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PREFACE

The “Winter School on Topological Methods in Nonlinear Analysis” took
place at the Nicolaus Copernicus University in Toruń in February 9–13, 2009
and was organized by the Juliusz Schauder Center for Nonlinear Studies. The
idea of the meeting comes from Prof. Lech Górniewicz — the Head of this Center.

The aim of the Organizers was to bring together young Polish researchers and
to present them some of the most interesting subjects in modern nonlinear anal-
ysis. More than 50 young mathematicians participated in the 5 series of lectures
given by professors: Grzegorz Gabor (Nicolaus Copernicus University in Toruń),
Bogus law Hajduk (University of Wroc law), Marek Izydorek (Gdańsk University
of Technology), Wac law Marzantowicz (Adam Mickiewicz University in Poznań),
José M. R. Sanjurjo (Complutense University of Madrid) and Klaudiusz Wójcik
(Jagiellonian University in Kraków).

At the beginning we were planning the 6 courses. Unfortunately, our col-
league Prof. Andrei Borisovich (University of Gdańsk), who prepared the lec-
tures on nonlinear Fredholm analysis and its applications to elastic mechanics,
died three months before the “Winter School”. Therefore we decided for the
lecture to his memory given by his first Ph.D. student in Poland — dr Joanna
Janczewska (Gdańsk University of Technology).

The papers collected in this volume reflect an ample spectrum of subjects
discussed during the lectures: Ważewski method, symplectic topology, Morse
theory, Conley theory and many others.

We thank all our main speakers for their stimulating lectures and all partic-
ipants for creating and friendly atmosphere during the meeting.

Marek Izydorek

Toruń, September 2010
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ON THE WAŻEWSKI RETRACT METHOD

Grzegorz Gabor

Abstract. The original version of the Ważewski theorem as well as its
newer formulations are presented. Several applications of the Ważewski

method in differential equations are given. In the second part some multi-

valued Ważewski type theorems are provided with open problems finishing
this note.

1. Ważewski’s retract method in dynamical systems

Consider the following Cauchy problem:

(1.1)
{
ẋ(t) = f(x(t)) for t ≥ 0,
x(0) = x0 ∈ Ω,

where Ω ⊂ Rn and f : Ω→ Rn is so regular that the problem has a unique local
solution for every x0 ∈ Ω, which depends continuously on the initial condition
(we can think about a locally Lipschitz continuous map).
This implies that a local semiflow π:D → Rn, where D is an open subset

of Ω × [0,∞) containing 0, is given. It means that, for every x ∈ Ω, the set
{t ≥ 0 | (x, t) ∈ D} is an interval [0, ωx) for some 0 < ωx ≤ ∞ and
(i) ωπ(x,t) = ωx − t for each x ∈ Ω and t ∈ [0, ωx),
(ii) π(x, 0) = x for every x ∈ Ω,
(iii) π(x, s+t) = π(π(x, t), s) for each x ∈ Ω and s, t > 0 such that s+t < ωx.
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8 Grzegorz Gabor

Remain that, if D = Ω× [0,∞), then we say that simply a semiflow is given. If
D ⊂ Ω × R and {t ∈ R | (x, t) ∈ D} = (αx, ωx), where αx < 0, ωx > 0, then we
say about a local flow. By a trajectory (positive trajectory, negative trajectory)
of x, denoted by π(x) (resp. π+(x), π−(x)), we mean the set of all points π(x, t)
(resp. with t ≥ 0, t ≤ 0).
Now, for a given subset W of Ω we ask for the existence of a point x ∈ W

and a positive trajectory (or, even, trajectory) of x in W . Is it possible to get
a positive answer studying a behavior of the flow, or the right-hand side of
equation (1.1), on the boundary of W? If we treat W as a set of constraints for
some species to survive, we will justify the name viable trajectory in V for any
solution of the problem (viable=vi+able).
If W is closed, and the vector field f is tangent to the set W , i.e. f(x) ∈

TW (x), where

TW (x) :=
{
v ∈ Rn

∣∣∣∣ lim inf
h→0+

dist(x+ hv,W )
h

= 0
}

is the Bouligand tangent cone, then all trajectories remain in W . The idea
to join the problem with appropriate tangency conditions was originated by
Nagumo in 1942 (see [16]), and still is fruitful (see, e.g. [1]). If the above Nagumo
tangency condition is satisfied, the set is positively invariant with respect to the
local semiflow generated by the Cauchy problem (1.1).
We are interested in the case where f(x) 6∈ TW (x) in some points on the

boundary of W . In these points the vector field is directed outside the set
and trajectories leave it through such points, which are justly called the exit
(or egress) points. More precisely, following Ważewski (see [19]), we say that
a point x ∈ ∂V , where V ⊂ Ω is an open subset and ∂V denotes the boundary
of V , is an egress point of V , if there are ε > 0 and a point y ∈ V such that
π({y} × [0, ε)) ⊂ V and π(y, ε) = x. An egress point x is a strict egress point, if
there exists δ > 0 such that π({x} × (0, δ)) ∩ V = ∅, where V is a closure of V .
Let us denote the set of egress points of V by E and the set of strict egress

points by Es. The fundamental Ważewski assumption was:

(1.2) E = Es.

Now, let S and Z be two sets such that S ⊂ E and Z ⊂ V ∪ S.

Theorem 1.1 (Ważewski Theorem, [19, Theorem 2]). If Z∩S is a retract (1)
of S, and Z ∩ S is not a retract of Z, then there exists a point x in Z \ S such
that the trajectory of x is viable in V or leaves V outside S.

There are two immediate corollaries of this theorem.

(1) A closed subset M of Y ⊂ X in a space X is said to be a retract of Y provided there

exists a map r: Y → M such that r(x) = x, for every x ∈ M , and a strong deformation retract

of Y in X, if there is a homotopy (called a strong deformation) h: Y × [0, 1] → X such that
h(x, 0) = x, h(x, 1) ∈ M , for all x ∈ Y , and h(x, t) = x, for each x ∈ M and t ∈ [0, 1].
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Corollary 1.2 (S := E). If Z ∩ E is a retract of E, and Z ∩ E is not
a retract of Z, then there exists a viable trajectory in V .

Corollary 1.3 (Z = V ∪E). If E is not a retract of V ∪E, then there exists
a viable trajectory in V .

Denote W := V ∪ E. The key point of the proof of Theorem 1.1 is the
following observation:

Lemma 1.4. If E = Es, then the map x 7→ e(x) := π(x, τ(x)) is continuous
on the set W ∗ := {x ∈ W | π+(x) 6⊂ V }, where τ(x) := sup{t ≥ 0 | π({x} ×
[0, t]) ⊂W} is the exit time of the trajectory of x.

At the moment we omit the proof since it will come back in a more general
case. Let us only see how the lemma implies Theorem 1.1.

Proof of Theorem 1.1. Assume the contrary. Then, for every x ∈ Z \S, there
is a point e(x) in S. Here we put e(x) = x for x ∈ S. Denote by ρ:S → S∩Z the
retraction, which exists by assumptions. Then the map r:Z → S∩Z, r := ρ◦e is
continuous, and r(x) = ρ(e(x)) = ρ(x) = x for x ∈ S∩Z, hence, r is a retraction;
a contradiction. �

Notice that, for Z = V ∪ E, we can get in the proof something more than
a retraction, namely, a strong deformation of Z onto E. Indeed, we can put
h(x, λ) := π(x, λτ(x)), for every x ∈ Z and λ ∈ [0, 1].
In the following example we illustrate an importance of Ważewski’s assump-

tions.

Example 1.5. (a) Let V := (0, 1)× (0, 1) and π((x, y), t) := (x+ t, y). Then
E = {1}×(0, 1) is a retract of Z = V ∪E. Obviously, there is no viable trajectory
in V .
(b) Let the flow be as above, and V := [(0, 1)× (0, 1)] \ {(x, y) | 0 ≤ x ≤ 1/2

and y ≤ x}. Then E = ({1} × (0, 1)) ∪ {(x, y) | 0 < x < 1/2 and y = x} being
disconnected is not a retract of Z = V ∪ E while there is no viable trajectory
in V . But we can see that the egress point (1/2, 1/2) is not a strict egress point.

Some simple situations, where the existence of viable trajectories can be
implied are listed below.

Example 1.6. (a) Let V := (−1, 1)× (−1, 1) and π be a flow generated by
the hyperbolic system ẋ = x, ẏ = −y. Then E = {−1, 1}× (0, 1) is not a retract
of V ∪ E as a disconnected set.
(b) Let V be as above, and π be induced by the system ẋ = x, ẏ = y.

Then E is a boundary of V , so, by the equivalent theorem to the Brouwer fixed
point theorem, there is no retraction from V ∪ E onto E. Note that there is no
retraction from a closure of any open set in a finite dimensional space onto its
boundary (see [10, p. 341]).
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(c) Let V be the ring B(0, 2) \ B(0, 1), and a flow be such that the exit set
E is a half of the bigger circle. Then E is a retract of Z = V ∪ E but it is
not a strong deformation retract of Z. Indeed, otherwise, the homology groups
of the ring (equal to H(S1)) would be equal to H(pt).
(d) Let V be a unit ball B(0, 1) in R3. It is easy to give a flow such that the

exit set E is a part of a unit sphere bounded by parallels −45◦ and 45◦. Once
again, the homology argument works.
(e) Let V be a torus (let us illustrate it by B(0, 1)× S1) and π be such that

E is the ring S1 × A, where A is a connected subset of S1 with A ( S1. Then
homology groups of Z = V ∪E and E are the same, while still there is no strong
deformation of Z onto E.

Using the Ważewski retract method some interesting boundary value prob-
lems can be solved. The reader can find details in [18]. Here we only formulate
them and give some comments.

Example 1.7. (a) We consider the following problem in R2:
ẋ(t) = f(t, x, y),

ẏ = g(t, x, y),

y(0) = 0,

(x(t), y(t)) ∈ (−1, 1)2,

where f and g are smooth, and the following conditions are satisfied:

xf(t, x, y) > 0 for every t ∈ R, x ∈ {−1, 1} and y ∈ [−1, 1],
yg(t, x, y) < 0 for every t ∈ R, x ∈ [−1, 1] and y ∈ {−1, 1}.

We can see that the problem is not autonomous, but we can extend it by
adding the equation ṫ = 1. In this modified autonomous case we take V = R×
(−1, 1)2, and then, taking Z = {0}×[−1, 1]×{0} we get E = R×{−1, 1}×(−1, 1).
Thus Z∩E is a retract of E while Z∩E is not a retract of Z (one can check this
as a simple exercise). A viable in V trajectory induces a solution of the problem.
(b) The problem is as above but we ask for solutions satisfying additionally

the condition x(1) = 0. To solve the problem we proceed as before but as V
we take the set (−∞, 1) × (−1, 1)2. As we can easily see, the exit set E is
connected and consists of three faces t = 1, |x| = 1. Let Z be as before, while
S := E \ {(1, 0, y) | |y| < 1}. One can check that Z ∩ S is a retract of S and
is not a retract of Z. Obviously, no trajectory is viable, but, by the Ważewski
theorem, at least one trajectory must start in Z and leave the set through E \S,
that is, in a point (1, 0, y) for some y ∈ (−1, 1).
(c) In the third example we look for solutions of the linear equation ẋ(t) =

−A(t)x(t) in Rn such that x(t) ≥ 0, x(t) 6= 0 for t ≥ 0, where A( · ) is a con-
tinuous map with values being matrices with nonnegative coefficients. Here
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x = (x1, . . . , xn) ≥ 0 means that xi ≥ 0 for every 1 ≤ i ≤ n. We add one
equation ṫ = 1 obtaining an autonomous system in Rn+1. Take V = (0,∞)×Ω,
where Ω = {(x1, . . . , xn) | xi > 0 for every i}. We associate with our system
a family of systems ẋ(t) = −(A(t) + εkN)x(t), where N is a matrix with all
coefficients equal to 1, and εk > 0. These new systems generate flows with the
exit set Ek = E := (0,∞)× {x ∈ ∂Ω | x 6= 0 and

∏n
i=1 xi = 0}, since ẋ(t) < 0.

Taking Z := V ∪ ((0,∞)× Σ), where Σ = {(x1, . . . , xn) | xi≥0 for every i and∑n
i=1 xi = 1}, we obtain that Z ∩E is a retract of E and it is not a retract of Z.
Hence, for every k ≥ 1, there is a trajectory in V for the system with εk which
starts from Σ. Now, taking a sequence εk ↘ 0, we can obtain a subsequence
of solutions xk converging to a solution of the original system. This solution is
nonnegative, starts from Σ and never meets the origin.

It appears that a definition of strict egress points can be less restrictive (see
Bielecki, [4]). In fact, we can prove the Ważewski theorem assuming that every
egress point x is a strong egress point, i.e.

(1.3) π({x} × (0, ε)) 6⊂ V for every ε > 0.

This condition is quite natural, since it means that x does not satisfy the follow-
ing local viability: π({x} × (0, ε)) ⊂ V for small ε > 0.
We use Bielecki’s condition and define, following Charles Conley’s idea from

[8] (see also [9]), for any subset W ⊂ Ω of the phase space, the exit set W− :=
{x ∈ W | x satisfies (1.3)}. In other words, in each point of W− trajectory
immediately leaves the set W . We define also W ∗ := {x ∈W | π+(x) 6⊂W}.
Now we can say that the Ważewski retract method allows us to answer

the question: when W \W ∗ 6= ∅ or, in terms of the viability theory (see [1]),
Viabf (W ) 6= ∅ or, in terms of dynamical systems, when the positively invariant
part inv+(W ) of W is nonempty.
Conley formulated the Ważewski theorem in a more general and convenient

form using the following notion.

Definition 1.8. We say that W ⊂ Ω is a Ważewski set, if
(W1) x ∈W, t > 0 and π({x} × [0, t]) ⊂W implies π({x} × [0, t]) ⊂W ,
(W2) W− is closed in W ∗.

Remark 1.9. (a) If W and W− are closed in Ω, then W is a Ważewski set.
(b) If W := V ∪ E and (1.2) is satisfied, then W is a Ważewski set. Indeed,

then W− = E and W \W− = V is open, and hence, W− is closed in W . Thus,
W− is closed in W ∗.
(c) Assumption (W2) is more general than (1.2). To see this, let us consider

V := (−∞, 0)∪
⋃∞
n=1(1/(2n+ 1), 1/(2n)) and the flow π(x, t) = x+ t. ThenW

−

is closed, 0 ∈W−, and 0 is an egress but not a strict egress point.



12 Grzegorz Gabor

(d) Ważewski sets can have empty interiors in contrast to those considered
by Ważewski.
The following general version of the Ważewski theorem can be found in [18]

(see Theorem 2.1).

Theorem 1.10. If W is a Ważewski set for a local semi-flow π, Z ⊂ W ,
S ⊂ W− are such that Z ∩W− ⊂ S, and S is not a strong deformation retract
of Z ∪ S in (W \W−) ∪ S, then there exists x ∈ Z such that
(a) π+(x) ⊂W \W−, or
(b) x ∈W ∗ and π+(x) leaves W through W− \ S.

Before a proof let us observe:

Remark 1.11. (a) If we replace a strong deformation by a retraction in
assumptions, then the theorem holds true as a simple corollary.
(b) If Z ∩ S is a retract of S, and it is not a retract of Z, then hypotheses

(a), (b) are satisfied. Indeed, it is sufficient to verify assumptions of Theo-
rem 1.10, more precisely, of the remark above. Assuming that there is a re-

traction r:Z ∪ S → S, we can define a retraction ρr|Z :Z
r|Z−→ S

ρ−→ Z ∩ S;
a contradiction. Hence, in view of Remark 1.9(b) we have obtained a general-
ization of the Ważewski theorem.
(c) Assume that S := W− and Z := W (Conley, [8]). If W− is not a strong

deformation retract of W , then there exists a trajectory viable in W \W−.

Proof of Theorem 1.10. We define the exit time function τ :W ∗ → R, τ(x) :=
sup{t ≥ 0 | π({x} × [0, t]) ⊂W}.
Now, we notice that, if a trajectory leaves W , it does this through W−.

Indeed, let x ∈W ∗. Then π({x} × [0, τ(x) + ε)) 6⊂W for any ε > 0, and hence,
π({π(x, τ(x))} × [0, ε)) 6⊂ W . This means that π(x, τ(x)) ∈ W−. By (W1)
π({x} × [0, τ(x)]) ⊂W .
The second easy observation is that x ∈ W− if and only if x ∈ W ∗ and

τ(x) = 0. Now we prove that the exit time function τ is continuous.

Step 1. τ is upper semicontinuous. Indeed, take any p ∈ W ∗ and ε > 0.
There is t ∈ (τ(p), τ(p) + ε) such that π(p, t) 6∈W . By the continuity of π, there
exists an open neighbourhood U of p such that π(x, t) 6∈W for every x ∈ U∩W ∗.
Hence, τ(x) < τ(p) + ε.

Step 2. τ is lower semicontinuous. To prove it, take any p ∈W ∗. If τ(p) = 0,
then, obviously, τ is lsc in p. Assume that τ(p) > 0. Take ε > 0 so small that
τ(p)− ε > 0. Fix t ∈ (τ(p)− ε, τ(p)). Then π({p} × [0, t]) ⊂W ∗ \W− and this
set is open in W ∗ by (W2). It implies that there exists an open neighbourhood
U of p such that π({x} × [0, t]) ⊂ W ∗ \ W− for every x ∈ U ∩ W ∗. Hence,
τ(x) > t > τ(p)− ε.
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Now, assuming that the hypothesis of the theorem is false, x ∈W ∗ for every
x ∈ Z. We define h: (Z∪S)×[0, 1]→ (W\W−)∪S, h(x, λ) := π(x, λτ(x)). It easy
to check that h strongly deforms Z∪S onto S in (W \W−)∪S; a contradiction.�

For some other Ważewski type results and applications to polyfacial sets we
refer the reader to [18].

2. Multivalued generalizations of the Ważewski retract method

When a map f in (1.1) is less regular, or we have to study a multivalued
problem

(2.1)
{
ẋ(t) ∈ F (x(t)) for a.e. t ∈ R,
x(0) = x0,

then we meet a so-called multivalued dynamical system. From a point there can
start a lot of solutions.
Throughout this section we will assume that F is usc (2), and

(HF ) F has nonempty compact convex values, and F has a sublinear growth,
i.e. there exists a constant c ≥ 0 such that

|F (x)| := sup{|y|; y ∈ F (x)} ≤ c(1 + |x|) for every x ∈ Rn.

It is known that, under these assumptions, for every x0 ∈ Rn the set of so-
lutions SF (x0) of problem (2.1) is compact Rδ (3), and the map x0 7→ SF (x0) ⊂
C(R,Rn) is usc.
When the problem is multivalued, then there can appear two exit sets, dif-

ferent in general,

W−(F ) := {x0 ∈ ∂W | ∀x ∈ SF (x0)∀t > 0 : x([0, t]) 6⊂W},
We(F ) := {x0 ∈ ∂W | ∃x ∈ SF (x0)∀t > 0 : x([0, t]) 6⊂W},

with W−(F ) ⊂ We(F ), and it is natural that from points in We(F ) \W−(F )
there can start trajectories going into W for both positive and negative times.
For brevity we denote W− :=W−(F ) and We :=We(F ).
There is a question, which of these two exit sets is suitable to obtain analogs

to the Ważewski theorem? Let us look at two following examples.

Example 2.1. Consider two sets (Figures 1 and 2). In the first example
W := {(x, y) ∈ R2 | |x| − 1 ≤ y ≤ |x| and y ≤ 1} and F (x) := [−1, 1]×{1}. The
set W is connected and W− = {(x, y) ∈ W | y = 1} is closed and disconnected,
so W− is not a retract of W and it is as good as possible. It is seen that there

(2) F : X ( Y is upper semicontinuous (usc) if the set F−1(U) := {x ∈ X | F (x) ⊂ U} is

open for every open set U in Y .

(3) A space X is a compact Rδ-set provided it is homeomorphic to an intersection of a de-
creasing sequence of compact contractible spaces. In particular, it is acyclic.
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�
We

W−

�We We

W−

Figure 1 Figure 2

is no viable trajectory in W . Notice that We = W− ∪ {(x, y) ∈ W | y = |x|} is
a strong deformation retract of W . Maybe We is suitable?
In the second example W := [−1, 1]× [−1, 1] and F (x) := [−α−(x), α+(x)]×

{1} for each x = (x1, x2) with x2 ≤ 0, where α−(x) := min{x, 0} and α+(x) :=
max{x, 0}. Moreover, F (x) := {0, 1} for every x with x2 > 0 and x2 > |x1| − 1,
and F (x) = [−α−(x), α+(x)]×{1} for every x with x2 > 0 and x2 ≤ |x1| − 1. It
is easy to check that F is a bounded usc map with compact convex values, and
We = {(x, y) ∈ W | y = 1} ∪ ({−1, 1} × [−1, 0]) is closed disconnected. So, it is
as good as possible, while, as before, there is no viable trajectory in W . Notice
that now W−{(x, y) ∈W | y = 1} is a strong deformation retract of W .

It appears that a choice of the exit set (W− orWe) in results on the existence
of viable trajectories depends on methods we want to apply.
As examples of results which use We we present the following ones proved

in [11]. We need the following notation:

τW :SF (W )→ [0,∞], τW (x) = sup{t ≥ 0 | x([0, t]) ⊂W},
ρW :SF (W )→ [0,∞], ρW (x) := inf{t ≥ 0 | x(t) ∈We}.

Theorem 2.2 ([11, Corollary 2.3]). Let W be a closed subset of Rn and
Z ⊂W be an arbitrary subset. Assume that F :Rn ( Rn satisfies:

(2.2) for each x0 ∈We \We and x ∈ SF (x0), x([0,∞)) ∩We = ∅

and

(2.3) there is a subset A ⊂W , We ⊂ A and there exists a retraction r:A→We
such that x([ρW (x), τW (x)]) ⊂ A for every x0 ∈ Z and every x ∈ SF (x0).

If there is an admissible (4) multivalued retraction (5) of We onto Z ∩We and
there is no admissible multivalued retraction of Z onto Z ∩ We, then there is
a trajectory starting from Z \We and viable in W .

(4) For the definition and properties of admissible (in the sense of Górniewicz) multivalued
maps, see e.g. [14]. In particular, compositions of compact and acyclic-valued usc maps are
admissible.

(5) We say that A ⊂ X is a multivalued retract of X if there exists an usc map Φ: X ( A
with compact values such that x ∈ Φ(x), for every x ∈ A.
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Theorem 2.3 (comp. [11, Theorem 2.1 and Corollary 2.2]). Assume that
the set We is closed and

(2.4) there is a subset A ⊂W , We ⊂ A, and there exists a retraction r:A→We
such that x([0, τW (x)]) ⊂ A for every x0 ∈We and every x ∈ SF (x0).

If there is no multivalued admissible deformation (6) of W onto We, then there
is a viable trajectory in W .

It is easy to see that assumption (2.2) is satisfied ifWe is closed, and that (2.4)
implies (2.3). Our assumption (2.4) excludes, roughly speaking, the situation
where some trajectories starting from one component of We leave W through
another one. An example showing an importance of assumption (2.4) can be
found in [11].
Note also that in early papers [2], [3], [15] multivalued versions of the Wa-

żewski theorem were presented in terms of multivalued retracts, without an
admissibility assumption. Such results were not sufficient from a topological
point of view since even a sphere ∂B(0, 1) ∈ Rn is a multivalued retract of
the unit ball B(0, 1). What we know is that S ⊂ ∂W is not a multivalued
retract of W if, for instance, W is connected and S is disconnected. Obviously,
a connectedness criterion is far from the strong deformation retract approach
proposed by Ważewski.

Sketch of proof of Theorem 2.3. Assuming that there is no viable trajectory
in W , we define a map H:W × [0, 1]( W as a composition:

H:W × [0, 1]
SF×id

( SF (W )× [0, 1]
J×id

( SF (W )× [0,∞)× [0, 1]
k−→W,

where

(SF × id)(x0, λ) := SF (x0)× {λ},
(J × id)(x, λ) := {x} × [ρW (x), τW (x)]× {λ}

and

k(x, t, λ) :=
{
x(λt) if λt 6∈ [ρW (x), τW (x)],
r(x(λt)) if λt ∈ [ρW (x), τW (x)].

By assumption (2.2) the map ρW is lsc (see [13, Lemma 1.9]). Furthermore,
τW is usc, since W is closed (see [1, Lemma 4.2.2]). Hence, the map H, as
a composition of admissible maps, is admissible. One can easily check that H is
a multivalued admissible deformation of W onto We; a contradiction. �

It appears that, to obtain a sufficient condition for the existence of viable
trajectories in terms of strong deformation retracts, the smaller exit set W−(F )

(6) A multivalued admissible deformation of X onto A ⊂ X is a map H: X × [0, 1] ( X

admissible in the sense of Górniewicz, and such that H(x, 0) = x, H(x, 1) ⊂ A for every x ∈ X,
and x ∈ H(x, t) for every x ∈ A. It is seen that H( · , 1) is a multivalued (admissible) retraction.
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is more appropriate. It is worth adding that W−(F ) can be characterized by
Bouligand tangent cones (see e.g. [7, Lemma 5.2]). This characterization is
due to Cardaliaguet who has proved in [6] that there exists a viable trajectory
in a convex set (or connected C1,1-manifold) W whenever W−(F ) is closed and
disconnected. This was the first Ważewski type result for multivalued maps
without paying any attention to the set We(F ).
Another idea is to find a Lipschitz selection or a sequence of sufficiently near

Lipschitz approximations of the right-hand side F in such a way that a topologi-
cal relation between W and W−(F ) is the same as for approximations. The first
question is: Can we approximate F by Lipschitz maps with W−(F ) = W−(f)
for sufficiently near approximations? An approximation Lemma 3.3 in [7] allows
us to obtain the following result.

Theorem 2.4. Let F :Rn ( Rn be continuous. Assume that W ⊂ Rn
is a compact C1,1 n-manifold with a boundary, W−(F ) is closed and, if it is
nonempty, it is a C1,1 (n − 1)-submanifold of ∂W with a boundary. If W−(F )
is not a strong deformation retract of W , then there is a viable trajectory in W .

In the proof we find, following Lemma 3.3 in [7], a sequence of Lipschitz 1/n-
approximations (7) (fn) of F with W−(fn) = W−(F ), and, by the Ważewski
theorem, a sequence of viable solutions xn corresponding to fn. Since W as well
as the graph of F are closed, we can go with n to infinity, and obtain a viable
trajectory x for F in W .
In general, it is hard to find such good single-valued approximations as above.

The problem is in a neighbourhood of the boundary of the exit set W− in ∂W .
An approximation technique can be applied for a larger class of sets and maps if
we do not insist that approximating single-valued problems induce the same exit
set. The main result in this direction has been proved in [11], and is as follows:

Theorem 2.5. Let W = IntW be a sleek (8) subset of Rn and F :Rn ( Rn
be a map (usc and not necessarily continuous) such that W−(F ) is a compact
strong deformation retract of its certain open neighbourhood V in W . Assume
that IntTW (x) 6= ∅ for every x ∈ W \ W−(F ). If W−(F ) is not a strong
deformation retract of W , then there is a viable trajectory in W .

Let us give some comments. Sleekness we assume above is an essentially
weaker condition than C1,1 regularity which means lipschitzeanity of the map
TW ( · ), as required in Theorem 2.4. For instance, each closed convex set is sleek.
Note that we need a lower semicontinuity of TW ( · ) only onW \W−(F ). We have
also dropped the continuity assumption on F . The assumption IntTW (x) 6= ∅

(7) By an ε-approximation of F we mean a single-valued map f such that dconvF (B(x,ε))f(x)

< ε for every x. This condition is slightly weaker than the usual one considered in approxima-

tion techniques (“conv” is added, comp. [14]).
(8) We say that a set W is sleek, if the Bouligand cone map TW ( · ) is lower semicontinuous.
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eliminates “too sharp corners” of the set W , and means, in other words, that W
is epi-lipschitz in points of W \W−(F ) (comp. [17]).
The following lemmas are used in the proof of Theorem 2.5.

Lemma 2.6 (comp. [12, Lemma 3.3]). Let W ⊂ Rn be a closed set and F be
such that W− is compact. Then, for any open neighbourhood V0 of W− in Rn,
there exist an open neighbourhood VF of W− in Rn and ε0 > 0 such that, for
every p ∈ VF ∩W , 0 < ε ≤ ε0 and every locally Lipschitz ε-approximation f
of F , there is p 6∈ V iabf (W ) (i.e. p ∈ W ∗) and Sf (p)([0, τW (p)]) ⊂ V0 ∩ W ,
where τW is the exit function for f .

Lemma 2.7 ([11, Lemma 3.5]). Let A be a closed subset of Rn. Assume
that F :Rn ( Rn, Ψ:A ( Rn are convex valued, F is usc, and Ψ satisfies the
following condition:

(2.5) For every x ∈ A there exist yx ∈ F (x)∩IntΨ(x) and an open neighbourhood
V (x) of x in X such that yx ∈ IntΨ(z) for each z ∈ V (x) ∩A.

Then, for every ε > 0, there exists a locally Lipschitz map f :Rn → Rn such that
(a) f is an ε-approximation of F ,
(b) f is a selection of Intψ( · ) on A.

Let us note that assumption (2.5) is satisfied if, e.g. Ψ is lsc (9) and

F (x) ∩ IntΨ(x) 6= ∅ for every x ∈ A.

Lemma 2.8 ([11, Lemma 3.6]). Let X ⊂ Rn and A ⊂ X be a closed subset.
Assume that Ψ:X ( Rn is convex valued, and satisfies the following condition:

(2.6) For every x ∈ X there exist yx ∈ Ψ(x) and an open neighbourhood V (x)
of x in X such that yx ∈ Ψ(z) for each z ∈ V (x) with yx = 0 for every
x ∈ A.

Then there exists a locally Lipschitz selection f :Rn → Rn of Ψ such that f(x) = 0
for every x ∈ A.

Sketch of proof of Theorem 2.5. We assume that there is no viable trajectory
in W .

Step 1. For an open set V we find an open neighbourhood V ′ of W− :=
W−(F ) in W such that V ′ ⊂ V , and each trajectory x starting from V ′ leaves
W and up to time τW (x) it remains in V (see Lemma 2.6).

Step 2. Take an open neighbourhood Ω0 ofW− inW such that Ω0 ⊂ V ′ and,
for an arbitrary small ε > 0, define the following auxiliary map Fε:Rn ( Rn,

Fε(x) := F (x) + δε(x)B1,

(9) F : X ( Y is lower semicontinuous (usc) if the set F−1
+ (U) := {x ∈ X | F (x)∩U 6= ∅}

is open for every open set U in Y .
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where δε(x) := min{dΩ0(x), ε} and B1 denotes the unit ball in Rn. Then
W−(Fε) =W−(F ) and

Fε(x) ∩ IntTW (x) 6= ∅ for every x ∈W \ Ω0.

Step 3. Let Ω ⊃ Ω0 be an open subset in W such that Ω ⊂ V ′. From
Lemma 2.7 it follows that there exists a locally Lipschitz ε-approximation f
of Fε such that f(x) ∈ IntTW (x) for every x ∈W \ Ω. Therefore, W−(f) ⊂ Ω.
Step 4. Take an open set U in W such that Ω ⊂ U ⊂ U ⊂ V ′. Consider the

map Γ:W ( [0,∞),
Γ(x) := [τW\U (x), τW (x)].

