤ ‖xn − y‖ + λn

∫ T

0
‖wn(τ) − v‖ dτ.

Further, let ε > 0 and xε ∈ D(A) be such that ‖x0 − xε‖ < ε and take vε ∈ E

with (xε, vε) ∈ Gr (A). Then, passing to the limit,

lim sup
n→∞

(
max
t∈[0,T ]

‖ΣλnA(xn, λnwn)(t) − xε‖
)

≤ ‖x0 − xε‖ + lim
n→∞

(λn‖wn − vε‖L1) = ‖x0 − xε‖ < ε.

Since ε > 0 is arbitrary, we gather that ΣλnA(xn, λnwn) → x0 in C([a, b], E). �
Proof of Theorem 6.6. Since x0 ∈ BT (M), there exist a sequence of T -

periodic points (xn, λn) → (x0, 0). Then there are a sequence (un) ⊂ C([0, T ], E)
and (wn) ⊂ L1([0, T ], E) such that un = ΣλnA(xn, λnwn) and wn is an a.e. se-
lection of F ( · , un( · )). By Example 2.12 and Remark 3.5, the sequence (un) is
bounded and, by the (A′

4), the sequence (wn) is bounded in L1([0, T ], E). Hence,
in view of Lemma 6.7, un → x0. Further, by the T -periodicity of un and the
definition of integral solution, one has, for any (y, v) ∈ Gr (A),

(6.2)
∫ T

0
〈un(t) − y, wn(t) − v〉+ dt ≥ 0 for n ≥ 1.

(7) The integral is defined as
∫ T
0 F (t, x)dt :=

{ ∫ T
0 w(t) dt | w is a Bochner integrable

selection of F ( · , x)
}
.



Nonlinear Evolution Inclusions with Constraints 231

If F is single-valued and does not depend on t, then wn = F (un( · )) → F (x0)
and, in view of (6.2) and Lemma 2.4, one has

∫ T
0 〈x0 − y, F (x0) − v〉+ dt ≥ 0 for

any (y, v) ∈ Gr (A), i.e. by Proposition 2.5, 0 ∈ Ax0 + F (x0).
In the case when E∗ is uniformly convex, then putting C(t) := convF ({t} ×

{un(t)}n≥1) and using Lemma 3.6, we may assume that wn ⇀ w0 weakly in
L1([0, T ], E). By Lemma 2.16, and Remark 2.15, for any (y, v) ∈ Gr(A),

0 ≤
∫ T

0
〈x0 − y, w0(t) − v〉+ dt =

∫ T

0
J(x0 − y)(w0(t) − v) dt.

By the continuity and linearity of J(x0 − y) one has〈
x0 − y,

1
T

∫ T

0
w0(t) dt− v

〉
+

≥ 0,

and, in view of Proposition 2.5, 0 ∈ −Ax0 +
∫ T

0 w0(t) dt. Finally, by Lemma 3.7,
w0 is a selection of F ( · , x0) and, in consequence, one gets 0 ∈ −Ax0 + F̂ (x0).�

To prove a sufficient criterion for branching of periodic points, we need the
following formula.

Proposition 6.8. Suppose A, M and F satisfy conditions (A1)–(A3), (A′
4)–

(A′
6). And let, for λ ≥ 0, ΦλT :MA × [0,∞) � MA be given by

ΦλT (x) := eT (L(x,−λA+ λF )).

If U is a bounded open subset of M such that 0 �∈ (−A+ F̂ )(∂ MU ∩D(A)), then
there exists λ0 > 0 such that, for any λ ∈ (0, λ0],

(6.3) IndMA((ΦλT , D
λ
T ), U ∩D(A)) = degM (−A + F̂ , U),

where Dλ
T has the obvious meaning.

Proof. Step 1. For λ > 0, define the map Ψλ:MA × [0, 1] � MA by

Ψλ(x, s) := eT (L(x,−λA + λFs))

where Fs(t, x) := (1 − s)F̂ (x) + sF (t, x). Since t �→ F (t, x) ∩ CM(x) is upper
semicontinuous with compact values, it is also measurable with the image in
a compact set, therefore it admits a measurable a.e. selection wx: [0, T ] → E

due to the Kuratowski-Ryll-Nardzewski Selection Theorem. This implies that
wx,s(t) := (1 − s) 1

T

∫ T
0 wx(τ) dτ + swx(t) ∈ Fs(t, x) ∩ CM (x) for any s ∈ [0, 1],

t ∈ [0, T ] and x ∈ M . Note also that Fs are T -periodic and, by (A′
4),

(6.4) sup
u∈Fs(t,x)

‖u‖ ≤ ((1 − s)‖c‖L1/T + sc(t))(1 + ‖x‖) = ĉ(t)(1 + ‖x‖)

where ĉ(t) := max{‖c‖L1/T, c(t)}. Therefore, by Theorem 3.1(P1), the map
Ψλ, for λ ≥ 0 is well-defined and, by Theorem 3.1(P2) and (P3), it is upper
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semicontinuous and compact. And, finally, due to Theorems 4.5, 4.10 and 4.12,
Φλ is c-admissible.

Step 2. We shall prove that there exists λ1 > 0 such that, for λ ∈ (0, λ1], the
homotopy Ψλ is admissible on U ∩D(A) in the fixed point index theory sense,
i.e.

(6.5) x �∈ Ψλ(x, s), for (x, s) ∈ (∂ MU ×D(A)) × [0, 1].

Suppose, to the contrary, that there are λn → 0+, sn → s0 ∈ [0, 1] and
(xn) ⊂ ∂ MU such that xn ∈ Ψλn(xn, sn) for n ≥ 1. Then it is clear that, for
any integer k ≥ 1, xn ∈ ekT (L(xn,−λnA+λnF sn)) where F sn : [0,∞)×M � E

is given by F sn(t, x) := Fsn(t − [t/T ]T, x). Let un: [0,∞) → E, n ≥ 1, be
T -periodic functions such that un = ΣλnA(xn, λnwn)(T ) with wn being a.e.
selection of F sn( · , un( · )), and un(0) = xn.

First, we prove that the sequence (un) contains a subsequence convergent in
C([0, T ], E) to some point from ∂MU . Note that, by the growth condition (6.4)
and Remark 3.5, there exists a constant R > 0 such that ‖un‖C([0,T ],E) ≤ R,
which, in particular, means that (wn) is integrally bounded by ĉ( · )(1 +R). And
since wn are T -periodic, for any integer k ≥ 1, ΣλnA(xn, λnwn)(kT ) = xn. In
particular, putting Tn := λn(1 + [1/λn])T and ŵn(τ) := wn(τ/λn) and changing
the variables, one obtains

(6.6) ΣA(xn, ŵn)(Tn) = ΣλnA(xn, λnwn)((1 + [1/λn])T ) = xn.

By Proposition 2.8 and the periodicity of wn, one has the estimate

‖ΣA(xn, ŵn)(Tn) − SA(Tn − T )ΣA(xn, ŵn)(T )‖

≤
∫ Tn

T

‖ŵn(τ)‖ dτ = λn

∫ (1+[1/λn])T

T/λn

‖wn(ξ)‖ dξ

≤ λn

∫ T

0
‖wn(ξ)‖ dξ ≤ λn‖ĉ‖L1([0,T ])(1 +R).

Therefore, keeping in mind (6.6), for any N ≥ 1,

{xn}n≥N ⊂ {SA(Tn − T )(ΣA(xn, ŵn)(T ))} + B(0, εN)

where εN := maxn≥N λn‖ĉ‖L1([0,T ])(1 +R).
Further, since, by Proposition 2.19(a), the set {ΣA(xn, ŵn)(T )}n≥1 is rel-

atively compact, (t, x) �→ SA(t)x is continuous and εN → 0 as N → ∞,
we conclude that {xn}n≥1 contains a subsequence convergent to some x0 ∈
∂MU ∩ D(A). Without loss of generality one may assume that xn → x0. By
Lemma 6.7, we see that un|[0, T ] = ΣλnA(xn, λnwn) converges to x0.
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By the periodicity of un and the definition of integral solution, for any (y, v) ∈
Gr (A) and n ≥ 1, one has

(6.7)
∫ T

0
〈un(τ) − y, wn(τ) − v〉+ ≥ 0.

If (a) holds, i.e. when E∗ is uniformly convex, then by use of Lemma 3.6, we
may assume that wn ⇀ w0 weakly in L1([0, T ], E). Then, by (6.7), Lemma 2.16
and Remark 2.15, for any (y, v) ∈ Gr (A),

0 ≤
∫ T

0
〈x0 − y, w0(t) − v〉+ dt =

∫ T

0
J(x0 − y)(w0(t) − v) dt,

which, by the continuity and linearity of J(x0 − y), gives〈
x0 − y,

1
T

∫ T

0
w0(t) dt− v

〉
+

≥ 0,

and, in view of Proposition 2.5, 0 ∈ −Ax0 +
∫ T

0 w0(t) dt. Since, in view of
Lemma 3.7, w0 is a selection of Fs0( · , x0), one has 0 ∈ −Ax0 + F̂ (x0), a contra-
diction.

If (b) holds, i.e. if F is single-valued and does not depend on t, then wn =
Fsn(un( · )) → F (x0) and, in view of (6.7) and Lemma 2.4, one has

∫ T
0 〈x0 −

y, F (x0) − v〉+ dt ≥ 0 for any (y, v) ∈ Gr(A), i.e. by Proposition 2.5, 0 ∈ Ax0 +
F (x0), a contradiction.

Thus, we have proved the existence of λ1 > 0 such that (6.5) holds for
λ ∈ (0, λ1].

Step 3. Finally, due to the admissibility of Ψλ on U ∩D(A), for λ ∈ (0, λ1],
one has

IndMA((ΦλT , D
λ
T ), U ∩D(A)) = IndMA ((Ψλ( · , 1), Dλ,1), U ∩D(A))

= IndMA(Ψλ( · , 0), Dλ,0), U ∩D(A)) = IndMA((Φ̂λT , D̂
λ
T ), U ∩D(A))

where Φ̂λT (x) := eT (L(x,−λA + λF̂ )) and Dλ,1, Dλ,0 and D̂λ
T are natural de-

compositions. On the other hand, by the definition of the topological degree for
−A + F̂ , there is λ0 ∈ (0, λ1] such that, for λ ∈ (0, λ0], one has

degM(−A + F̂ , U) = IndMA((Φ̂1
λT , D̂

1
λT ), U ∩D(A)).

Since, Φ̂λT is the operator of translation along trajectories for an autonomous
inclusion, one has Φ̂1

λT = Φ̂λT , which finally implies (6.3). �

Proposition 6.9. Under the assumptions of Proposition 6.8, if λn → 0+

and (xn) is a bounded sequence such that xn ∈ Φλn
T (xn), then (xn) is relatively

compact.