This map does not have to be lsc. Nevertheless, it satisfies the following condi-
tion:

• For every x ∈ W , there exist γx ∈ Γ(x) and an open neighbourhood
V (x) of x in W such that γx ∈ Γ(z) for any z ∈ V (x).

Indeed, it is sufficient to take γx ∈ Γ(x) such that Sf (x)(γx) ∈ U \W−(f) if
x 6∈W−(f)∪W−, and γx = 0 if x ∈W−(f)∪W−, and use regularity of f . From
Lemma 2.8 it follows that there exists a continuous selection γ:W → [0,∞) of Γ
with γ(x) = 0 for every x ∈ W−(f) ∪W−. Notice that Sf (x)(γ(x)) ∈ V and
γ(x) ≤ τW (x) for every x ∈ W , where Sf (x) denotes the unique solution of the
Cauchy problem for f and an initial point x.

Step 5. Define the homotopy h:W × [0, 1]→W ,

h(x, t) :=
{
Sf (x)(2tγ(x)) if 0 ≤ t ≤ 1/2,
k(Sf (x)(γ(x)), 2t− 1) if 1/2 < t ≤ 1,

where k:V × [0, 1]→ W is a strong deformation of V onto W− in W . One can
see that h is continuous, h( · , 0) = idW and h(x, 1) ∈ W− for every x ∈ W .
Moreover, for every x ∈ W−, there is γ(x) = 0 and hence h(x, t) = k(x, t) = x

for any t ∈ [0, 1]. We conclude that W− is a strong deformation retract of W ;
a contradiction. �

The assumptions of Theorem 2.5 can be slightly modified, and the result can
obtain the following form.

Theorem 2.9. Let W = IntW ⊂ Rn be a sleek ANR, and let F :Rn ( Rn
satisfy (HF ) and

(2.7) W−(F ) is a compact ANR and IntTW (x) 6= ∅ for every x ∈W \W−(F ).

If W−(F ) is not a strong deformation retract of W , then there is a viable tra-
jectory in W .

Proof. Indeed, we show that we can arrive at the previous situation. From
the homotopy extension theorem for compact ANRs (see [5, Corollary V.3.3]) it
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follows that there exists an open neighbourhood V ofW−(F ) inW with a strong
deformation onto W−(F ). �

We finish with some open questions.

Open problems.

1. Suppose that F is continuous. Is it true that there exists a viable
trajectory in W , if We(F ) is not a strong deformation retract of W?

2. Is Theorem 2.5 true for sets which are not sleek? Pay attention to
Example 2.1, Figure 1.

The list of references below is far from completeness. They are chosen for
the purpose of this note. We recommend [18] and references therein for further
information on the Ważewski retract method.
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AN INTRODUCTION TO SOME PROBLEMS
OF SYMPLECTIC TOPOLOGY

Bogus law Hajduk

Abstract. We give a short introduction to some open problems in sym-

plectic topology, like existence of symplectic structures on M × S1 or on

exotic tori and existence of symplectic circle actions on symplectic man-
ifolds which admit smooth circle actions. Some relations between these

problems are also explained.

1. Introduction

The principal aim of this note is to explain some open questions on symplectic
manifolds in a way accessible to non-specialists and students. For this purpose we
include an extensive preliminary part where basic notions and facts are described.
Last three sections contain a discussion of:

• existence of symplectic forms on closed manifolds;
• existence of symplectic circle actions;
• existence of symplectic structures on exotic tori and a related question
on symplectomorphisms of tori.

I omit most of technical details, to enable the reader to follow main route
to those problems. Hopefully, this can be read by anybody familiar with main
notions and facts of differential topology and the elementary part of de Rham
theory of differential forms on manifolds. For further reading, detailed proofs,
enlightening comments and more I recommend a beautiful book by Dusa McDuff
and Dietmar Salamon [19].
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This article is based on lectures delivered during Winter School on Topo-
logical Methods in Nonlinear Analysis organized by Juliusz Schauder Center for
Nonlinear Studies at Copernicus University, Toruń, in February 2009. Here I
skip most of the introductory part of the lectures, which contained an elemen-
tary review of notions which were used later. The background material can be
found in many textbooks and it would not be very useful to include it here. Some
possible sources are [4], [6] for introduction to geometry of differential forms and
de Rham complex and [18], [15] for a comprehensible introduction to differential
topology.
I would like to express my thanks to Lech Górniewicz and Marek Izydorek

for the invitation to talk at the school.

2. Preliminaries

Bilinear symplectic forms. A bilinear skew-symmetric form ω on Rk is
called symplectic if it is nondegenerate, i.e. if for someX ∈ Rk we have ω(X,Y ) =
0 for any Y , thenX = 0. Any bilinear skew symmmetric form in a base e∗1, . . . , e

∗
k

of the dual space (R2n)∗ is equal to e∗1 ∧ e∗2 + . . . + e∗2n−1 ∧ e∗2n, where 2n ≤
k. If such a form ω is non-degenerate, then 2n = k and there exists a base
e∗1, . . . , e

∗
n, f

∗
1 , . . . , f

∗
n such that

ω = e∗1 ∧ f∗1 + . . .+ e∗n ∧ f∗n.

In other words, for the dual base e1, . . . , en, f1, . . . , fn we get

ω(ei, ej) = ω(fi, fj) = 0, ω(ei, fj) = δij for any i, j ∈ {1, . . . , n}.

Such a base is called symplectic. Any symplectic bilinear form admits many
symplectic bases. and existence of symplectic bases implies that ω on R2n is
non-degenerate if and only if ωn = ω ∧ . . . ∧ ω is nonzero.
If we define J by Jei = fi, Jfi = −ei, i = 1, . . . , n, then J2 = −id. Thus we

have on R2n a structure of complex vector space. Moreover, for any v, w ∈ R2n,
ω(Jv, Jw) = ω(v, w) and ω(v, Jv) > 0 if v 6= 0. The formula 〈v, w〉 = ω(v, Jw)
defines a scalar product in R2n. We say that J is compatible with ω.
In the other direction, if J is a complex structure on R2n and 〈 · , · 〉 is a J-

invariant scalar product, then ω(v, w) = −〈v, Jv〉 is a symplectic bilinear form
on R2n and J is compatible with ω. For any given J there exists a J-invariant
scalar product given for example as the averaged form 1

2 (〈v, w〉 + 〈Jv, Jw〉),
where 〈 · , · 〉 is arbitrary.
Using symplectic bases, it is easy to see that if J0 is the standard complex

structure, then any other J is induced from J0 by a linear isomorphism T , J =
T−1J0T . Since J0 is preserved by T if and only if T is a complex isomorphism,
we can identify J with an element of the quotient GL(R, 2n)/GL(C, n). Up to
homotopy type this is the quotient of maximal compact subgroups. For the
proofs of the following two facts see [19].
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Proposition 2.1. Both the space of all linear symplectic forms on R2n and
the space of complex structures on R2n have the homotopy type of O(2n)/U(n).
If n = 2, then it is homotopically equivalent to S2 ∪ S2.

Note also that the space of all complex structures compatible with a given
symplectic form is large, since one can change a symplectic base by a symplectic
isomorphism to get another complex structure compatible with the same form.
As above one gets a homeomorphism of that space with Sp(n)/GL(C, n)∩Sp(n),
where Sp(n) denotes the space of linear isomorphisms preserving the standard
symplectic form on R2n ∼= Cn.

Proposition 2.2. The space of all complex structures on R2n compatible
with a given symplectic form is contractible.

Symplectic differential forms. Now we will consider exterior differential
2-forms on smooth manifolds, i.e. smooth sections of the second exterior power
of the cotangent bundle. Such a form ω is called nondegenerate if at any point
x ∈ M we have a nondegenerate bilinear form ωx on TxM . Thus a 2-form ω is
non-degenerate at x ∈ M if for any nonzero vector X ∈ TxM , the 1-form ιXω

on TxM does not vanish, where (ιXω)(Y ) = ω(X,Y ).

Definition 2.3. A differential 2-form is called symplectic if it is closed and
non-degenerate.

A smooth complex structure on the tangent vector bundle of a manifold M
is called almost complex structure on M . This means that there is a bundle
endomorphism J :TM → TM such that

(a) J2 = −id.
We say that J is compatible with ω if additionally the following two condi-

tions hold:

(b) ω(JV, JW ) = ω(V,W ) for all U, V ;
(c) the symmetric form defined as g(U, V ) = ω(U, JV ) is positive definite,
so that it defines a Riemannian metric on M .

Contractibility of the space of complex structures on TxM compatible with
ωx implies that there exist almost complex structures compatible with any sym-
plectic form. Namely, construct J first locally using symplectic bases and then
combine local structures to a global almost structure using the contractibility to
deform one local J to another. In terms of bundles, a ω-compatible J is a section
of a bundle with contractible fibre and the argument describes how to construct
a section of such bundle. The space of such sections is also contractible, thus we
have

Proposition 2.4. If a manifold has a symplectic structure, then it admits an
almost complex structure. The space of all almost complex structures compatible
with a given symplectic form is contractible.
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However, only nondegeneracy is used to construct J . Thus existence of an
almost complex structure is equivalent to existence of a differential form, not
necessarily closed, which is non-degenerate at each point.

Examples 2.5.
(a) In R2n consider standard coordinates x1, . . . , xn, y1, . . . , yn. The formula

ω = dx1 ∧ dy1 + . . .+ dxn ∧ dyn defines a symplectic form. Since ω is invariant
with respect to translations, it defines also a symplectic form on the torus T2n =
R2n/Z2n.
(b) The volume form of any oriented Riemannian surface is symplectic.
(c) If ω1, ω2 are symplectic forms on manifolds M1,M2, then ω1 × ω2 =

p∗1ωM + p
∗
2ωN , where p1, p2 are projections, is a symplectic form on M1 ×M2.

(d) For any manifold M the cotangent bundle T ∗M is a (noncompact) sym-
plectic manifold. A symplectic form is dλ, where λ is the tautological 1-form on
T ∗M given by

λv∗ = v∗dπ.

Here π:T ∗M → M jest the projection of the cotangent bundle and v∗ ∈ T ∗M
is a point in T ∗M . In local coordinates x1, . . . , xn on M we have the formula

λv∗

(
∂

∂xj

)
= yj , if v∗ =

∑
j

yjdxj .

The following theorem shows some rigidity of symplectic structures.

Theorem 2.6 (Moser). If ωt is a smooth path of symplectic forms on a clo-
sed manifold M such that the cohomology class [ωt] is constant, then there exists
a smooth isotopy ψt ∈ Diff(M) satisfying ψ0 = idM and ψ∗t ωt = ω0.

The proof is based on so called Moser’s trick. Since [ωt] = const thus there
exists σt such that ddtωt = dσt. Consider the 1-parameter family of vector
fields Xt defined (uniquely, since ωt are non-degenerate) by the equation σt =
−ι(Xt)ωt. On a closed manifold this family defines a path ψt of diffeomorphisms
by

d

dt
ψt = Xt(ψt).

Differentiating the equality ψ∗t ωt = ω0 with respect to t we get

ψ∗t d(σt + ι(Xt)ωt) = 0,

thus the isotopy ψt given by Xt has the required property.
Moser’s theorem can be used to prove the following property which shows

that there is no local symplectic invariants. This is in contrast with Riemannian
geometry, where curvature invariants play a prominent role.

Theorem 2.7 (Darboux). For any symplectic form ω on M and any point
x ∈M there exists a local coefficient system x1, . . . , xn, y1, . . . , yn around x such
that ω = dx1 ∧ dy1 + . . .+ dxn ∧ dyn.
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3. Symplectic forms on closed manifolds

The problem of existence of symplectic structures has a simple answer in
the case of open (i.e. non-compact or with non-empty boundary) manifolds.
However, the proof of the following theorem is quite difficult (see [19]).

Theorem 3.1 (Gromov). If M is an open almost complex manifold, then it
admits a symplectic form.

For closed manifolds the problem whether there is a symplectic form on
a given manifold is simple only in dimension 2, where orientability is necessary
and sufficient. In dimension 4 there are some answers (see Section 6), but in
higher dimensions essentially no general existence theorems are known.
Consider a closed symplectic manifold M of dimension 2n. By Proposi-

tion 2.4 M is almost complex. There are non-trivial obstructions to impose an
almost complex structure on M . For n = 2 a characterization of closed almost
complex manifolds was given by Ehresman and Wu.

Theorem 3.2. A closed oriented 4-manifold M admits an almost complex
structure compatible with the orientation if and only if there exists a class c ∈
H2(M,Z) such that its reduction mod 2 is equal to the second Stiefel–Whitney
class w2(M) and c2 = 2χ(M) + 3σ(M). Here χ, σ denote respectively the Euler
characteristic and the signature and H4(M,Z) is identified with the integers using
the given orientation.

Using Theorem 3.2 one can check that the connected sum #kCP 2 of k copies
of the complex projective space CP 2 is almost complex if and only if k is odd.
In particular, CP 2#CP 2 admits no symplectic structure. To calculate this, let
us recall that for CP 2 we have w2 6= 0, χ = 3, σ = 1. It is not difficult to
calculate that H2(#kCP 2) ∼= ⊕kH2(CP 2) and that (a1, . . . , ak)2 = a21 + . . . +
a2k ∈ H4(M,Z) ∼= Z. We have χ = k + 2, σ = k, w2 = (1, . . . , 1) mod 2. Thus
for a class c = (a1, . . . , ak) required by the Ehresmann–Wu theorem all entries
should be odd integers. An elementary argument shows that for a1, . . . , ak odd,
a21+ . . .+a

2
k can not be equal to 5k+4 if k is even. For k = 2 this boils down to

a simple fact that the equation a2 + b2 = 14 has no integer solutions. For k = 3
a solution is c = (3, 3, 1).
Another obstruction to existence of symplectic forms arises from the fact

that ωn is a volume form. Thus any symplectic form determines an orientation
of the underlying manifold. However, this can be obtained from an almost com-
plex structure as well, since any complex structure on a vector space V defines
uniquely an orientation of V . But for a closed manifold it gives more. Namely,
on a closed 2n-dimensional manifold we have

∫
M
ωn 6= 0, thus the cohomology

classes [ω]n = [ω] ∪ . . . ∪ [ω] and [ω] are nonzero.
Thus we have two basic obstructions to get a symplectic structure.
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Proposition 3.3. If a closed 2n-dimensional manifoldM admits a symplec-
tic structure, then M is almost complex and there is a class u ∈ H2(M ;Z) such
that un 6= 0. In particular, H2(M) 6= 0.

Examples 3.4.
(a) Complex projective space CPn is symplectic and the following Fubini–

Study form τ gives a symplectic structure.

τ =
1

2
∑
µ zµzµ

∑
k

∑
j 6=k

zjzjdzk ∧ dzk − zjz + kdzj ∧ dzk

where zj = xj + iyj , j = 0, . . . , n are complex homogeneous coordinates and we
denote dzj = dxj+ i dyj , dzj = dxj− i dyj . This is an example of a Kähler man-
ifold, i.e. a complex manifold with a Riemannian metric g such that ω(V,W ) =
g(V, JW ) is a closed form, where J is the almost complex structure on M pro-
vided by its complex structure.
(b) The sphere S2n of dimension 2n does not admit any symplectic form

for n > 2, since H2(S2n) = 0. For the same reason S3 × S1 is not symplectic.
Moreover, S2×S4 is not symplectic because for any x ∈ H2(S2×S4;Z) we have
x3 = 0.

4. Constructions of symplectic manifolds

The productM ×N of two symplectic manifoldsM,N is symplectic. Hence,
it is natural to ask whether a fibre bundle with symplectic base and symplectic
fibre is symplectic. In general this fail to be true as the following example shows.

Example 4.1. Let S3 → S2 be the Hopf fibre bundle. It is a bundle with
fibre S1 given by the natural action, by multiplication, of unit (of module 1)
complex numbers on unit quaternions. Then S3 × S1 → S3 → S2 is a fibre
bundle map with fibre T 2, hence both base and fibre are symplectic, while the
total space is not. Moreover, the structure group of this fibre bundle is the
symplectomorphism group of the fibre, which is (since we are in dimension 2) the
group of area preserving diffeomorphisms. In fact, the structure group of Hopf
fibration is the isometry group of S1, thus the structure group of S3 × S1 → S2

is the isometry group of T 2.

Sufficient conditions for a fibre bundle p:M → B with both base and fibre
symplectic to have a symplectic total space were given by W. Thurston [25].
First condition imposed on the bundle was that the structure group is the sym-
plectomorphism group of the fibre. We say that such a bundle is symplectic. This
is a natural assumption if one expects on M a symplectic form which restricts
to a symplectic form on all fibres.
For a point b in the base let ib denote the inclusion of the fibre

Fb = p−1(b) ⊂M.
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In a symplectic fibration each fibre has a well defined symplectic form ωb sym-
plectomorphic to ωF . But, as Example 4.1 shows, a further assumption is needed.

Theorem 4.2 (Thurston). Consider a symplectic fibre bundle p:M → B

with closed symplectic base and fibre. If there exists a cohomology class u ∈
H2(M,R) such that i∗bu = [ωb], then there exists a symplectic form ωM on M
which is compatible with the fibration, i.e. i∗bωM = ωb.

However, if a symplectic manifolds fibres with a symplectic fibre then one
can not in general expect the base to be symplectic. An example is CP 3 which
is fibred over S4 with fibre S2. Some other examples can be deduced from [17].
We describe now two interesting examples of a fibre bundle with symplectic

base and fibre.

Example 4.3. Let Diff(D2n, S2n−1) denote the group of diffeomorphisms
of the 2n-disk equal to the identity in a neighbourhood of the boundary sphere
S2n−1. Then f extends by the identity to a diffeomorphism of any 2n-manifoldX
if an embedding ofD2n into X is given. Consider f ∈ Diff(D2n, S2n−1) not in the
identity component. For X = S2n we get again a diffeomorphism fS which is not
isotopic to the identity and it is a classical fact that fS corresponds to an exotic
(2n+ 1)-sphere Σf = D2n+1 ∪fS D2n+1 (a smooth manifold homeomorphic but
not diffeomorphic to the sphere S2n+1 with the standard differential structure).
If X is the 2n-torus T2n = S1× . . .×S1, denote the resulting diffeomorphism by
fT . In this case we will get also an exotic manifold in the following way. Take
T2n × [0, 1] and glue the ends according to (x, 0) ∼ (fT (x), 1). The resulting
manifold T(fT ), the mapping torus of fT , depends, up to diffeomorphism, only
on the isotopy class of fT . From the fact that fT is supported in a disk (i.e. is
equal to id outside a disk) it is not difficult to argue that T(fT ) is obtained from
the standard torus T2n+1 by a connected sum with the homotopy sphere Σf . It
is known that T(fT ) is homeomorphic but not diffeomorphic to T2n+1, cf. “Fake
Tori” chapter in [28]. Note also that, by construction, T(fT ) fibers over S1 with
fibre T2n.

Now M = T(fT ) × S1 fibres over T2 with fiber T2n. The fibration is sym-
plectic if and only if fT is isotopic to a symplectomorphism. Moreover, if this
is the case, then the other assumption of Thurston’s theorem is satisfied. This
is because fT is homotopic (even topologically isotopic) to the identity, thus the
fibration is equivalent, up to fibrewise homotopy equivalence, to the product
T2×T2n. So the required cohomology class exists and M is symplectic provided
fT is isotopic to a symplectomorphism. See Chapter 8 for further remarks on
this example.

Example 4.4. Let A be a linear map of the torus T2 given by(
1 2
0 1

)
∈ SL(2,Z).



28 Bogus law Hajduk

Consider the mapping torus TA = T2 × [0, 1]/(x, 0) ∼ (A(x), 1) and a fibra-
tion M = TA × S1 → T2. By Theorem 4.2 there exists a symplectic struc-
ture on M . However, direct calculations show that first Betti number b1M =
dimH1(M,R) = 3. This implies that there is no Kähler structure on M , since
odd Betti numbers of closed Kähler manifolds are always even.

It was the first example of a closed symplectic manifold with no Kähler struc-
ture. Later many other such examples were constructed and one can say that
all known bounds for the topology of closed Kähler manifolds fail in symplectic
case (see [27]).
Let us sketch two other useful constructions of symplectic manifolds.
First one is the blow up of a manifold. By blow up of a point x of a 2n-

manifoldM we mean a compactification ofM −{x} by CPn−1, where in a chart
U ∼= Cn around x (with x corresponding to (0, . . . , 0)) any complex plane is
compactified by the point of CPn−1 which represents this plane. A direct gen-
eralization gives a blow up along a submanifold, given by compactifying each
normal space of a submanifold as above. Topologically, a manifold obtained by
blow up of a point in M is diffeomorphic to a connected sum M#CPn, where
CPn denotes CPn with the reversed orientation.

Theorem 4.5. If M is a symplectic 2n-manifold, then a blow up of M is
also symplectic.

However, there is no canonical choice of a symplectic structure on a blow
up of a symplectic manifold. For various data used to perform the operation
one can get different (non symplectomorphic) symplectic structures. This is in
contrast with the case of differential manifolds, where on a connected sum one
can construct a unique, up to a diffeomorphism, differential structure.
Another operation on symplectic manifolds was introduced by R. Gompf [9]

and it is often called Gompf’s surgery. Consider two symplectic manifolds M ,
N and symplectic submanifolds M0, N0 of codimension two. Assume that M0
is symplectomorphic to N0 and the normal (complex linear) bundle ν(M0) is
inverse to the normal bundle ν(N0). This means that there is a orientation
changing linear isomorphism of that bundles, covering the given symplectomor-
phism Φ0:M0 → N0. In terms of Chern classes, c1ν(M0) = −c1ν(N0) (first
Chern classes classify complex bundles of complex dimension 1). Then one can
find a symplectic structure on (M − νε(M0)) ∪f (N − νε(N0), where νε denotes
the open ε-disc normal bundle and f is a diffeomorphism of the boundary sphere
bundles covering Φ0.
As an application, Gompf has shown that in any even dimension greater

than 2 any finitely presented group is the fundamental group of a closed sym-
plectic manifold. Compare also [16], where some restrictions on the fundamental
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group were found under assumption that the symplectic structure is symplec-
tically aspherical, i.e. the symplectic form vanishes on all spherical homology
2-classes.

5. Symplectic group actions

Isomorphisms in the category of symplectic manifolds are those diffeomor-
phisms which preserve symplectic forms. Thus a symplectomorphism of (M,ω)
is a diffeomorphism f :M →M such that f∗ω = ω. The group of all symplecto-
morphism will be denoted by Symp(M,ω). For a compact manifold we consider
the C1 topology on the group. This is always an infinitely dimensional space,
since for any path Ht of smooth functions and the path Xt of vector fields de-
fined by ιXtω = dHt, the associated path of diffeomorphisms preserves the form
ω (compare the proof of Theorem 2.6).
If a group G acts smoothly on a symplectic manifold (M,ω), then we say

that the action is symplectic if ω is G-invariant or, equivalently, g ∈ Symp(M,ω)
for any g ∈ G. In this note we restrict to the case G = S1.
For a smooth action of S1 there is a vector field V on M which generate the

action, i.e. the action is the flow of V . It is the image of the unit invariant vector
field tangent to S1 under the differential of the action. The field V is tangent
to orbits of the action and its zero set is equal to the fixed point set. If it is
a symplectic action, then the form ιV ω is a closed 1-form, as it follows from the
formula LV ω = ιV dω+ dιV ω = 0 for the Lie derivative LV ω. If the cohomology
class [ιV ω] vanishes, then the action is called hamiltonian and its moment map is
defined as a map H:M → R such that dH = ιV ω. More generally, if we assume
that [ιV ω] is an integer class (it is in the image of H2(M ;Z)), then there exists
a generalized moment map H:M → S1 such that H∗θ = ιV ω, where θ is the
standard invariant 1-form on S1. Moment maps have nice properties:
• the set of critical points is equal to the zero set of V , hence to the fixed

point set of the action,
• they are Morse–Bott functions, i.e. any component of the critical point set

is transversally nondegenerate.
Certainly, a hamiltonian action on a closed manifold must have fixed points,

since in this case the moment map is a real valued map. In dimension 4 a sym-
plectic action on a closed manifold is hamiltonian if and only if it has fixed points.
In dimension 6 a non-hamiltonian symplectic action with non-empty set of fixed
points was constructed by McDuff.
It is well-known that the fixed point set of a symplectic action is a symplectic

submanifold, cf. [12, Lemma 27.1].

Lemma 5.1. Let G be a compact Lie group. If G acts symplectically on
a symplectic manifold M , then the fixed point set MG is a symplectic submani-
fold.
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Proof. Let x ∈MG. Then, when an invariant Riemannian metric is chosen,
G acts on a transversal to MG via an orthogonal representation without trivial
G-subspaces. Thus U ∈ Tx(M) belongs to Tx(MG) if and only if g∗U = U for
every g ∈ G. This implies that vectors of the form V − g∗V span the transversal
to Tx(MG) in TxM. Hence for U ∈ Tx(MG) we have ω(U, V ) = ω(g∗U, g∗V ) =
ω(U, g∗V ), and therefore ω(U, V − g∗V ) = 0 for any g ∈ G and V ∈ TxM . So, if
ω(U,W ) = 0 for all W ∈ TxMG, then also ω(U,W ′) = 0 for all W ′ ∈ TxM and
this implies U = 0. So ω|MG is nondegenerate, thus symplectic. �

Corollary 5.2. Let G be a compact Lie group and let H be a closed subgroup
of G. If G acts symplectically on a symplectic manifold M , then the set of points
with isotropy equal to H is a symplectic submanifold.

An analogous property for almost complex manifolds and actions is straight-
forward.

Lemma 5.3. If a compact Lie group G acts smoothly on an almost complex
manifold M preserving an almost complex structure J , then the fixed point set
MG is a J-holomorphic submanifold of M .

Proof. If J is G-invariant, then for U ∈ Tx(MG) and any g ∈ G we have
g∗(JU) = g∗Jg−1∗ g∗U = JU . �

Let us assume now that S1 acts freely and symplectically on (M,ω), V
generates the action and X = M/S1. The 1-form ιV ω is closed and descends
to X to a closed nowhere vanishing 1-form. This implies that X fibres over
a circle [26] and in fact one can prove that this is a symplectic fibration.
Conversely, if X admits a symplectic fibration over the circle with fibre

(F, ωF ), then X ×S1 admits a symplectic structure. A symplectic fibration over
S1 is the torus T (f) of a symplectomorphism f :F → F . To apply Thurston’s
theorem to S1×T (f), which is a symplectic fibration over S1×S1 with fibre F ,
it suffices to check that the cohomology class of the symplectic form on F is in
the image of the cohomology homomorphism i∗, where i:F → T (f) is the inclu-
sion. This claim follows from the Mayer–Vietoris exact sequence resulting from
a decomposition of S1 into two intervals, since elements in cohomology which
are invariant under the gluing map all are in the image of i∗. No other examples
of symplectic manifolds of the form X × S1 are known. See also Section 7.
The discussion above applies also to the case of a circle action with no fixed

points, but then X is in general an orbifold.

6. Existence questions

As we have seen above, there are two basic obstructions to impose a sym-
plectic structure on a closed manifold.
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Definition 6.1. A closed manifoldM of dimension 2n which is almost com-
plex and has a class u ∈ H2(M,R) such that un 6= 0 is called homotopically
symplectic.

The name cohomologically symplectic, or c-symplectic is used for a manifold
with a class u ∈ H2(M ;Z) such that un 6= 0, see e.g. [1]. We assume addi-
tionally that M is almost complex and the word “homotopically” refers to the
homotopy class of the classifying map of the tangent bundle of M , which we
consider as a part of the differential structure of M . An oriented manifold M
is almost complex if and only if the classifying map τ :M → BGL(2n,R) of its
tangent bundle lifts to a map τ̃ :M → BGL(n,C). It means that τ = P τ̃ , where
P : BGL(n,C) → BGL(2n,R) is the forgetful map and this property depends
only on the homotopy class of the classifying map τ .

Question 6.2. Does any closed, homotopically symplectic manifold admit
a symplectic form?

Obviously the problem depends only on the diffeomorphism type ofM . There
is a description of symplectic manifolds in topological terms as those manifolds
which admit so called topological Lefschetz pencils [10], but to decide whether
a manifold has such a structure is as difficult as to construct a symplectic form.
In dimension 4 the answer to 6.2 is negative.

Example 6.3. #3CP 2 is homotopically symplectic and has no symplectic
structure.

That it is a homotopically symplectic manifold we have seen in Section 3.
Nonexistence of symplectic structure was proved using Seiberg–Witten invari-
ants of diffeomorphism type. They are defined for closed 4-manifolds via moduli
spaces of a differential equation related to the Dirac operator. The invariant is
given by a function SWM :H2(M,Z) → Z with finite support, see [22]. A pow-
erful theorem providing a necessary condition which is much more delicate than
homotopical symplecticness to existence of a symplectic structure was proved by
C. H. Taubes [24].

Theorem 6.4. For any closed symplectic 4-manifold there exists a class
u ∈ H2(M,Z) such that SW (u) = ±1.

The fact that #3CP 2 does not satisfy the above condition follows from prop-
erties of Seiberg–Witten invariant. Namely, for a connected sum of two closed
4-manifolds with positive b+2 , Seiberg–Witten invariant vanishes. Here b

+
2 is the

dimension of positive defined part of H2(M,R) with respect to the intersection
form (u, u′) 7→ (u ∪ u′)[M ].
In higher dimensions there is no known example of a non-symplectic but

homotopically symplectic manifold.
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Seiberg–Witten invariants are defined only in dimension 4. In this dimen-
sion they are equivalent to so called Gromov–Witten invariants. The latter was
defined, using moduli spaces of pseudoholomorphic curves, by Michel Gromov
in his seminal paper [11]. For an exposition of the theory of pseudoholomorphic
curves see [20].
We describe now some related examples.

Example 6.5. Let M and N be two closed simply connected 4-dimensional
smooth manifolds such that the following conditions hold:

(a) M and N are homeomorphic, but not diffeomorphic,
(b) only one of these manifolds admits a symplectic structure,
(c) the second Stiefel–Whitney class w2(M) vanishes.

Then M × S2 is diffeomorphic to N × S2, hence both are symplectic.

We refer to [29]. Indeed, under our assumptions the diffeomorphism type
is completely determined by the multiplicative structure of the cohomology ring
with integer coefficients and the first Pontriagin class. It follows from Theorem 3
in [29] which can be stated as follows:

The diffeomorphism classes of closed simply connected 6-manifolds M with tor-
sion free integral cohomology, whose second Stiefel–Whitney class vanishes, cor-
respond bijectively to the isomorphism classes of an algebraic invariant consist-
ing of:

(a) two free abelian groups H = H2(M ;Z) and G = H3(M ;Z),
(b) a symmetric trilinear map µ:H ×H ×H → Z given by the cup product,
(c) a homomorphism p1:H → Z determined by the first Pontriagin class p1.
Note that p1(M×S2) is inherited fromM and p1 is a topological invariant for

closed 4-manifolds. Thus p1(M×S2) = p1(N×S2), w2(M×S2) = w2(M×S2) =
0 and thus M × S2 is diffeomorphic to N × S2.
Some examples of pairs (M,N) as required above are obtained by applying

to symplectic 4-manifolds constructions such as logarithmic transformation or
knot surgery. To detect both non-diffeomorphism and non-symplecticness one
uses Taubes’ theorem (see 12.4 in [23] or [21]). An explicit example is given by
a non-symplectic smooth manifold homeomorphic but not diffeomorphic to K3
surface.

7. Circle actions: smooth versus symplectic

A natural specific existence question is when does exist a symplectic structure
on the product of a manifold by the circle. As it was explained in Section 5, if
a closed manifold M with a free S1 action admits a invariant symplectic form,
then X = M/S1 fibres over the circle. In the other direction, for the product
X × S1, a symplectic fibration of X over the circle enables us to construct
a symplectic form on M .
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Question 7.1. Let X be a closed manifold. Is it true that if X × S1 is
symplectic, then X fibres over S1?
For X of dimension 3 this question was posed by C. H. Taubes and answered

positively, after a series of partial results of many authors, by S. Friedl and
S. Vidussi [8]. Their proof uses Seiberg–Witten invariants and it does not extend
to higher dimensions.

Remark 7.2. Questions 6.2 and 7.1 can not simultaneously have positive
answers in higher dimensions. Namely, there are manifolds which do not fibre
over the circle, but their products with the circle are homotopically symplectic,
e.g. the connected sum of two copies of tori T 2k+1#T 2k+1.

A more general conjecture for dimension 4 was stated by Scott Baldridge
in [2].

Conjecture 7.3. Every closed 4-manifold that admits a symplectic form
and a smooth circle action also admits a symplectic circle action (with respect
to a possibly different symplectic form).

In the same paper Baldridge gave a partial answer.

Theorem 7.4 ([2]). If M is a closed symplectic 4-manifold with a circle
action such that the fixed point set is non-empty, then there exists a symplectic
circle action on M .

It seems unlikely that this continue to be true in higher dimensions, but
one can ask the following question: under what condition a closed symplectic
manifold with a smooth circle action does admit a symplectic circle action?
There are examples of smooth circle actions on symplectic manifolds which

have non-symplectic sets of fixed points or non-symplectic sets of points with
a given isotropy. By Lemma 5.1 any such action is not symplectic with respect
to any symplectic structure.

Example 7.5. LetM , N be a pair of 4-manifolds described in Example 6.5.
ThenM×S2×. . .×S2 is symplectic (since it is diffeomorphic to N×S2×. . .×S2)
and the action given by the standard action on each copy of S2, has a sum of
disjoint copies of M as the fixed point set.

More examples of this kind can be found in [13].

8. Symplectomorphisms and exotic tori

It is known that for any m ≥ 5, there exist exotic tori, i.e. smooth manifolds
T m which are homeomorphic but not diffeomorphic to the standard torus Tm.

Question 8.1. Given a symplectic manifold T 2n homeomorphic to T2n,
n > 2, is T 2n diffeomorphic to T 2n?
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This is motivated by the same question posed by C. Benson and C. Gordon
in [5] for Kähler manifolds. It has positive answer, a proof that there are no
Kähler structures on exotic tori can be obtained from the Albanese mapM → T k

by showing that for a manifold homeomorphic to a torus the map is a homotopy
equivalence. This implies that it is in fact a diffeomorphism. More general results
are given in [3], [7].
Let us look on Example 4.3 from that point of view. This leads to the

following.

Question 8.2. Given an exotic sphere Σf of dimension 2n − 1, is there
a symplectic structure on T = (T2n−1#Σf )× S1?

As we have seen in Section 4, the answer were positive when there exists
a diffeomorphism f ∈ Diff(D2n−2, S2n−3) such that Σf is exotic and the dif-
feomorphism fT obtained from f is isotopic to a symplectomorphism. Thus we
come to the following question.

Question 8.3. Given a symplectomorphism f :T2n−2 → T2n−2 supported
in an embedded disc, can f be smoothly isotopic to the identity?

A similar problem whether a symplectomorphism of a torus which acts triv-
ially on homology is isotopic to the identity was mentioned in [19, p. 328].
One can also ask under what assumptions a diffeomorphism of T2n is isotopic

to a symplectomorphism. Examples such that there is no symplectomorphisms
in some isotopy classes [14].
Let π0(Diff+(M)) denote the group of isotopy classes of orientation preserv-

ing diffeomorphisms of a smooth oriented manifold M . Assume now that M is
2n-dimensional and admits almost complex structures, and let JM denote the
set of homotopy classes of such structures, compatible with the given orientation.
Any diffeomorphism f acts on the set of all almost complex structures by the
rule

f∗J = dfJdf−1,

where df :TM → TM denotes the differential of f . This action clearly descends
to the action of π0(Diff+(M)) on JM .
We show that there exist diffeomorphisms f :T8k → T8k supported in a disc

which do not preserve the homotopy class [J0] ∈ JM of the standard complex
structure. Therefore, they cannot be isotopic to symplectomorphisms with re-
spect to the standard symplectic structure ω0. Indeed, conjugation by a symplec-
tomorphism sends any almost complex structure compatible with a symplectic
form to another almost complex structure compatible with the same symplec-
tic form. Thus they are homotopic, since the space of all such almost complex
structures is contractible.
Let us a sketch the proof [14] that such f exist. There is a necessary homo-

topic condition on a diffeomorphism to preserve the homotopy class of J0.
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Theorem 8.4. Let f ∈ Diff(T4n) be supported in a disc D4n ⊂ T4n. If f
preserves J0, then the differential df restricted to its support disc D4n gives in
π4nGL(4n,R) the trivial homotopy class.

To detect nontriviality of df we apply the generalized â genus (with values in
KO(∗) ∼= Z2. It is well known that there are exotic spheres such that â(T(fT )) 6=
0. We prove that for such fT we have [df ] 6= 0. Thus there are f which do not
preserve the homotopy class of J0.
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MORSE INEQUALITIES VIA CONLEY INDEX THEORY

Marek Izydorek — Marcin Styborski

Abstract. The relation known as the Morse inequalities can be extended

to a more general setting of flows on a locally compact metric spaces (Conley
index) as well as dynamical systems on Hilbert spaces (LS-index). This

paper is a discourse around this extension. Except the part concerning the

LS-index the material is self-contained and has a character of a survey.

1. Introduction

There is a deep link between the critical point theory of a smooth function
and the topology of the underlying space. This is a subject of the classical but
still highly celebrated Morse theory that originated in the thirties of the last
century. A number of papers and textbooks concerned the Morse theory has
been published. Let us only mention magnificent papers of R. Bott [3], [4].
Probably the most common association with the Morse theory is the attaching
handlebodies procedure, the way of rebuilding the underlying manifold M up
to the homotopy type. Roughly speaking, it is realized by passing through the
critical levels c ∈ R of certain function f :M → R and attaching a k-cell to the
set f−1((−∞, c− ε]). Here k is equal to the dimension of the unstable manifold
Wu(x0) of the negative gradient vector field of f at critical point x0 ∈ f−1(c),
for details see Theorems A and B of [4]. Thus the obtained CW-complex is
non-distinguishable from M from the point of view of homotopy theory.
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c©2011 Juliusz Schauder Center for Nonlinear Studies



38 Marek Izydorek — Marcin Styborski

Another way of thinking about the Morse theory is closely related with so-
called Morse inequalities, that give estimates from below for the number of crit-
ical points of f :M → R by the Betti numbers of M , cf. Corollary 3.2. Further-
more, these “inequalities” may be presented in a slightly more sophisticated way
as follows. Let

Mt(f) =
∑

x∈Crit(f)

tindf (x)

be the Morse polynomial of f and Pt(M) be the Poincaré polynomial of the
manifold M . Then

(ME) Mt(f) = Pt(M) + (1 + t)Q(t),

where all the coefficients of the polynomial Q are nonnegative integers. Hence-
forth we will interchangeably refer to the relation (ME) as to the Morse equation
or the Morse inequalities.
In this paper we are going to deal with a generalization of the Morse the-

oretical methods provided by Conley’s theory of homotopy index. The Morse
equation (ME) can be placed in the context of flows on locally compact metric
spaces. For a given dynamical system on X one can consider a compact isolated
invariant set S, i.e. an invariant set (with respect to the action of the flow) that
is a maximal invariant subset of some neighbourhood of itself. Such a subset S
possesses a so-called index pair (N,L) (Definition 2.1), where L is roughly speak-
ing an exit set and N \ L isolates S. The homotopy type of a pointed quotient
space (N/L, [L]) defines the Conley (homotopy) index h(S) of S. Whilst in the
classical setting the manifold is decomposed into the rest points of a gradient
flow, one can decompose an isolated invariant set S into a finite collection of
isolated invariant subsets Mj ⊂ S called the Morse sets. This decomposition
carries an ordering that somehow reminds an admissible ordering of rest points
of the negative gradient flow of f (f is the Lyapunov function). The equation
(ME) is a particular case of more general result due to C. Conley and E. Zehn-
der [6] that asserts that if {Mπ : π ∈ D} (D is finite) is a Morse decomposition
of an isolated invariant set S then

(CZ)
∑
π∈D
P(t, h(Mπ)) = P(t, h(S)) + (1 + t)Q(t).

Here P( · , h(I)) stands for the Poincaré polynomial of index h(I), and Q(t) =∑
k≥0 akt

k with integers ak ≥ 0 (cf. Theorem 2.14).
Our aim is to give a self-contained exposition of the above-mentioned aspect

of the Conley theory and some of its consequences.
Recently an extension of the equation (CZ) has been obtained by the first

author [11]. We also would like to display this result and point out its efficiency
in the problems of searching for periodic solutions of Hamiltonian ODE’s.
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The paper is organized as follows. In the first section the notion of homotopy
index is introduced and some elementary examples are given. For the sake of
completeness we present a proof of Morse equation for flows. The second section
goes back to classical results in Morse theory. Certain consequences of the theory
are discussed in the third section. The last part of this note is devoted to the
infinite dimensional generalization of the Conley index and its applications.

2. Isolated invariant sets and the index

Let X be a locally compact metric space. A continuous map φ:D → X is
called a local flow on X if the following properties are satisfied:

(1) D is an open neighbourhood of {0} ×X in R×X;
(2) for each x ∈ X there exist αx, ωx ∈ R ∪ {±∞} such that (αx, ωx) =
{t ∈ R : (t, x) ∈ D};

(3) φ(0, x) = x and φ(s, φ(t, x)) = φ(s+t, x) for all x ∈ X and s, t ∈ (αx, ωx)
such that s+ t ∈ (αx, ωx).

In the case of D = R ×X we call φ the flow on X. A (local) flow provides
a convenient description of solutions of differential equations that emphasize the
dependence of an initial state. To be more precise, let Ω be an open subset of
Rn. Assuming that a vector-field v: Ω → Rn is locally Lipschtz continuous, the
theorem of Picard–Lindelöf guarantees the existence and uniqueness of solution
of the Cauchy problem

(2.1)
{
ẋ(t) = v(x(t)),

x(0) = x0.

If t 7→ φ(t, x0) is a solution of (2.1) and (αx0 , ωx0) is the maximal interval of
existence of u, the map φ is a local flow. In general, one cannot expect that φ
is a flow as the example of equation ẋ = x2 shows. The notation φ(t, · ) and φt
for flows will be used interchangeably.
Let φ be a local flow on X. A subset S ⊂ X is called φ-invariant if x ∈ S

implies φ(t, x) ∈ S for all t ∈ (αx, ωx). If a flow is clear from context the letter
φ is dropped out and we call S an invariant set. For an arbitrary N ⊂ X the set

inv(N,φ) = {x ∈ N : φ(t, x) ∈ N for all t ∈ (αx, ωx)}

is a maximal invariant subset of N ; if N is closed, so is inv(N,φ). A compact
subset N of X is called an isolating neighbourhood (of φ) provided that

inv(N,φ) ⊂ int(N).

If N is an isolating neighbourhood, then S = inv(N) is said to be an isolated in-
variant set. Hence, by the definition, isolated invariant sets are compact subsets
of X.



40 Marek Izydorek — Marcin Styborski

Isolated invariant sets are objects of primary importance from the point of
view of dynamical systems. Unfortunately, they are extremely unstable objects,
which means that they are very sensitive with respect to perturbations. They
might change their stability and even disappear. On the other hand, isolating
neighbourhoods are robust, i.e. they stay isolating neighbourhoods after small
perturbation of the system.
Let N be a compact subset of X. We say that L ⊂ N is positively invariant

relative to N if for any x ∈ L the inclusion φ[0,t](x) ⊂ N implies that φ[0,t](x) ⊂
L. Let S be an isolated invariant set.

Definition 2.1. A compact pair (N,L) is called an index pair for S, if:

(a) S = inv(N \ L) ⊂ int(N \ L);
(b) L is positively invariant relative to N ;
(c) if x ∈ N and there exists t > 0, such that φt(x) 6∈ N , then there exists

s ∈ [0, t], such that φ[0,s](x) ⊂ N and φs(x) ∈ L.

Theorem 2.2 ([18]). Every isolated invariant set S admits an index pair
(N,L).

If (N,L) is a compact pair, then the quotient N/L is obtained from N by
collapsing L to a single point denoted by [L], the base point of N/L. A set
X ⊂ N/L is open if eitherX is open inN andX∩L = ∅ or the set (X∩N\L)∪L is
open in N . We set N/∅ to be N∪{∗}, the disjoint union of X and a distinguished
point.
Generally, we will be working in the category of compact spaces with a base-

point. The notion f : (X,x0) → (Y, y0) means that f is a continuous map pre-
serving basepoints, i.e. f(x0) = y0.
Recall that two maps f, g: (X,x0) → (Y, y0) are homotopic relatively x0,

if there is a continuous map h: (X × [0, 1], {x0} × [0, 1]) → (Y, y0) such that
h(x, 0) = f(x) and h(x, 1) = g(x). The map f : (X,x0) → (Y, y0) is a homotopy
equivalence if there exists a map g: (Y, y0)→ (X,x0) such that g ◦f is homotopic
to idX rel. x0 and f ◦ g is homotopic to idY rel. y0. If there is a homotopy
equivalence f : (X,x0)→ (Y, y0) then the pairs (X,x0) and (Y, y0) are homotopy
equivalent or they have the same homotopy type. The homotopy type of (X,x0)
is denoted by [X,x0].
Notice that the requirement for maps of being point-preserving is essen-

tial. Homotopy equivalent spaces without basepoints may have different homo-
topy types if they are considered as a pointed spaces. For example, let S0 be
a pointed 0-sphere and Y be a pointed interval [0, 1]. Let Z be a space with-
out distinguished point that is homeomorphic to Y . Then the wedge Y ∨ S0 is
homeomorphic to the quotient space Z/∅, and hence, these spaces represent the
same homotopy type. However, as a pointed spaces, they do not have the same
homotopy type.
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Theorem 2.3 ([18]). Let (N0, L0) and (N1, L1) be two index pairs for an
isolated invariant set S. Then the pointed topological spaces N0/L0 and N1/L1
are homotopy equivalent.

Definition 2.4. Let (N,L) be an index pair for an isolated invariant set S.
The homotopy type h(S, φ) = [N/L] is said to be the Conley (homotopy) index
of S. When the flow is clear from context we just write h(S) for short.

Example 2.5. Let f :Rn → R be a smooth function. The smoothness of f
implies that ∇f is a locally Lipschtz continuous map, hence the equation u̇(t)−
∇f(u(t)) = 0 defines a local flow on Rn: φtf (x) = u(t, x), where u: (αx, ωx)→ Rn
is a solution curve of the above equation passing through x at t = 0, and defined
on its maximal interval of the existence. The rest points of φtf are the critical
points of f . An equilibrium point x0 is hyperbolic if the Hessian of f at x0 is
nonsingular. In this case the number

indf (x0) = #{negative eigenvalues of the Hessian ∇2f(x0)}

is defined (cf. Definition 3.1). Then the Conley index of isolated invariant set
S = {x0} is the homotopy type of a pointed k-sphere, where k = n− indf (x0).

Let φ:R ×X × [0, 1] → X be a continuous family of flows on X, i.e. φtλ :=
φ(t, · , λ):X → X is a flow on X. Suppose that S0, S1 are isolated invariant sets
of φt0 and φ

t
1, respectively. These sets are said to be related by continuation, or S0

continues to S1 if there is a compact N ⊂ X that is an isolating neighbourhood
for φtλ, λ ∈ [0, 1] and Si = inv(N,φti), i = 0, 1. The notion of continuation is
essential in the Conley index theory due to the following theorem.

Theorem 2.6 ([5]). If S0 and S1 are related by continuation, then their
Conley indices coincide.

Later on we will use the continuation property of the index in context of
Reineck’s theorem, cf. Theorem 4.1.
For x ∈ X its α-limit and ω-limit sets are defined as follows:

α(x) :=
⋂
t≥0

φ((−∞,−t], x), ω(x) :=
⋂
t≥0

φ([t,+∞), x).

Definition 2.7 (Morse decomposition). Assume S is a compact and invari-
ant subset of X. A finite collection {Mπ : π ∈ D} of compact invariant sets in S
is said to be a Morse decomposition of S, if there exists an ordering (π1, . . . , πn)
of D such that for every x ∈ S \

⋃
π∈DMπ there are indices i, j ∈ {1, . . . , n},

such that i < j, ω(x) ⊂ Mπi and α(x) ⊂ Mπj . Every ordering of D with this
property is said to be admissible. The sets Mπ for π ∈ D are called Morse sets.

It is worth noting that an admissible ordering of Morse decomposition is
not unique. Clearly, for a given collection of compact invariant sets in S may
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not exist any admissible ordering. There is, however, a particular class of flows
for which a Morse decomposition always exists, i.e. the gradient flows or more
general gradient-like flows, cf. [5].
We are going to formulate the so-called Morse inequalities, that compare the

topological-algebraic invariant of an isolated invariant set with invariants of its
Morse decomposition. Therefore, one needs that the Morse sets are isolated as
well.

Proposition 2.8 ([6]). If S is an isolated invariant set of φ, {Mπ : π ∈ D}
is a Morse decomposition of S, then Mπ are also isolated invariant sets.

The q-th Betti number of a compact pair (A,B) is a number βq(A,B) :=
rankHq(A,B). Assuming that groups Hq(A,B) have finite rank for all q ≥ 0,
define the formal power series

P(t, A,B) =
∞∑
q=0

βq(A,B)tq

called the Poincaré series of pair (A,B). If the pair (A,B) is of finite type, i.e.
Hq(A,B) = 0 for q ≥ q0, then we say that P(t, A,B) is a Poincaré polynomial
of (A,B). To proceed further we need the following technical lemma.

Lemma 2.9. Let N0 ⊂ N1 ⊂ . . . ⊂ Nn be an increasing sequence of compact
subsets of X. Then there is a polynomial Q with nonnegative integer coefficients,
such that

n∑
j=1

P(t,Nj , Nj−1) = P(t,Nn, N0) + (1 + t)Q(t).

Proof. Let Z ⊂ Y ⊂ X be a compact triple. Consider the long exact sequence
of relative cohomology groups

· · · δ
q−1

−→ Hq(X,Y ) ı
q

−→ Hq(X,Z)
q−→ Hq(Y,Z) δ

q

−→ · · · ,

where ıq i q are homomorphisms induced by inclusions ı: (X,Z) ↪→ (X,Y ) and
: (Y, Z) ↪→ (X,Z), respectively. Let dq(X,Y,Z) be the rank of the image of δ

q.
The exactness implies, that

βq(Y, Z) = dq(X,Y,Z) + rank Im 
q = dq(X,Y,Z) + β

q(X,Z)− rank Im ıq

= dq(X,Y,Z) + β
q(X,Z)− βq(X,Y ) + dq−1(X,Y,Z).

Consequently

βq(Y,Z) + βq(X,Y ) = βq(X,Z) + dq(X,Y,Z) + d
q−1
(X,Y,Z).
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Notice that d−1 = 0. Multiplying the above equality by tq and summing over
q ≥ 0 one obtains

P(t, Y, Z) + P(t,X, Y ) = P(t,X,Z) + (1 + t)
∑
q≥0

dq(X,Y,Z)t
q.

Applying the obtained formula to the triple N0 ⊂ Nj−1 ⊂ Nj and summing over
2 ≤ j ≤ n one gets the desired result, where

Q(t) =
n∑
j=2

∑
q≥0

dq(Nj ,Nj−1,N0)t
q. �

One can prove that for an isolated invariant set there is an index pair (N,L)
such that H∗(N,L) ∼= H∗(N/L) (recall that N/L is a pointed space). Such an
index pair is called regular. In particular, there is no needs to use a cohomology
theory satisfying the strong excision axiom.

Definition 2.10. Let S be an isolated invariant set of a flow φ. The Poincaré
polynomial of the Conley index of S is defined by the formula

P(t, h(S)) := P(t,N, L),

where (N,L) is any regular index pair for S.

Remark 2.11. Since the Conley index of S is the homotopy type of a finite
CW-complex the pair (N,L) is of finite type and consequently the definition of
P(t, h(S)) is correct.

Definition 2.12. Let S be an isolated invariant set with a Morse decom-
position {Mπ : π ∈ D}, #D = n. An index filtration is a sequence N0 ⊂ N1 ⊂
. . . ⊂ Nn of compact subsets of X such that (Nj , Nj−1) is an index pair for Mπj
and (Nn, N0) is an index pair for S. The above filtration is called a regular index
filtration if (Nj , Nj−1) is regular for all j.

Theorem 2.13. Every Morse decomposition of an isolated invariant set ad-
mits an index filtration.

Proof. For proof see Corollary 3.4 in [16]. �

Theorem 2.14 (Morse equation; C. Conley and E. Zehnder [6]). Let S be an
isolated invariant set of a flow φ and {Mπ : π ∈ D} be its Morse decomposition.
Then there is a polynomial Q(t), whose all coefficients are nonnegative integers.
such that:

(2.2)
∑
π∈D
P(t, h(Mπ)) = P(t, h(S)) + (1 + t)Q(t).

Proof. This is a consequence of Lemma 2.9 and Theorem 2.13. �
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3. Backward to the classical Morse theory

Theorem 2.14 can be seen as a generalization of the classical result of Marston
Morse in the following way. LetM be a compact closed (1) Riemannian manifold,
dimM = n. Consider a C2-smooth function f :M → R. Recall that a point
p ∈M is called a critical point of f if the derivative Df(p):TpM → Tf(p)R ∼= R
is a zero-map. In local coordinates (x1, . . . , xn) near p this condition can be
expressed as a system of equalities

∂f

∂x1
(p) = . . . =

∂f

∂xm
(p) = 0.

The Hessian of f at p is the matrix of the second partial derivatives

∇2f(p) = ∂2f

∂xi∂xj
(p).

The rank of ∇2f(p) does not depend on a particular choice of local coordinates,
and therefore its nullity (the dimension of ker∇2f(p)) n− rankHf(p) does not
depend on it as well.

Definition 3.1. Let p be a critical point of C2-function f :M → R.
(a) We say that p is a nondegenerate critical point if Hf(p) is nonsingular,
i.e. the nullity of ∇2f(p) is zero.

(b) The index of f at p, denoted by indf (p), is the dimension of the maximal
subspace of TpM on which the Hessian ∇2f(p) is negative definite.
In other words, this is the number of negative eigenvalues of ∇2f(p),
counting with multiplicity.

(c) f is called a Morse function, if all critical points of f are nondegenerate.

The classical Morse inequalities can be obtained from Theorem 2.14 applied
to the gradient flow of f . The differentiable function gives rise to a vector field
∇f :M → TM . Since M is compact, the equation

ẋ+∇f(x) = 0

defines a flow onM , called the gradient flow of f . In what follows we will write φf
for the gradient flow of f . The rest points of φf are the critical points of f . If f is
a Morse function then the equilibria of φf are hyperbolic (σ(∇2f(p)) ∩ iR = ∅)
and the set Crit(f) = {pi ∈ M : ∇f(pi) = 0, 1 ≤ i ≤ m} forms a Morse
decomposition of an isolated invariant set S = M . Suppose that there are m
critical points. As we saw in Example 2.5 one has (2)

P(t, h(pi)) = tindf (pi).

(1) It means that the boundary ∂M is empty.
(2) Notice that indf (pi) + ind(−f)(pi) = n.
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Also (M, ∅) is an index pair for S and in this case P(t, h(S)) is the classical
Poincaré polynomial of a manifold

Pt(M) =
n∑
q=0

βq(M)tq,

where βq(M) is the q-th Betti number of M . Therefore we obtain the equality
m∑
i=1

tindf (pi) =
n∑
q=0

βq(M)tq + (1 + t)Q(t).

Set ck := #{x ∈ Crit(f) : indf (p) = k} and

Mt(f) :=
m∑
i=1

tindf (pi) =
n∑
i=0

cit
i.

Morse inequalities. If f :M → R is a Morse function, then

(3.1) Mt(f) = Pt(M) + (1 + t)Q(t).

The equation (3.1) says that the coefficients of Mt(f) majorizes the corre-
sponding Betti numbers of M . The factor (1 + t) gives an extra information. It
is contained in the following statement.

Corollary 3.2. From the above equality one can read off:

(a) weak Morse inequalities ck ≥ βk;
(b) strong Morse inequalities

ck − ck−1 + . . .± c0 ≥ βk − βk−1 + . . .± β0

for k = 0, . . . , n and the equality holds for k = n;
(c) for every Morse function f the minimal number of critical points is
equal toM1(f);

(d) the Euler characteristic χ(M) is equal toM−1(f), where f is any Morse
function defined on M .

It is worthy to be pointed out that the strong Morse inequalities imply the
Morse inequalities (3.1), cf. Lemma 3.43 in [2]. R. Bott, in [3], calledMt(f) the
Morse polynomial of f . Although the polynomial Q has nonnegative coefficients
it is not true that Q(t) ≥ 0 norMt(f) ≥ Pt(M). The following example nicely
illustrates these nuances.

Example 3.3 ([2, Example 3.38]). Consider the height function defined on
a outstretched 2-sphere M having two horns as a maxima (of index 2), resting
on a south pole as a minimum (of index 0). By Corollary 3.2 there is another
critical point of index 1. The locus of critical points is clear if we say that the
manifold M is reminiscent of a hart. The Morse polynomial of f is of the form
Mt(f) = 2t2 + t + 1, while the Poincaré polynomial of M is Pt(M) = t2 + 1
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(M is a homological 2-sphere). We easily deduce from (3.1) that Q(t) = t. That
is Q(t) < 0 for t < 0. Moreover, for t ∈ (−1, 0) one hasMt(f) < Pt(M).

A Morse function f :M → R is called a perfect Morse function, provided that
Mt(f) = Pt(M). Notice that the notion of perfect Morse function depends of
particular choice of coefficients used to calculate the cohomology groups. For
this reason we should call it Z-perfect Morse function, where Z stands for the
coefficients ring. Note that if a manifold admits a perfect Morse function for
every coefficients ring, then M is torsion-free. Precisely, Hk(M ;Z) is a free
abelian group isomorphic to Zck .
From the equality (3.1) one gets another useful corollary, namely

Morse’s lacunary principle ([3]). If the Morse polynomial of f :M → R
has no consecutive exponents, then Q ≡ 0 and consequently f is a perfect Morse
function (for every coefficient ring).

Proof. Rewrite (3.1) as
n∑
i=0

ξit
i = (1 + t)Q(t),

where ξi = ci − βi(M) for 1 ≤ i ≤ n and suppose that Q 6≡ 0. Assume that
ξk is the first nonzero coefficient on the left-hand side. This implies that the
right-hand side contains exponent k + 1, and hence also ξk+1 6= 0. Since the
Betti numbers are nonnegative one has ck+1 6= 0. �

Example 3.4 (Milnor’s perfect Morse function, [3], [15]). Consider the
sphere S2n+1 = {z ∈ Cn+1 :

∑n+1
j=1 |zj |2} and the function f :S2n+1 → R de-

fined as

f(z) :=
n+1∑
j=1

j|zj |2, z = (z1, . . . , zn+1).

Since f is invariant with respect to the free S1 action given by (γ, z) 7→ γz =
(γz0, . . . , γzn), i.e. f(γz) = f(z), it factors through CPn giving rise to f̂ :
CPn → R. To find the critical points of f we proceed using Lagrange multipli-
ers principle. Let us view Cn+1 as R2n+2 where points are denoted by (x, y) =
(x1, y1, . . . , xn+1, yn+1). Introducing the function g: (x, y) 7→

∑n+1
j=1 (x

2
j + y

2
j )− 1

we need to solve the equation ∇f(x, y) = λ∇g(x, y) under constraints given by
equality g(x, y) = 0. Explicitly

jxj = λxj , jyj = λyj , j = 1, . . . , n+ 1,
n+1∑
j=1

(x2j + y
2
j ) = 1.

One obtains n+ 1 solutions, namely for each 1 ≤ j ≤ n+ 1, λ = j, xk = yk = 0
for k 6= j and x2j + y2j = 1. Each circle S1j = {x2j + y2j = 1} is a critical orbit of f
lying on the sphere, and it represents a critical point of f̂ in CPn. Denote it pj =
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[0 : . . . : 0 : 1 : 0 : . . . : 0] with 1 at the j-th place. Fix λ = k and a corresponding
critical orbit. Obviously, the Hessian ∇2f(q):TqS2n+1 → TqS

2n+1 at a point
q = (x, y) ∈ S1k has a nontrivial, one-dimensional kernel, namely TqS1k, but the
restriction to TqS2n+1 	 TqS1k is of the form

∇2f(q) =


1− λ 0 · · · 0 0
0 1− λ · · · 0 0
...

...
. . .

...
...

0 0 · · · n+ 1− λ 0
0 0 · · · 0 n+ 1− λ

 ,
where two rows and two columns with entry (k−λ) are omitted. Since the above
matrix also represents ∇2f̂(pk), the Morse index of pk is ind bf (pk) = 2(k − 1),
1 ≤ k ≤ n+ 1, and consequently one has

Mt(f̂) = 1 + t2 + . . .+ t2n.

By the Morse’s Lacunary Principle one gets Pt(CPn) = 1 + t2 + . . . + t2n for
each coefficient ring. At last one can conclude that

Hq(CPn;Z) ∼=
{ Z for q = 2i, 1 ≤ i ≤ n,
0 else.

The next example shows that the equality Q(t) = 0 for all t does not imply
the lack of any exponent in the Morse polynomial.

Example 3.5. Consider the function f :Rn → R defined by the formula

f(x) :=
n∑
k=1

cos(2πxk), x = (x1, x2, . . . , xn).

Since f is invariant with respect to the integer-vector shifts it descends to the
function f̂ :Tn → R on the n-dimensional torus. It is easily seen that ∇f(x) =
−2π
∑n
k=1 sin(2πxk)ek (ek stands for the k-th vector of the standard basis of

Rn). The critical points of f̂ are 2n in number, which are all the n-tuples with
entries 0 or 1/2. The Hessian is of the form

∇2f(x) = −4π2


cos(2πx1) 0 · · · 0
0 cos(2πx2) · · · 0
...

...
. . .

...
0 0 · · · cos(2πxn)


and one gets that indf (x) = n−j, where j is the number of coordinates of x that
are equal to 1/2. For instance, indf (0, . . . , 0) = n and indf (1/2, . . . , 1/2) = 0.
The Morse polynomial of f is

Mt(f) =
n∑
k=0

(
n

k

)
tn−k = (1 + t)n.
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In particular, as an immediate consequence of the above formula we have χ(Tn) =
M−1(f) = 0. Since k-th Betti number of Tn is equal to

(
n
k

)
(see [10, Example

3.11, p. 210]), we see thatMt(f) = Pt(Tn), thus f is a perfect Morse function.