To prove it one needs proceed like in the proof of Proposition 6.8.
Now we state the sufficient condition for branching of periodic points.
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Theorem 6.10. Suppose that A, M and F satisfy conditions (A1)–(A3),
(A′

4)–(A′
6). If degM (−A+F̂ , U) �= 0, then there exists a connected set Σ ⊂ PT (U)

such that
Σ ∩ PT (U) �= ∅

and either Σ ⊂ U × (0,∞) is unbounded or Σ ∩ [∂MU × (0,∞)] �= ∅.

Proof. We shall apply Proposition 6.5. Define Φ:UA × [0,∞) � MA, where
UA := U ∩D(A), by the formula

Φ(x, λ) := ΦλT (x) = eT (L(x,−λA+ λF )).

Clearly, by Example 2.12(a) and Theorems 3.1(P2) and 3.4(P2), Φ is upper
continuous on UA × (0,∞). The continuity on UA × {0} follows directly from
Lemma 6.7. In view of Theorems 3.1(P3) and 3.4(P3), the map Φ satisfies
the assumption (H2) of Proposition 6.5. By Proposition 6.9, Φ satisfies also
(H3). Observe also that, in view of Theorem 6.6 and the assumption 0 �∈ (−A+
F̂ )(∂ MU∩D(A)), one obtains BT (U)∩bdMAUA ⊂ BT (U)∩[bdMU∩D(A)] = ∅.
Observe that R(Φ) = PT (U) and B(Φ) = BT (U ).

By Proposition 6.8 we get for sufficiently small λ > 0

x �∈ Φ(x, λ) for any x ∈ bdMAUA ⊂ bdMU ∩D(A)

and
IndMA ((Φ( · , λ), Dλ

T ), UA) = degM (−A+ F̂ , U) �= 0.

Hence, in view of Proposition 6.5, there exists a connected set Σ ⊂ PT (U) ∩
[U × (0,∞)] such that Σ ∩ [BT (U) × {0}] �= ∅ and Σ is not contained in any
compact subset of PT (U)∩ [U×(0,∞)]. This implies that either Σ ⊂ U×(0,∞)
is unbounded or Σ ∩ [∂MU × (0,∞)] �= ∅. �

Corollary 6.11. Let A, M and F satisfy conditions (A1)–(A3), (A′
4)–(A′

6).
If MA is bounded and χ(MA) �= 0, then there exists a connected and unbounded
set of T -periodic points Σ such that Σ ∩ BT (M) �= ∅.

Proof. By the definition of the topological degree and Proposition 2.21, for
t > 0,

degM (−A + F̂ ,M) = IndMA((et(L( · ,−A+ F̂ ), D̂t),MA)

= IndMA(idMA,MA) = χ(MA) �= 0.

Hence, it suffices to apply Theorem 6.10. �

Corollary 6.12 (Continuation principle). Suppose that A, M and F sat-
isfy conditions (A1)–(A3), (A′

4)–(A′
6). If degM (−A + F̂ , U) �= 0 and (Bλ) has

no periodic points in ∂MU × (0, 1), then there exists a solution to the periodic
problem (6.1) Moreover, the corresponding periodic point (x, 1) is connected with
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the set {(x, 0) | x ∈ U ∩ D(A), 0 ∈ −Ax0 + F̂ (x0)} by a closed connected set
Σ ⊂ U × [0, 1] of T -periodic points.

Proof. By Theorem 6.10, one obtains a connected set Σ ⊂ PT (U) such that
Σ ∩ BT (U) �= ∅ and, since Σ ∩ [∂MU × (0, 1)] = ∅, then either Σ ⊂ U × (0,∞) is
unbounded or Σ∩ [∂MU × [1,+∞)] �= ∅. Since Σ is connected, in both cases one
has the existence of a periodic point in U × {1}. The other part of the assertion
is clear. �

7. Example of application to PDEs

In this section, we discuss just one relatively simple example, in order to
indicate the area of possible applications of the abstract setting. But it is clear
that results can be applied to a broad class of partial differential equations and
systems. Other problems, to which our setting is applicable, the reader can find
e.g. in [6], [16], [37] and [17].

Consider the following constrained nonlinear problem

(R)



ut = ∆ρ(u) + f(t, x, u) on (0, T ) × Ω,

u|[0,T ]×∂ Ω = 0,

0 ≤ u(t, x) ≤ m on [0, T ] × Ω,

where Ω ⊂ R
N (N ≥ 1) is a bounded domain with the smooth boundary ∂Ω,

ρ: R → R is continuously differentiable on R \ {0} and there exist c > 0 and
α > max{0, (N − 2)/N} such that ρ̇(t) ≤ c|t|α−1, for any t ∈ R \ {0} and
such that ρ(0) = 0, f : [0, T ] × Ω × R → R is a continuous function such that
f(t, x, 0) ≥ 0 and f(t, x,m) ≤ 0 on [0, T ] × Ω and m > 0.

Let us put (R) into an abstract setting. Let E := L1(Ω) and define an
operator A:D(A) � E by

Au := −∆ρ(u), u ∈ D(A),

where D(A) := {u ∈ L1(Ω) | ρ(u) ∈ W 1,1
0 (Ω), ∆ρ(u) ∈ L1(Ω)}.

It can be shown that A is m-accretive and that the semigroup SA is compact
([37, Example 1.5.5 and Lemma 2.6.2]). Let M := {v ∈ L1(Ω) | 0 ≤ v(x) ≤ m}.
Clearly M is convex and closed; moreover, it can be shown that JAλ (M) ⊂ M for
λ > 0 (see [6]). Further, it is easy to verify that the mapping F : [0, T ]×M → E

given by F (t, u)(x) := f(t, x, u(x)), for (t, x) ∈ [0, T ] × M and x ∈ Ω is well-
defined and continuous. It is also tangent toM . Indeed, for any (t, u) ∈ [0, T ]×M
and h > 0, one has

dM (u + hF (t, u))

= inf{‖v − u− hF (t, u)‖L1 | v ∈ L1(Ω), 0 ≤ v(x) ≤ m a.e. on Ω}
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= inf
{ ∫

Ω
|v(x) − u(x) − hf(t, x, u(x))| dx

∣∣∣∣
v ∈ L1(Ω), v(x) ∈ [0, m] a.e. on Ω

}

≤
∫

Ω
d[0,m](u(x) + hf(t, x, u(x))) dx,

which follows from the fact that the function v: Ω → [0, m] defined by

|v(x) − u(x) − hf(t, x, u(x))| = d[0,m](u(x) + hf(t, x, u(x)))

is measurable and v ∈ M . Further fix x ∈ Ω, and consider the following cases:

• if 0 < u(x) < m, then, for small sufficiently small h > 0, u(x) +
hf(t, x, u(x)) ∈ [0, m];

• if u(x) = 0, then u(x) + hf(t, x, u(x)) = hf(t, x, u(x)) ≥ 0 and, for
sufficiently small h > 0, hf(t, x, u(x)) ≤ m;

• if u(x) = m, then u(x) + hf(t, x, u(x)) = m+ hf(x, u(x)) ≤ m and, for
sufficiently small h > 0, u(x) + hf(x, u(x)) = m+ hf(t, x, u(x)) ≥ 0.

Therefore, by use of the Lebesgue convergence theorem,

lim
h→0+

dM (u+ hF (u))
h

= 0,

i.e. F (u) ∈ TM (u).
Thus the problem (R) has been transformed into the following one{

u̇ = −Au+ F (t, u),

u ∈ M,

and χ(MA) = χ(M) = 1, since D(A) = E and M is convex. Hence, we can
apply the results of the previous sections.

If f does not depend on t, then, by Corollary 5.10, there exists a solution of


−∆ρ(u) = f(x, u) on Ω,

u|∂ Ω = 0,

0 ≤ u(x) ≤ m on Ω.

If f(0, x, u) = f(T, x, u) for any x ∈ Ω, u ∈ R, then, by Corollary 6.11, there
exists a connected and unbounded set Σ ⊂ M × (0, 1) such that each (u, λ) ∈ Σ
is an integral solution of



ut = λ∆ρ(u) + λf(t, x, u) on (0, T ) × Ω,

u|[0,T ]×∂ Ω = 0,

u(0, x) = u(T, x) on Ω,

0 ≤ u(t, x) ≤ m on Ω,
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and Σ contains u0: Ω → R being a solution of


0 = ∆ρ(u) + f̂(x, u) on Ω,

u|∂ Ω = 0,

0 ≤ u(x) ≤ m,

where f̂(x, u) := (1/T )
∫ T

0 f(t, x, u) dt for (x, u) ∈ Ω × R.
The above applications show also that there is a further need for formulae

allowing to compute the topological degree in concrete situations, e.g. degrees of
isolated zeros, isolated zeros at cones, etc.
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GENERALIZED DEGREES FOR COINCIDENCE PROBLEMS
INVOLVING FREDHOLM OPERATORS

Dorota Gabor

Abstract. In the pper we collect nd briefly describe the most important
homotopy invarints concerning coincidence problems with Fredholm opera-

tor.

1. Introduction

The coincidence problem

L(x) = f(x), (or, more general, L(x) ∈ φ(x)),

where L is a linear Fredholm operator and f is a continuous map (resp. φ is
a multivalued map), seems to be a natural generalization of the fixed point
problem. On the other hand many differential equations and inclusions may be
rewritten in this form. There are various methods to deal with the coincidence
problem, but here we restrict considerations to homotopy invariants often called
a “generalized degree” or a “coincidence degree”.

The coincidence degree theory for single-valued perturbations of a linear
Fredholm operator of index zero was started by Mawhin (see e.g. [26], [27]) and
next developed and applied by many authors (e.g. [16], [20], [33], [34], [29], [13]).
If one wants to admit a nonnegative index of Fredholm operator, the situation
becomes much more complicated and needs different tools. (see [37], [25], [19])

The main aim of this paper is to introduce briefly generalized degrees with
some important properties and to mention about directions of generalization.
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Therefore we have to omit some technical details, which make definitions and
results more general, but also more complicated. Many examples of applications
are included in cited papers.

The paper is organized as follows. In the next section, after some preliminary
remarks, we introduce the problem in the simplest situation. Section 3 contains
a few examples of possible more general considerations strictly connected with
the Mawhin degree. In Section 4 we compare three homotopy invariants defined
for the coincidence problems with Fredholm operator of nonnegative index.

2. Mawhin coincidence degree

We start with some preliminary notation. If V is a subset of a metric space,
then we denote the closure and boundary of V by cl V and bd V , respectively. If
z belongs to a Banach space E, then BE(z, ε) = {x ∈ E | ‖x− z‖ < ε}.

All single-valued maps considered in the paper are continuous. If g: X → Y

is a map, A, B are closed subsets of X and Y , respectively, and g(A) ⊂ B, then
we write g: (X, A)→ (Y, B). By IX we denote the identity map of the space X.

As usual, by the homotopy between two single-valued maps f0, f1: X → Y we
understand a map H: X × [0, 1]→ Y such that H( · , 0) = f0 and H( · , 1) = f1.