4. Consequences of the Morse equation

4.1. Conley index and Brouwer degree. Connections between the Con-
ley index and the topological degree are noticeable at first glance. The homotopy
invariance of the Brouwer degree corresponds to the continuation property of the
Conley index. The existence axiom refers to nontriviality property which says
that nontrivial index implies nonempty isolated invariant set. The next common
feature of both invariants is that they are determined by a behaviour of a vector
field (flow) on a boundary of the set under investigation.
In this section we shall show, following M. Fotouhi and M. R. Razvan [8],

how to figure out this relation using Morse equation (2.2) and the continuation
theorem due to Reineck [17]. Namely, under certain assumptions we will prove
the equality

χ(h(S)) = deg(F,N),

where S is an isolated invariant set of a flow induced by −F ; S = invN and χ
stands for the Euler characteristic. This result was obtained by R. Srzednicki
for dynamical systems in Rn, cf. [19]. Later on, C. K. McCord in [14] proved
it in a slightly more general setting. Namely, he studied relation between the
number χ(h(S)) and the intersection number of a vector field (with the zero
section of the tangent bundle) generating the flow in question on a compact
manifold. Special case was obtained by E. .N. Dancer in [7]. He showed that
χ(h({x})) = deg(f, Ux), where x is a degenerate rest point of a gradient flow of
−f and Ux stands for its neighbourhood.
We will briefly remind the reader notion of the degree. Let Ω ⊂ Rn be an

open and bounded set. If f : Ω → Rn is a continuous map and does not vanish
on the boundary ∂Ω, then there is an integer deg(f,Ω) ∈ Z called the Brouwer
degree. It satisfies the following axioms:

• (Nontriviality) If 0 ∈ Ω then deg(I,Ω) = 1, where I is the identity map;
• (Existence) If deg(f,Ω) 6= 0 then f−1(0) ∩ Ω is nonempty;
• (Additivity) If Ω1,Ω2 are open, disjoint subsets of Ω and there is no
zeros of f in the complement Ω \ (Ω1 ∪ Ω2), then

deg(f,Ω) = deg(f,Ω1) + deg(f,Ω2);

• (Homotopy invariance) If h: Ω × [0, 1] → Rn is a continuous map such
that h(x, t) 6= 0 for all (x, t) ∈ ∂Ω× [0, 1], then

deg(h( · , 0),Ω) = deg(h( · , 1),Ω)
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If ϕ: Ω→ R is a Morse function such that deg(∇ϕ,Ω) is defined, then

deg(∇ϕ,Ω) =
∑

x∈(∇ϕ)−1(0)∩Ω

(−1)indϕ(x).

Recall that a Morse–Smale gradient flow satisfies:

(i) all bounded orbits are either critical points of the potential function or
orbits connecting two critical points;

(ii) stable and unstable manifolds of the rest points intersect transversally.

Let Ω ⊂ Rn be an open set, F : Ω → Rn a smooth vector field and let
φtF : Ω → Ω be a flow generated by ẋ(t) = −F (x(t)). Assume that N is an
isolating neighbourhood and S = inv(N).

Theorem 4.1 ([17]). Set S can be continued to an isolated invariant set of
a positive gradient flow of certain function f defined on the open set U containing
N and without changing F on Ω \N . Moreover, this can be done in such a way
that the new flow is Morse–Smale.

The Euler characteristic of a topological pair (X,A) is defined as

χ(X,A) =
∞∑
q=0

(−1)qrankHq(X,A),

provided that pair (X,A) is of a finite type. Notice that χ(X,A) is equal to
P(−1, X,A). In particular, the Euler characteristic is well defined for the Conley
index, cf. Definition 2.10 and Remark 2.11.

Theorem 4.2 ([8]). Let F : Ω→ Rn be a locally Lipschitz map and denote by
φtF the local flow generated by ẋ = −F (x). If N is an φtF -isolating neighbourhood
and S = inv(N) then

(4.1) χ(h(S)) = deg(F, int(N)).

In what follows we will write deg(F,N) instead of deg(F, int(N)).

Proof. By the Reineck continuation theorem S continues to an isolated in-
variant set of a Morse–Smale gradient flow φtf , that consists of non-degenerate
critical points of f and connecting orbits between them. Denote this set by
S′. By the continuation property of the Conley index h(S) = h(S′). The set
of critical points {x1, . . . , xm} forms a Morse decomposition of S′ and, as we
saw in Example 2.5, one has that h({xi}, φtf ) is the homotopy type of a pointed
k-sphere, where k = n− indf (xi). Hence, the Poincaré polynomial of h({xi}, φtf )
is of the form

P(t, h({xi}, φtf )) = tn−indf (xi).
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Applying Theorem 2.14 one obtains

χ(h(S)) = χ(h(S′)) = P(−1, h(S′))(4.2)

=
m∑
i=1

P(−1, h({xi}, φtf )) = (−1)n
m∑
i=1

(−1)indf (xi).

For 1 ≤ i ≤ m, let Ωi be a neighbourhood of xi in N such that Ωi∩Ωj = ∅. Using
the homotopy invariance of the Brouwer degree and the additivity property one
has

(4.3) deg(−F,N) = deg(∇f,N) =
m∑
i=1

deg(∇f,Ωi).

Since f is a Morse function, the hessian ∇2f(xi) is a non-degenerate linear
operator. The degree of ∇f with respect to Ωi is equal to (−1)µ, where µ is the
number of negative eigenvalues of ∇2f(xi). That is, deg(∇f,Ωi) = (−1)indf (xi).
By (4.3) one obtains

(4.4) deg(F,N) = (−1)n deg(−F,N) = (−1)n
m∑
i=1

(−1)indf (xi).

Combining (4.2) and (4.4) we get the formula (4.1). �

Example 4.3. The simplest example for Theorem 4.2 is given by the equa-
tion ẋ = x on Rn. Here the vector field is −id:Rn → Rn and its degree with
respect to the unit ball depends on the dimension and equals (−1)n. The origin is
an isolated equilibrium with an index pair (Dn, Sn−1). The Euler characteristic
of index is χ(Dn/Sn−1) = (−1)n.

Example 4.4. The map F :R2 → R2,

F (x, y) := (−x− y + x(x2 + y2), x− y + y(x2 + y2))

gives us a bit more refined illustration.

Integral curves of the vector field F and an isolating neighbourhood
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The annulus A = {(x, y) ∈ R2 : r ≤ x2 + y2 ≤ R}, 0 < r < 1 < R,
is an isolating neighbourhood. Indeed, the inner product 〈F (x, y), (x, y)〉 =
(x2 + y2)2 − (x2 + y2) shows that for x2 + y2 < 1 the vector field points inside
the annulus, while for x2 + y2 > 1 the vectors point outside of it. The exit
set is a disjoint union of the boundary circles. The index is a homotopy type
of the wedge S2 ∨ S1. It is easily seen that S2 ∨ S1 is composed of 0-, 1- and
2-dimensional cells. Hence the Euler characteristic modulo a basepoint equals
zero. The additivity property of the Brouwer degree implies that deg(F,A) = 0.

4.2. Critical point theory in finite-dimensional domains. Assume
that f :Rn → R is a function of class Ck, k ≥ 1. The particular order of
smoothness k will be specified if needed. Let f satisfies the following asymptot-
ical condition: there exists a number C > 0 such that |x| > C implies that f is
of the form

f(x) = −1
2
〈A∞x, x〉+ ϕ∞(x)

where A∞ is linear symmetric map and ∇ϕ∞ = o(|x|) as |x| → ∞. Function
satisfying the above condition is called asymptotically quadratic.
For a linear map A:Rn → Rn denote by m0(A) the nullity of A, i.e. the

dimension of its kernel and by m−(A) the number of negative eigenvalues of A,
counting with their multiplicity. The number m−(A) will be sometimes called
the Morse index of A (compare Definition 3.1).
We say that f has no resonance at the infinity, if the map A∞ is an isomor-

phism. Shortly, if m0(A∞) = 0.
Recall that a critical point of f is a solution of the equation ∇f(x) = 0. The

critical point x0 of f is said to be nondegenerate, if the bilinear form f ′′(x0) is
nondegenerate, i.e. the equality f ′′(x0)[u, v] = 0 satisfied for an arbitrary vector
u ∈ Rn implies v = 0. In what follows we will identify the form f ′′(x0) with its
matrix.

Theorem 4.5. Every asymptotically quadratic function of class Ck, k ≥ 1,
without resonance at the infinity has a critical point.

The above result may be obtained using the topological degree as well as the
Conley index, cf. [13]. What we are going to show now is that the behaviour
of a function near the infinity determines the Morse index of some critical point
(which exists, by the previous theorem). This result is an immediate consequence
of the Morse equation (2.2).

Theorem 4.6. Let f :Rn → R be an asymptotically quadratic function of
class C2 without resonance at the infinity. If all critical points of f are nonde-
generate, then at least one of them, say x0, satisfies m−(f ′′(x0)) = m−(A∞).

Proof. Consider the negative gradient flow φtf of function f . Since f has no
resonance at the infinity, there exists a maximal compact isolated φtf -invariant
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set X. By the compactness of X there is only a finite number of critical points
of f , say {x1, . . . , xm}. This set forms a Morse decomposition of X. The most
natural ordering is given by f , i.e. i < j if and only if f(xi) < f(xj). If x is
a nondegenerate critical point of f , then by Example 2.5 one has P(t, h({x})) =
tm
−(f ′′(x)). On the other hand the Conley index of X is a homotopy type of
pointed sphere Sm

−(A∞) and consequently P(t, h(X)) = tm
−(A∞). Now, the

Morse equation (2.2) has the form

tm
−(f ′′(x1)) + . . .+ tm

−(f ′′(xm)) = tm
−(A∞) + (1 + t)Q(t)

The above equality holds for t ∈ R, hence one exponent among m−(f ′′(xi)),
1 ≤ i ≤ m has to be equal to m−(A∞). �

5. Conley index for flows in a Hilbert space

We have already seen that the Conley index theory can be applied to solve
multiple problems in critical point theory (vide Morse equation). However, those
methods are strictly finite-dimensional, i.e. the local compactness property of
a phase space plays a crucial role. Now we turn to the case where the presented
theory does not work properly. Let us consider the Hamiltonian system of ODE’s,
i.e. the equations of the form

(5.1) ṗ(t) = −∂H
∂q
(p, q, t), q̇(t) =

∂H

∂p
(p, q, t),

where H:R2m × R 3 (z, t) 7→ H(z, t) ∈ R, z = (p, q), p, q ∈ Rm, is C1-smooth
and 2π-periodic in t.
Searching for periodic solutions of (5.1) can be reformulated to the variational

setting as follows. Let H := H1/2(S1,R2m) be a Sobolev space of R2m-valued
loops belonging to L2(S1)

z(t) = a0 +
∞∑
n=1

an cos(nt) + bn sin(nt), a0, an, bn ∈ R2m,

whose Fourier coefficients satisfy the condition
∞∑
n=1

n(a2n + b
2
n) <∞.

The space H becomes a Hilbert space with an inner product

(5.2) 〈z, z′〉H := 2π〈a0, a′0〉+ π
∞∑
n=1

n(〈an, a′n〉+ 〈bn, b′n〉).

Let Φ:H → R be an action functional defined by

(5.3) Φ(z) := −1
2
〈Lz, z〉H − ψ(z),
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where

〈Lz, z〉H =
∫ 2π
0
〈Jż(t), z(t)〉 dt,(5.4)

ψ(z) =
∫ 2π
0

H(z(t), t) dt.(5.5)

Here J =
[
0 −I
I 0

]
stands for the standard symplectic matrix.

Under certain growth conditions on H (for instance, there are constants
c1, c2, s > 0 such that for all z ∈ R2m, ‖H ′z(z, t)‖ ≤ c1+ c2‖z‖s) a map z is a 2π-
periodic solution of (5.1) if and only if it is a critical point of Φ. In Morse–Conley
theory approach the critical points are obtained by analysis of gradient flow of
a given functional. Since the local compactness property fails in the case of the
space H, the straightforward application of these methods is out of question.
Moreover, the critical points of Φ are saddle points having infinite-dimensional
stable and unstable invariant manifolds, therefore the Morse index is not defined.
However, the map ∇φ turns out to be completely continuous and the gradient
of Φ is of the form

bounded linear operator + completely continuous map.

This particular form of a vector field gives a hint, that the difficulties related
to infinite dimension of the domain can be overcome by means of the Leray–
Schauder method of finite dimensional approximation. This leads us to the
concept of the LS-index, an object that generalizes the Conley index in the
same way as the Leray–Schauder degree generalizes the classical Brouwer one.

5.1. LS-index. Let H be a real, separable Hilbert space, and L:H → H be
a linear bounded operator which satisfies the following assumptions:

• L gives a splitting H =
⊕∞
n=0Hn onto finite dimensional, mutually

orthogonal L-invariant subspaces;
• L(Hn) = Hn for n > 0 and L(H0) ⊂ H0, where H0 is a subspace cor-
responding to the part of spectrum on the imaginary axis, i.e. σ0(L) :=
σ(L|H0) = σ(L) ∩ iR;
• σ0(L) is isolated in σ(L).

Definition 5.1. We say that a map f :H × Λ → H, where Λ is a compact
metric space, is a family of LS-vector fields, if f is of the form

f(x, λ) = Lx+K(x, λ), (x, λ) ∈ H × Λ,

where K:H×Λ→ H is a completely continuous and locally Lipschitz map. The
map f( · , λ0) is called an LS-vector-field.

We will be concerned with the flows generated by the equation u̇ = −f(u),
where f is an LS-vector field. In order to guarantee that such equation generates
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a flow it suffices to assume that f is subquadratic, i.e. the completely continuous
part of f satisfies the condition |〈K(z), z〉| ≤ a‖z‖2+ b, for some a, b > 0; see [9].
Without loss of generality we may assume f is a subquadratic LS-vector field.
Notice that it is also well known that the flow generated by such a field is of the
form φt(x) = exp(tL)+U(t, x), where U :R×H → H is a completely continuous
map. In what follows we will call it an LS-flow.
Turning to the definition of the Conley-type invariant for LS-flows we define

the isolating neighbourhood for φt to be a closed and bounded subset X of H
such that the invariant part of it inv(X) = {x ∈ X : φR(x) ⊂ X} lies strictly in
the interior of X. We say that S is a φt-isolated (abbrev. isolated) invariant set
if there exists an isolating neighbourhood X for φt such that S = inv(X). Of
course X does not need to be compact, but some compactness property holds.
It is a key feature of the class of LS-flows and it turns out to be crucial in the
definition of the LS-index. Namely, we have the following theorem:

Compactness property. Let φ( · ):R × H × Λ → H be a family of LS-
flows. If X ⊂ H is closed and bounded, then S := inv(S, φt) is a compact subset
of H × Λ.

Let f :H → H be an LS-vector field, f(x) = Lx +K(x), φt:H → H be an
LS-flow generated by f and assume that X ⊂ H is an isolating neighbourhood
for φt. Denote by Pn:H → H the orthogonal projection onto Hn =

⊕n
i=1Hi.

Set H−n := H− ∩Hn and H+n := H+ ∩Hn, where H− (resp. H+) denotes the
L-invariant subspace of H corresponding to the part of spectrum with negative
(resp. positive) real part. Define fn:Hn → Hn by

fn(x) := Lx+ PnK(x)

and denote by φtn a flow on H
n induced by the vector field fn. The compactness

property of the isolated invariant sets implies that the compact set Xn := X ∩
Hn is an isolating neighbourhood for φtn provided that n is sufficiently large.
Consequently, Sn := inv(Xn, φtn) is an isolated invariant set and thus, in view
of Theorem 2.2, it admits an index pair (Yn, Zn). Let [Yn/Zn] be the Conley
index of Sn. Since K is completely continuous, it turns out that for a large n
the index of Sn is determined by the spectral properties of the operator L in
the following way. For each non-negative integer n let ν(n) be the dimension of
H−n+1, the unstable subspace of the (n+1)th block of H. Using the construction
presented in [9] one can prove that for n large enough, say n ≥ n0, the pointed
space Yn+1/Zn+1 is homotopy equivalent to the ν(n)-fold suspension of Yn/Zn,
i.e.

[Yn+1/Zn+1] = [Sν(n)(Yn/Zn)], n ≥ n0.
Thus, we have constructed a sequence of pointed spaces

{En} = {Yn/Zn}, n ≥ n0.
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Definition 5.2. Let φ be an LS-flow generated by an LS-vector field and
let X be an isolating neighbourhood for φ. The LS-index of X is the homotopy
type of En, where n ≥ n0. It is denoted by hLS(X,φ) or hLS(X) for short.

The above definition is independent of n up to suspension, i.e. for n ≥ n0
and for any integer k ≥ 0, one has

[En+k] = [Sν(n)+ν(n+1)+...+ν(n+k−1)En].

Let θ denote the homotopy type of a pointed one-point space.

Proposition 5.3 (K. Gęba et al. [9]). The LS-index has the following prop-
erties:

(a) (Nontriviality) Let φt:H → H be an LS-flow and X ⊂ H be an isolating
neighbourhood for φt with S := inv(X). If hLS(X) 6= θ, then S 6= ∅.

(b) (Continuation) Let Λ be a compact, connected and locally contractible
metric space. Assume that φt:H ×Λ→ H is a family of LS-flows. Let
X be an isolating neighbourhood for a flow φtλ for some λ ∈ Λ. Then
there is a compact neighbourhood Uλ ⊂ Λ such that

hLS(X,φtµ) = hLS(X,φ
t
ν) for all µ, ν ∈ Uλ.

5.2. Cohomological LS-index. Let H∗ denotes the Alexander-Spanier co-
homology functor with coefficients in some fixed ring Z. To define the cohomo-
logy of the LS-index represented by the sequence E = {En}∞n=n0 consider the
function ρ:N ∪ {0} → N ∪ {0} defined to be 0 for n = 0 and ρ(n) :=

∑n−1
i=0 ν(i)

for n > 0. For a fixed q ∈ Z consider a sequence of cohomology groups

Hq+ρ(n)(En), n ≥ n0,

together with homomorphisms

hn:Hq+ρ(n+1)(En+1)
εq+ρ(n+1)n−−−−−−→ Hq+ρ(n+1)(Sν(n)En)

(S∗)−ν(n)−−−−−−→ Hq+ρ(n)(En)

that is, an inverse system (Hq+ρ(n)(En), hn). Here

εkn:H
k(En+1)→ Hk(Sν(n)En)

is an isomorphism induced by the homotopy equivalence εn:Sν(n)En → En+1
and S∗ denotes the suspension isomorphism Hk(En) ∼= Hk+1(SEn).

Definition 5.4. The q-th cohomology group of E is the inverse limit group
lim
←−
{Hq+ρ(n)(En), hn}. It will cause no confusion if we denote it Hq(E) declaring

earlier that E stands for a sequence of spaces.

These groups are the topological-algebraic invariants of an isolated invariant
set of an LS-flow. We call H∗(E) the cohomological LS-index. It is worth
pointing out that Hq(E) ∼= Hq+ρ(n)(En) for n ≥ n0 due to the fact that hn is an
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isomorphism. The groups Hq(E) may be nonzero both for positive and negative
q’s. To see this let En = S2n−1 ∨ S2n+1 and ν(n) = 2. Then ρ(n) = 2n and

Hq(E) = Hq+ρ(n)(En) =
{ Z for q = −1, 1,
0 else.

Because of the remarks above we need to amend a bit definition of the Poinca-
ré polynomial that we have made earlier, cf. Definition 2.10. Let E be a sequence
that we get in the definition of an LS-index. We define the following generalized
formal power series:

P(t, E) :=
∑
q∈Z

rq(E)tq,

where rq(E) stands for the rank of Hq(E). If rq(E) are 0 for all q less than some
fixed q0 ∈ Z then P(t, E) is called the generalized Poincaré series.
Let φ be an LS-flow with an isolating neighbourhood X and assume that

{Mπ : π ∈ D} is a Morse decomposition of S = inv(X). We have the following
analogue of the Morse equation. The proof can be found in the first author’s
paper [11].

Theorem 5.5. Under the above assumptions one has∑
π∈D
P(t, hLS(Mπ)) = P(t, hLS(S)) + (1 + t)Q(t),

where the coefficients of the generalized power series Q(t) are nonnegative inte-
gers.

5.3. Applications. Let us turn to the problem of searching for 2π-periodic
orbits of a Hamiltonian ODE’s. The system (5.1) can be written in a shortened
form

(5.6) ż = J∇H(z, t),

where the gradient is taken with respect to z ∈ R2m, and J stands for the
symplectic linear map R2m 3 (x, y) 7→ (−y, x). Recall that in order to find
periodic solutions one has to find critical points of the corresponding functional
(5.3), whose gradient is of the form

−∇Φ(z) = Lz +∇ψ(z),

hence, it is an LS-vector field. Using the formulae (5.2) and (5.4) one can easily
verify that

(5.7) (Lz)(t) =
∞∑
n=1

Jbn cosnt− Jan sinnt.



Morse Inequalities via Conley Index Theory 57

Let e1, . . . , e2m be the standard basis in R2m. Introduce the following functional
vector spaces:

H0 := span{e1, . . . , e2m},
H+n := span{cos(nt)ej + sin(nt)Jej : j = 1, . . . , 2m},
H−n := span{cos(nt)ej − sin(nt)Jej : j = 1, . . . , 2m}.

Setting Hn := H+n ⊕ H−n we obtain the family of finite dimensional, mutually
orthogonal and L-invariant subspaces of H such that H =

⊕∞
n=0Hn. It is

evidently seen from (5.7) that H0 = kerL and

Lz =


z for z ∈

∞⊕
n=1

H+n

−z for z ∈
∞⊕
n=1

H−n .

If the function H is a quadratic form, i.e. H(z) = (1/2)〈Az, z〉 for a symmetric
(2m×2m)-matrix A, the case is fairly easy. The equation (5.6) becomes a linear
Hamiltonian system

ż = JAz,

and the corresponding functional Φ is of the form Φ(z) = −(1/2)〈(L+K)z, z〉H ,
where L is given by (5.7) and

(5.8) (Kz)(t) = Aa0 +
∞∑
n=1

1
n
Aan cosnt+

1
n
Abn sinnt.

The vector field ∇Φ:H → H preserves all spaces Hn and by (5.7) and (5.8) one
can show that its restriction to Hn, n ≥ 1 can be identified with a linear map
given by the (4m× 4m)-matrix

(5.9) Tn(A) =
[
− 1nA −J
J − 1nA

]
and with −A on R2m if n = 0. Following H. Amann and E. Zehnder [1] we
introduce numbers generalizing the standard Morse index and nullity

i−(A) := m−(−A) +
∞∑
n=1

(m−(Tn(A))− 2m),

i0(A) := m0(−A) +
∞∑
n=1

m0(Tn(A)).

If i0(A) = 0 then ∇Φ is an isomorphism and for r > 0 the disc D(r) = {z ∈
H : ‖z‖ ≤ r} is an isolating neighbourhood of a flow φ given by u̇ = −∇Φ(u)
with S = {0} = invD(r). The LS-index is a homotopy type of pointed sphere
En = Sp(n), where p(n) = i−(A) + n · 2m for a sufficiently large n.
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Let S(r,H) = {z ∈ H : ‖z‖ = r}. Notice that the pair (D(r), S(r,H−))
would be an index pair in the classical Conley’s theory. Since the sphere in
a Hilbert space is homotopically trivial the quotient D(r)/S(r,H−) does not
carry any essential information about the dynamics.
Using the above consideration about linear Hamiltonian systems one comes

to the following:

Remark 5.6. (a) Assume that H(z, t) = (1/2)〈A0z, z〉 + h(z, t), where A0
is a symmetric (2n × 2n)-matrix and ∇h(z, t) = o(|z|) uniformly in t as z → 0.
If i0(A0) = 0, then for r sufficiently small D(r) is an isolating neighbourhood
of S = {0} and hLS(D(r)) = [(Sp(n), ∗)] where p(n) = i−(A0) + n · 2m and n is
sufficiently large.
(b) Assume that H(z, t) = (1/2)〈A∞z, z〉+h(z, t), where A∞ is a symmetric

(2n× 2n)-matrix and ∇h(z, t) is bounded. If i0(A∞) = 0, then for R sufficiently
large D(R) is an isolating neighbourhood and hLS(D(R)) = [(Sp(n), ∗)] where
p(n) = i−(A∞) + n · 2m and n is sufficiently large.

If i0(A) 6= 0 this is no longer the case and detailed discussion is needed.

Example 5.7 ( [11, Example 5.1]). Let H:R2 × R → R be a function of
class C2 such that:

(H1) H(z, t) = (1/2)|z|2 + |z|4 + h(z, t) for |z| ≤ α1, α1 > 0, where h is
a perturbation of order higher than 4;

(H2) H(z, t) = (1/2)|z − z0|2 + ((x − x0)3 − 3(x − x0)(y − y0)2) cos(3t) if
|z − z0| ≤ α2 for some z0 = (x0, y0) 6= (0, 0) and α2 > 0;

(H3) H(z, t) = (1/2)d|z|2 + q(z, t) if |z| ≥ α3, α3 > 0, d > 0 is not an integer
and ∇q(z, t) is bounded.

The equation (5.6) has two trivial solutions, namely z(t) = 0 and z(t) = z0.
The derivatives A0 and Az0 of the LS-vector field −∇Φ at 0 and z0 respectively
have kernels of dimension 2. That is these points are degenerate critical points
of Φ:H → R and thus the Morse index is not defined. Nevertheless, one can
still find isolating neighbourhoods X0 and Xz0 for the LS-flow φ given by u̇ =
−∇Φ(u) such that {0} = inv(X0) and {z0} = inv(Xz0). The LS-index of Xz0 is
equal to the homotopy type of pointed wedge of two spheres of dimension 2n+3,
i.e. En = S2n+3∨S2n+3 for n ≥ 1, whilst hLS(X0) = [E′n], where E′n is a pointed
sphere S2n+2, n ≥ 1.
Since d is not an integer it is easily seen from (5.9) that the derivative of −∇Φ

at the infinity is an isomorphism. Therefore there is an isolating neighbourhood
X∞ for a flow φ such that S := inv(X∞) is a maximal compact isolated invariant
set of φ in H. By the Remark 5.6 we conclude that hLS(X∞) is a homotopy
type of pointed sphere E′′n = S2n+2a for sufficiently large n and positive a ∈ Z
such that d ∈ (a− 1, a).
Since for all n one has [En ∨ E′n] 6= [E′′n] we get inequality S 6= {0, z0}. We

will show that S contains another equilibrium point except the trivial ones 0
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and z0. If this is not the case sets M1 = {0} and M2 = {z0} form a Morse
decomposition of S. The admissible ordering exists since φ is a gradient flow.
The calculations of the cohomological LS-indices with integer coefficients give us
the following:

Hq(E) ∼=
{ Z⊕ Z for q = 3,

0 for q 6= 3,

Hq(E′) ∼=
{ Z for q = 4,

0 for q 6= 4,

Hq(E′′) ∼=
{ Z for q = 2a,

0 for q 6= 2a.
By Theorem 5.5 we get the equality

2t3 + t4 = t2a + (1 + t)Q(t)

which is false due to the fact that all coefficients of Q(t) are nonnegative in-
tegers. This proves the existence of third critical point of Φ. Consequently,
the Hamiltonian system (5.6) satisfying conditions (H1)–(H3) possesses at least
three 2π-periodic solutions.
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1. Preface

In this work we will be concerned with a class of integral functionals of the
form

If,p(u) =
∫ b
a

f(x, u(x), u′(x)) dx

determined on the Sobolev spaces W 1,p[a, b], where p ∈ [1,∞] and a function
f : [a, b] × R × R → R is continuous. We will be interested in the problem of
minimization of such functionals. The results we present are known in much
more general settings (see for instance [1]) and they are applicable in the the-
ory of ordinary and partial differential equations (see for instance [5] and [2],
respectively).
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The work is organized as follows. In Section 2 we discuss direct methods
of the calculus of variations for weakly lower semi-continuous and lower semi-
continuous functionals in Banach spaces and for the Gäteaux differentiable ones.
In Section 3 we review some of the standard facts on the Banach spaces L∞(a, b)
and Lp(a, b) for p ≥ 1. Section 4 contains some remarks on absolutely continuous
functions. In Section 5 main results on the Sobolev spaces W 1,p[a, b] for p ≥ 1
and W 1,∞[a, b] are stated and proved. Finally, in Sections 6 and 7 we indicate
how direct methods of the calculus of variations may be used to minimize the
integral functionals If,p:W 1,p[a, b]→ R.

2. Some direct methods of the calculus of variations

Let (X, ‖ · ‖) be a real Banach space. We will say that I:X → R possesses
(has or achieves) a minimum on X if there exists a point u ∈ X such that

(2.1) I(u) = inf{I(v) : v ∈ X}.

The number I(u) = inf{I(v) : v ∈ X} is called the minimum of I and each point
u satisfying (2.1) is said to be a point of minimum.
The problem of existence of minimum of a functional I:X → R is composed

of three basic questions:

(1) the question about existence: Does I possess a minimum?
(2) the question about properties: What are properties of u ∈ X satisfying
(2.1)?

(3) the question about uniqueness: How many points in X satisfy (2.1)?

2.1. Lower semi-continuous functionals.

Definition 2.1. A sequence {un}n∈N ⊂ X is called a minimizing sequence
for I:X → R if

lim
n→∞
I(un) = inf{I(u) : u ∈ X}.

We show that for a certain class of functionals the questions about the exis-
tence of minimum and the existence of a minimizing sequence are equivalent.
Let X∗ denote the space of linear continuous functionals on X. We will say

that a sequence {un}n∈N is weakly convergent (resp. convergent) to u ∈ X if for
every F ∈ X∗, F (un)→ F (u) in R (resp. ‖un − u‖ → 0 in R) and we will write
un ⇀ u in X (resp. un → u in X). Then u is called a weak limit (resp. a strong
limit) and it is determined in a unique way.

Definition 2.2. A functional I:X → R is weakly lower semi-continuous
(resp. lower semi-continuous) at a point u ∈ X if for every {un}n∈N ⊂ X,

un ⇀ u in X ⇒ lim inf
n→∞

I(un) ≥ I(u),

(resp. un → u in X ⇒ lim inf
n→∞

I(un) ≥ I(u)).
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We will say that I is weakly lower semi-continuous (resp. lower semi-conti-
nuous) if I is weakly lower semi-continuous (resp. lower semi-continuous) in every
u ∈ X. For abbreviation, we will write I is wlsc (resp. I is lsc).
Since every convergent sequence in X is weakly convergent to the same el-

ement, every weakly lower semi-continuous functional is lower semi-continuous.
The inverse is not true.

Theorem 2.3. If a functional I:X → R is lsc, convex and bounded from
below then I is wlsc.

Proof. Let un ⇀ u in X. Since I is bounded from below,

lim inf
n→∞

I(un) > −∞.

If lim infn→∞ I(un) = ∞ then lim infn→∞ I(un) ≥ I(u). Let us assume that
lim infn→∞ I(un) is finite. Fix c ∈ R such that c > lim infn→∞ I(un). Let
{unk}k∈N be a subsequence such that

lim
k→∞
I(unk) = lim infn→∞

I(un)

and c > I(unk) for each k ∈ N.
By the Mazur theorem (see for instance [6]), there exists a sequence of convex

combinations

vnk =
k∑
j=1

αnkj unj ,
k∑
j=1

αnkj = 1, α
nk
j ≥ 0

for j = 1, . . . , k and k ∈ N such that vnk → u in X. By assumptions, we get

I(u) ≤ lim inf
k→∞

I(vnk) = lim inf
k→∞

I

( k∑
j=1

αnkj unj

)

≤ lim inf
k→∞

( k∑
j=1

αnkj I(unj )
)
≤ lim inf
k→∞

(
c

k∑
j=1

αnkj

)
= c.

In particular, for every m ∈ N, we have

I(u) ≤ lim inf
n→∞

I(un) +
1
m
.

Hence
I(u) ≤ lim inf

n→∞
I(un),

which completes the proof. �

Theorem 2.4. Assume that a functional I:X → R is wlsc (resp. lsc). Then
I possesses a minimum on X if and only if there exists a weakly convergent (resp.
convergent) minimizing sequence for I.

Proof. (⇒) By assumption, there is u ∈ X such that I(u) = inf{I(v) : v ∈
X}. Set un = u for each n ∈ N. Then un ⇀ u in X and limn→∞ I(un) = I(u).
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(⇐) There are {un}n∈N ⊂ X and u ∈ X such that un ⇀ u in X and
limn→∞ I(un) = inf{I(v) : v ∈ X}. Since I is wlsc, we get

I(u) ≥ inf{I(v) : v ∈ X} = lim
n→∞
I(un) = lim inf

n→∞
I(un) ≥ I(u).

Thus I(u) = inf{I(v) : v ∈ X}.
For I lsc the proof is similar. Therefore we omit it. �

Combining Theorem 2.4 with Theorem 2.3 we get the following conclusion.

Conclusion 2.5. If a functional I:X → R is lsc, convex and bounded from
below, then I possesses a minimum on X if and only if there exists a weakly
convergent minimizing sequence for I.

In general, the problem of existence of a weakly convergent minimizing se-
quence for a wlsc functional I:X → R may be difficult to solve. It makes a little
easier if X is a reflexive Banach space. Namely, it is equivalent to the problem
of existence of a bounded minimizing sequence for I. This is a consequence of
the following characterization of reflexive Banach spaces.

Theorem 2.6 (Eberlein’s theorem, see [6]). A Banach space (X, ‖ · ‖) is
reflexive if and only if every bounded sequence in X has a weakly convergent
subsequence.

Theorem 2.7. Assume that (X, ‖·‖) is a reflexive Banach space and I:X →
R is wlsc. Then I possesses a minimum on X if and only if there exists a bounded
minimizing sequence for I.

Proof. (⇒) By assumption, there is u ∈ X such that I(u) = inf{I(v) : v ∈
X}. Set un = u for each n ∈ N. The sequence {un}n∈N is bounded in X and
limn→∞ I(un) = I(u).
(⇐) There is a bounded sequence {un}n∈N ⊂ X such that limn→∞ I(un) =

inf{I(v) : v ∈ X}. By reflexivity of X, there are a subsequence {unk}k∈N ⊂
{un}n∈N and u ∈ X such that unk ⇀ u in X. The subsequence {unk}k∈N is
a weakly convergent minimizing sequence for I. From Theorem 2.4 it follows
that I possesses a minimum on X. �

In particular, a functional I, defined on a reflexive Banach space X, has
a minimum if all its minimizing sequences are bounded. This takes place if I is
coercive, i.e.

I(u)→∞, as ‖u‖ → ∞.

Theorem 2.8. Assume that I:X → R is coercive in a reflexive Banach
space X. Then the following hypotheses are true:

(H1) Every minimizing sequence for I is bounded in X.
(H2) If I is wlsc then I has a minimum on X.
(H3) If I is lsc, convex and bounded from below then I has a minimum on X.
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Proof. (H1) Conversely, suppose that I has an unbounded minimizing se-
quence {un}n∈N ⊂ X. Then there exists a subsequence {unk}k∈N ⊂ {un}n∈N
such that ‖unk‖ → ∞. Since I is coercive, we get I(unk) → ∞. On the other
hand,

I(unk)→ inf{I(v): v ∈ X} <∞,
a contradiction.
(H2) Let {un}n∈N ⊂ X be a minimizing sequence for I. From (H1) it follows

that {un}n∈N is bounded in X. By Theorem 2.7, I possesses a minimum on X.
(H3) By Theorem 2.3, I is wlsc. Consequently, by (H2), I has a minimum

on X. �

2.2. G-differentiable functionals. A functional I:X → R is G-differen-
tiable at a point u ∈ X if it satisfies two conditions:
(1) for every v ∈ X, a function ϕv:R→ R given by

ϕv(t) = I(u+ tv)

is differentiable at t = 0;
(2) a functional I ′(u):X → R defined by

I ′(u)v = ϕ′v(0), v ∈ X

is linear and continuous.

Then I ′(u):X → R is called the Gäteaux derivative of a functional I at a point
u. We will say that I:X → R is G-differentiable if it is G-differentiable in every
u ∈ X. Moreover, a point u ∈ X such that

I ′(u) = 0

is called a critical point of a G-differentiable functional I.

Theorem 2.9. Assume that I:X → R is a G-differentiable functional. If I
achieves a minimum at a point u ∈ X then u is a critical point of I.

Proof. By assumption, I(u) = inf{I(v) : v ∈ X}. Since I is G-differentiable,
for each v ∈ X a function ϕv:R→ R given by

ϕv(t) = I(u+ tv), t ∈ R

is differentiable at t = 0 and I ′(u)v = ϕ′v(0). Moreover, we have

ϕv(0) = I(u) ≤ I(u+ tv) = ϕv(t)

for all t ∈ R. Hence
ϕv(0) = inf{ϕv(t) : t ∈ R},

and, in consequence, ϕ′v(0) = 0 for all v ∈ X. Thus I ′(u) = 0. �
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Theorem 2.10. Assume that a functional I:X → R is convex and G-dif-
ferentiable. Then I achieves a minimum at a point u ∈ X if and only if u is
a critical point of I.

Proof. From Theorem 2.9 it follows (⇒).
(⇐) We show that

(2.2) I(w) ≥ I(v) + I ′(v)(w − v)

for all v, w ∈ X.
Fix v, w ∈ X. If v = w then I ′(v)(w − v) = I ′(v)0 = 0. Hence

I(w) = I(v) + I ′(v)(w − v).

Consider the case v 6= w. Since I is convex, we receive

I(tw + (1− t)v) ≤ tI(w) + (1− t)I(v)

for all t ∈ (0, 1). From this

I(v + t(w − v))− I(v)
t

≤ I(w)− I(v)

for all t ∈ (0, 1). Letting t→ 0+, we have

I ′(v)(w − v) ≤ I(w)− I(v).

Thus the inequality (2.2) holds. In particular, I(w) ≥ I(u)+ I ′(u)(w−u) for all
w ∈ X. Since u is a critical point of I, we get I(w) ≥ I(u) for all w ∈ X, which
completes the proof. �

3. The spaces Lp(a, b) for p ≥ 1 and L∞(a, b)

In Section 3 we review the standard facts on the spaces of p-integrable func-
tions and the space of essentially bounded measurable functions on (a, b). The
proofs we omit can be found in [6, Section II, § 6, Section III, § 18 and Section IV,
§ 26].
Let X be the space of all Lebesgue measurable functions from (a, b) ⊂ R

into R. Here and subsequently, the Lebesgue measure of A ⊂ R will be denoted
by µ(A).

Definition 3.1. Let u, v ∈ X. We will say that u = v almost everywhere
on (a, b) if µ({x ∈ (a, b) : u(x) 6= v(x)}) = 0. For abbreviation, we will write
u = v a.e. on (a, b).

Definition 3.2. If u, v ∈ X then u ∼ v if and only if u = v a.e. on (a, b).
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Fact 3.3. ∼ is an equivalence relation in X.

The equivalence class of u ∈ X, with respect to ∼, will be denoted by [u].
Let X̃ = {[u] : u ∈ X}. We define the addition of equivalence classes and
multiplication by scalars as follows. If u, v ∈ X and α ∈ R then

[u] + [v] := [u+ v] and α[u] := [αu].

These two definitions are independent of the choice of members of equivalence
classes.

Fact 3.4. X̃ with the addition and multiplication by scalars determined above
is a linear space over R.

3.1. Basic properties of L∞(a, b) and Lp(a, b).

Definition 3.5. A function u ∈ X is essentially bounded if there exists
M ≥ 0 such that µ({x ∈ (a, b) : |u(x)| > M}) = 0.

Lemma 3.6. Let u ∈ X and

A = {M ≥ 0 : µ({x ∈ (a, b) : |u(x)| > M}) = 0}.

If u is essentially bounded then inf A ∈ A.

Proof. By assumption, A is non-empty. By the definition of A, it follows
that 0 is a lower bound of this set. By the definition of infimum, for each n ∈ N
there is Mn ∈ A such that

inf A ≤Mn < inf A+
1
n
.

For each n ∈ N, let An = {x ∈ (a, b) : |u(x)| > Mn}. Since Mn ∈ A, µ(An) = 0.
Set

Z =
∞⋃
n=1

An.

By the subadditivity of measure, we have µ(Z) = 0.
Take x ∈ (a, b) \ Z. Then |u(x)| ≤ Mn for all n ∈ N, and consequently,

|u(x)| < inf A+ 1/n for all n ∈ N. Letting n→∞, we get |u(x)| ≤ inf A.
By the above, {x ∈ (a, b) : |u(x)| > inf A} ⊂ Z. Thus

µ({x ∈ (a, b) : |u(x)| > inf A}) = 0,

and hence inf A ∈ A. �

We will denote by L∞(a, b) the space of equivalence classes of essentially
bounded measurable functions from (a, b) into R with the norm

‖u‖L∞ = inf{M ≥ 0 : µ({x ∈ (a, b) : |u(x)| > M}) = 0}.

By abuse of notation, we write u instead of [u].
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Theorem 3.7. L∞(a, b) is a Banach space.

Proof. Let {un}n∈N ⊂ L∞(a, b) be a Cauchy sequence. For n,m ∈ N, set

Bn,m = {x ∈ (a, b) : |un(x)− um(x)| > ‖un − um‖L∞}.

Define

B =
⋃
n,m∈N

Bn,m.

By Lemma 3.6, µ(Bn,m) = 0 for all n,m ∈ N, and hence µ(B) = 0.
Fix ε > 0. There is N ∈ N such that ‖un − um‖L∞ < ε/2 for all n,m ≥ N .

From this it follows that |un(x)−um(x)| < ε/2 for all x ∈ (a, b)\B and n,m ≥ N .
Thus {un(x)}n∈N for each x ∈ (a, b)\B is a Cauchy sequence in R. Consequently,
a function u: (a, b)→ R given by

u(x) =

{
0 if x ∈ B,
lim
n→∞
un(x) if x ∈ (a, b) \B

is measurable.
Remark that u is also essentially bounded.
There exists K > 0 such that ‖un‖L∞ ≤ K for n ∈ N, because {un}n∈N is

a Cauchy sequence. We check at once that there exists a subset C ⊂ (a, b)
of measure 0 such that |un(x)| ≤ K for all x ∈ (a, b) \ C and n ∈ N. If
x ∈ (a, b) \ (B ∪ C) then |un(x)| ≤ K for each n ∈ N and, in consequence,
|u(x)| ≤ K. By the above, µ({x ∈ (a, b) : |u(x)| > K}) = 0, and so u is
essentially bounded. By definition, u ∈ L∞(a, b).
Finally, we will show that u is a limit of {un}n∈N in L∞(a, b).
For every ε > 0 there exists N ∈ N such that |un(x) − um(x)| < ε/2 for all

x ∈ (a, b) \ B and n,m ≥ N . Letting m → ∞, we get |un(x) − u(x)| ≤ ε/2 for
all x ∈ (a, b) \B and n ≥ N . From this ‖un − u‖L∞ < ε for each n ≥ N , which
implies un → u in L∞(a, b). �

Theorem 3.8. un → u in L∞(a, b) if and only if there exists a subset B ⊂
(a, b) of measure 0 such that un → u uniformly on (a, b) \B.

Proof. (⇒) Let Bn = {x ∈ (a, b) : |un(x) − u(x)| > ‖un − u‖L∞}, where
n ∈ N. By Lemma 3.6, µ(Bn) = 0 for n ∈ N. Define B =

⋃
n∈NBn. Then

µ(B) = 0.
Fix ε > 0. By assumption, there is N ∈ N such that ‖un − u‖L∞ < ε for all

n ≥ N . If x ∈ (a, b) \B and n ≥ N we have |un(x)− u(x)| ≤ ‖un − u‖L∞ < ε.
(⇐) Let ε > 0. By assumption, there is N ∈ N such that |un(x)−u(x)| < ε/2

for all x ∈ (a, b)\B and n ≥ N . Hence µ({x ∈ (a, b) : |un(x)−u(x)| > ε/2}) = 0
for all n ≥ N . By Lemma 3.6, for all n ≥ N we have ‖un − u‖L∞ ≤ ε/2 < ε. �
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For each p ≥ 1, let Lp(a, b) denote the space of equivalence classes of functions
u: (a, b)→ R such that

∫ b
a
|u(x)|pdx <∞ with the norm

‖u‖Lp =
(∫ b
a

|u(x)|p dx
)1/p
.

Theorem 3.9 (see [6, Section II, § 6]). Lp(a, b) for p ≥ 1 is a Banach space.

Theorem 3.10 (see [6, Section IV, § 23]). Lp(a, b) for p > 1 is a reflexive
space.

Theorem 3.11 (see [6, Section II, § 6]). If p, q ∈ [1,∞] and 1/p+ 1/q = 1
then ∫ b

a

|u(x)v(x)| dx ≤ ‖u‖Lp‖v‖Lq (Hölder’s inequality)

for all u ∈ Lp(a, b) and v ∈ Lq(a, b).

Lemma 3.12. L∞(a, b) ⊂ Lp(a, b) for p ≥ 1. Moreover, if u ∈ L∞(a, b)
then

‖u‖Lp ≤ (b− a)1/p‖u‖L∞ .

Proof. Fix p ≥ 1. Assume that u ∈ L∞(a, b). By Lemma 3.6,

µ({x ∈ (a, b) : |u(x)| > ‖u‖L∞}) = 0.

Hence ∫ b
a

|u(x)|p dx ≤
∫ b
a

‖u‖pL∞ dx = (b− a)‖u‖
p
L∞ ,

which completes the proof. �

Conclusion 3.13. If un → u in L∞(a, b) then un → u in Lp(a, b) for p ≥ 1.

Definition 3.14. A sequence {un}n∈N ⊂ X is said to be convergent almost
everywhere on (a, b) to a function u ∈ X if

µ({x ∈ (a, b) : un(x)9 u(x)}) = 0.

To shorten notation, we will write un → u a.e. on (a, b) or un(x)→ u(x) for
a.e. x ∈ (a, b).
We can formulate now an immediate consequence of Theorem 3.8.

Conclusion 3.15. If un → u in L∞(a, b) then un → u a.e. on (a, b).

Theorem 3.16 (Riesz theorem, see [3, § 5.9]). If p ∈ [1,∞) and un → u
in Lp(a, b) then {un}n∈N has a subsequence that converges to u a.e. on (a, b).
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Theorem 3.17 (Riesz representation theorem, see [6]).

(a) Assume that p, q > 1 and 1/p+1/q = 1. Then a functional F :Lp(a, b)→
R is linear and continuous if and only if there exists v ∈ Lq(a, b) such
that

F (u) =
∫ b
a

u(x)v(x) dx.

Moreover, ‖F‖ = ‖v‖Lq .
(b) A functional F :L1(a, b) → R is linear and continuous if and only if
there exists v ∈ L∞(a, b) such that

F (u) =
∫ b
a

u(x)v(x) dx.

Moreover, ‖F‖ = ‖v‖L∞ .

3.2. (∗)-weakly convergence in L∞(a, b).

Theorem 3.18. For every v ∈ L1(a, b), a functional F :L∞(a, b)→ R given
by

F (u) =
∫ b
a

u(x)v(x) dx

is linear and continuous. Moreover, ‖F‖ = ‖v‖L1 .

Proof. It is easy to check that F is linear. By Hölder’s inequality, for every
u ∈ L∞(a, b), we get∣∣∣∣ ∫ b

a

u(x)v(x) dx
∣∣∣∣ ≤ ∫ b

a

|u(x)v(x)| dx ≤ ‖u‖L∞‖v‖L1 .

In consequence, F is continuous and ‖F‖ ≤ ‖v‖L1 .
To finish the proof, it is sufficient to find u0 ∈ L∞(a, b) such that ‖u0‖L∞ ≤ 1

and F (u0) = ‖v‖L1 . Define

u0(x) =
{
1 if x ∈ v−1([0,∞)),
−1 if x ∈ v−1((−∞, 0)).

We see at once that u0 possesses the above properties. �

We will say that a sequence {un}n∈N ⊂ L∞(a, b) is (∗)-weakly convergent to
u ∈ L∞(a, b) if for every v ∈ L1(a, b),

lim
n→∞

∫ b
a

un(x)v(x) dx =
∫ b
a

u(x)v(x) dx

and we will write un
∗
⇀ u in L∞(a, b). Then u is called a (∗)-weak limit.

By the use of Theorem 3.18 one can easily check that a (∗)-weak limit is well
defined.
Combining the definition of weak convergence with Theorem 3.18 we receive

the following conclusion.
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Conclusion 3.19. If un ⇀ u in L∞(a, b) then un
∗
⇀ u in L∞(a, b).

Fact 3.20. If un
∗
⇀ u in L∞(a, b) then {un}n∈N is a bounded sequence

in L∞(a, b). Moreover,

‖u‖L∞ ≤ lim inf
n→∞

‖un‖L∞ .

Proof. Let F, Fn:L1(a, b)→ R be given by

F (v) =
∫ b
a

v(x)u(x) dx and Fn(v) =
∫ b
a

v(x)un(x) dx,

where n ∈ N. By the Riesz representation theorem, the functionals defined above
are linear and continuous. Moreover, ‖F‖ = ‖u‖L∞ and ‖Fn‖ = ‖un‖L∞ for all
n ∈ N.
By assumption, Fn(v) → F (v) for every v ∈ L1(a, b). From the Banach-

Steinhaus theorem (see for instance [6]) it follows the existence of K > 0 such
that ‖Fn‖ ≤ K.
Fix v ∈ L1(a, b) such that ‖v‖L1 ≤ 1. We have |Fn(v)| ≤ ‖Fn‖‖v‖L1 ≤ ‖Fn‖

for n ∈ N, and hence |F (v)| ≤ lim infn→∞ ‖Fn‖. Consequently,

‖F‖ = sup
‖v‖L1≤1

|F (v)| ≤ lim inf
n→∞

‖Fn‖.

By the above, we get our claim. �

4. Some remarks on absolutely continuous functions

Definition 4.1. A function u: [a, b]→ R is said to be absolutely continuous
if for every finite sequence of subintervals {[ai, bi]}ni=1 of the interval [a, b] such
that [ai, bi] ∩ [aj , bj ] = ∅ for i 6= j it holds

n∑
i=1

(bi − ai) < δ ⇒
n∑
i=1

|u(bi)− u(ai)| < ε.

We will denote by AC[a, b] the set of all absolutely continuous functions from
[a, b] into R.

Proposition 4.2. The sentences below are true.

(a) AC[a, b] is a linear space over R.
(b) If u ∈ AC[a, b] then u is uniformly continuous.
(c) If u ∈ AC[a, b] is strictly monotone, v ∈ AC[α, β] and u([a, b]) ⊂ [α, β]
then v ◦ u ∈ AC[a, b].

(d) If u ∈ AC[a, b] then its variation
∨b
a u is finite, i.e.

b∨
a

u = sup
a=x0<...<xn=b

n∑
i=1

|u(xi)− u(xi−1)| <∞.
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(e) If u: [a, b] → R is continuous, c ∈ [a, b] and u|[a,c], u|[c,b] are absolutely
continuous then u is absolutely continuous.

The proof of Proposition 4.2 is easy and therefore it is left to the reader.
Since every absolutely continuous function u: [a, b]→ R has a finite variation,

by the Lebesgue theorem (see for instance [4, Section VII, § 1]), u is differentiable
almost everywhere on (a, b), i.e. µ({x ∈ (a, b) : u′(x) does not exist}) = 0. It is
also known (see [4, Section VII, § 4]) that u′ ∈ L1(a, b) and for each x ∈ [a, b],

u(x) = u(a) +
∫ x
a

u′(t) dt.

Theorem 4.3 (see [4, Section VII, § 4, Theorem 3] and [7, p. 104]). If
v ∈ L1(a, b) then u: [a, b]→ R given by

u(x) = u(a) +
∫ x
a

v(t) dt

is absolutely continuous and u′ = v a.e. on (a, b).

Conclusion 4.4. u ∈ AC[a, b] if and only if u is differentiable a.e. on (a, b),
u′ ∈ L1(a, b) and for each x ∈ [a, b] it holds

u(x) = u(a) +
∫ x
a

u′(t) dt.

5. The Sobolev spaces W 1,p[a, b] for p ≥ 1 and W 1,∞[a, b]

5.1. Basic properties of the Sobolev spaces. For each p ≥ 1, we will
denote byW 1,p[a, b] the space of all functions u: [a, b]→ R such that u ∈ AC[a, b]
and u′ ∈ Lp(a, b) with the norm

‖u‖W 1,p =
(∫ b
a

(|u(x)|p + |u′(x)|p) dx
)1/p
.

Furthermore, let W 1,∞[a, b] denote the space of all functions u: [a, b] → R such
that u ∈ AC[a, b] and u′ ∈ L∞(a, b) with the norm

‖u‖W 1,∞ = max{‖u‖L∞ , ‖u′‖L∞}.

We call W 1,p[a, b] and W 1,∞[a, b] the Sobolev spaces.
Let C[a, b] be the space of all continuous functions from [a, b] into R with the

standard norm

‖u‖C = sup
x∈[a,b]

|u(x)|.

Of course, if u: [a, b]→ R belongs to a Sobolev space then ‖u‖L∞ = ‖u‖C .



Minimization of Integral Functionals in Sobolev Spaces 73

Fact 5.1. The sentences below are true.

(a) If u ∈W 1,p[a, b], p > 1 and 1/p+ 1/q = 1 then

‖u− u(a)‖C ≤ (b− a)1/q‖u‖W 1,p .

(b) If u ∈W 1,1[a, b] then

‖u− u(a)‖C ≤ ‖u‖W 1,1 .

(c) If u ∈W 1,∞[a, b] then

‖u− u(a)‖C ≤ (b− a)‖u‖W 1,∞ .

Proof. Let u ∈W 1,p[a, b], p > 1 and 1/p+ 1/q = 1. Then

‖u− u(a)‖C = sup
x∈[a,b]

|u(x)− u(a)| = sup
x∈[a,b]

∣∣∣∣ ∫ x
a

u′(t) dt
∣∣∣∣

≤
∫ b
a

|u′(t)| dt ≤ (b− a)1/q‖u′‖Lp ≤ (b− a)1/q‖u‖W 1,p .

Let u ∈W 1,1[a, b]. Then

‖u− u(a)‖C ≤
∫ b
a

|u′(t)| dt = ‖u′‖L1 ≤ ‖u‖W 1,1 .

Let u ∈W 1,∞[a, b]. Then

‖u− u(a)‖C ≤
∫ b
a

|u′(t)| dt ≤ (b− a)‖u′‖L∞ ≤ (b− a)‖u‖W 1,∞ . �

Theorem 5.2. W 1,p[a, b] for p ≥ 1 and W 1,∞[a, b] are Banach spaces.

Proof. We examine the case where p ≥ 1. For p =∞, the proof is similar.
Let {un}n∈N be a Cauchy sequence in W 1,p[a, b]. From Fact 5.1 it follows

that {un − un(a)}n∈N is a Cauchy sequence in C[a, b]. Since C[a, b] is a Banach
space, there is u0 ∈ C[a, b] such that un − un(a) → u0 uniformly on [a, b]. In
particular, un(a)− un(a) = 0→ u0(a) in R, and so u0(a) = 0.
By the definition of norm in W 1,p[a, b], {un}n∈N and {u′n}n∈N are Cauchy

sequences in Lp(a, b). By Theorem 3.9, there exist w, v ∈ Lp(a, b) such that
un → w and u′n → v in Lp(a, b).
Let x ∈ [a, b]. For each n ∈ N, we have∣∣∣∣ ∫ x

a

u′n(t) dt−
∫ x
a

v(t) dt
∣∣∣∣ ≤ ∫ b

a

|u′n(t)− v(t)| dt = ‖u′n − v‖L1

if p = 1 and ∣∣∣∣ ∫ x
a

u′n(t) dt−
∫ x
a

v(t) dt
∣∣∣∣ ≤ (b− a)1/q‖u′n − v‖Lp
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if p > 1 and 1/p+ 1/q = 1. Hence

lim
n→∞

∫ x
a

u′n(t) dt =
∫ x
a

v(t) dt.

On the other hand,

lim
n→∞

∫ x
a

u′n(t) dt = lim
n→∞
(un(x)− un(a)) = u0(x).

In consequence,

u0(x) =
∫ x
a

v(t) dt

for each x ∈ [a, b]. Applying Theorem 4.3, we get u0 ∈ AC[a, b] and u′0(x) = v(x)
for a.e. x ∈ (a, b). Since v ∈ Lp(a, b), u0 ∈W 1,p[a, b].
For each n ∈ N, it holds

‖(un−un(a))−u0‖pW 1,p =
∫ b
a

(|(un(x)−un(a))−u0(x)|p+ |u′n(x)−u′0(x)|p) dx.

From this un − un(a) → u0 in W 1,p[a, b], because un − un(a) → u0 uniformly
on [a, b] and u′n → u′0 in Lp(a, b).
By the above, un(a) = un− (un−un(a))→ w−u0 in Lp(a, b), which implies

that {un(a)}n∈N is bounded in Lp(a, b), and consequently, {un(a)}n∈N is bounded
in R. By the Bolzano–Weierstrass theorem, {un(a)}n∈N possesses a convergent
subsequence {unk(a)}k∈N in R. Set limk→∞ unk(a) = c. Then unk(a) → c
in Lp(a, b), and so w−u0 = c. Moreover, since ‖un(a)− c‖W 1,p = ‖un(a)− c‖Lp
for each n ∈ N and un(a)→ c in Lp(a, b), we get un(a)→ c inW 1,p[a, b]. Finally,
we get un = (un − un(a)) + un(a)→ u0 + c in W 1,p[a, b]. �

Lemma 5.3. W 1,∞[a, b] ⊂W 1,p[a, b] for p ≥ 1. Moreover, if u ∈W 1,∞[a, b]
then

‖u‖W 1,p ≤ 21/p(b− a)1/p‖u‖W 1,∞ .

Proof. Fix p ≥ 1. By Lemma 3.12, we conclude that W 1,∞[a, b] ⊂W 1,p[a, b].
If u ∈W 1,∞[a, b] then

‖u‖Lp ≤ (b− a)1/p‖u‖L∞ and ‖u′‖Lp ≤ (b− a)1/p‖u′‖L∞ .

Hence

‖u‖pW 1,p ≤ (b− a)‖u‖
p
L∞ + (b− a)‖u

′‖pL∞ ≤ 2(b− a)‖u‖
p
W 1,∞ ,

which finishes the proof. �



Minimization of Integral Functionals in Sobolev Spaces 75

Fact 5.4. For each p ≥ 1, if un → u in W 1,p[a, b] then un → u uniformly
on [a, b].

Proof. Assume that un → u in W 1,p[a, b]. Then un → u in Lp(a, b). From
Fact 5.1 it follows that for each n ∈ N,

‖un − un(a)− (u− u(a))‖C

≤
{
(b− a)1/q‖un − u‖W 1,p if p > 1, 1/p+ 1/q = 1,
‖un − u‖W 1,1 if p = 1.

By this un − un(a)→ u− u(a) uniformly on [a, b], which implies un − un(a)→
u − u(a) in Lp(a, b). Since un → u and un − un(a) → u − u(a) in Lp(a, b), we
have un(a) → u(a) in Lp(a, b). Consequently, un(a) → u(a) in R, and hence
un(a)→ u(a) uniformly on [a, b]. By the above, un → u uniformly on [a, b]. �

Fact 5.5. If un → u in W 1,∞[a, b] then un → u uniformly on [a, b].

Proof. Let un → u in W 1,∞[a, b]. By Lemma 5.3, un → u in W 1,p[a, b] for
p ≥ 1. From Fact 5.4, un → u uniformly on [a, b]. �

For every p ≥ 1, let us denote by Lp(a, b) × Lp(a, b) the inner product of
Lp(a, b) by itself with the norm

‖(u, v)‖Lp×Lp =
(∫ b
a

(|u(x)|p + |v(x)|p)
)1/p
dx.

Applying Theorems 3.9 and 3.10, respectively, we get the following ones.

Theorem 5.6. Lp(a, b)× Lp(a, b) for p ≥ 1 is a Banach space.

Theorem 5.7. Lp(a, b)× Lp(a, b) for p > 1 is a reflexive space.

For every p ≥ 1, let ip:W 1,p[a, b]→ Lp(a, b)× Lp(a, b) be given by

ip(u) = (u, u′).

It is easy to check that ip is linear and ‖ip(u)‖Lp×Lp = ‖u‖W 1,p . From this we
conclude that the spaces W 1,p[a, b] and ip(W 1,p[a, b]) are isometric. Moreover,
ip(W 1,p[a, b]) is a closed subspace of Lp(a, b) × Lp(a, b). Since a closed sub-
space of a reflexive space is reflexive (see [6, Section IV, § 23, Theorem 23.7]),
ip(W 1,p[a, b]) for each p > 1 is reflexive.
One can now prove the following theorems.

Theorem 5.8. W 1,p[a, b] for p > 1 is a reflexive space.
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Theorem 5.9 (Riesz representation theorem).

(a) Assume that p, q > 1 and 1/p+ 1/q = 1. Then a functional

F :W 1,p[a, b]→ R

is linear and continuous if and only if there exist f, g ∈ Lq(a, b) such
that

F (u) =
∫ b
a

u(x)f(x) dx+
∫ b
a

u′(x)g(x) dx.

(b) A functional F :W 1,1[a, b] → R is linear and continuous if and only if
there exist f, g ∈ L∞(a, b) such that

F (u) =
∫ b
a

u(x)f(x) dx+
∫ b
a

u′(x)g(x) dx.

Conclusion 5.10. For every p ≥ 1, un ⇀ u in W 1,p[a, b] if and only if
un ⇀ u and u′n ⇀ u

′ in Lp(a, b).

5.2. (∗)-weakly convergence in W 1,∞[a, b].

Theorem 5.11. For every f, g ∈ L1(a, b), a functional F :W 1,∞[a, b] → R
given by

F (u) =
∫ b
a

u(x)f(x) dx+
∫ b
a

u′(x)g(x) dx

is linear and continuous. Moreover, ‖F‖ ≤ ‖(f, g)‖L1×L1 .

Proof. It is easily seen that F is linear. For each u ∈W 1,∞[a, b], we get

|F (u)| ≤‖u‖L∞‖f‖L1 + ‖u′‖L∞‖g‖L1
≤‖u‖W 1,∞(‖f‖L1 + ‖g‖L1) = ‖(f, g)‖L1×L1‖u‖W 1,∞ .

In consequence, F is continuous and ‖F‖ ≤ ‖(f, g)‖L1×L1 . �

We will say that a sequence {un}n∈N ⊂ W 1,∞[a, b] is (∗)-weakly convergent
to u ∈W 1,∞[a, b] if for every f, g ∈ L1(a, b),∫ b

a

un(x)f(x) dx+
∫ b
a

u′n(x)g(x) dx→
∫ b
a

u(x)f(x) dx+
∫ b
a

u′(x)g(x) dx

and we will write un
∗
⇀ u in W 1,∞[a, b]. Then u is called a (∗)-weak limit.