Let E, E′ be Banach spaces. We denote by L(E, E′) the Banach space of
bounded linear maps from E to E′. An operator L ∈ L(E, E′) is called Fredholm
if dimensions of its kernel Ker L and cokernel Coker L := E′/Im L (where Im L

is the image of L) are finite. Remind that by the index of L one understands
the integer

i(L) = dim Ker L− dim Coker L.

The set Φn(E, E′) of all Fredholm operators of index n is an open subset of
L(E, E′). Both Ker L and Im L are direct summands in E and E′, respec-
tively. Therefore we may consider continuous linear projections P : E → E and
Q: E′→ E′, such that Ker L = Im P and Ker Q = Im L. Clearly E, E′ split into
(topological) direct sums

(2.1) Ker P ⊕Ker L = E, Im L⊕ Im Q = E′.

Moreover, L|Ker P is a linear homeomorphism onto Im L. By KP : Im L→ Ker P

we denote the inverse operator to L|Ker P .
Assume now, that i(L) = 0. Then, of course, dim Ker L = dim Coker L =

dim Im Q. Let us fix the orientations in Ker L and in Coker L, and take in Im Q

the orientation which is preserved by z ◦ i, where i: Im Q → E′ is the inclusion
and z: E′ → Coker L is the quotient map. Denote by J : Ker L → Im Q the
isomorphism preserving these orientations.

Observe that then L + J ◦ P is an isomorphism and (L + J ◦ P )−1 = KP ◦
(IE′ −Q) + J−1 ◦Q. Moreover, the problem

(2.2) 0 = L(x) − f(x)
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is equivalent to the following one:

0 = (L + J ◦ P )−1 ◦ (L(x) − f(x))

= (IE − P )(x)− (KP ◦ (IE′ −Q) + J−1 ◦Q) ◦ f(x)

= x− (L + J ◦ P )−1 ◦ (f + J ◦ P )(x).

Below we introduce the definition of generalized degree. It is a bit simplified
version of the one due to Mawhin (see [26], [28]).

Assume that f : cl U → E′ is a compact map, where U is an open subset of
E and L: E → E′ is a Fredholm operator of index 0.

Definition 2.1. If F := L− f is such that 0 �∈ F (bd U), then the degree of
F in U with respect to L is defined by

DL(F, U) := deg(IE − (L + J ◦ P )−1 ◦ (f + J ◦ P ), U, 0) ∈ Z,

where ‘deg’ is the Leray–Schauder degree.

This definition does not depend on the choice of projections P , Q and an
isomorphism J (see [28]). Moreover, if F has another representation of the form
F = L1 + f1, then (under suitable assumptions), its degree does not depend on
this representation (see [29]) In the next section we describe also larger classes of
perturbations f for which it is valid. The degree DL(F, U) has usual properties
collected in the following theorem.

Theorem 2.2. Under the previous assumptions:

(a) (existence property) if DL(F, U) �= 0, then F has at last one zero in U

(i.e. there is a solution of L(x) = f(x));

(b) (excision property) if U1 ⊂ U is an open set such that 0 �∈ F (cl U \U1),
then

DL(F, U) = DL(F |U1, U1);

(c) (addition property) if U1, U2 are disjoint open subsets of U such that
0 �∈ F (cl U \ (U1 ∪U2)), then

DL(F, U) = DL(F |U1, U1) + DL(F |U2, U2);

(d) (homotopy invariance property) if H: cl U × [0, 1] → E′ is a compact
homotopy such that L(x) �= H(x, λ) for x ∈ bd U and each λ ∈ [0, 1],
then the map λ 	→ DL(L|cl U − H(·, λ), U) is constant on [0, 1]. In
particular

DL(L|cl U −H(·, 0), U) = DL(L|cl U −H( · , 1), U).

Many further consequences of these properties for the degree defined above
and its generalizations may be applied in various differential problems (see e.g.
[13]–[15], [33], [35], [31]).
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3. Some possible generalizations

As we have mentioned in Introduction, this section is devoted to a few direc-
tions of generalization of the coincidence problem, strictly connected with the
generalized degree. The whole section concerns the situation when i(L) = 0.

Perturbations. The generalized degree from Definition 2.1 was in fact de-
fined for so-called L-compact perturbations f (see [28]). Let us remind that f is
L-compact if (L+J◦P )−1◦f is a compact map (what implies that (L+A)−1◦f is
compact provided that A: E → E′ is an arbitrary linear operator such that L+A

is invertible and dim Im A < ∞). If one assumes that L is a bounded operator
(as we have done for simplicity), then an L-compact map is simply a compact
one. But in general situation, Definition 2.1 is valid also for unbounded Fredholm
operators.

It is also natural to consider L-condensing maps (see [20], [33]). Namely, let
µ be a measure of noncompactness in E (see e.g. [2]), then f is an L-condensing
map provided that for any bounded set V ⊂ cl U if µ(V ) > 0, then µ((L + J ◦
P )−1 ◦ f(V )) < µ(V ). The generalized degree for such maps can be defined
by replacing in Definition 2.1 the Leray–Schauder degree by the Nussbaum–
Sadovskii one.

Sometimes another special forms of perturbations are needed in applications
and the respective degrees are defined in particular cases. ([12], [8]).

If we replace a single-valued map f by a multivalued one φ: cl U � E′ and
assume that φ is L-compact with compact convex values, then the respective
degree may be obtained by using the Leray-Schauder degree for multivalued
vector fields (see [34]). As well one can consider L-condensing multivalued maps
(see [36]). All above invariants have properties mentioned in Theorem 2.2.

Some examples of applications one can find also in [28].

Continuous deformations of the linear part. The homotopy property
of the degree is a very important one, especially in applications, since it often
allows to simplify the problem. Observe that in Theorem 2.2(d) the homotopy
concerns only a perturbation, while L is constant, what means that the role of
L is similar to the one of the identity map in a fixed point problem. But it is
not necessary. However, continuous deformations of the Fredholm operator need
some concept of saving an orientation along homotopies. Below we introduce
very briefly two possible approaches to this problem.

Denote by GL(E, E′) and K (E, E′) the subsets of L(E, E′) consisting of all
isomorphisms and of all compact maps, respectively, and by GLc(E, E′) the
group of all isomorphisms of the form IE − K, where K ∈ K (E, E′). The
operator S ∈ GL(E′, E) is said to be a parametrix of L if L ◦ S ∈ GLc(E′, E′).
By a corrector of L ∈ Φ0(E, E′) we understand a linear map A: E → E′ such
that L + A ∈ GL(E, E′) and dim Im A < ∞. The set of all correctors of L

is denoted by C(L). Observe that, e.g. J ◦ P ∈ C(L). Moreover, for any two
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A, B ∈ C(L), (L + A)−1 ◦ (L + B) ∈ GLc(E, E′), and for any A ∈ C(L),
L ◦ (L + A)−1 ∈ GLc(E, E′), i.e. (L + A)−1 is a parametrix for L.

Fitzpatrick and Pejsachowicz (see [14], [15]) define the orientation as a func-
tion ε: Z → {−1, 1}, where Z is a suitable subset of GL(E, E′), satisfying two
following properties:

(i) ε(IE) = 1.
(ii) If dim Im (M1−M2) <∞, then ε(M1) = ε(M2) if and only if deg((M−1

1 ◦
M2), BE(0, 1), 0) = 1, where, as earlier, deg denotes the Leray–Schauder
degree.

It allows to define the generalized degree for problem (2.2) as follows:

Definition 3.1. If F := L− f is such that 0 �∈ F (bd U), then the degree of
F in U with respect to L is defined by

DFP (F, U) := ε(S) deg(IE − S ◦ (f + A), U, 0) ∈ Z,

where S is an arbitrary parametrix of L.

It was shown in [14], [15] that DFP is well-defined and satisfies properties
of Theorem 2.2. One can easily compare it with Definition 2.1, replacing S

by a particular parametrix (L + J ◦ P )−1. Moreover, the homotopy invariance
property can be extended to the following one.

Proposition 3.2. If [0, 1] 	→ Lλ ∈ Φ0(E, E′) is a continuous map and
H: cl U × [0, 1] → E′ is a compact homotopy such that Lλ(x) �= H(x, λ) for all
(x, λ) ∈ bd U × [0, 1], then

DFP (L0 −H( · , 0), U) = ε(L0 + A0)ε(L1 + A1)DFP (L1 −H( · , 1), U),

where the map [0, 1] � λ 	→ Aλ ∈ K (E, E′) is continuous and such that Lλ +Aλ ∈
GL(E, E′) for all λ ∈ [0, 1].

The degree defined above has been developed and applied in many ways (see
e.g. [13] for not bounded Fredholm operators of index 0, [35] for L-contractive
perturbations).

Benevieri and Furi proposed another approach to the orientation based on
the notion of correctors (see [3]). The set C(L) is divided into two classes by
the following equivalence relation: A ∼ B ⇔ det(L + A)−1 ◦ (L + B) > 0. Since
(L + A)−1 ◦ (L + B) = IE −K, where dim Im K < ∞, this determinant is well
defined (1). An orientation of L is simply one of the two classes of correctors. It
determines the choice of such orientation in some neighborhood of L in Φ0(E, E′)
(and then also along the homotopy) thanks to the following fact.

(1) det(IE − K) := det(IE − K)|E1 , where E1 is an arbitrary finite dimensional subspace

of E containing ImK; the definition does not depend on the choice of E.
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Theorem 3.3 ([4]). Let A, B be two L-equivalent correctors of an operator L

(i.e. determining the same orientations of L). Then there exist two neighborhoods
UA and UB of A and B in the set of all operators with finite dimensional range,
and a neighborhood VL of L in Φ0(E, E′) such that A′ and B′ are L′-equivalent
correctors of L′ for any A′ ∈ UA and B′ ∈ UB .

A definition of the respective degree can be similar to Definition 3.1, but
in fact Benevieri and Furi use their orientation in another way (see the next
subsection). Connections and differences between these notions are described in
[4]. The authors also compare them with the earlier concepts due to Elworthy
and Tromba ([10], [11]).

Nonlinear Fredholm operators. A continuously differentiable map f : U

→ E′ is called Fredholm if at each x ∈ U its Fréchet derivative Df(x) is a linear
Fredholm operator (of index 0). By the orientation of f one often understands
the orientation of the family of its derivatives in some sense. A degree, which
nontriviality implies the existence of a solution to the problem

f(x) = y,

is strictly connected with a respective concept of this orientation. Roughly speak-
ing its construction is the following: Let y be a regular value of f (i.e. f−1(y)
is empty or, for each x ∈ F −1(y), Df(x) is an isomorphism (since i(L) = 0)).
Then

deg(g, U, y) =
∑

x∈f−1(y)

η(Df(x)),

where η may be understood as the orientation ε of the family {Df(x)} (see [16]
for details), or, in the Benevieri and Furi approach, η(Df(x)) = sign Df(x),
i.e. η(Df(x) = 1, if a trivial operator determines the orientation of Df(x) and
η(Df(x)) = −1 otherwise. For not necessarily regular value y of f , deg(f, U, y) =
deg(f, W, z), where z is a regular value of f sufficiently close to y, and W is a
respective subset of U (such that f |cl W is a proper map).