Applying Theorem 5.11 we check at once that a (∗)-weak limit is well defined.
Conclusion 5.12. If un ⇀ u in W 1,∞[a, b] then un

∗
⇀ u in W 1,∞[a, b].

Conclusion 5.13. Assume that {un}n∈N ⊂ W 1,∞[a, b] and u ∈ W 1,∞[a, b].
Then un

∗
⇀ u in W 1,∞[a, b] if and only if un

∗
⇀ u and u′n

∗
⇀ u′ in L∞(a, b).

The conclusions above are direct consequences of Theorem 5.11.
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Conclusion 5.14. If un
∗
⇀ u in W 1,∞[a, b] then {un}n∈N is a bounded

sequence in W 1,∞[a, b]. Moreover,

‖u‖W 1,∞ ≤ lim inf
n→∞

‖un‖W 1,∞ .

Proof. From Conclusion 5.13 it follows that un
∗
⇀ u and u′n

∗
⇀ u′ in L∞(a, b).

By Fact 3.20, there is K > 0 such that ‖un‖L∞ ≤ K and ‖u′n‖L∞ ≤ K for all
n ∈ N. Furthermore,

‖u‖L∞ ≤ lim inf
n→∞

‖un‖L∞ ≤ lim inf
n→∞

‖un‖W 1,∞

and

‖u′‖L∞ ≤ lim inf
n→∞

‖u′n‖L∞ ≤ lim inf
n→∞

‖un‖W 1,∞ .

Hence ‖un‖W 1,∞ ≤ K for all n ∈ N and

‖u‖W 1,∞ ≤ lim inf
n→∞

‖un‖W 1,∞ . �

5.3. Embedding lemmas. Let un: [a, b] → R for n ∈ N. We will say that
a sequence {un}n∈N is equi-bounded almost everywhere on [a, b] if there is K > 0
such that, for each n ∈ N,

µ({x ∈ [a, b] : |un(x)| ≤ K}) = 0.

Proposition 5.15. Assume that for each n ∈ N a function un: [a, b] → R
is continuous. If {un}n∈N is equi-bounded a.e. on [a, b] then {un}n∈N is equi-
bounded on [a, b].

Proof. By assumption, there is a constant K > 0 and a subset B ⊂ [a, b] of
measure 0 such that |un(x)| ≤ K for all n ∈ N and x ∈ [a, b] \B.
Let y ∈ B. Since µ(B) = 0, the set [a, b] \B is dense in [a, b]. Hence there is

{xk}k∈N ⊂ [a, b] \B such that xk → y in R. By the continuity of un, we have

lim
k→∞
|un(xk)| = |un(y)|

for each n ∈ N. Moreover, |un(xk)| ≤ K for all n, k ∈ N, and from this |un(y)| ≤
K for all n ∈ N. �

Lemma 5.16. If un
∗
⇀ u in W 1,∞[a, b] then un → u in L∞(a, b).

Proof. At the beginning assume that un
∗
⇀ 0 in W 1,∞[a, b]. From Conclu-

sion 5.14 it follows that there is L > 0 such that ‖un‖W 1,∞ ≤ L for all n ∈ N.
Hence ‖un‖L∞ ≤ L and ‖u′n‖L∞ ≤ L for all n ∈ N.
It is easy to check that there is a subset B ⊂ (a, b) of measure 0 such that

for all n ∈ N and x ∈ (a, b) \B we have |un(x)| ≤ L and |u′n(x)| ≤ L.
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Fix n ∈ N and x, y ∈ [a, b]. Assume that x < y. We get

|un(x)− un(y)| =
∣∣∣∣ ∫ x
a

u′n(t) dt−
∫ y
a

u′n(t) dt
∣∣∣∣ = ∣∣∣∣ ∫ y

x

u′n(t) dt
∣∣∣∣

≤
∫ y
x

|u′n(t)| dt ≤ L|x− y|.

Hence {un}n∈N is a sequence of equicontinuous functions. In consequence, by
Proposition 5.15, {un}n∈N is equi-bounded on [a, b].
Let {unk}k∈N ⊂ {un}n∈N. By the Arzelà–Ascoli lemma, there exist a sub-

sequence {unkj }j∈N ⊂ {unk}k∈N and a continuous function u0: [a, b] → R such
that unkj → u0 uniformly on [a, b]. From Theorem 3.8, unkj → u0 in L

∞(a, b).

Remark that u0 = 0. By assumption, unkj
∗
⇀ 0 in W 1,∞[a, b]. Con-

clusion 5.13 implies unkj
∗
⇀ 0 in L∞(a, b). On the other hand, unkj → u0

in L∞(a, b). Therefore, by Conclusion 3.19, unkj
∗
⇀ u0 in L∞(a, b). Hence

u0 = 0 a.e. on (a, b). As u0: [a, b] → R is continuous we have u0 = 0. By the
above, unkj → 0 in L

∞(a, b).
Summarizing. We have just proved that every subsequence of {un}n∈N has

a subsequence convergent to 0 in L∞(a, b). Therefore un → 0 in L∞(a, b).
If un

∗
⇀ u in W 1,∞[a, b] and u 6= 0 then un − u

∗
⇀ 0 in W 1,∞[a, b]. Thus

un − u→ 0 in L∞(a, b), and consequently un → u in L∞(a, b). �

Theorem 5.17. Let u, un: [a, b] → R be continuous functions for n ∈ N.
Then un → u uniformly on [a, b] if and only if there exists a subset C ⊂ [a, b] of
measure 0 such that un → u uniformly on [a, b] \ C.

Proof. (⇒) It is evident.
(⇐) Fix ε > 0. There is N ∈ N such that |un(x)− u(x)| < ε/2 for all n ≥ N

and x ∈ [a, b] \ C.
Assume that y ∈ C. Since µ(C) = 0, the set [a, b] \ C is dense in [a, b].

Therefore there is a sequence {xk}k∈N ⊂ [a, b] \ C such that xk → y in R. By
the continuity of u and un, we have

|un(y)− u(y)| = lim
k→∞
|un(xk)− u(xk)|

for each n ∈ N. Since |un(xk)− u(xk)| < ε/2 for n ≥ N and k ∈ N, we get

lim
k→∞
|un(xk)− u(xk)| ≤

ε

2

for n ≥ N , and so |un(y)−u(y)| < ε for n ≥ N . Consequently, |un(x)−u(x)| < ε
for all x ∈ [a, b] and n ≥ N . �

Conclusion 5.18. If un
∗
⇀ u in W 1,∞[a, b] then un → u uniformly on [a, b].

Proof. From Lemma 5.16 it follows that un → u in L∞(a, b). Applying
Theorem 3.8, we conclude that there is a subset B ⊂ (a, b) of measure 0 such
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that un → u uniformly on (a, b) \ B. Set C = B ∪ {a, b}. Then C ⊂ [a, b],
µ(C) = 0 and [a, b] \ C = (a, b) \ B. Thus un → u uniformly on [a, b] \ C. By
Theorem 5.17, we get un → u uniformly on [a, b]. �

Lemma 5.19. If p > 1 and un ⇀ u in W 1,p[a, b] then un → u in L∞(a, b).

Proof. Since every weakly convergent sequence in a norm space is bounded
(see [6, Section IV, § 21, Theorem 21.5]), there is L > 0 such that ‖un‖W 1,p ≤ L
for all n ∈ N, and hence ‖un‖Lp ≤ L and ‖u′n‖Lp ≤ L for n ∈ N. Let us remark
that {un}n∈N is a sequence of equicontinuous functions.
Fix n ∈ N and x, y ∈ [a, b]. Assume that x < y. As in the proof of

Lemma 5.16, we get

|un(x)− un(y)| ≤
∫ y
x

|u′n(t)| dt.

Using Hölder’s inequality, we have∫ y
x

|u′n(t)| dt ≤ |x− y|1/q
(∫ y
x

|u′n(t)|p dt
)1/p

≤ |x− y|1/q
(∫ b
a

|u′n(t)|p dt
)1/p

≤ L|x− y|1/q,

where 1/p+ 1/q = 1. Combining these inequalities, we receive

|un(x)− un(y)| ≤ L|x− y|1/q.

By the above, we see that all functions {un}n∈N satisfy the Hölder condition
with power q and the same constant L. Therefore they are equicontinuous.
In particular, for all n ∈ N and x ∈ [a, b] we get

|un(x)− un(a)| ≤ L|x− a|1/q,

and consequently,
|un(a)| ≤ L(b− a)1/q + |un(x)|.

We may now integrate this inequality over (a, b) to conclude that

(b− a)|un(a)| ≤ L(b− a)1+1/q + (b− a)1/q
(∫ b
a

|un(x)|p dx
)1/p
,

and finally that
|un(a)| ≤ L(b− a)1/q + L(b− a)−1/p

for all n ∈ N. From this and the Hölder condition, we get

|un(x)| ≤ L(b− a)1/q + |un(a)| ≤ 2L(b− a)1/q + L(b− a)−1/p

for all n ∈ N and x ∈ [a, b]. In consequence, {un}n∈N is equi-bounded.
Let {unk}k∈N ⊂ {un}n∈N. By the Arzelà–Ascoli lemma, there exist a sub-

sequence {unkj }j∈N ⊂ {unk}k∈N and a continuous function v: [a, b] → R such
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that unkj → v uniformly on [a, b]. Hence unkj → v in L
p(a, b), which implies

unkj ⇀ v in L
p(a, b). On the other hand, unkj ⇀ u in W

1,p[a, b], therefore
unkj ⇀ u in L

p(a, b) by Conclusion 5.10. It follows that u = v a.e. on (a, b). As
u, v: [a, b]→ R are continuous we have u = v. Consequently, unkj → u uniformly
on [a, b], and by Theorem 3.8, unkj → u in L

∞(a, b).
Summarizing. We have just proved that every subsequence of the sequence

{un}n∈N possesses a subsequence that converges to u in L∞(a, b). Therefore
un → u in L∞(a, b). �

Conclusion 5.20. If p > 1 and un ⇀ u inW 1,p[a, b] then un → u uniformly
on [a, b].

The proof of Conclusion 5.20 is similar to the proof of Conclusion 5.18. We
have to use Lemma 5.19 instead of Lemma 5.16. The details are left to the
reader.

6. Minimization of integral functionals in the Sobolev spaces

In this section we will be concerned with a class of functionals of the form

(6.1) If,p(u) =
∫ b
a

f(x, u(x), u′(x)) dx,

where u ∈ W 1,p[a, b], p ∈ [1,∞) or p = ∞ and a function f : [a, b] × R × R → R
is continuous.
One may ask whether a functional If,p:W 1,p[a, b]→ R possesses a minimum.

In order to prove the existence of minimum for If,p, we have to assume something
more about a function f .
Our purpose now is to indicate how the techniques described in Section 2

may be used to minimize If,p.

Theorem 6.1. Assume that g: [a, b]× R → R is a continuous function and
p ∈ (1,∞). Let Ig,p:W 1,p[a, b]→ R be given by

Ig,p(u) =
∫ b
a

g(x, u(x)) dx.

Then Ig,p possesses a minimum on W 1,p[a, b] if and only if there exists a bounded
minimizing sequence for Ig,p.

Proof. By Theorem 2.7, it suffices to show that Ig,p is wlsc. Let un ⇀ u
in W 1,p[a, b]. Applying Conclusion 5.20, we receive un → u uniformly on [a, b].
Hence there is a constant K > 0 such that |un(x)| ≤ K for all x ∈ [a, b] and n ∈
N. A function g restricted to [a, b]×[−K,K] is uniformly continuous. Thus there
is L > 0 such that |g(x, y)| ≤ L for all x ∈ [a, b] and y ∈ [−K,K]. In consequence,
|g(x, un(x))| ≤ L for all x ∈ [a, b] and n ∈ N. Moreover, g(x, un(x))→ g(x, u(x))
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for each x ∈ [a, b]. Using the Lebesgue theorem on dominated convergence, we
get

lim
n→∞
Ig,p(un) = Ig,p(u),

which completes the proof. �

Theorem 6.2. Let p ∈ [1,∞) or p =∞. Suppose that f : [a, b]×R×R→ R
and ϕ: [a, b]× R→ [0,∞) are continuous functions such that

|f(x, y, z)| ≤ ϕ(x, y)

for all x ∈ [a, b] and y, z ∈ R. Then
(a) If,p:W 1,p[a, b]→ R given by (6.1) is continuous,
(b) If,p possesses a minimum on W 1,p[a, b] if and only if there exists a con-
vergent minimizing sequence for If,p.

Proof. (a) Let un → u in W 1,p[a, b]. Then u′n → u′ in Lp(a, b). By Theo-
rem 3.16 and Conclusion 3.15, for every subsequence {unk}k∈N ⊂ {un}n∈N, there
exists a subsequence {unkj }j∈N such that u′nkj (x) → u

′(x) for a.e. x ∈ (a, b).
From Facts 5.4 and 5.5 it follows that un → u uniformly on [a, b]. From this,
there is K > 0 such that |un(x)| ≤ K for all x ∈ [a, b] and n ∈ N. A function ϕ
restricted to [a, b]× [−K,K] is uniformly continuous, which implies the existence
of a constant L > 0 such that ϕ(x, y) ≤ L for all x ∈ [a, b] and y ∈ [−K,K].
We have

|f(x, un(x), u′n(x))| ≤ ϕ(x, un(x)) ≤ L
for all x ∈ [a, b] and n ∈ N. Moreover,

f(x, unkj (x), u
′
nkj
(x))→ f(x, u(x), u′(x))

a.e. on (a, b). Using the Lebesgue theorem on dominated convergence, we get

lim
j→∞
If,p(unkj ) = If,p(u).

Summarizing. For every subsequence {unk}k∈N ⊂ {un}n∈N, there is a subse-
quence {unkj }j∈N such that limj→∞ If,p(unkj ) = If,p(u). Therefore

lim
n→∞
If,p(un) = If,p(u).

Thesis (b) is now an immediate consequence of Theorem 2.4. �

Theorem 6.3. Let p ∈ (1,∞). If f : [a, b]× R× R→ R and ϕ: [a, b]× R→
[0,∞) are continuous functions such that
(a) |f(x, y, z)| ≤ ϕ(x, y) for all x ∈ [a, b] and y, z ∈ R,
(b) there is α > 0 such that f(x, y, z) ≥ α(|y|p + |z|p) for all x ∈ [a, b] and
y, z ∈ R,

(c) for all x ∈ [a, b], f(x, · , · ):R× R→ R is a convex function,



82 Joanna Janczewska

then If,p:W 1,p[a, b]→ R given by (6.1) has a minimum.

Proof. From Theorem 6.2 it follows that If,p is continuous. By assumption,
for u ∈W 1,p[a, b] we get

If,p(u) ≥ α
∫ b
a

(|u(x)|p + |u′(x)|p) dx = α‖u‖pW 1,p ,

which implies that If,p is bounded from below and coercive. Furthermore, for
all u, v ∈W 1,p[a, b] and t ∈ (0, 1), we have

If,p(tu+ (1− t)v) =
∫ b
a

f(x, tu(x) + (1− t)v(x), tu′(x) + (1− t)v′(x)) dx

≤ t
∫ b
a

f(x, u(x), u′(x))dx+ (1− t)
∫ b
a

f(x, v(x), v′(x)) dx

= tIf,p(u) + (1− t)If,p(v).

Thus If,p is convex. Using Theorem 2.8, more precisely (H3), we receive the
claim. �

Theorem 6.4. Assume that g: [a, b]×R→ R and ϕ: [a, b]×R→ [0,∞) are
continuous functions that satisfy the following conditions:

(a) g(x, · ):R→ R is convex and differentiable for each x ∈ [a, b],
(b) |(∂g/∂y)(x, y)| ≤ ϕ(x, y) for all x ∈ [a, b] and y ∈ R.

Then

(i) Ig,∞:W 1,∞[a, b]→ R given by

Ig,∞(u) =
∫ b
a

g(x, u′(x))dx

is G-differentiable,
(ii) Ig,∞ achieves a minimum at a point u ∈ W 1,∞[a, b] if and only if u is
a critical point of Ig,∞.

Proof. (i) Fix u, v ∈ W 1,∞[a, b]. Set K = ‖u′‖L∞ and M = ‖v′‖L∞ . Define
Z = {x ∈ (a, b): |u′(x)| > K or |v′(x)| > M}. The measure of Z is equal to 0.
Let {tn}n∈N ⊂ R be a sequence such that tn 6= 0 for every n ∈ N and tn → 0.
Then there is L > 0 such that |tn| ≤ L for every n ∈ N. A function ϕ restricted
to [a, b]× [−K − LM,K + LM ] is uniformly continuous. Therefore there exists
C > 0 such that ϕ(x, y) ≤ C for all x ∈ [a, b] and y ∈ [−K − LM,K + LM ].
Take x ∈ (a, b) \ Z. If v′(x) = 0, then

lim
n→∞

g(x, u′(x) + tnv′(x))− g(x, u′(x))
tn

= 0

and
g(x, u′(x) + tnv′(x))− g(x, u′(x))

tn
=
∂g

∂y
(x, u′(x) + cv′(x))v′(x)
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for all n ∈ N and c ∈ R. Consider now the case v′(x) 6= 0. Since g(x, · ) is
differentiable, we have

lim
n→∞

g(x, u′(x) + tnv′(x))− g(x, u′(x))
tn

=
∂g

∂y
(x, u′(x))v′(x).

By the Lagrange theorem, for n ∈ N there is cn ∈ R such that 0 < |cn| < |tn|
and

g(x, u′(x) + tnv′(x))− g(x, u′(x))
tn

=
∂g

∂y
(x, u′(x) + cnv′(x))v′(x).

Moreover, |u′(x)+cnv′(x)| ≤ |u′(x)|+ |cn||v′(x)| ≤ K+LM , and in consequence,∣∣∣∣g(x, u′(x) + tnv′(x))− g(x, u′(x))tn

∣∣∣∣ ≤ ∣∣∣∣∂g∂y (x, u′(x) + cnv′(x))
∣∣∣∣|v′(x)|

≤ ϕ(x, u′(x) + cnv′(x)) ·M ≤ CM

for all n ∈ N. Using the Lebesgue theorem on dominated convergence, we get

lim
n→∞

Ig,∞(u+ tnv)− Ig,∞(u)
tn

=
∫ b
a

∂g

∂y
(x, u′(x))v′(x) dx.

Thus, by definition,

lim
t→0

Ig,∞(u+ tv)− Ig,∞(u)
t

=
∫ b
a

∂g

∂y
(x, u′(x))v′(x) dx.

For every u ∈W 1,∞[a, b], let I ′g,∞(u):W 1,∞[a, b]→ R be given by

I ′g,∞(u)v =
∫ b
a

∂g

∂y
(x, u′(x))v′(x) dx.

We have to show that I ′g,∞ is linear and continuous.
For each v ∈W 1,∞[a, b], we obtain

|I ′g,∞(u)v| ≤
∫ b
a

∣∣∣∣∂g∂y (x, u′(x))
∣∣∣∣|v′(x)| dx ≤ ∫ b

a

ϕ(x, u′(x))|v′(x)| dx

≤
∫ b
a

C1‖v′‖L∞ dx ≤ C1(b− a)‖v‖W 1,∞ ,

where C1 = max{ϕ(x, y) : x ∈ [a, b], |y| ≤ ‖u′‖L∞}. Furthermore,

I ′g,∞(u)(αw + βv) =
∫ b
a

∂g

∂y
(x, u′(x))(αw′(x) + βv′(x)) dx

= αI ′g,∞(u)w + βI
′
g,∞(u)v

for all w, v ∈W 1,∞[a, b] and α, β ∈ R. Hence I ′g,∞(u) is the Gäteaux derivative.
Since u is arbitrary in W 1,∞[a, b], Ig,∞ is G-differentiable.
By the convexity of g with respect to the second variable, we deduce that

Ig,∞ is convex. From Theorem 2.10, (ii) holds. �
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7. Minimization of (∗)-weakly lower semi-continuous functionals
in W 1,∞[a, b]

Definition 7.1. A functional I:W 1,∞[a, b] → R is said to be (∗)-weakly
lower semi-continuous at a point u ∈W 1,∞[a, b] if for each {un}n∈N ⊂W 1,∞[a, b],

un
∗
⇀ u in W 1,∞[a, b]⇒ lim inf

n→∞
I(un) ≥ I(u).

We will say that I:W 1,∞[a, b]→ R is (∗)-weakly lower semi-continuous if it is
(∗)-weakly lower semi-continuous in every u ∈ W 1,∞[a, b] and for abbreviation,
we will write I is (∗)-wlsc.
Let us remark that if I:W 1,∞[a, b] → R is (∗)-wlsc then it is wlsc. It is an

immediate consequence of Conclusion 5.12.

Theorem 7.2. Assume that I:W 1,∞[a, b]→ R is (∗)-wlsc. Then I possesses
a minimum on W 1,∞[a, b] if and only if there exists a (∗)-weakly convergent
minimizing sequence for I.

Proof. (⇒) By assumption, there is u ∈W 1,∞[a, b] such that

I(u) = inf{I(v) : v ∈W 1,∞[a, b]}.

Let un = u for each n ∈ N. Then un
∗
⇀ u in W 1,∞[a, b] and limn→∞ I(un) =

I(u).
(⇐) Let {un}n∈N ⊂W 1,∞[a, b] be a sequence such that un

∗
⇀ u inW 1,∞[a, b]

and
lim
n→∞
I(un) = inf{I(v) : v ∈W 1,∞[a, b]}.

Since I is (∗)-wlsc, we get

lim inf
n→∞

I(un) ≥ I(u).

Consequently,

I(u) ≥ inf{I(v) : v ∈W 1,∞[a, b]} = lim
n→∞
I(un) = lim inf

n→∞
I(un) ≥ I(u),

and hence I(u) = inf{I(v) : v ∈W 1,∞[a, b]}. �

Let Ig,∞:W 1,∞[a, b]→ R be given by

(7.1) Ig,∞(u) =
∫ b
a

g(x, u′(x)) dx,

where g: [a, b]× R→ R is a continuous function.

Theorem 7.3. Ig,∞ given by (7.1) is a (∗)-wlsc functional if and only if g
is convex with respect to the second variable.

The proof of this theorem will be divided into a sequence of lemmas.
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Lemma 7.4. Let ∆ ⊂ R be an interval and h:∆→ R be a continuous func-
tion. If {An}n∈N is a monotonically decreasing sequence of bounded subintervals
of ∆ and there exists x0 ∈ ∆ such that

⋂∞
n=1An = {x0}, then

lim
n→∞

∫
An
h(x) dx

µ(An)
= h(x0).

Proof. Fix ε > 0. By the continuity of h, there is δ > 0 such that for every
x ∈ ∆, if |x − x0| < δ then |h(x) − h(x0)| < ε. Since An+1 ⊂ An for n ∈ N
and
⋂∞
n=1An = {x0}, there is N ∈ N such that µ(AN ) < δ. Take n ≥ N . Then

µ(An) ≤ µ(AN ) < δ, and hence |x− x0| < δ for x ∈ An. In consequence,∣∣∣∣
∫
An
h(x) dx

µ(An)
− h(x0)

∣∣∣∣ = ∣∣∣∣
∫
An
h(x) dx− h(x0)µ(An)

µ(An)

∣∣∣∣
=
∣∣∣∣
∫
An
(h(x)− h(x0)) dx
µ(An)

∣∣∣∣ ≤
∫
An
|h(x)− h(x0)|dx
µ(An)

< ε,

which completes the proof. �

Put W 1,∞0 [c, d] = {u ∈ W 1,∞[c, d] : u(c) = u(d) = 0}. By Fact 5.5 we
conclude thatW 1,∞0 [c, d] is a closed subspace ofW 1,∞[c, d], and so it is a Banach
space.

Lemma 7.5. If Ig,∞:W 1,∞[a, b]→ R given by (7.1) is a (∗)-wlsc functional
then for every [c, d] ⊂ [a, b], x0 ∈ [a, b], z0 ∈ R and ϕ ∈W 1,∞0 [c, d] it holds

1
d− c

∫ d
c

g(x0, z0 + ϕ′(y)) dy ≥ g(x0, z0).

The Outline of the Proof. Let [c, d] ⊂ [a, b]. Take x0 ∈ [a, b], z0 ∈ R and
ϕ ∈W 1,∞0 [c, d].

Step 1. Set T = d − c. We define ϕ̃:R → R to be a T -periodic extension of
ϕ over R. Set

m =
{
min{k ∈ N : [x0, x0 + T/k] ⊂ [a, b]} if x0 ∈ [a, b),
min{k ∈ N : [b− T/k, b] ⊂ [a, b]} if x0 = b.

We will restrict our attention to the case where x0 ∈ [a, b). For x0 = b the proof
is similar.
Fix k ≥ m. Define

ϕn,k(x) =

{ 1
nk
(ϕ̃(nk(x− x0))− ϕ̃(0)) if x ∈ [x0, x0 + T/k],

0 if x ∈ [a, b] \ [x0, x0 + T/k],

where n ∈ N. Then ϕn,k
∗
⇀ 0 in W 1,∞[a, b], as n→∞.
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Step 2. Let v: [a, b] → R be a function given by v(x) = z0(x − x0). Set
vn,k = v + ϕn,k, where n ∈ N. Since ϕn,k

∗
⇀ 0 in W 1,∞[a, b], we get vn,k

∗
⇀ v

in W 1,∞[a, b]. By assumption,

(7.2) lim inf
n→∞

Ig,∞(vn,k) ≥ Ig,∞(v).

Let xj = x0 + jT/nk for j = 0, . . . , n and n ∈ N. Then

[x0, x0 + T/k] =
n−1⋃
j=0

[xj , xj+1]

and

Ig,∞(vn,k) =
∫
[a,b]\[x0,x0+T/k]

g(x, z0) dx+
n−1∑
j=0

∫ xj+1
xj

g(xj , v′n,k(x)) dx

+
n−1∑
j=0

∫ xj+1
xj

(g(x, v′n,k(x))− g(xj , v′n,k(x))) dx.

One can check that

lim
n→∞

n−1∑
j=0

∫ xj+1
xj

g(xj , v′n,k(x)) dx =
1
T

∫ x0+T/k
x0

∫ d
c

g(x, z0 + ϕ′(y)) dy dx

and

lim
n→∞

n−1∑
j=0

∫ xj+1
xj

(g(x, v′n,k(x))− g(xj , v′n,k(x))) dx = 0.

In consequence, we receive

lim
n→∞
Ig,∞(vn,k) =

∫
[a,b]\[x0,x0+T/k]

g(x, z0) dx

+
1
T

∫ x0+T/k
x0

∫ d
c

g(x, z0 + ϕ′(y)) dy dx.

Combining this with (7.2), we get

1
T

∫ d
c

∫ x0+T/k
x0

g(x, z0 + ϕ′(y)) dx dy ≥
∫ x0+T/k
x0

g(x, z0) dx.

By the arbitrary of k ≥ m, we have

(7.3)
1
T

∫ d
c

k

T

∫ x0+T/k
x0

g(x, z0 + ϕ′(y)) dx dy ≥
k

T

∫ x0+T/k
x0

g(x, z0) dx

for each k ≥ m.



Minimization of Integral Functionals in Sobolev Spaces 87

Step 3. For each k ≥ m, we have [x0, x0+T/(k + 1)] ⊂ [x0, x0+T/k] ⊂ [a, b]
and
⋂∞
k=m[x0, x0+T/k] = {x0}. By assumption, g( · , z0+ϕ′(y)) for a.e. y ∈ [c, d]

and g( · , z0) are continuous. From Lemma 7.4 it follows that

lim
k→∞

k

T

∫ x0+T/k
x0

g(x, z0 + ϕ′(y)) dx = g(x0, z0 + ϕ′(y))

for a.e. y ∈ [c, d] and

lim
k→∞

k

T

∫ x0+T/k
x0

g(x, z0) dx = g(x0, z0).

There is L > 0 such that for all x ∈ [a, b] and |z| < |z0| + ‖ϕ′‖L∞ we have
|g(x, z)| ≤ L. Hence ∣∣∣∣ kT

∫ x0+T/k
x0

g(x, z0 + ϕ′(y)) dx
∣∣∣∣ ≤ L

for all k ≥ m and for a.e. y ∈ [c, d]. In consequence, applying the Lebesgue
theorem on dominated convergence to (7.3), we get

1
T

∫ d
c

g(x0, z0 + ϕ′(y)) dy ≥ g(x0, z0),

which finishes the proof. �

Lemma 7.6. If Ig,∞:W 1,∞[a, b]→ R given by (7.1) is a (∗)-wlsc functional
then g: [a, b]× R→ R is convex with respect to the second variable.

Proof. Fix x ∈ [a, b]. Take t ∈ (0, 1) and α, β ∈ R such that α 6= β. Let
[c, d] ⊂ [a, b]. We divide the integral [c, d] into 2N subintervals as follows: [c, d] =⋃2N−1
j=0 [xj , xj+1], where x0 = c and xj = x0 + j(d− c)/2N for j = 1, . . . , 2N .
Next, we divide each interval (xj , xj+1) into two. Namely, (xj , xj+1) = (xj , tj ]∪
(tj , xj+1), where tj−xj = t(d− c)/2N and xj+1−tj = (1− t)(d− c)/2N . Define

IN =
2N−1⋃
j=0

(xj , tj) and JN =
2N−1⋃
j=0

(tj , xj+1).

Then µ(IN ) = t(d− c) and µ(JN ) = (1− t)(d− c).
Let ϕ: [c, d]→ R be given by

ϕ(x) =
{
(1− t)(α− β)(x− xj) if x ∈ [xj , tj),
−t(α− β)(x− xj+1) if x ∈ [tj , xj+1],
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where j = 0, . . . , 2N − 1. We have

lim
x→tj−

ϕ(x) = lim
x→tj−

(1− t)(α− β)(x− xj) = (1− t)(α− β)(tj − xj)

=
(1− t)(α− β)t(d− c)

2N
= t(α− β)(xj+1 − tj)

= −t(α− β)(tj − xj+1) = ϕ(tj).

Thus ϕ is continuous at tj . Since ϕ|[xj ,tj ] and ϕ|[tj ,xj+1] are linear, we conclude
that ϕ is absolutely continuous. Moreover, ϕ is differentiable a.e. on (c, d),

ϕ′(x) =
{
(1− t)(α− β) if x ∈ IN ,
−t(α− β) if x ∈ JN

and |ϕ′(x)| ≤ |α − β| for x ∈ IN ∪ JN . Hence ϕ ∈ W 1,∞[c, d]. Finally, by
definition, ϕ(c) = ϕ(x0) = (1 − t)(α − β)(x0 − x0) = 0 and ϕ(d) = ϕ(x2N ) =
−t(α− β)(x2N − x2N ) = 0. In consequence, ϕ ∈W 1,∞0 [c, d].
Set z0 = tα+ (1− t)β. By Lemma 7.5, we get

1
d− c

∫ d
c

g(x, z0 + ϕ′(y)) dy ≥ g(x, z0).

From this, ∫
IN

g(x, α) dy +
∫
JN

g(x, β) dy ≥ (d− c)g(x, z0),

µ(IN )g(x, α) + µ(JN )g(x, β) ≥ (d− c)g(x, z0),
t(d− c)g(x, α) + (1− t)(d− c)g(x, β) ≥ (d− c)g(x, z0),

tg(x, α) + (1− t)g(x, β) ≥ g(x, tα+ (1− t)β).

Thus g(x, · ):R → R is a convex function. By the arbitrary of x ∈ [a, b], g is
convex with respect to the second variable. �

Lemma 7.7. Let un
∗
⇀ u0 in W 1,∞[a, b]. Then

(a) for each p > 1 there exists a sequence of non-negative numbers {λni }n∈N
i≤n

such that
n∑
i=1

λni = 1 for n ∈ N, vn =
n∑
i=1

λni ui → u0 and v′n → u′0 in Lp(a, b),

(b) there is a sequence of non-negative numbers {γni }n∈N
i≤n such that

n∑
i=1

γni = 1 for n ∈ N, wn =
n∑
i=1

γni ui → u0 and w′n → u′0 a.e. on (a, b).
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Proof. (a) Fix p > 1. Let q be a real number such that 1/p+1/q = 1. Then
q > 1. Let F :Lp(a, b)× Lp(a, b)→ R be given by

F (u, v) =
∫ b
a

g1(x)u(x) dx+
∫ b
a

g2(x)v(x) dx,

where g1, g2 ∈ Lq(a, b). Since un
∗
⇀ u0 in W 1,∞[a, b], we have F (un, u′n) →

F (u0, u′0) in R, and consequently, (un, u′n) ⇀ (u0, u′0) in Lp(a, b)× Lp(a, b). By
the Mazur theorem, there exists a sequence of non-negative numbers {λni }n∈N

i≤n
such that

∑n
i=1 λ

n
i = 1 for n ∈ N, vn =

∑n
i=1 λ

n
i ui → u0 and v′n → u′0 in Lp(a, b).

(b) From the above it follows that there exists a sequence of non-negative
numbers {λni }n∈N

i≤n such that
∑n
i=1 λ

n
i = 1 for n ∈ N, vn =

∑n
i=1 λ

n
i ui → u0

and v′n → u′0 in L2(a, b). By Theorem 3.16, there are subsequences {vnk}k∈N ⊂
{vn}n∈N and {v′nkl }l∈N ⊂ {v′nk}k∈N such that vnk → u0 and v′nkl → u

′
0 a.e.

on (a, b). Define

γni =
{
0 if 1 ≤ i < n,
1 if i = n,

for n < nk1

and

γni =
{
0 if i > nkl ,

λ
nkl
i if 1 ≤ i ≤ nkl ,

for nkl ≤ n < nkl+1 .

Then
∑n
i=1 γ

n
i = γ

n
n = 1 for n < nk1 and

∑n
i=1 γ

n
i =
∑nkl
i=1 λ

nkl
i = 1 for nkl ≤

n < nkl+1 . Furthermore, wn =
∑n
i=1 γ

n
i ui → u0 and w′n → u′0 a.e. on (a, b),

because wn =
∑n
i=1 γ

n
i ui =

∑nkl
i=1 λ

nkl
i ui = vnkl for nkl ≤ n < nkl+1 . �

Lemma 7.8. If Ig,∞:W 1,∞[a, b] → R defined by (7.1) is convex then it is
also (∗)-wlsc.

Proof. Let un
∗
⇀ u in W 1,∞[a, b]. Without loss of generality we can assume

that lim infn→∞ Ig,∞(un) = limn→∞ Ig,∞(un). Set

L = lim
n→∞
Ig,∞(un).

We have to consider three cases.

Case 1. L =∞. Then L ≥ Ig,∞(u).
Case 2. L = −∞. Fix m ∈ N. Then there exists N ∈ N such that

Ig,∞(un) < −m

for all n ≥ N . By Lemma 7.7, there exists a sequence of non-negative numbers
{γni }n∈N

i≤n such that
∑n
i=1 γ

n
i = 1 for all n ∈ N, wn =

∑n
i=1 γ

n
i ui+N → u and

w′n → u′ a.e. on (a, b). By the continuity of g, we get

g(x,w′n(x))→ g(x, u′(x))
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for a.e. x ∈ (a, b). Since un
∗
⇀ u in W 1,∞[a, b], we have u′n

∗
⇀ u′ in L∞(a, b).

From Fact 3.20 it follows that there exist a subset B ⊂ (a, b) of measure 0 and
a constant M > 0 such that |u′n(x)| ≤ M for all x ∈ (a, b) \ B and n ∈ N. In
consequence, we get

|w′n(x)| ≤
n∑
i=1

γni |u′i+N (x)| ≤
n∑
i=1

γni M =M

for all x ∈ (a, b) \ B and n ∈ N. A function g restricted to [a, b] × [−M,M ] is
uniformly continuous. Therefore there is K > 0 such that |g(x, y)| ≤ K for all
x ∈ [a, b] and y ∈ [−M,M ]. Hence

|g(x,w′n(x))| ≤ K

for all x ∈ (a, b) \ B and n ∈ N. Applying the Lebesgue theorem on dominated
convergence, we receive

lim
n→∞
Ig,∞(wn) = lim

n→∞

∫ b
a

g(x,w′n(x)) dx =
∫ b
a

g(x, u′(x)) dx = Ig,∞(u).

By the convexity of Ig,∞, we have

Ig,∞(wn) = Ig,∞

( n∑
i=1

γni ui+N

)
≤
n∑
i=1

γni Ig,∞(ui+N ) ≤
n∑
i=1

γni (−m) = −m

for all n ∈ N. Hence Ig,∞(u) ≤ −m for each m ∈ N. Letting m → ∞, we get
Ig,∞(u) = −∞, a contradiction.
Case 3. −∞ < L <∞. Fix ε > 0. Then there is N ∈ N such that

L− ε < Ig,∞(un) < L+ ε

for all n ≥ N . By Lemma 7.7, there exists a sequence of non-negative numbers
{γni }n∈N

i≤n such that
∑n
i=1 γ

n
i = 1 for all n ∈ N, wn =

∑n
i=1 γ

n
i ui+N → u and

w′n → u′ a.e. on (a, b). As in the 2nd case, we show that

lim
n→∞
Ig,∞(wn) = Ig,∞(u).

Moreover, by the convexity of Ig,∞, we have

Ig,∞(wn) ≤ L+ ε

for all n ∈ N. Hence Ig,∞(u) ≤ L + ε for all ε > 0. Letting ε → 0+, we get
Ig,∞(u) ≤ L. �

The Proof of Theorem 7.3. (⇒) It follows from Lemma 7.6.
(⇐) We check at once that Ig,∞ is convex. By Lemma 7.8, Ig,∞ is (∗)-wlsc.�

Combining Lemma 7.8 with Lemma 7.6 we get the following conclusion.

Conclusion 7.9. Ig,∞:W 1,∞[a, b] → R defined by (7.1) is convex if and
only if g is convex with respect to the second variable.
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The next conclusion is a consequence of Theorems 7.2 and 7.3.

Conclusion 7.10. Let Ig,∞:W 1,∞[a, b]→ R be given by (7.1). If g: [a, b]×
R→ R is convex with respect to the second variable, then Ig,∞ possesses a mini-
mum onW 1,∞[a, b] if and only if there exists a (∗)-weakly convergent minimizing
sequence for Ig,∞.
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80-233 Gdańsk, Poland
and

Institute of Mathematics

Polish Academy of Sciences

Śniadeckich 8

00-956 Warszawa

E-mail address: janczewska@mifgate.pg.gda.pl, j.janczewska@impan.pl





Juliusz Schauder Center Winter School
Topological Methods in Nonlinear Analysis
Lecture Notes in Nonlinear Analysis
Volume 12, 2011, 93–122

STABILITY, ATTRACTION AND SHAPE:
A TOPOLOGICAL STUDY OF FLOWS

José M. R. Sanjurjo

Abstract. This survey is an introduction to some methods from geomet-
ric topology which can be effectively applied to the study of dynamical
systems. In particular, we consider applications to stable and unstable
attractors, nonsaddle sets and bifurcations. We also discuss some recent
developments and open problems

1. Introduction

The following is an exposition of several topics which lie at the heart of
the topological theory of attractors. Historically, Algebraic Topology has been
used in connection with this subject, and a relevant role has been played by
the Čech and Alexander–Spanier cohomology theories. This is complemented by
Borsuk’s Shape Theory, which gives a more geometrical vision of the subject and
is specially suited to transfer to the topological field many of the dynamical ideas
related to stability and attraction. In the realm of continuous dynamical systems,
the notion of attractor plays a very significant role because it captures the long
term evolution of the system in question, and therefore it seems important to
study the structure, both dynamical and topological, of these objects.
These notes originate from some lectures delivered by the author at a Winter

School which took place at the Schauder Center for Nonlinear Studies in 2009.
The content of the lectures and a considerable amount of the author’s research
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owes much to the work of two outstanding Polish mathematicians, namely Karol
Borsuk and Tadeusz Ważewski, which explains his feeling of obligation towards
the organizers of the Winter School for their invitation.
Karol Borsuk is the creator of shape theory, which we shall use throughout the

paper. There are several books and articles, listed below, that we recommend
to get some acquaintance with this theory. However we include here, for the
benefit of the reader, a very short and schematic presentation (as exposed by
Kapitanski and Rodnianski in [44]).
Let X be a closed subset of an ANR M and Y a closed subset of an ANR

N . Denote by U(X ;M) (resp. U(Y ;N)) the set of all open neighbourhoods of
X in M (resp. Y in N).
Let f = {f :U → V } be a collection of continuous maps from the neighbour-

hoods U ∈ U(X ;M) to V ∈ U(Y ;N). We call f a mutation from X to Y if the
following conditions are fulfilled:

(1) For every V ∈ U(Y ;N) there exists (at least) a map f :U → V in f.
(2) If f :U → V is in f then the restriction f |U1:U1 → V1 is also in f for
every neighbourhood U1 ⊂ U and every neighbourhood V1 ⊃ V .

(3) If the two maps f, f ′:U → V are in f then there exists a neighbourhood
U1 ⊂ U such that the restrictions f |U1 and f ′|U1 are homotopic.

An example of mutation is the identity mutation idU(X;M) consisting of the
identity maps i:U → U .
Composition of mutations f = {f :U → V }, g = {g:V → W} from X to

Y and from Y to Z, respectively, is defined in an straigthforward way. Two
mutations f = {f :U → V } and f ′ = {f ′:U ′ → V ′} (both from X to Y ) are said
to be homotopic if for every pair of maps f :U → V and f ′:U ′ → V belonging to
f and f ′, respectively, there exists a neighbourhod U0 ∈ U(X ;M), U0 ⊂ U ∩ U ′
such that f |U0 � f ′|U0. It is easy to see that homotopy of mutations is an
equivalence relation.
Two metric spaces X and Y have the same shape if they can be embedded

as closed sets in ANRs M and N in such a way that there exist mutations
f = {f :U → V } and g = {g:V → U} such that the compositions gf and fg are
homotopic to the identity mutations idU(X;M) and idU(Y ;N), respectively.

• The notion of shape of sets depends neither on the ANRs they are
embedded in nor on the particular embeddings.
• Spaces belonging to the same homotopy type have the same shape.
• ANRs have the same shape if and only if they have the same homotopy
type.

Concerning dynamical systems, our setting will be that of a continuous flow
ϕ defined on a metric space M . If K is a compact invariant set of the flow then
its region or basin of attraction is defined by A(K) = {x ∈ M | d(xt,K) → 0
when t → ∞}. We say that K is an attractor if A(K) is a neighbourhood



Topological Study of Flows 95

of K in M . An invariant compactum K is said to be stable if given an arbitrary
neighbourhod V of K inM there exists another neighbourhood U ⊂ V such that
xt ∈ V whenever x ∈ U and t ≥ 0. Stable attractors are called asymptotically
stable sets. Most of the flows that we shall consider are defined in locally compact
metric spaces M and the following definitions are understood in such a context.
Given any x ∈M , the set

J+(x) = {y ∈M | y = limxntn for some xn → x, tn →∞}
is called the positive prolongational limit set of x and it is easy to check that
K is stable if, and only if, J+(x) ⊂ K for every x ∈ K. The sets J+(x) are
always closed and invariant and, when compact, also connected (at least in locally
compact phase spaces). If an attractor K is stable then J+(x) ⊂ K for every
x ∈ K, but in fact much more is true since J+(x) ⊂ K for all x ∈ A(K). If we
agree to call x ∈ A(K) an explosion point if J+(x) � K then an attractor K is
unstable if and only if there exists some explosion point in K. When we consider
unstable attractors, we shall be primarily interested in those which have only
internal explosions, that is, such that every explosion point is in K.
Following Conley we shall deal often with isolated invariant sets. These are

compact invariant sets K which possess a so-called isolating neighbourhood, that
is, a compact neighbourhood N such that K is the maximal invariant set in N ,
or setting

N+ = {x ∈ N | x[0,+∞) ⊂ N}, N− = {x ∈ N | x(−∞, 0] ⊂ N}
such that K = N+ ∩N−. We shall make use of a special type of isolating neigh-
bourhoods, the so-called isolating blocks, which have good topological properties.
More precisely, an isolating block N is an isolating neighbourhood such that there
are compact sets N i;No ⊂ ∂N , called the entrance and exit sets, satisfying:
(1) ∂N = N i ∪No,
(2) for every x ∈ N i there exists ε > 0 such that x[−ε, 0) ⊂M −N and for
every x ∈ No there exists δ > 0 such that x(0, δ] ⊂M −N ,

(3) for every x ∈ ∂N − N i there exists ε > 0 such that x[−ε, 0) ⊂ intN
and for every x ∈ ∂N −No there exists δ > 0 such that x(0, δ] ⊂ intN .

These blocks form a neighbourhood basis of K in M (see [13] and [14]).
A general reference for dynamical systems, which we shall follow closely, is

[9]; the reference [70] will be also useful for some aspects of the theory. Conley’s
index theory can be found in his monograph [14], see also [15], [75] and [53].
The Conley shape index was defined in [68]. On the topological side, [39] gives
complete information about ANR’s, and shape theory is thoroughly exposed
in [11], [16], [19], [51] (see also [63], [64] and [87]). Finally, should a complement
on algebraic topology be needed, [37] and [98] cover everything used in this
article. In the paper singular and Čech homology and cohomology are used
throughout.
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2. Asymptotically stable attractors. Topology and embeddings

We see in this section that the global topological properties of asymptotically
stable attractors are largely determined by those of their basin of attraction. This
is a consequence of the first result in the paper, which is a slightly generalized
version of a theorem of Kapitanski and Rodnianski [44].

Theorem 2.1. Let ϕ:M × R→M be a flow on a metric space M and let
K be an asymptotically stable attractor of ϕ. Then the inclusion i:K→A(K) is
a shape equivalence.

Proof. By the Kuratowski–Wojdislawski Theorem [39] it is possible to embed
A(K) as a closed set into an ANR-space N . Let L:A(K)→ R+ be a Lyapunov
function for K such that d(x,K) ≤ L(x) for every x ∈ A(K). We recall that
a Lyapunov function is a continuous mapping such that L(xt) < L(x) for every
x ∈ A(K)−K and every t > 0 and L(x) = 0 for x ∈ K (the existence of L can
be proved following the pattern of [9, Theorem 2.2], see also [22, Lemma 2.2]).
Consider a basis of open neighbourhoods Vn of K in N such that Vn+1 ⊂ Vn

for every n and a sequence cn of positive numbers such that cn+1 < cn → 0 and
L−1([0, cn]) ⊂ Vn for every n. If L(x) ≥ cn then there exists an unique tn(x) ≥ 0
such that L(ϕ(x, tn(x))) = cn. We define

rn:A(M)→Vn, rn(x) =
{
ϕ(x, tn(x)) if L(x) ≥ cn,
x otherwise.

We see that rn is continuous.
Suppose on the contrary that L(x) ≥ cn and that there exists a sequence

xk → x such that ϕ(xk, tn(xk)) is at distance ≥ ε of ϕ(x, tn(x)) for k = 1, 2. It is
easy to see that the sequence tn(xk) is bounded and, thus, there is no loss of gen-
erality in assuming that tn(xk) converges to a certain t0, which obviously implies
that ϕ(xk, tn(xk) → ϕ(x, t0) and hence cn = L(ϕ(xk, tn(xk))) = L(ϕ(x, t0)). It
follows that tn(x) = t0 and rn(xk) → rn(x), which is in contradiction with the
choice of the sequence xk. This proves that rn is continuous.
Now, if j denotes the inclusion Vn+1 → Vn, we have that rn � jrn+1 in Vn

rel. K (through the homotopy Φ(x, s) = ϕ(rn(x), stn+1(rn(x))) if L(x) > cn+1
and Φ(x, s) = x otherwise).
Extend now rn to a map r̂n:A(M) ⊂ Un → Vn, where Un is a neighbourhood

of A(M) in N . We define a mutation r from A(K) to K (both of them lying in
the same ANR, N) consisting of all the maps of the form

U −→ Un �rn−→ Vn −→ V

where the unlabelled arrows are inclusions. It can be readily seen that the
inclusion mutation i:K → A(K) is a homotopy inverse of r. �
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More general results than Theorem 2.1 can be found in [26] and [28]. In
particular, a version of this theorem has been proved by A. Giraldo, M. A. Morón,
F. R. Ruiz del Portal and J. M. R. Sanjurjo in [28] for Hausdorff topological
spaces.
An important result that predated Theorem 2.1 can be obtained, however,

as a consequence of this theorem. It has been proved (at different levels of
generality) by Bogatyi-Gutsu [10], Günther-Segal [33] and Sanjurjo [88] and [89].
This result is specially useful from an operational perspective since it guarantees
that all the homological and cohomological invariants of asymptotically stable
attractors are of finite type.

Theorem 2.2. Let ϕ:M × R→M be a flow on a (not necessarily locally
compact) ANR, M and let K be an asymptotically stable attractor of ϕ. Then K
is shape dominated by a finite polyhedron, the Čech homologies and cohomologies
of K are finitely generated and Ȟq and Ȟq are trivial for all sufficiently large q.
Moreover, if M is locally compact then K has the shape of a finite polyhedron.

Proof. SinceK has the shape ofA(K) andA(K) (being an open subset of the
ANR,M) is an ANR, we have that K is an FANR. Hence K is shape dominated
by a finite polyhedron and, as a consequence, its homological and cohomological
invariants are of finite type. If M is locally compact then it can be readily seen
from the proof of the previous theorem that K is a shape deformation retract of
any of the sets L−1[0, r]. But for r sufficiently small L−1[0, r] (which is a retract
of A(K)) is a compact ANR and hence it has the homotopy type of a finite
polyhedron [106]. �

From Theorem 2.1 it can also be obtained the following result which was
previously established by B. M. Garay [22].

Theorem 2.3. Suppose K is an asymptotically stable global attractor of
a flow in an infinite-dimensional Banach space M . Then K has the shape of
a point. In particular K is strongly cellular and all its Čech homology and coho-
mology groups are trivial (except in dimension 0, that are isomorphic to Z).

Theorem is also true (and easier) when the Banach space M is finite-dimen-
sional. However, in this case, strong cellularity is not an automatic consequence
of shape triviality.
Under more stringent conditions we can get even stronger results. The fol-

lowing one, established by J. A. Langa and J. C. Robinson in [47], is interesting
in the context of dissipative evolution equations in Hilbert spaces. See [47] for
definitions of the notions involved in the statement and for a proof.

Theorem 2.4. If an invariant exponential global attractor K of a flow in
a Hilbert space H, is flow-normally hyperbolic then K is a retract of H. As
a consequence K is homotopically trivial.
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Some results by W. M. Oliva give sufficient conditions (in terms of the ex-
istence of certain Lipschitz constants) for attractors of retarded functional dif-
ferential equations on compact manifolds to be compact manifolds themselves
(see [59] and [34]). Another interesting result concerning the topological proper-
ties that the phase space induces on an attractor of a discrete dynamical system
has been obtained by M. A. Morón and F. R. Ruiz del Portal in [56].
Our aim now is to prove a celebrated result by B. Günther an J. Segal which

provides sufficient conditions for a compactum to be embedded in the Euclidean
space as an attractor of a flow. We start with an auxiliary result.

Lemma 2.5. Suppose P is a compact polyhedron in Rn. Then there is a flow
ϕ on Rn such that P is an asymptotically stable attractor of ϕ.

Proof. Consider a a regular neighbourhood N of P in Rn endowed with
a triangulation such that P is a full subcomplex, N is the simplicial neighbour-
hood of P and Ṅ (the simplicial boundary of N) is a triangulation of ∂N (see
C. P. Rourke and B. J. Sanderson [72] for definitions of these notions). If we
denote by vi the vertices of the simplexes in N then every point x ∈ N can be
uniquely expressed in the form

x =
∑
vi /∈P
xivi +

∑
vj∈P
yjvj .

Consider the simplicial map π:N → [0, 1] defined by π(vi) = 0 if vi ∈ P and
π(vi) = 1 if vi /∈ P . Since N is a regular neighbourhood of P we have that
P = π−1(0) and ∂N = π−1(1). Consider a flow ψ on [0, 1] such that {0, 1} is an
attractor-repeller pair of ψ. Define ϕ0:N× R→N by

(x, t)→




ψ(π(x), t)
∑
vi /∈P

xi
π(x)
vi

+(1− ψ(π(x), t))
∑
vj∈P

yj
1− π(x)vj if π(x) �= 0,

x otherwise.

The mapping ϕ0 can be extended to a mapping ϕ:Rn× R→ Rn by letting sta-
tionary all points outside N . It can be easily seen that ϕ is a flow and since
{0} is an asymptotically stable attractor of ψ it follows that P = π−1(0) is an
asimptotically stable attractor of ϕ. �

We shall prove now B. Günther and J. Segal’s Theorem [33] on embeddings
of finite-dimensional compacta as attractors of flows. Our proof is different from
the original one. We adapt some ideas of J. J. Sánchez-Gabites in [81], where he
shows how to use a theorem by H. Whitney ([107] and [108]) about recognition of
flows in a similar context. The proof also makes use of T. A. Chapman’s famous
finite-dimensional complement theorem [12].
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Theorem 2.6. Suppose K is a finite-dimensional compactum with the shape
of a finite polyhedron. Then K can be embedded in Rn for suitable n in such
a way that there is a flow on Rn having K as an asymptotically stable attractor.

Proof. Suppose K has the shape of the finite polyhedron P . Then by [12]
we can assume that K and P lie in standard position in Rn with n ≥ 2 +
2max(dimX, dimY ). We refer the reader to [12] for the definition of standard
position and observe that any subpolyhedron of Rn is in standard position. By
T. A. Chapman’s finite-dimensional complement theorem [12] (see also the refor-
mulation of this theorem given in [33] by B. Günther and J. Segal) there exists
a homeomorphism h:Rn − P → Rn −K that can be extended to a homeomor-
phism ĥ:Rn/P ≈ Rn/K. By Lemma 2.5 there exists a flow ϕ in Rn having P
as an attractor. Let A(P ) be the basin of attraction of P and denote by U its
image under h. Clearly V = U ∪K is an open neighbourhood of K in Rn.

Consider the partition of A(P )−P defined by the oriented trajectories of ϕ;
namely C1 = {ϕ(p × R) | p ∈ A(P ) − P}. This partition is transformed by h in
a partition C2 = h(C1) of U . We enlarge C2 to a partition D2 of Rn by adding
the singletons {{q}, q ∈ Rn − U}. Since the trajectories of C1 lie in the basin of
attraction of P all of them are homeomorphic images of R and the same is true
of the curves in C2.
Now it is straigthforward to see that C2 is regular. Let us recall that a family

of oriented curves C is regular if given an oriented arc pq ⊂ γ ∈ C and ε > 0,
there exists δ > 0 such that if p′ ∈ γ′ ∈ C and d(p, p′) < δ then there is a point
q′ ∈ γ′ such that the oriented arcs pq and p′q′ have a parameter distance less
than ε (that is, there exist parametrizations f : [0, 1] → pq and f ′: [0, 1] → p′q′
such that d(f(t), f ′(t)) < ε for every t ∈ [0, 1]). Now by Whitney’s Theorem 27A
in [107] there exists a flow φ in Rn whose oriented trajectories correspond to the
elements of the partition D2. From this it is immediate to see that K is an
attractor of φ such that A(K) = V . �

A related result, according to which every strongly cellular subset of a Banach
space M is a global attractor of a flow defined in M had been previously proved
by B. M. Garay [22]. On the other hand, B. Günther [32] improved Theorem 2.6
by proving that the flow on Rn can be chosen to be of class Cr for every finite r.
Recently, J. J. Sánchez-Gabites [81] has given necessary and sufficient conditions
for a compact subset K of a 3-manifold M to be an attractor of a flow in M .
Three-dimensional flows may exhibit very complicated behaviour, in particular
they may have any number of coexisting strange attractors with strong properties
of persistence. Moreover, infinitely many of them exist simultaneously (see the
book [66] by A. Pumariño and J. A. Rodŕıguez).

We don’t want to end this section without stating Hasting’s theorem ([35]
and [36]). He was the first to successfully apply the techniques of shape theory
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to dynamical systems. We leave the proof of this result to the reader. It can be
obtained without much difficulty by using the ideas previously discussed.

Theorem 2.7. Let ϕ:Rn × [0,∞) → Rn be a continuous semiflow such
that there exists a compact n-manifold P ⊆ Rn with the property that every
orbit through ∂P enters P (for increasing time) then there exists a compact
invariant set K ⊆ int(P ) which is positively asymptotically stable and such that
the inclusion K ↪→ P is a shape equivalence.

3. Non-saddle sets and unstable attractors

Asymptotically stable attractors are only a particular case of a large family
of invariant compacta whose global topological structure is regular (by which is
essentially meant that they have polyhedral shape). We devote this section to
introducing this class of compacta, the non-saddle sets (which have been largely
studied by N. P. Bhatia [8]). We also relate these compacta with some forms of
unstable attractors which still retain many of the properties of the asymptotically
stable ones.

Definition 3.1. Let ϕ:M × R → M be a flow. A compact set K ⊂ M
is said to be a saddle set if there is a neighbourhood U of K in M such that
every neighbourhood V of K contains a point x ∈ V such that γ+(x) � U and
γ−(x) � U . We say that K is non-saddle if it is not a saddle set, i.e. if for every
neighbourhood U of K there exists a neighbourhood V of K such that for every
x ∈ V , γ+(x) ⊂ U or γ−(x) ⊂ U
In the rest of the paper we will assume, without further mention, that all non-

saddle sets are invariant. Attractors and repellers are examples of non-saddle
sets. The following result, proved by A. Giraldo, M. Morón, J. J. Ruiz del Portal
and J. M. R. Sanjurjo [27] extends Theorem 2.2 to a larger context.

Theorem 3.2. Let K be an isolated non-saddle set of a flow ϕ:M×R→M ,
whereM is a locally compact ANR. Then K has the shape of a finite polyhedron.

Proof. Consider an isolating neighbourhood U for K in M . Since K is non-
saddle there exists another neighbourhood V ⊂ U of K with the property that
for every x ∈ V at least one of the semi-orbits γ+(x) or γ−(x) is contained in U .
We define

N = {x ∈ U | γ+(x) ⊂ U or γ−(x) ⊂ U}.
Since V ⊂ N ⊂ U , N is an isolating neighbourhood for K (the compactness is
a consequence of the compactness of U). Moreover, N can be decomposed as
N = N+ ∪N− where

N+ = {x ∈ N | γ+(x) ⊂ N} and N− = {x ∈ N | γ−(x) ⊂ N}.
Observe that N+ ∩N− = K.
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By [68] there exists a map f :N → R such that f(x) = 0 if x ∈ K and
f(xt) < f(x) if x[0, t] ⊂ N −K and t > 0. Now ω(x) ⊂ K for every x ∈ N+,
hence f(x) > 0 if x ∈ N+ − K. Similarly, f(x) < 0 if x ∈ N− − K. If W
is an arbitrary open neighbourhood with its closure contained in the interior
of N then there is a t0 > 0 such that f−1([−t0, t0]) ⊂ W . Otherwise there
would exist a sequence of points (xn) ⊂ N −W and a null sequence of positive
numbers (tn) such that |f(xn)| < tn. From this we could deduce the existence of
a point x0 ∈ N −K with f(x0) = 0, in contradiction with the previous remark.
This implies in particular that f−1(−t0, t0) is open in M and that for any null
sequence (tn)n≥0 starting in t0, the sets f−1([−tn, tn]) form a neighbourhood
basis of K in M .
Consider any such null sequence (tn)n≥0 with tn+1 < tn for every n. We first

construct a retraction

r: f−1([−t0, t0])→ f−1([−t1, t1])

in the following way: if x ∈ f−1([−t1, t1]) we define r(x) = x. On the other hand,
if x ∈ f−1([−t0, t0])− f−1([−t1, t1]) and f(x) > t1 then x ∈ N+ and there exists
a unique tx > 0 such that f(xtx) = t1. We define r(x) = xtx. In a similar way,
if f(x) < −t1 we define r(x) = xtx where tx < 0 is the unique negative number
satisfying f(xtx) = −t1. A strong deformation retraction from f−1([−t0, t0]) to
f−1([−t1, t1]) is given by the homotopy

θ: f−1([−t0, t0])× R→f−1([−t0, t0])

defined as θ(x, s) = x(txs) if f(x) /∈ [−t1, t1] and θ(x, s) = x otherwise.
In an analogous way we may construct a strong deformation retraction from

f−1([−t1, t1]) to f−1([−t2, t2]) and, in general, from f−1([−tn, tn] to f−1([−tn+1,
tn+1] for every n ∈ N.
Since the sets f−1([−tn, tn] form a neighbourhood basis of K in M we can

define a strong shape deformation retraction from f−1([−t1, t1]) to K. Therefore
K has the shape of f−1([−t1, t1]). But, since f−1(−t0, t0) is an open set of M ,
then it is an ANR, and since f−1([−t1, t1]) is a retract of it then it is also an ANR.
Therefore f−1([−t1, t1]) has the homotopy type, and hence the shape, of a finite
polyhedron [106]. �

As a consequence of Theorems 2.6 and 3.2 we have the following

Corollary 3.3. A finite dimensional compactum can be an isolated non-
saddle set of a continuous flow on a manifold if and only if it has the shape of
a finite polyhedron.

Our following result (see [27]) shows that the topological condition of shape
triviality has an important dynamical implication for isolated non-saddle sets.



102 José M. R. Sanjurjo

Theorem 3.4. Let K be an isolated non-saddle set of the flow ϕ:M ×R→
M , where M is an n−manifold with n > 1. If K has trivial shape then K is an
attractor or a repeller.

Proof. Consider an isolating neighbourhood N for K in M such that N =
N+ ∪N−, as in the proof of the previous theorem. Let U be a connected open
neighbourhood of K in N . Then by a result in [17, p. 121] U − K is still
connected. Since N+ ∩ (U −K) and N− ∩ (U −K) are disjoint closed subsets
of U − K whose union is U − K we deduce that either N+ ∩ (U − K) = ∅ or
N− ∩ (U −K) = ∅. In the first case N = N− and K is a repeller while in the
second case N = N+ and K is an attractor. �

In some occasions saddle-sets can be detected by a cohomology criterion as
the next result shows.