More details and applications one can find in, e.g. [16], [4]–[6].
Such invariants are also defined for maps acting between Banach manifolds

(see [4], [3], [32]).

4. Invariants admitting a dimensional defect

If we admit that the index of L is nonnegative, then previous methods are
not sufficient (comp. [26]), since, roughly speaking, degree of Mawhin’s type is
trivial. Neverthless there are some ways to deal with such situation. We consider
below a multivalued situation, i.e.

(4.1) L(x) ∈ φ(x).

with usual assumption: {x ∈ bd U | L(x) ∈ φ(x)} = ∅.
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The first approach develops ideas described above, namely, the degree is
defined by

D((L, φ), U) := {deg(IE −MV,J , U, 0) | V is a subspace of Ker L,

dim V = dim Coker L},

where MJ,V = RV ◦ P + [J ◦Q + KP ◦ (IE′ −Q)] ◦ φ and J : CokerL→ Ker L is
a one to one linear map, V = Im J , RV : Ker L→ Ker L is a projector such that
V = Im RV , φ is a L-condensing multivalued map with compact convex values
(see [1]). As one can see, the degree is a subset of Z. It has usual properties
mentioned in Theorem 2.2, in particular its existence property says, that if it is
different from {0}, then the problem (4.1) has a solution.

Quite different degree is due to Borisovich and Zvyagin (see [7], [37]). It
takes values in Rohlin–Thom ring of bordisms and may be generalized in the
same directions as Mawhin’s degree (see [9], [30]), but still for multivalued maps
with convex values.

The last invariant was constructed by Kryszewski (see [25]) for multivalued
maps with not necessarily convex values. Remind that the wide class of maps,
for which the degree or the fixed point index can be defined is the one of maps
admissible in the sense of Górniewicz, i.e. determined by a pair of continuous
maps

cl U
p←− Γ

q−→ E′

such that F (x) = q(p−1(x)) for x ∈ cl U , where p is a Vietoris map, i.e. a proper
surjection with acyclic fibers (with respect to the Čech cohomology with integer
coefficients).

But a possible dimensional defect does not allow previous (co)homological
methods (see [21], [22]), because they lead to a trivial invariant. The same reason
cuts the class of admissible maps to one of its following subsets:

• c-admissible maps, i.e. such that p is a cell-like map, i.e. a proper sur-
jection with cell-like fibers (2) (this class contains the maps with convex
values);

• admissible in sense of Górniewicz maps with additional assumption:
dim p := sup dim p−1(x) <∞.

In both situations the construction is the same: in finite dimensional situation,
i.e. for E = R

m, E′ = R
n, m ≥ n we consider the sequence of maps:

(Rn, R
n \Bn(0, ρ))

L◦p−q←−−−− (Γ, Γ′)
p−−−−→ (cl U, bd U)

i1−−−−→ (Rm, R
m \ U) i2←−−−− (Rm, R

m \Bm(0, r)),

(2) Compact space A is cell-like if there exists an absolute neighborhood retract Y and an

embedding i: A → Y such that the set i(A) is contractible in any of its neighborhoods V ⊂ Y .
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where ρ is such that (L− q(p−1))(bd U) ⊂ R
n \Bn(0, ρ), and the maps induced

on the level of cohomotopy sets (groups) (see [23]):

i#
2 ◦ (i#

1 )−1 ◦ (p#)−1 ◦ q#: πn(Rn, R
n \Bn(0, ρ))→ πn(Rm, R

m \Bm(0, ε)).

Since πn(Sn) ∼= πn(Rn, R
n \ Bn(0, ρ)) and πn(Rm, R

m \ Bm(0, ε)) ∼= πn(Sm),
the degree can be defined by

deg((p, q), U, 0) := K (1) ∈ πn(Sm),

where K := i#
2 ◦ (i#

1 )−1 ◦ (p#)−1 ◦ q# and 1 is a homotopy class of id: Sn → Sn

in πn(Sn) ∼= Z.
In infinite dimensional situation for compact maps one can use a standard

idea of respective Schauder approximations (for details see [25] or [19]) and
next generalize the degree to noncompact maps, called fundamentally restrictible
containing, among others, L-compact and L-condensing ones (see [17], [19]). It
is worth mention, that this approach needs some non trivial algebraic results,
especially the cohomotopy version of Vietoris–Begle Theorem due to Kryszewski
(see [24], [25]).

While this invariant was defined for the largest class of perturbations, the
Fredholm operator L had to be fixed. The recent results concern the possibility
of continuous deformation of L along the homotopy (see [18]). The problem for
nonlinear Fredholm maps is still open.
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MULTIVALUED GENERALIZATIONS
OF THE WAŻEWSKI RETRACT THEOREM

Grzegorz Gabor

Abstract. This note is a short survey on the famous Ważewski’s retract
method and its subsequent developments, especially those appropriate for

differential inclusions. The corresponding multivalued problems are dis-
cussed with some former as well as present results on the existence of viable

trajectories.

1. Ważewski’s retract method

As a starting point let us state the following problem:
Assume that f : R

n → R
n is such that the Cauchy problem

(1.1)
{

ẋ(t) = f(x(t)) for t ≥ 0,

x(0) = x0,

has a unique solution for every x0 ∈ R
n, which depends continuously on the

initial condition (we can think about f as a Lipschitz continuous map), and
K ⊂ R

n is a closed subset.

(P) Is there any solution x to problem (1.1) such that x(t) ∈ K for every
t ≥ 0?

Each solution to problem (P) is called a viable trajectory in K when taking
into account motivations from the mathematical biology.

In the literature one can find several sufficient conditions for positive invari-
ance of the set K, i.e. to assure that solutions starting in K remain there forever.
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One of the best known is the Nagumo condition introduced in 1942 (see [30]) in
terms of tangent cones. If K is positively invariant, each point of K is a starting
point of a trajectory solving problem (P). Otherwise, some trajectories leave the
set K or, in other words, from some points in K there start trajectories going
immediately outside the set. Then, these points may be called the points of
egress. When they appear, problem (P) becomes nontrivial.

It occurs that one can study topological properties of the set of egress points
to obtain sufficient conditions for the existence of viable trajectories. In 1947
(see [36, Theorem 2]) Ważewski proved his famous theorem where such condition
was described in terms of retracts. Let us recall it briefly.

Denote by π: R
n × [0, ∞) → R

n a dynamical system corresponding to our
equation ẋ(t) = f(x(t)), i.e. for each x0 ∈ R

n and t ≥ 0 we put π(x0, t), the
value of the solution to problem (1.1) at time t.

Assume that K = V , where V is open in R
n. We define the set of egress

points of V

V e := {x0 ∈ ∂V | ∃δ > 0 : π({x0} × [−δ, 0)) ⊂ V },

and the set of strict egress points of V

V se := {x0 ∈ V e | ∃δ > 0 : π({x0} × (0, δ]) ⊂ R
n \ K}.

Following Ważewski we assume that

(W) V se = V e.

Theorem 1.1 ([36, Theorem 2]). If Z ⊂ V ∪ V e, Z ∩ V e is a retract (1) of
S, and Z ∩ V e is not a retract of Z, then there exists a viable trajectory in V

which starts from a point of Z \ V e.

A simple and brilliant idea of proof will be presented after the next theorem
below. Notice that, if Z = V ∪ V e, we simply get: if V e is not a retract (in fact:
a strong deformation retract) of Z, then there exists a viable trajectory in V .

In 1976 Conley (see [9]) formulated a new statement of the Ważewski theorem
where condition (W) was replaced by the following one:

(C) the set K− := {x0 ∈ K | ∀ε > 0 : π({x0} × (0, ε)) 
⊂ K} is closed in
K∗ := {x ∈ K | ∃t > 0 : π(x, t) 
∈ K}.

Theorem 1.2 ([9, Theorem 1.3]). For a closed set K ⊂ R
n, if condition (C)

is satisfied, then K− is a strong deformation retract of K∗ and K \ K∗ is closed
in K.

(1) A closed subset M of a space X is said to be a retract of X provided there exists a
map r: X → M such that r(x) = x, for every x ∈ M , and strong deformation retract of X if

there is a homotopy h: X × [0,1] → X such that h(x, 0) = x, h(x, 1) ∈ M , for all x ∈ X, and

h(x, t) = x, for each x ∈ M and t ∈ [0,1].
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Sketch of proof. We define the exit function τ : K∗ → R,

τ(x) := sup{t ≥ 0 | π({x} × [0, t]) ⊂ K}.

Condition (C) (in the original Ważewski theorem condition (W)) implies that τ

is continuous.
Define a homotopy h: K∗ × [0, 1] → K∗ by h(x, λ) := π(x, λτ(x)). It is easy

to check that h(x, 0) = x and h(x, 1) ∈ K− for every x ∈ K∗, and h(x, λ) = x

for every x ∈ K−. So, K− is a strong deformation retract of K∗. From the
continuity of π it follows that K∗ is open in K, and hence, K \ K∗ is closed
in K. �

Notice that the above theorem immediately implies:

Corollary 1.3. If K− is closed and is not a strong deformation retract of K,
then there exists a viable trajectory in K.

Let us remark that Conley’s formulation of the retract theorem allows us to
consider sets with empty interior. Moreover, the set K− can be localized and its
closedness can be verified in practice.

2. Briefly on the homotopy index

It is easy to check that, if K is compact, then

∃x ∈ K π({x} × [0, ∞)) ⊂ K ⇔ ∃x ∈ K π({x} × R) ⊂ K.

Thus in this case, problem (P) is equivalent to the problem of nonemptiness of
the set

inv(K, f) := {x ∈ K | π({x} × R) ⊂ K}
which is called a maximal invariant subset of K (one easily checks that it is really
invariant).

The idea of defining a suitable homotopy invariant to study the existence of
invariant sets appeared in 1971 in Conley and Easton’s paper [11] on isolated
invariant sets and isolated blocks, and it started what is now known as the
Conley index theory. The celebrated monograph [10] contains main ideas of the
theory. Later on many proofs were simplified [34] and the ideas were developed
in many directions such as discrete dynamical systems (see [31], [29]), infinite
dimensional flows (see [33], [4], [21], [23]) and multivalued systems (see [28], [25],
[26]). Since the beginning the Conley approach has been successfully applied to
study shock waves and periodic traveling waves [12]–[14], [35] as well as to study
qualitative properties of solutions to pendulum-type equations with friction [26].
The list of references concerning the Conley index theory and its applications
may be enlarged. We refer the reader to survey-type articles in [27] and to [1]
for more information.
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We recall basic notions of the Conley index theory in the simple case of R
n.

If K = int K ⊂ R
n is compact and S = inv(K, f) ⊂ int K, then K is called an

isolating neighbourhood, and S an isolated invariant set.
By an index pair for an isolated invariant set S ⊂ R

n we mean a compact
pair (P1, P2) such that

(i) the set P1 \ P2 is an isolating neighbourhood for S;
(ii) (positive invariance of P2 in P1) if x ∈ P2 with π(x, t) ∈ P1 for every

t ∈ [0, t0], then π(x, t) ∈ P2 for every t ∈ [0, t0];
(iii) if x ∈ P1 and there is t ≥ 0 with π(x, t) 
∈ P1, then there exists 0 ≤ t0 < t

such that π(x, t0) ∈ P2.

Notice that P2 in the index pair (P1, P2) plays a role of an exit set for P1, and
P2 need not be contained in a boundary of P1. The situation where P2 = (P1)−

is a particular case.
Two main theorems in the Conley index theory are as follows.

Theorem 2.1 ([34, Theorem 4.3]). If K is an isolating neighbourhood for
S, then there exists an index pair (P1, P2) for S with P1 ⊂ K and both P1 and
P2 positively invariant in K.

Theorem 2.2 ([34, Theorem 4.10, Corollary 4.11]). The Conley homotopy
index of an isolated invariant set S,

I(S, f) := [P1/P2, [P2]]

does not depend on the choice of an index pair (P1, P2) for S, where [P1/P2, [P2]]
stands for a homotopy type of the pointed space (P1/P2, [P2]). If I(S, f) 
= 0 (is
not a trivial homotopy type [{∗}, ∗]), then S 
= ∅.

A power of the above topological tool lies in its homotopy invariance (see [27,
p. 24], for collected properties of the index), and this gives a kind of its superiority
over the Ważewski method. But, on the other hand, there are examples where
[K/K−, [K−]] = 0 while K− is not a strong deformation retract of K and the
Ważewski theorem implies the existence of a viable trajectory in K (see [10,
Chapter II]).

3. When multivalued problems appear

When a map f in (1.1) is less regular, or we have to study a multivalued
problem

(3.1)
{

ẋ(t) ∈ F (x(t)) for a.e. t ∈ R,

x(0) = x0,

then we meet a difficulty that from a point there can start a lot of solutions,
and the differential equation (inclusion) does not generate a dynamical system.
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Instead, a so-called multivalued dynamical system appears which can be described
as below.

Let SF (x0) denote the set of solutions to problem (3.1). If F satisfies

(F1) F is upper semicontinuous (u.s.c.) with compact convex values,
(F2) F has a sublinear growth, i.e. there is a constant c ≥ 0 such that |y| ≤

c(1 + |x|) for each x ∈ R
n and y ∈ F (x),

then the map x0 �→ SF (x0) ⊂ C(R, R
n) is u.s.c. with compact Rδ values (2). We

define a multivalued Poincaré operator P : R
n ×R � R

n, P (x0, t) := et ◦ SF (x0),
where et: C(R, R

n) → R
n, et(x) := x(t) is an evaluation map. The operator

satisfies the obvious conditions P (x, 0) = {x}, y ∈ P (x, t) if and only if x ∈
P (y, −t), and P (x, t + s) = P (P (x, t) × {s}), ts ≥ 0. Moreover, P is admissible
in the sense of Górniewicz (see, e.g. [22]).

The second difficulty in the case of differential inclusions is that there are
two exit sets, different in general,

K−(F ) := {x0 ∈ ∂K | ∀x ∈ SF (x0) ∀t > 0 : x([0, t]) 
⊂ K},

Ke(F ) := {x0 ∈ ∂K | ∃x ∈ SF (x0) ∀t > 0 : x([0, t]) 
⊂ K},

with K−(F ) ⊂ Ke(F ), and it is natural that from points in Ke(F ) \ K−(F )
there can start trajectories going into K for both positive and negative times.
This implies that the isolation assumption

inv(K, F ) := {x0 ∈ K | ∃x ∈ SF (x0) ∀t ∈ R : x(t) ∈ K} ⊂ int K

is hard to check.

4. Isolation assumption and the homotopy index

In spite of what has been noted in the last lines above, let us a priori assume
that inv(K, F ) ⊂ intK, and that the set K is compact. Then the Conley index
theory can be adopted. We refer to Mrozek’s paper [28] where a cohomological
index has been constructed. An alternative approximation technique can be
applied to construct a homotopy index (see [26]) which is closer to Ważewski’s
retract method we deal with. Let us briefly recall a sketch of this construction.

Let F : R
n � R

n satisfy assumptions (F1)–(F2). By the Cellina approxi-
mation theorem ([7, Theorem 1]; see also results in [8]) it follows that for any
ε > 0 there exists ε0 > 0 such that, for each 0 < δ ≤ ε0, there is a single-valued
Lipschitz δ-approximation (3) of F , and each level h(·, t) of a linear homotopy
joining any two such approximations is an ε-approximation of F . This easily
leads to the following:

(2) A space X is a compact Rδ-set provided it is homeomorphic to an intersection of a
decreasing sequence of compact contractible spaces. In particular, it is acyclic.

(3) We say that f :X → R
n is a δ-approximation of F : X � R

n if f(x) ∈ F (B(x, δ)) +

B(0, δ) for every x ∈ X.
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Proposition 4.1 (comp. [26, pp. 150–152]). Let K = intK ⊂ R
n be a com-

pact set, F satisfies (F1)–(F2), and inv(K, F ) ⊂ intK. Then there is ε > 0 such
that inv(K, f) ⊂ intK for every ε-approximation f of F , and I(inv(K, f1), f1) =
I(inv(K, f2), f2) for each Lipschitz ε-approximations f1 and f2.

Now, we define the homotopy index for a multivalued flow generated by
differential inclusion (3.1) as I(inv(K, F ), F ) := I(inv(K, f), f), where f is as in
the above proposition. The index satisfies standard properties ([26, Theorems
5.3.1–5.3.4]). In particular, if I(inv(K, F ), F ) 
= 0, then there exists a viable
trajectory in K.

As we can see, the index is known implicitly as an index of sufficiently near
approximations. An important question is how to describe it in terms of a given
right-hand side F of a differential inclusion, namely, examining behaviour of F

on the boundary of K. It occurs that in some situations it is possible. We will
come back to it at the end of the last section.

5. Without a priori isolation assumption:
from connectedness to deformation retracts conditions

Now we do not assume that inv(K, F ) ⊂ intK. As at the beginning we look
for sufficient conditions for the existence of viable trajectories in K in terms of
exit sets to obtain multivalued generalizations of the Ważewski theorem. But
we have two exit sets K−(F ) and Ke(F ), and it is not clear which one is more
useful.

In the first papers dealing with differential problems without uniqueness
([2], [3], [24]) the authors did not use the sets K−(F ) and Ke(F ) but followed
Ważewski and, instead, considered sets of egress and strict egress points (4).
They assumed that these sets were equal which implied that the set of egress
points was relatively invariant in ∂K. In particular, there was no point in ∂K

from which there started trajectories going into int K for both positive and neg-
ative times. The Ważewski type result was the following:

• If the set of egress points is not a multivalued retract (5) of K, then
there is a viable trajectory in K.

From a topological point of view this result is very weak. Even a sphere ∂B(0, 1)
∈ R

n is a multivalued retract of the unit ball B(0, 1). What we know is that
S ⊂ ∂K is not a multivalued retract of K if, for instance, K is connected and
S is disconnected. Obviously, a connectedness criterion is far from the strong

(4) A point x0 ∈ ∂K is an egress point (see [3]), if there is a solution x such that x([0, t1)) ⊂
intK, x([t1, t2]) ⊂ ∂K and x(t2) = x0 for some 0 < t1 ≤ t2. An egress point x0 is a strict

egress point, if for every solution x ∈ SF (x0), c(x) := sup{t ≥ 0 | x([0, t]) ⊂ K} < ∞, and
x([c(x), c(x) + ε]) �⊂ K for any ε > 0.

(5) We say that A ⊂ X is a multivalued retract of X if there exists an u.s.c. map Φ: X � A

with compact values such that x ∈ Φ(x), for every x ∈ A.
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deformation retract approach proposed by Ważewski. Some more general results
have been proved in [20] and [16], where the set Ke(F ) is used allowing us to con-
sider sets of constraints with empty interior (like with Conley’s condition (C)).
Let us state, for example:

Theorem 5.1 (comp. [16, Theorem 2.1 and Corollary 2.2]). Assume that
the set Ke := Ke(F ) is closed and

• there is a subset A ⊂ K, Ke ⊂ A, and there exists a retraction r: A →
Ke such that x([0, τK(x)]) ⊂ A for every x0 ∈ Ke and every x ∈ SF (x0).

If there is no multivalued admissible deformation (6) of K onto Ke, then there
is a viable trajectory in K.

It occurs that, to obtain a sufficient condition for the existence of viable
trajectories in terms of strong deformation retracts, the smaller exit set K−(F )
is more appropriate. It is worth adding that K−(F ) can be characterized by
Bouligand tangent cones (see, e.g. [6, Lemma 5.2]). This characterization is due
to Cardaliaguet who has proved in [5] that there exists a viable trajectory in a
convex set (connected C1,1-manifold) K whenever K−(F ) is closed and discon-
nected. This was the first Ważewski type result without paying any attention to
the set Ke(F ).

Recall that the deformation retract approach consists in possibility of con-
tinuous deformation along trajectories of a dynamical system. Therefore, the
idea has arisen to find a Lipschitz selection, or a sequence of sufficiently near
Lipschitz approximations of F , generating a dynamical system with the same
exit set K−(f) = K−(F ). This selection technique is possible under rather
strong assumptions on regularity of the map F (see [20, Theorem 3.16]). An
approximation Lemma 3.3 in [6] allows us to obtain the following more general
result.

Theorem 5.2. Let F : R
n � R

n satisfying (F1)–(F2) be continuous. As-
sume that K ⊂ R

n is a compact C1,1 n-manifold with a boundary, K−(F ) is
closed and, if it is nonempty, it is a C1,1 (n − 1)-submanifold of ∂K with a
boundary. If K−(F ) is not a strong deformation retract of K, then there is a
viable trajectory in K.

In the proof we find, following Lemma 3.3 in [6], a sequence of Lipschitz
(1/n)-approximations (fn) of F with K−(fn) = K−(F ), and, by the Ważewski
theorem, a sequence of viable solutions xn corresponding to fn. Since K as well
as the graph of F are closed, we can go with n to infinity, and obtain a viable
trajectory x for F in K.

(6) A multivalued admissible deformation of X onto A ⊂ X is a map H:X × [0, 1]� X

admissible in the sense of Górniewicz, and such that H(x,0) = x, H(x,1) ⊂ A for every x ∈ X,

and x ∈ H(x, t) for every x ∈ A. It is seen that H( · , 1) is a multivalued (admissible) retraction.
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An approximation technique will be even more effective if we do not insist
that approximating single-valued problems induce the same exit set. The main
result in this direction has been proved in [16], and is as follows:

Theorem 5.3. Let K = Int K be a sleek (7) subset of R
n and F : R

n � R
n be

a map satisfying (F1)–(F2) and such that K−(F ) is a closed strong deformation
retract of some its open neighbourhood V in K. Assume that Int TK(x) 
= ∅ for
every x ∈ K \ K−(F ). If K−(F ) is not a strong deformation retract of K, then
there is a viable trajectory in K.

Let us give some comments. Sleekness we assume above is an essentially
weaker condition than C1,1 regularity which means lipschitzeanity of the map
TK( · ), as required in Theorem 5.2. We have also dropped the continuity assump-
tion on F . Note that assumption Int TK (x) 
= ∅ eliminates “too sharp corners”
of the set K, and means, in other words, that K is epi-lipschitz in points of
K \ K−(F ) (comp. [32]).

The method of proof of Theorem 5.3 allowed to add new essential information
to the homotopy index theory for multivalued flows generated by differential
inclusions (see Section 4). The paper [18] concerns the matter. We recall one of
the conclusions of considerations therein.

Theorem 5.4. Under the assumptions of Theorem 5.3, if

[K/K−(F ), [K−(F )]] 
= 0,

then there is a viable trajectory in K. If inv(K, F ) ⊂ int K, then

I(inv(K, F ), F ) = [K/K−(F ), [K−(F )]],

where I(inv(K, F ), F ) is a homotopy index defined in Section 4.

Final remarks. (1) The Ważewski retract method can be applied to mul-
tivalued problems in infinite dimensional spaces for various classes of maps (see
e.g. [15], [19]).

(2) The open problem is whether I(inv(K, F ), F ) = [K/K−(F ), [K−(F )]] for
every isolating neighbourhood K and a closed exit set K−(F ).

(3) After the existence problem for viable trajectories, some further steps are
natural and interesting, namely, we can study qualitative properties of viable
trajectories such as stationarity or periodicity. We refer to [6], [18], [17] and
references therein to acquaint oneself with the subject.
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MULTIVALUED FRACTALS

Krzysztof Leśniak

Abstract. We communicate that under suitable assumptions the system
of multivalued maps generates a fractal.

Let (X, d) be a complete metric space. A family of multifunctions {ϕi: X �
X}i∈I is called multivalued iterated function system. This system induces the
so-called Barnsley–Hutchinson operator defined as

Φ: 2X → 2X , Φ(A) .=
⋃

i∈I

ϕi(A)

for A ⊂ X. Our main interest is to investigate the sequence of successive images:

A �→ Φ(A) �→ Φ(Φ(A)) = Φ2(A) �→ · · · �→ Φn(A).

Theorem. Let {ϕi: X � X}i∈I be a finite system of multivalued contrac-
tions (with nonempty bounded values). Then there exists nonempty closed boun-
ded subset A∗ ⊂ X with the following properties:

(a) (invariance) Φ(A∗) = A∗,
(b) (uniqueness) for any nonempty bounded set A ⊂ X with Φ(A) = A we

have A = A∗,
(c) (attractor) for any nonempty bounded set A ⊂ X we have Φn(A) n→∞−→

A∗, where the convergence is in the Hausdorff metric,
(d) (compactness) if ϕi have compact values, then A∗ is compact.
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The set A∗ is called a multivalued fractal. This theorem can be extended on
systems of weak contractions. Its proof relies on application of the Banach fixed
point theorem. We only need to verify that Φ is contraction with respect to the
Hausdorff metric on the family of nonempty closed bounded subsets of X. Thus
conditions (a)–(c) follow immediately. To see that (d) holds also, first restrict Φ
to the family of nonempty closed bounded sets, and then to the narrower family
of nonempty compact sets. In both cases Φ possess unique fixed point. Since it
is the same fixed point, it must be compact.

Example. Let X be a Banach space, D a closed unit ball at 0 and ϕ1: X �
X, ϕ1(x) = D. Then Φn(A) = D for every nonempty A ⊂ X. Hence A∗ = D is
infinite dimensional fractal for the system {φi}i=1. Note that ϕ1 is a multivalued
contraction with Lipschitz constant 0, so the above theorem is applicable. This
is “truely” multivaled fractal in the sense that a finite system of single-valued
contractions always yields compact attractor. On the other hand one can always
get any nonempty closed set P as a fractal for infinite system of single-valued
contractions {fp: X → X}p∈P , fp(x) = p.

We can also formulate similar theorem for more general systems, although
the notion of attractor needs careful revision. But then we have to replace Ba-
nach Principle for other fixed point theorem. Unfortunately hyperspaces (i.e.
appropriately topologized families of sets) hardly ever possess fixed point prop-
erty which makes the application of the Schauder Principle almost impossible.
The other fruitful technique provides the Knaster–Tarski Principle. It allows
us to consider infinite iterated function systems consisting of condensing multi-
functions (joint generalization of compact map and compact-valued contraction).
Research along these lines was done by the author e.g. in [7]. More details can
be found in the author’s Ph.D. thesis (Nicolaus Copernicus University, Toruń,
June 2005).
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INWARD CONTRACTIONS ON METRIC SPACES

Mateusz Maciejewski

Abstract. We study the existence of constrained fixed points of contrac-

tions in arbitrary complete metric spaces from a global and local point
of view. In particular, we provide generalizations of results due to Lim,

Downing–Kirk and others. Some aspects of the topological transversality
in the spirit of Frigon–Granas of contractions under constraints are also

considered.

1. Introduction

This paper contains some results related to the existence of fixed points of
contractions of any complete metric space (X, d). The main theorem in this
direction is due to S. Banach. He proved, that any contraction f : X → X of
a space X has a unique fixed point. Contractivity means that there exists a
constant k < 1, that for any x, y ∈ X

d(f(x), f(y)) ≤ kd(x, y).

The multi-valued version of above result due to Nadler states that any multi-
valued contraction F : X � X with closed values has a fixed point (i.e. a point
x0 ∈ F (x0)). Multi-valued contractivity is in the sense of the Hausdorff distance,
i.e. there exists a constant k < 1 that for any x, y ∈ X

(1.1) dH(F (x), F (y)) ≤ kd(x, y).
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We shall concentrate on the case of contractions which are not defined on a
whole space. Let F : K � X be a multi-valued contraction with closed values
defined on a closed subset K of a complete metric space X. It is clear that – in
general – F has no fixed points.

Example 1.1. Let X := R, K := [−1, 1]. Consider a single-valued mapping
F : K → X defined by F (x) := x/2 + 100. Then F is a contraction, but does not
has fixed points.

Of course we could assume that the mapping F admits values in the set K.
It turns out that it suffices to control a behavior of F on the boundary ∂K of K.

Let us start with a definition of an inward set. Consider a Banach space E

and its closed subset K. A set

IK + (x) := x + {h(y − x) | h ≥ 1, y ∈ K}

is called an inward set of the subset K in a point x.
It can be shown (see e.g. [6]) that

IK(x) =
{

y ∈ E

∣∣∣∣ inf
h∈(0,1]

dK(x + h(y − x))
h

= 0
}

,

where dK(z) is the distance between z and K, i.e. dK(z) := inf{d(k, z) | k ∈ K}.

Example 1.2. Let X := R
2 and X � K := {(x, y) | x2 + y2 = 1} be a unit

sphere. Then for (x0, y0) ∈ K

IK(x0, y0) := {(x, y) | x2 + y2 ≥ 1 and 〈(x0, y0), (x − x0, y − y0)〉 ≤ 0},

where 〈 · , · 〉 is the standard scalar product.

Now, we are prepared to formulate a result that seems to be the most inter-
esting in this direction

Lemma 1.3 (Lim, [5]). Let K be a closed subset of a Banach space E.
Consider a contraction F : K � E satisfying an inwardness condition:

(1.2) F (x) ⊂ IK(x) for every x ∈ K.

Then F has a fixed point.

Remark 1.4. Assumption (1.2) is indeed the boundary condition, because
if a point x lies in the interior of K, then IK (x) = E.

Notice that the above theorem generalize the Banach Principle only in the
case of Banach spaces. Our aim is to state a theorem that generalizes the Lim
Theorem to the context of an arbitrary complete metric space. To this end,
given a complete metric space X, a closed set K ⊂ X and a point x ∈ K we
shall introduce a generalized inward set ĨK(x). It appears that if X is a Banach
space then IK (x) ⊂ ĨK (x), in general. Moreover, the proof of our result (see
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Theorem 2.6 below) is simpler than the technical and long proof of the Lim
Theorem.

2. Generalization of the Lim Theorem

We shall use the following well-known fixed-point theorem due to Caristi.

Theorem 2.1 (Caristi, [1]). Assume that F : X � X is a multi-valued map-
ping and, for each x ∈ X, there is y ∈ F (x) such that

(2.1) d(x, y) ≤ e(x) − e(y),

where e: X → R+ is a lower semicontinuous function. Then F has a fixed point.

Remark 2.2. (a) Lower semicontinuity of e means that for any c ∈ R the
set {x ∈ X | e(x) ≤ c} is closed.

(b) If F : X → X is a contraction, then satisfies assumption (2.1) with a
function e(x) := d(x, F (x))/(l − k), where a constant k is from the definition
of contractions (1.1), and l ∈ (k, 1) is any number. This proves the Nadler
Theorem.

Theorem of Caristi is equivalent to the following

Theorem (Ekeland, [2]). Let e: X → [0, ∞] be a lower semicontinuous func-
tion, x0 ∈ Dom(e) := {x | e(x) < ∞} and ε > 0. Then there exists x ∈ X that

(a) e(x) + εd(x0, x) ≤ e(x0) (hence d(x0, x) ≤ e(x0)/ε),
(b) for every x 
= x one has e(x) < e(x) + εd(x, x).

Let us return to the notion of the inward set. It works only in linear spaces.
However, one can introduce an analogous set in any metric space. First, we start
with definitions of segments.

By a linear segment in a vector space E, joining x, y ∈ E we mean the set

lin[x, y] := {(1 − h)x + hy ∈ E | h ∈ [0, 1]} = conv{x, y},

and by a linear left-open segment lin(x, y] := lin[x, y] \ {x}. In any metric space
(X, d) one can consider a metric segment defined by the formula:

[x, y] := {z ∈ X | d(x, z) + d(z, y) = d(x, y)} for x, y ∈ X

and a metric left-open segment (x, y] := [x, y] \ {x}.
It is clear that in normed spaces metric segments always contain linear seg-

ments and, in strictly convex normed spaces (1), these two concepts coincide.

(1) A space E is strictly convex, if for any two different points x and y with ‖x‖,‖y‖ ≤ 1,

the inequality holds: ‖(x + y)/2‖ < 1.
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Example 2.4. Let X := R
2 and consider three norms on X:

(a) ‖(x, y)‖1 := |x| + |y|,
(b) ‖(x, y)‖2 :=

√
x2 + y2,

(c) ‖(x, y)‖∞ := max{|x|, |y|}.

Then (X, ‖ · ‖2) is strictly convex; therefore for any z, z′ ∈ X one has lin[z, z′] =
[z, z′]. However such equality does not hold in two other cases. For example,
[(0, 1), (1, 0)] = [0, 1]×[0, 1] in case (b) and [(−1, 0), (1, 0)] = {(x, y) | |x|+|y| ≤ 1}
in case (c).

Notice that the set IK(x) can be written by the following formula:

(2.2) IK(x) := {x} ∪
{

y ∈ E, y 
= x

∣∣∣∣ inf
z∈lin(x,y]

dK(z)
‖z − x‖ = 0

}
.

If we replace a Banach space E by any complete metric space X and a seg-
ment lin(x, y] by (x, y] in an equation (2.2), we shall obtain the definition of the
generalized inward set: for x ∈ X let

ĨK(x) := {x} ∪
{

y ∈ X, y 
= x

∣∣∣∣ inf
z∈(x,y]

1
d(z, x)

dK(z) = 0
}

.

For a given real number 0 < α < 1, let us define an auxiliary set Jα
K(x) (2)

by the formula:

Jα
K(x) := {y ∈ E | there exists x′ ∈ K, x′ 
= x

such that αd(x, x′) + d(x′, y) ≤ d(x, y)}.

Relations between sets defined above are collected in the following lemma.

Lemma 2.5. If K is a closed subset of a metric space X and 0 < α < 1,
then ĨK (x) ⊂ {x} ∪ Jα

K(x). If, in addition, X = E is a normed space, then
IK(x) ⊂ ĨK(x). Moreover, if E is strictly convex, then IK(x) = ĨK(x).

Now, we are prepared to formulate and prove a generalization of Lim’s The-
orem.

Theorem 2.6. Let K be a closed subset of a complete metric space X. Let us
consider a multi-valued contraction F : K � X with closed values. If F satisfies
an inwardness condition:

F (x) ⊂ ĨK(x) for all x ∈ K

then F has a fixed point.

Proof. Assume that the conclusion is false. Choose l and β such that 0 <

k < l < l + β < 1, and define a metric D on the graph G := Gr(F ) = {(x, y) ∈

(2) This set is introduced in [4].
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K × X | y ∈ F (x)} of F :

D((x, y), (x′, y′)) := max
{

d(x′, x),
1
l
d(y′, y)

}
, (x, y), (x′, y′) ∈ G.

Obviously, (G, D) is a complete metric space.
Now, we shall construct a map ϕ: G → G without fixed points, but satisfying

the assumptions of the Caristi Theorem. To this end, let (x, y) ∈ G, i.e. y ∈
F (x) ⊂ ĨK(x) \ {x} ⊂ J l+β

K (x). By Lemma 2.5, y ∈ F (x) ⊂ ĨK (x) \ {x} ⊂
J l+β

K (x). Hence, there is x′ ∈ K, x′ 
= x such that

(2.3) (l + β)d(x, x′) + d(x′, y) ≤ d(x, y).

On the other hand, dH(F (x), F (x′)) < ld(x, x′); therefore there is a point y′ ∈
F (x′) such that

(2.4) d(y, y′) < ld(x, x′).

Let ϕ(x, y) := (x′, y′). It is clear that ϕ has no fixed points. However, in virtue
of (2.3) and (2.4),

d(y′, x′) + βd(x, x′) ≤ d(y′, y) + d(y, x′) + βd(x, x′)

< (l + β)d(x, x′) + d(y, x′) ≤ d(x, y).

Hence
βd(x, x′) ≤ d(x, y) − d(x′, y′).

Similarly, thanks to (2.4),

β
1
l
d(y′, y) ≤ βd(x′, x) ≤ d(x, y) − d(x′, y′).

It means that
βD((x, y), ϕ(x, y)) ≤ d(x, y) − d(ϕ(x, y)).

Therefore
D((x, y), ϕ(x, y)) ≤ e(x, y) − e(f(x, y)),

where e(x, y) := d(x, y)/β. From Caristi’s theorem it follows that ϕ has a fixed
point: a contradiction. �

3. Local version of the Lim Theorem

Let us recall the local version of the Nadler Theorem.

Theorem 3.1. Consider a multi-valued k-contraction F : B(x0, r) � X,
where B(x0, r) := {x ∈ X | d(x, x0) < r} is an open ball. Suppose that

d(x0, F (x0)) < (1 − k)r.

Then F has a fixed point.

It turns out that an analogous version of Theorem 2.6 is also true.
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Theorem 3.2. Let K be a closed subset of a complete metric space X and
x0 ∈ K. Let F : B(x0, r) ∩ K � X be a multi-valued k-contraction such that

F (x) ⊂ ĨK(x)

for all x ∈ BK (x0, r), and d(x0, F (x0)) < (1 −k)r. Then F admits a fixed point.

The proof of above theorem repeats some arguments from the proof of The-
orem 2.6, but instead of the Caristi Theorem, the following result is used:

Theorem 3.3. Let F : B(x0, r) � X be a multi-valued mapping. Assume
that, for each x ∈ B(x0, r), there exists y ∈ F (x) such that

d(x, y) ≤ e(x) − e(y),

where a function e: X → R+ is lower semicontinuous. Moreover, let e(x0) < r.
Then F has a fixed point.

4. Topological transversality under constraints

By using the local version of the Lim Theorem (Theorem 3.2) we can prove
a continuation principle for inward contractions.

Theorem 4.1. Let K be a closed subset of a complete space X and V be
an open (in K) subset of K. Consider a homotopy H: I × V � X with closed
bounded nonempty values satisfying the following conditions:

(a) dH(H(t, x), H(t, y)) ≤ kd(x, y), for every points x, y ∈ V and a number
t ∈ I,

(b) dH(H(t, x), H(s, x)) ≤ |ϕ(t) − ϕ(s)|, where ϕ: I → R is a continuous
and increasing function, for every point x ∈ V and numbers t, s ∈ I,

(c) FixH(t, ·) ∩ ∂KV = ∅, for any t ∈ I, where ∂KV denotes the boundary
of V relatively to K,

(d) H(t, x) ⊂ ĨK(x) for any x ∈ V and t ∈ I.

Then FixH(1, · ) 
= ∅ provided FixH(0, · ) 
= ∅.

The proof of Theorem 4.1 is similar to this of Theorem 4.3 from [3], but
instead of Theorem 3.1, Theorem 3.2 is used.
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THE ROLE OF VARIOUS KINDS OF CONTINUITY
OF SET-VALUED MAPPINGS.

A SURVEY

Dariusz Miklaszewski

Abstract. We present some generalizations of the Brouwer Fixed Point

Theorem for the set-valued mappings. The related open problems (e.g. on
the Stiefel–Whitney classes) are indicated.

1. Introduction

Let X be a disc Bn and f — a mapping assigning a nonempty compact
set f(x) ⊂ X to every point x ∈ X. We study the assumptions on the values
f(x) and on the continuity of f which guarantee that f has at least one fixed
point x ∈ f(x). The more complicated values are taken, the stronger continuity
is required. We consider 4 kinds of continuity: (1) the upper semicontinuity
(u.s.c.), the continuities with respect to (2) the Hausdorff metric ρs, (3) the
Borsuk metric of continuity ρc and (4) the Borsuk metric of homotopy ρh. Here
the jth continuity implies the ith one for j > i. Taking into considerations the
Borsuk metrics is a beautiful idea of Górniewicz.

Let us recall, that f is u.s.c., if its graph is closed in X × X;

ρs(A, B) = inf{ε > 0 : A ⊂ OεB and B ⊂ OεA},

where OεC = {x ∈ X : inf{d(x, c) : c ∈ C} < ε} for A, B, C ⊂ X and d —
a metric in X;

ρc(A, B) < ε
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if and only if there are continuous functions g: A → B, h: B → A which locate
each value at a point closer than ε to the argument. The Hausdorff metric could
be defined similarly, but with any, not necessarily continuous g and h.

The Borsuk metric of homotopy ρh is defined on the set of all compact ANRs
in X. Let us fix t ≥ 0 and a locally contractible set A, which is a compact subset
of X. We define φA(t) to be the lower bound of the set, which is composed of
1 and all s ≥ t such that every set T ⊂ A with the diameter diam(T ) ≤ t is
contractible in a set S ⊂ A with diam(S) ≤ s.

We say, that sets from the class Θ ⊂ 2X are equally locally contractible
(e.l.c.), if

∀ε > 0 ∃δ > 0 ∀A ∈ Θ φA(δ) < ε.

If we replace the contractibility of T in S by the assumption that each map-
ping from the j-sphere into T is homotopy trivial in S for j = 0, . . . , m, then the
above condition makes the sets from Θ equally locally connected in the dimension
m (eLCm).

The explicit formula for ρh (see [1]) can be replaced by the observation, that
the mapping f : X → 2X is ρh-continuous if and only if f is ρs-continuous and
has e.l.c. values.

We now recall some classical results of the fixed point theory to create the
context of this paper.

• In 1912 Brouwer proved, that every continuous map f : Bn → Bn has
a fixed point, [2]. The Brouwer Fixed Point Theorem was generalized by
Schauder for compact maps of infinite-dimensional normed spaces, [35].
The Schauder Theorem is basic for many applications to differential
equations, [8]. Another excellent generalization is the Lefschetz Fixed
Point Theorem, [24], [25], [3], [7], [16].

• In 1941 Kakutani proved the Brouwer Fixed Point Theorem for u.s.c.

mappings with convex compact values, [21].
• In 1946 Eilenberg and Montgomery proved the Lefschetz Fixed Point

Theorem for u.s.c. set-valued mappings with Q-acyclic values, [10]. The
set is Q-acyclic, if its Čech cohomology groups with rational coefficients
are isomorphic to these of the one-point space. The star-shaped sets,
known from the Poincaré Lemma, are Q-acyclic. Another example is
the real projective space RP 2n. The Górniewicz generalization of the
Eilenberg–Montgomery theorem, [13], opened the doors to many ap-
plications of set-valued mappings to differential equations and inclu-
sions, [12].

• In 1947 O’Neill gave an example of the fixed point free mapping f : B2 →
2B2

, which is ρs-continuous and takes values homeomorphic to S1, [33].
Set η(x) = 1 − ‖x‖ + ‖x‖2 for x ∈ B2. Then

f(x) = {y ∈ S1 : ‖y − x‖ ≥ η(x)} ∪ {y ∈ B2 : ‖y − x‖ = η(x)}.
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Exercise. Show that limx→0 ρc(f(x), f(0)) = 2.

• In 1987 Jezierski proved, that there is a fixed point free mapping B2 →
2B2

, which is ρs-continuous and takes the finite values, which have 1, 2
or 3 elements, [20].

• In 1990 Schirmer defined the fixed point index for bimaps, [36]. The
bimap is the ρs-continuous mapping, which takes values having one or
two elements.

• In 1977 Górniewicz defined the spheric mappings, [15]. This notion was
developed by Górniewicz’s student Dawidowicz in [5] and [6]. The most
general definition comes from [14]. Denote by Bf(x) the set, which is
the sum of all bounded components of the complement of f(x) in R

n.
Set f̃(x) = f(x) ∪ Bf(x).

�f(x)�f̃(x)

The above figure shows a 1-dimensional continuum f(x) in R
2 shaped as

two hearts joined by two wedding rings and a 2-dimensional continuum
f̃(x) which has a form of the gingerbread “katarzynka” baked in the
town Toruń as a souvenir connected with a beautiful ancient legend.

The map f : Bn → 2Bn

is called the spheric mapping, if it satisfies the fol-
lowing conditions:

• f is u.s.c.;
• the graph Γ(Bf) of the mapping Bf is an open subset of Bn × R

n;
• the mapping f̃ has a fixed point.

Let us recall two properties of spheric mappings:

• every spheric mapping has a fixed point, [14];
• every ρc-continuous mapping f : B2 → 2B2

with compact connected val-
ues is a spheric mapping, [14].

The following question (called in [27] the Górniewicz Conjecture) was the
main source of inspiration for the author of this paper:

Is the Brouwer Fixed Point Theorem true for ρc-continuous mappings with
compact connected values?

We now formulate our results:

Theorem 1.1 ([29]). There is a fixed point free mapping f : B4 → 2B4
, which

is ρc-continuous and has compact connected values.
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Theorem 1.2 ([29]). Every ρh-continuous mapping f : Bn → 2Bn

has a con-
tinuous selector and a fixed point.

Theorem 1.3 (see [29]). Every ρs-continuous mapping f : Bn → 2Bn

with
eLCn−2 values, such that the mapping f̃ = f ∪ Bf has eLCn−1 values, is
a spheric mapping and has a fixed point.

Theorem 1.4 ([30]). Every ρc-continuous mapping f : Bn → 2Bn

such that
for every x ∈ Bn, f(x) is homeomorphic to either a point or the n − 2-sphere,
has a fixed point, n 
= 6.

In the next paragraphs we comment these results and give examples.

2. Borsuk continuities and fibrations

Let X, Y be two compact finite-dimensional metric spaces, f : X → 2Y —
a mapping and Γ(f) — its graph. We formulate here two results, which connect
the continuity types of f to some fibre properties of the projection p: Γ(f) → X.

Theorem 2.1 ([31]). Let f be a ρh-continuous mapping. Then the projection
p is a Hurewicz fibration.

Theorem 2.2 ([31]). Let f be a ρc-continuous mapping with values, which
are compact connected topological n-manifolds without boundary, n 
= 4. Suppose
that for n = 3 the values contain no “fake 3-cell”. Then the projection p is
a locally trivial bundle.

The proofs of these theorems are based on strongly regular mappings [11],
completely regular mappings [9] and approximating homotopy equivalences by
homeomorphisms [4], [19]. Another theorem in this spirit, though not connected
with the Borsuk metrics, is the famous Vietoris Theorem explored in [13] and [23].

3. Mappings with e.l.c. or eLCm values

Since every Hurewicz fibration over the contractible base has a section, the
Theorem 1.2 follows immediately from Theorem 2.1. Let us note that the fact
that f̃ in Theorem 1.3 has a fixed point (which is a necessary condition for f to
be spheric) follows from Theorem 1.2 and from the equivalence of eLCn−1 and
e.l.c. in R

n.

Problem 3.1. Could we drop in Theorem 1.3 the assumption on f̃?

The positive answer is known for n = 2 only, [29]. The assumption on f

in Theorem 1.3 can not be weakened, because there is a fixed point free ρs-
continuous mapping f : Bn → 2Bn

with eLCn−3 values:

f(x) = {y ∈ Sn−1 : y · x ≤ (1 − ‖x‖)‖x‖}.

A special kind of mappings with eLCn−3 values which have fixed points are
mappings from the Theorem 1.4. More generally, we have the following
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Definition 3.2. We call f : Bn → 2Bn

an 1 − Sk-mapping if f is ρc-con-
tinuous and for every x in Bn, f(x) is homeomorphic to either a point or the
k-sphere.

One can check that 1 − Sk-mappings have eLCk−1 values. We know that
1 − Sn−1-mappings of Bn are spheric, 1 − S0-mappings are Schimer’s bimaps
and 1 − Sn−2-mappings are “heroes” of Theorem 1.4. All these mappings have
fixed points. The following problem is still open.

Problem 3.3. Has every 1 − Sk-mapping f : Bn → 2Bn

a fixed point for
1 ≤ k ≤ n − 3?

In the next paragraph we tell the story, how this problem was attacked.

4. 1 − Sk-mappings

Let us start with the following

Definition 4.1. Let F be a field and Ȟ� denote the Čech homology functor.
The u.s.c. compact-valued map ϕ: Bn → 2Bn

is called an F -Brouwer mapping if
and only if

Ȟn(Γ(ϕ), Γ(ϕ|Sn−1); F ) i�−→ Ȟn(Bn × Bn, Sn−1 × Bn; F )

induced by inclusion is a non-zero homomorphism.

Theorem 4.2 ([26], [34, Corollary 5.1]). Every F -Brouwer mapping has
a fixed point.

The class of F -Brouwer mappings is rich enough to contain the single-valued
mappings, the maps equipped with the continuous single-valued selector, map-
pings graph-approximable by the single-valued continuous functions and the F -
acyclic mappings. Moreover, this class is closed under compositions with the
single-valued mappings.

Theorem 1.4 is a corollary from the following

Theorem 4.3 ([30]). Every 1 −Sn−2-mapping of Bn is a Z2-Brouwer map-
ping, 1 ≤ n 
= 6.

The next example shows that Z2 in the above theorem can not be replaced
by any field F of the characteristic char(F ) 
= 2.

Example 4.4. Fix ε ∈ (0, 1). We define f : B3 → 2B3
with f(0) = {0} and

f(x) — a circle on S2(0; ‖x‖) such that d(y, x) = ε · ‖x‖ for y ∈ f(x), x 
= 0. Of
course, f is the 1 − S1-mapping of B3.

Indeed, in the above example Γ(f) is contractible and Γ(f |S2) is homeomor-
phic to the real projective space RP 3. Thus

H3(Γ(f), Γ(f |S2); F ) = H2(RP 3; F ) = Tor(Z2, F ) = {y ∈ F : 2y = 0}
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which is 0 when char(F ) 
= 2, so in this case f is not the F -Brouwer mapping.
Theorem 4.3 is a (nontrivial) consequence of the following

Theorem 4.5 ([26], [31]). Let f : Bn → 2Bn

be a 1 − Sk-mapping and 1 ≤
k < n. Let U(f) ⊂ Bn be the set of these points x, where f is really multi-valued,
i.e. f(x) ∼= Sk. Roughly speaking, we now approximate the boundary of the set
U(f) by some closed connected (n − 1)-manifolds M in U(f). By Theorem 2.2,
the graph Γ(f |M) is a space of the locally trivial bundle over M with fibre Sk,
(k 
= 4). If each of these bundles (for a sufficiently close approximation) satisfies
the inequality

dim Hk(Γ(f |M); Z2) > dim Hk(M ; Z2),

then f is a Z2-Brouwer mapping and has a fixed point.

Remark 4.6 ([27]). The homology inequality in the above theorem is equiv-
alent to the vanishing of the last Stiefel–Whitney class wk+1 of the bundle

Sk → Γ(f |M) → M.

The discussion of the Stiefel–Whitney classes we postpone until the last para-
graph.

We end this story with

Theorem 4.7 ([28]). There is an 1 − S1-mapping f of B4, which for every
field F is not an F -Brouwer mapping.

We now describe the example from the above theorem (in general lines only).
Let ξH denote the Hopf fibration pH : ∂(B4) → S2. We embed M = S2 × S1

into Int(B4) as well as its neighborhood M × [−1, 1]. Consider the projection
π: M → S2 and take Γ(f |M) equal to the space of the bundle π�(ξH), i.e. the pull-
back {(x, y) ∈ M ×∂(B4) : π(x) = pH(y)}. In other words, f(x) = (pH)−1(π(x))
for x ∈ M = M × 0. Define f(z) = (1 − |t|) · f(x) if z = (x, t) ∈ M × [−1, 1] and
f(z) = 0 otherwise. The bundles from Theorem 4.5 are two copies of π�(ξH)
(over M × (1 − ε) and over M × (−1 + ε)). Since

dim H1(∂(B4); Z2) = dim H1(S2; Z2) = 0,

we have w2(ξH) 
= 0. Then

w2(π�(ξH)) = π�(w2(ξH)) 
= 0,

because the retraction π induces a monomorphism on cohomology groups. Of
course, this calculus does not prove Theorem 4.7 but shows that f is a good
candidate — not excluded by Theorem 4.5. Author does not know if we could
modify the above construction of f to get a fixed point free 1 − S1-mapping.
Theorem 1.1 provides with an example of a fixed point free ρc-continuous map-
ping of B4 such that each value is the topological join of two finite sets with 1,
2 or 3 elements. This example is based on [20].
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5. Stiefel–Whitney classes

Let p: E → M be a locally trivial bundle with the fibre Sk and the Stiefel–
Whitney classes w1, . . . , wk+1 (defined with help of the Steenrod squares and the
Thom isomorphism [32]). The proof of the Theorem 4.3 applies Theorem 4.5, a
version of the Borsuk–Ulam antipodal theorem [31, Theorem 5.3], [28, Fact 2],
and the well-known equality:

(∗) ck+1 = q�(wk+1) +
k∑

j=1

q�(wk+1−j) ∪ cj,

(see [18]), which holds in the Z2-cohomology algebra of the space E/Z2, if this
projective bundle does exist, (c is the first Stiefel–Whitney class of the 0-sphere
bundle E → E/Z2 and q: E/Z2 → M is the projection induced by p). Surely,
the projective bundle E/Z2 exists, if the antipodal actions of the group Z2 on
the separate fibres of p: E → M could be “glued together” to form the free
fiber-wise Z2-action on the space E. Such a gluing makes no difficulties when
the structural group of the fibration is linear (orthogonal), or more generally,
when all homeomorphisms in the structural group are odd mappings. This was
the reason of the fact that author’s considerations in [28] have been restricted to
the case of k = 1, 2, 3. In this case, by theorems of Kneser [22], Smale [37] and
Hatcher [17], the structural group of any locally trivial k-sphere bundle reduces
to the orthogonal group O(k + 1).

Finally, the above problem of the projective bundle existence was solved
in [30]. The main idea of this solution is to replace the k-sphere bundle E with
the bundle

E� = {(x, y) ∈ E × E: x 
= y and p(x) = p(y)}
which has fibres (Sk × Sk) \ ∆ homotopy equivalent to Sk and the same Stiefel–
Whitney classes as E. The action of Z2 on these new fibres is a transposition of
coordinates in Sk × Sk. The same transposition defines the Z2-action on E�.

By the Leray–Hirsch Theorem, there is a version of the formula (∗) for
E�/Z2 with coefficients wi replaced with (a priori — new) coefficients w�

i for
i = 1, . . . , k + 1. We know that

• w�
k+1 = wk+1, [30, p. 184].

The question if w�
i is the Stiefel–Whitney class of the bundle E� for i ≤ k

remains (for the author) still open.
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