Theorem 3.5. Let K be a connected isolated compactum. If there is a con-
nected isolating block N such that Ȟ∗(K) �= Ȟ∗(N) then K is a saddle-set.
Proof. Suppose on the contrary that K is non-saddle. We shall show that

N = N+∪N−, for which it is sufficient to prove that N+∪N− is open and closed
in N . Otherwise there would exist a sequence of points xn ∈ N − (N+ ∪ N−)
converging to x ∈ (N+ ∪ N−) −K (x is not in K since we are assuming K is
non-saddle). Suppose that x ∈ N+−K, the other case being similar. We obtain
sequences of times sn ≤ 0 ≤ tn with xnsn ∈ N i, xntn ∈ No and xn[sn, tn] ⊂ N .
We can assume without loss of generality that xnsn → y ∈ N i, xntn → z ∈ No.
It is easily seen that tn is bounded (otherwise z ∈ N− and the trajectories of
the points xn would be arbitrarily close to K, which would be saddle). Then
we can assume, without loss of generality, that tn → t0 and xntn → xt0 = z,
but then xt0 ∈ No, which is a contradiction with the fact that x ∈ N+. Hence
N = N+ ∪ N− and from the construction in the proof of Theorem 3.2 it can
be easily seen that the inclusion i:K → N+ ∪N− is a shape equivalence, which
implies that Ȟ∗(K) = Ȟ∗(N), a contradiction. Hence K is saddle. �

We see now that when the exit set of an index pair for an isolated non-saddle
set K has trivial shape, its shape index is completely determined by the shape
of K.

Theorem 3.6. Let K be a connected isolated non-saddle set (K �= ∅) of
a flow ϕ defined on locally compact metric ANR, M . Suppose that K admits an
index pair (N,L) such that N is a connected isolating neighbourhood of K and L
(the exit set) has trivial shape. Then Sh(K) agrees with the unpointed (Conley)
shape index of K.

Proof. We already know by the proof of the previous result that the inclusion
i:K → N induces a shape equivalence. Since Sh(L) is trivial we have that the
shape index Sh(N/L) = Sh(N) (see [51]). �
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Remark 3.7. Theorem is not true if K is saddle. Consider the example of
the Hawaiian earring below.
In our search for topological regularity we could think that all isolated in-

variant sets have polyedral shape. However this is not the case, as the following
example shows.

Example 3.8. Consider a dynamical system defined in the cylinder D ×
[0, 1], where D stands for the unit disk: The points in the Hawaiian earring H =⋃∞
n=1 S((1/2n, 0, 1/2), 1/2n) are stationary points. All the points in D × {0, 1}
are also stationary. The orbits of the rest of the points are vertical straight lines
joining two stationary points.

Figure 1

Then the set H is an isolated invariant set which does not have the shape of
a finite polyhedron. Similar systems can be defined in R3, the sphere S3 or in
a solid torus.

In fact, the previous example is only a particular case of a very general
situation (see [27]).

Theorem 3.9. Any finite-dimensional compactumK can be embedded in Rn,
for suitable n, in such a way that there is a flow in Rn having K as an isolated
invariant set.

Proof. First, embed the compact set K as a subset of the diagonal of some
R2n. Let ϕ be a translation flow on R2n, given by ϕ((x, y), t) = (x, y + at) for
some non-zero a. Then ϕ has no fixed points and all of the flow lines hit the
diagonal in at most one point. By a theorem of Beck [7], ϕ can be modified to
a new flow φ in such a way that all the orbits of ϕ not containing a point of K
are preserved in φ while the orbits containing a point of K are decomposed in
two orbits together with that point of K. Then K is an isolated invariant set
for the flow φ. �
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An important example of non-saddle sets are the unstable attractors having
only internal explosions. In fact, this condition is characteristic for this type of
attractors.

Theorem 3.10. Let K be an attractor of a flow on a locally compact metric
space M . Then K has external explosions if and only if it is a saddle set.

Proof. Suppose K has an external explosion in a point x ∈ A(K) − K.
Suppose y ∈ J+(x) − K and let U be a compact neighbourhood of K not
containing either x or y. Consider an arbitrary neighbourhood V of K and take
t0 > 0 such that xt0 ∈ V . Since there exist sequences xn → x, tn → ∞ such
that xntn → y we easily deduce that there is an xn /∈ U such that xnt0 ∈ V and
xntn /∈ U . Hence K is saddle.
On the other hand if K is a saddle set consider a compact neighbourhod U

of K such that there exists a sequence xn → K and sequences sn ≤ 0 ≤ tn
with xnsn and xntn belonging to ∂U and xn[sn, tn] ⊂ U . We can assume that
xnsn → y ∈ ∂U , xntn → z ∈ ∂U and tn − sn → ∞ (otherwise z would belong
to K by a simple argument). Then z ∈ J+(y) and the flow has an external
explosion in y. �

Corollary 3.11. Let K be an isolated unstable attractor having only internal
explosions of a flow on a locally compact ANR, M . Then K has finite polyhedral
shape.

Unstable attractors having only internal explosions appear only in certain
kind of manifolds (in surfaces like the torus for instance). We see that in the case
of the plane, connected isolated global attractors are always stable and, on the
other hand, in Rn, isolated unstable attractors always have external explosions.
The following result has been proved by M. A. Morón, J. J. Sánchez-Gabites and
J. M. R. Sanjurjo in [57].

Theorem 3.12. Every connected isolated global attractor K in R2 is stable.

Proof. If K were unstable there would exist a point x0 ∈ R2 −K such that
∅ �= ω(x0), α(x0) ⊂ K (see [9, Theorem 1.1, p. 114 and Corollary 1.2, p. 116])
and we can assume that x0 lies in the unbounded component U of R2 − K
(if not, the argument is only sligthly different). Collapse K to a single point
p and consider the flow ϕ̂ induced in the quotient space R2/K. Then {p} is
an isolated global attractor of ϕ̂ and U = U ∪ {p} is homeomorphic to R2

(where the closure of U is taken in R2/K). This last assertion can be proved as
follows: the set K∗ = R2−U ⊃ K (equal to K plus the bounded components of
R2 −K) does not disconnect the plane. Then D = {K∗} ∪ {{x} : x /∈ K∗} is un
upper semicontinuous decomposition of R2 none of whose elements separates the
plane, hence the quotient space R2/K∗ ∼= R2/D is homeomorphic to R2 by [54,
Theorem 22]. But the closure of U in R2/K is homemorphic to R2/K∗ so the
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asertion follows and we have reduced the proof to the case when K is a single
point p.
In R2/K the condition about the limit sets of x0 says ω(x0) = α(x0) = {p}.

This implies that γ(x0) is disjoint from its limits sets and homemomorphic to
R. But then γ(x0) = γ(x0) ∪ {p} is a one-point compactification of γ(x0) ∼= R,
hence it must be homeomorphic to S1. It follows that γ(x0) separates U into
two connected components, exactly one of which is bounded (say Ux0), and with
common boundary γ(x0) = γ(x0)∪{p}. Observe that Ux0 and Ux0 are invariant
and homeomorphic to an open disk and a closed disk, respectively.
Now x0 ∈ J+(p), so x0 ∈ {̂p} (the stabilization of the attractor {p}), and

since {̂p} is compact and invariant, γ(x0) ⊂ {̂p}. But now {̂p} is a global
attractor in U ∼= R2, hence its shape must be trivial, so it does not disconnect U
and it follows Ux0 ⊂ {̂p}. By [4] Prop. 4.4 p. 211 this implies that α(x) = {p}
for every x ∈ Ux0 so the argument and notations introduced above for x0 extend
to all x ∈ Ux0 . That is, if x ∈ Ux0 then γ(x) = γ(x)∪ {p} separates R2 into two
connected components. If we denote by Ux the bounded one, it is an invariant
set with boundary γ(x). Observe that if y ∈ Ux then γ(y) ⊂ Ux, and since Ux is
homeomorphic to an open disk, Uy ⊂ Ux.
Let N be an isolating neighbourhood for p. It is clear that for every p �=

x ∈ Ux0 the inclusion γ(x) ⊂ N cannot hold since otherwise p would not be
isolated by N , hence γ(x) ∩ ∂N �= ∅ and Ux0 ∩ ∂N �= ∅. If x, y ∈ Ux0 are not
in the same trajectory, then x ∈ Uy or y ∈ Ux so Ux ⊂ Uy or Uy ⊂ Ux. In any
case, the intersection Ux ∩ Uy ∩ ∂N coincides with either Ux ∩ ∂N or Uy ∩ ∂N
and therefore the family {Ux ∩ ∂N}p�=x∈Ux0 has the finite intersection property.
By the compactnes of ∂N there exists y ∈ ⋂

p �=x∈Ux0
Ux ∩ ∂N and in particular

y �= p. However, y ∈ Ux0 , hence Uy is an open disk whose boundary contains
p. Consequently there must exist some x ∈ Uy ∩ intN , which implies Ux ⊂ Uy
and y ∈ Ux = Ux ∪ γ(x) ∪ {p} ⊂ Uy ∪ {p}; but this is a contradiction since
y /∈ Uy ∪ {p}. �
Let us remark here that the conclusion of Theorem 3.12 is false if the attractor

K is not global, as Mendelson’s famous example of an isolated unstable attractor
in the plane shows [52]. However, every isolated invariant continum K ⊂ R2

has polyhedral shape. To prove this note that by Alexander’s duality Ȟ1(K) =
H̃0(R2 −K). Since K is isolated it follows easily from this that Ȟ1(K) is free
and finitely generated. Now it follows from a theorem of K. Borsuk on plane
continua ([11, Theorem 9.1, p. 52]) that K has the shape of a polyhedron (in
fact, a finite bouquet of circles).
The following result, that we present without proof, was established by

M. A. Morón, J. J. Sánchez-Gabites and J. M. R. Sanjurjo in [57].

Theorem 3.13. Let K ⊂ Rn be a connected isolated attractor. If K is
unstable, then it must have external explosions.
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Hence if we are interested in examples of flows with attractors having internal
explosions we must look to places other than the Euclidean space. Sánchez
Gabites has given in [80] a sufficient condition for a manifold to have global
attractors of that kind.

Theorem 3.14. Let M be a closed oriented smooth manifold. If H1(M,Z) �=
0 then M contains a connected isolated unstable global attractor having no ex-
ternal explosions.

For examples of flows having only internal explosions see [57] and [80].

4. An example: the Lorenz attractor

We shall see how the previous results can be applied to an example related
to the Lorenz attractor. This attractor has been studied for a long time by
many authors since E. Lorenz introduced his famous equations [48], but only
recently has its existence been rigourously proved by W. Tucker ([101] and [102]).
We recommend the book by C. Sparrow [99] and the expository paper [104]
by M. Viana for information about this subject. The results of C. Morales,
M. J. Paćıfico and E. Pujals [55] provide a unified framework for robust strange
attractors in dimension 3 of which the Lorenz attractor is a particular case. See
also the paper [18] by L. Dı́az, E. Pujals and R. Ures for related results about
discrete-time systems and [62] for other recent related results. The topological
classification of the Lorenz attractors (for different parameter values) can be
found in the paper [67] by D. Rand. More general results about the classification
of Lorenz maps are due to J. H. Hubbard and C. Sparrow [40].
The Lorenz equations provide an example of a Hopf bifurcation which takes

place at parameter values very close to those which correspond to the creation
of the Lorenz attractor. The equations are

dx/dt = σ(y − x), dy/dt = rx − y − xz, dz/dt = xy − bz,

where σ, r and b are three real positive parameters. As we vary the parameters,
we change the behaviour of the flow determined by the equations in R3. The val-
ues σ = 10 and b = 8/3 have deserved special attention in the literature. We shall
fix them from now on, and we shall consider the family of flows obtained when
we vary the remaining parameter r. In the sequel we follow C. Sparrow [99] for
the presentation of all the aspects concerning the basic properties of the Lorenz
equations. Sparrow’s book was written long before Tucker’s work was available
and some of the global statements made in it are only tentative. However, except
for a few details, they have proved to agree with Tucker’s results.
The origin is a stationary point for all the parameter values. If 0 < r < 1,

it is a global attractor. At r = 1 there is a bifurcation of a simple kind, and for
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r > 1 the origin is non-stable and there are two other stationary points,

C1 = (−
√
b(r − 1),−

√
b(r − 1), (r − 1)),

C2 = (+
√
b(r − 1),+

√
b(r − 1), (r − 1)),

both of them attractors in the parameter range 1 < r < 470/19 ≈ 24.74. When r
is slightly larger than one, the unstable manifold of the origin is a one-dimensional
manifold composed of the origin and two trajectories α1 and α2 spiralling to-
wards C1 and C2, respectively. For a larger value of r, approximately equal to
13.926 . . . , the behaviour of the flow changes in an important way: the trajec-
tories started on the unstable manifold of the origin will also lie in the stable
manifold of the origin producing two homoclinic orbits. For values of r larger
than the critical value r0 = 13.926 . . . the trajectories are again attracted by
the stationary points but α1 is now spiralling towards C2 and α2 is spiralling
towards C1. We say that a homoclinic explosion has taken place at this critical
value of the parameter. As a consequence, a “strange invariant set” has been
created. This set consists of a countable infinity of periodic orbits, an uncount-
able infinity of aperiodic orbits, and an uncountable infinity of trajectories which
terminate in the origin. For values of r close to r0 the strange invariant set is
non-stable: trajectories of many points close to it escape, spiralling towards C1
or C2. However, at the critical r-value rA ≈ 24.06 this set becomes attracting.
The resulting attractor, called the Lorenz attractor, coexists with the two at-
tracting points C1 and C2 until the r-value rH ≈ 24.74, when a Hopf bifurcation
takes place and C1 and C2 lose their stability. This bifurcation is subcritical, i.e.
C1 and C2 lose their stability by absorbing a non-stable periodic orbit.
The numerically computed solutions to the Lorenz equations projected onto

the xz plane give a visual image of the attractor with its characteristic butterfly
aspect. In fact, the stable manifold of the origin divides the phase space into
points that first go to one wing of the butterfly and those that first go to the
other wing when approaching the attractor. See [61] for very suggestive computer
images.

4.1. The global attractor E∞ and the Lorenz attractor. E. N. Lorenz
in [48] proved that for every value of r there is an ellipsoid E in R3 which all
trajectories eventually enter. C. Sparrow [99] describes the situation in this way:
“At times 1, 2, . . . the surface of the ellipsoid E is taken by the flow into

surfaces S1, S2, . . . which enclose regions E1, E2, . . . such that the volumes of
the Ei decrease exponentially to zero as i increases. Because all trajectories
cross the boundary inwards we know that E ⊃ E1 ⊃ E2 ⊃ . . . ⊃ Ei ⊃ . . . and
hence every trajectory is ultimately trapped in a region, E∞, of zero volume
given by

E∞ =
⋂
i∈Z+
Ei.”
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E∞ is therefore a global attractor.
By using elementary notions of shape theory we infer from this that the flow

ϕ:R3 × R→R3 induces, in a natural way, maps rk:E → Ek and x → ϕ(x, k)
that define an approximative sequence

r = {rk, E → E∞}

in the sense of K. Borsuk [11]. This means that for every neighbourhood V of
E∞ in R3 there is a k0 such that rk � rk+1 in V for k ≥ k0. The approximative
sequence r induces a shape isomorphism whose inverse is induced by the inclusion
i:E∞ → E. This proves that E∞ has trivial shape. This is also a consequence of
the fact that the shape of a global attractor agrees with that of the phase space
([10], [33], [44], [88]). We remark that at least for some values of the parameter r,
E∞ is not homotopically trivial since there are trajectories spiralling into C1 (as
well as trajectories spiralling into C2) which lie in a path-component of E∞ not
containing C1 (resp. C2).
For r-values r < rH close to the Hopf bifurcation, the non-wandering set

of the flow, Ω, is the union of the Lorenz attractor L, the stationary points C1
and C2 and two periodic orbits γ1 and γ2 which are responsible for the Hopf
bifurcation at the critical value rH . The non-wandering set defines in a natural
way a Morse decomposition of the global attractor E∞. If we want to study
the global topological structure of the Lorenz attractor (in particular its shape)
we need to kow the evolution of the flow inside the ellipsoid E. At r = rH the
periodic orbits γ1 and γ2 are absorbed by the stationary points C1 and C2 and
for r ≥ rH the points C1 and C2 lose their stability. The non-wandering set
becomes simpler. In fact, Ω is

Ω = L ∪ {C1} ∪ {C2}.

For r-values r ≥ rH near the Hopf bifurcation the flow defines a semi-dynamical
system in the ellipsoid E whose trajectories are all attracted by L except those
which compose the stable manifolds of C1 and C2. These are one-dimensional
manifolds whose intersection with E consists of closed arcs, l1 and l2 respectively,
with their ends in the boundary of E and such that l1 ∩ l2 = ∅. In other words,
the Lorenz attractor L is an attractor of a semi-dynamical system in E whose
basin of attraction is E − (l1 ∪ l2). Now Theorem 2.1 in this paper is also valid
for semi-dynamical systems. If we apply this result to the semidynamical system
induced by the Lorenz flow in M = E − (l1 ∪ l2) we deduce that the inclusion
i:L→ E− (l1∪ l2) is a shape equivalence and, therefore, the shape of the Lorenz
attractor is that of a disc with two holes or, equivalently, that of a wedge of
two circles. We have only considered r-values r ≥ rH , hence our conclusion is
limited, for the moment, to those r-values. We now apply the following result
that we have proved in [89].
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Theorem 4.1. Let ϕλ:X×R→ X, λ ∈ I, be a parametrized family of flows
defined on a locally compact ANR, X. If K is an attractor of ϕ0 then for every
neighbourhood V of K contained in the basin of attraction of K there exists a λ0,
with 0 < λ0 ≤ 1, such that for every λ ≤ λ0 there exists an attractor Kλ ⊂ V
of the flow ϕλ with Sh(Kλ) = Sh(K). Moreover V , is contained in the basin of
attraction of Kλ.

It follows from Theorem 4.1 that the shape of attractors is preserved by local
continuation and, hence, the shape of the Lorenz attractor for r-values r < rH
is the same as the one at rH . Moreover, the cohomology Conley index of an
attractor is also determined by its shape. In conclusion we have the following
result (see [93]).

Theorem 4.2. The Lorenz attractor L, has the shape of S1∨S1 (a wedge of
two circles) for r-values close to rH (the critical value of the Hopf bifurcation). As
a consequence, the cohomology Conley indexes of L are CH0(L) ∼= Z, CH1(L) ∼=
Z⊕ Z and CHq(L) ∼= 0 for q > 1.

5. Bifurcations

We have seen that an important feature of the Lorenz equations is the ex-
istence of a Hopf bifurcation at a certain value of the parameter. Our next re-
sult describes a general bifurcation phenomenon consisting of a transition from
asymptotic stability to instability. In such circumstances an attractor expels
a family of new attractors that are created in the process. This happens, for
instance, in some Hopf bifurcations (see [38] and [95]). All the attractors con-
sidered in this result are asymptotically stable. This and related results can be
found in [93].

Theorem 5.1. Let W be an orientable n-dimensional manifold. Let ϕλ:
W ×R→W be a parametrized family of flows with λ ∈ I such that the compact
connected set A ⊂ W is an attractor of ϕ0 and a repeller of ϕλ for λ > 0.
Suppose that for a fixed k ≤ n the reduced homology groups H̃k(B) and H̃k−1(B)
are trivial, where B is the basin of attraction of A for ϕ0. Then for every compact
neighbourhood V of A in B there is a λ0 > 0 such that for every λ with 0 < λ ≤ λ0
there is an attractor Kλ of ϕλ contained in V − A, attracting V − A and such
that Ȟn−k(Kλ) = Hn−k(B) if (the previously fixed) k �= 1 and Ȟn−1(Kλ) =
Z ⊕ Hn−1(B) if (the previously fixed) k = 1. In particular, if B is contractible
then Ȟn−1(Kλ) = Ȟ0(Kλ) = Z and Ȟn−k(Kλ) = {0} when (the previously
fixed) k �= 1, n. The attractors Kλ are in arbitrarily small neighbourhoods of A
for values of λ close to 0.

Proof. The theorem is based on two facts of a dynamical-topological nature
whose proof we omit. They describe a general phenomenon which takes place
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when an attractor becomes a repeller. We refer the reader to [93] for a detailed
proof.
(1) There is a λ0 > 0 such that for every λ ≤ λ0 there exists an attractor

Aλ ⊂ V attracting V and such that Sh(Aλ) = Sh(A). Moreover, since the
inclusion A→ B is a shape equivalence, we also have that Sh(Aλ) = Sh(B).
(2) If Rλ is the basin of repulsion of A for ϕλ then Rλ ⊂ Aλ and

Kλ = Aλ −Rλ
is an attractor such that V −A is contained in its basin of attraction.
Now, by the Alexander duality theorem applied to the orientable manifold B,

we have that
Ȟn−k(Kλ) = Hk(B,B−Kλ).

If we consider the long homology sequence of the pair (B,B−Kλ)

. . .→ H̃k(B)→Hk(B,B−Kλ)→ H̃k−1(B−Kλ)→ H̃k−1(B)→ . . . ,

since H̃k(B) = H̃k−1(B) = {0} we have that

Hk(B,B−Kλ) ∼= H̃k−1(B−Kλ).
Since B−Kλ = Rλ(A) ∪ (B−Aλ) we obtain

H̃k−1(B−Kλ) = H̃k−1(Rλ(A)) ⊕ H̃k−1((B−Aλ)) if k �= 1.
On the other hand, from the long exact sequence for the pair (B,B−Aλ)

. . .→ H̃k(B)→Hk(B,B−Aλ)→ H̃k−1(B−Aλ)→ H̃k−1(B)→ . . .
we get

H̃k−1(B−Aλ) ∼= Hk(B,B−Aλ).
But, using again the Alexander duality theorem for the compactum Aλ in the
manifold B and recalling that Čech homology and cohomology are shape inva-
riants, we obtain

Hk(B,B−Aλ) ∼= Ȟn−k(Aλ) ∼= Ȟn−k(A) ∼= Hn−k(B).

Hence, from the fact that the inclusion A → Rλ(A) is a shape equivalence we
deduce that, if k �= 1,
Ȟn−k(Kλ) = Hk−1(Rλ(A)) ⊕Hn−k(B)

= Ȟk−1(A)⊕Hn−k(B) = Hk−1(B)⊕ Ȟn−k(B) = Hn−k(B).
If k = 1, the only difference from the previous argument is that

H̃0(B−Kλ) = H0(Rλ(A)) ⊕ H̃0((B−Aλ))
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and , sinceRλ(A) is a connected open subset ofW , we have thatH0(Rλ(A)) = Z.
The rest of the argument is exactly the same and we conclude that

Ȟn−1(Kλ) = Z⊕Hn−1(B)
if k = 1. This ends the proof of the theorem. �

If we have have more information about the attractorA then more can be said
about the attractors Kλ created in the bifurcation. For instance, the following
result is proved in [93].

Theorem 5.2 (Bifurcations from equilibrium points). Let W be an n-di-
mensional manifold. Let ϕλ:W ×R→W be a parametrized family of flows with
λ ∈ I (the unit interval) and such that the point p ∈ W is an attractor of the
flow ϕ0. Then the two following statements hold:
(1) If p is a repeller of ϕλ for every λ > 0, then for every compact neighbour-

hood V of p contained in the basin of attraction of p for the flow ϕ0, there exists
a λ0 such that for every λ, with 0 < λ ≤ λ0, there exists an attractor Kλ of ϕλ
with the shape (and hence with the Čech homology and cohomology) of Sn−1. The
attractor Kλ is contained in V − {p} and attracts all points in V − {p}. More-
over, if p is monotone, then the multivalued function Θ: [0, λ0] → W defined by
Θ(0) = {p} and Θ(λ) = Kλ (when λ �= 0) is upper semi-continuous.
(2) If the following conditions hold for λ > 0:

(a) there exists a k-dimensional submanifold W0 of W such that W0 is in-
variant by ϕλ,

(b) there exists a neighbourhood U of p (the same for all λ) such that the
maximal invariant set of ϕλ inside U is contained in W0,

(c) p is a repeller of the restriction flow ϕλ|W0:W0 ×R→W0,
then there is a λ0 such that for every λ, with 0 < λ ≤ λ0, there is an attractor
Kλ ⊂ U of the unrestricted flow ϕλ:W ×R→W with the shape (and hence with
the Čech homology and cohomology) of Sk−1. In particular, Kλ has the shape
of S1 when W0 is of dimension 2. The attractors Kλ are contained in arbitrarily
small neighbourhoods of p for values of λ close to 0.

6. Some open problems

The following is a list of problems which, up to the author’s knowledge, are
open at the moment of writing this paper.

Problem 6.1 (B. Günther and J. Segal). Is it possible to characterize those
compacta K that can be attractors of flows in manifolds such that K contains
a dense orbit?

Problem 6.2 (B. Günther and J. Segal). Is it possible to characterize at-
tractors of discrete dynamical systems?
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Problem 6.3 (J. C. Robinson). Suppose ϕ:K×R→ K is a flow on a finitely
dimensional compactumK. Is is true that K can be embedded in Rn for suitable
n in such a way that there is a flow ϕ̂ on Rn having K as an attractor and such
that the restriction of ϕ̂ to K agrees with ϕ?

Problem 6.4 (M. A. Morón, J. J. Sánchez-Gabites and J. M. R. San-
jurjo). To what extent does the shape of the Freudenthal compactification of
the unstable manifold of an isolated invariant set K endowed with its intrinsic
topology carry more information than the Conley shape index of K? Is there
a satisfactory theory relating the dynamical properties of K to the topological
properties of such a compactification?

Problem 6.5 (J. M. R. Sanjurjo). Is there a dynamical condition C such
that a finite dimensional metric compactum K is movable if and only if K can
be embedded as an invariant subset of a flow on a manifold in such a way that
K satisfies condition C?

Problem 6.6 (A. Giraldo, M. A. Morón, F. Ruiz del Portal and J. M. R. San-
jurjo). Given a set K in a Hausdorff space X such that the inclusion i:K → X
induces an H-shape equivalence, when is K the global attractor for some semi-
dynamical system in X?

Problem 6.7 (K. Kuperberg). Characterize those invariant compacta A of
flows on a manifold such that every neighbourhood of A contains a movable
compact invariant set containing A.
Problems 6.1 and 6.2 are from [33]. Problem 6.3 is suggested in [69]. A par-

tial answer is contained in that paper. Problems 6.4 and 6.5 are from [94].
Problem 6.6 appears formulated in [28]. A partial answer has been given by
J. J. Sánchez-Gabites in [81]. Problem 6.7 was posed, according to P. S̆inde-
lár̆ová, by K. Kuperberg (with a different formulation), see [97]. That paper
contains some partial answers.

7. Some recent developments

We complete this article with a quick review of some additional results. We
briefly discuss some of our own contributions and select material from other
authors, guided mainly by criteria of personal preference. Most of the results
are quite recent and give an idea of several directions of current research in the
area.

7.1. Intrinsic topology of the unstable manifold. J. W. Robbin and
D. Salamon introduced in [68] the intrinsic topology of the unstable manifold
Wu of an isolated invariant compactum. A similar definition applies to the
stable manifold. This topology has some interesting features. For instance it
can be used to characterize the shape index of an isolated compactum; namely,
the shape index of K is the shape of the Alexandroff compactification of the
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unstable manifold of K endowed with the intrinsic topology [68]. This topology
has been studied by Sanjurjo in [91], where he proved that the compactum K is
a global repeller of the flow restricted toWu endowed with the intrinsic topology.
SimilarlyK is a global asymtoptically stable attractor of the flow restricted to the
stable manifold with the intrinsic topology. In that paper it is also proved that
this property turns out to be a necessary and sufficient condition for the intrinsic
and the extrinsic topologies to agree. J. J. Sánchez-Gabites has carried out
a thorough study of the intrinsic topology in [82]. Among other things he proves
that this topology can be defined without using isolating blocks of K, solving
a problem in [91]. This topology has also been used by K. Athanassopoulos [5]
to study the complexity of the flow in the region of attraction of an isolated
invariant set. In [6] he proved that if the intrinsic topology of the region of
attraction of an isolated 1-dimensional compact minimal set K of a continuous
flow on a locally compact metric space is locally connected at every point of K,
then K is a periodic orbit.

7.2. The Lusternik–Schnirelmann category of isolated invariant
compacta. M. Pozniak [65] has used a modification of the classical Lusternik–
Schnirelman category to study properties of isolated invariant compacta K of
flows. For instance, he has given an estimation from below of the rank of Ȟ∗(K)
using what he calls the cohomological category of N/L where N is an isolating
block of K and L is the exit set. Sanjurjo has given in [90] a relation between
the Lusternik–Schnirelmann category of the unstable manifold of an isolated
invariant compactum satisfying some aditional conditions and the sum of the
Lusternik–Schnirelmann categories of the members of any Morse decomposition
of K. This result is used in [90] to detect connecting orbits in attractor repeller
decompositions, saddle sets and fixed points of flows in the plane. In [92] it is
proved that if the intrinsic topology is used on Wu then the mentioned result
follows in full generality (without any restrictions on K).

7.3. Dynamical systems and hyperspaces. The theory of multivalued
maps and hyperspaces plays a natural role in Dynamical Systems. Under suitable
hypotheses the notion of first prolongational set J+ gives rise to a multivalued
map ψ:X → 2X which is continuous when Michael’s upper semifinite topology
is considered in the hyperspace of X . It is possible to take advantage of this
theory to obtain neat characterizations of such important notions as stability
and attracting sets. In fact, stable sets and attractors have been characterized by
J. J. Sánchez-Gabites and J. M. R. Sanjurjo in [86] as fixed points of certain maps
in such hyperspaces. This kind of hyperspaces have been extensively studied by
M. Alonso-Morón, E. Cuchillo-Ibáñez, A. González-Gómez and A. Luzón in [2]
and [3] and their ideas will probably lead to further advances in applications of
the theory of hyperspaces to dynamical systems. In [73], F. R. Ruiz del Portal
and J. M. Salazar study the fixed point index in hyperspaces and use it to obtain
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a characterization of isolating neighbourhoods of compact invariant sets with
non-empty attracting part and also a characterization of those isolated minimal
sets that are attractors. In [76] and [77], J. M. Salazar considers a locally compact
metric ANR, X, a semidynamical system f :U ⊂ X → X and a compact isolated
invariant set K ⊂ U with respect to f and he constructs the fixed point index
of the map that f induces in the spaces Fn(X) of the non-empty finite subsets
of X with at most n elements, endowed with the Hausdorff metric (these spaces
were defined in 1931 by Borsuk and Ulam). This fixed point index detects the
existence of periodic orbits of f in K of period less than or equal to n.

7.4. Conley index and Ważewski theories. The Ważewski and Conley
index theories are the source of a large number of applications. We briefly
summarize some of them here (all quite recent); others are discussed in [53]
and [100].

An application to the existence of asymptotic solutions is contained in Or-
tega’s paper [60]. These are non-trivial solutions tending to the origin as time
increases to infinity and they appear in systems of differential equations having
the trivial solution. The classical method for proving their existence consists on
the reduction of the problem to an integral equation. Once this equation has
been found one uses the method of successive approximations or the contrac-
tion principle. This analytical method leads to the Principle of Linearization
and to the Stable Manifold Theorem for autonomous equations. Ważewski ap-
plied the theory of retracts and developed an alternative method for constructing
asymptotic solutions in his paper [105]. Ortega illustrates Ważewski’s ideas in
a concrete situation, and later he discusses the connections with the analytical
approach. In the process he finds that other tools such as topological degree and
global continuation are also applicable to this problems.

In [24] K. Gęba, M. Izydorek and A. Pruszko developed a new infinite-di-
mensional extension of the classical Conley index and subsequently M. Izydorek
defined and studied in [42] a cohomological version of this notion. The the-
ory proved to be fruitful in applications to strongly indefinite problems and he
obtained new results concerning the existence of periodic solutions of certain
Hamiltonian systems. In [43] he developed an equivariant version of this in-
dex and gave applications to asymptotically linear problems with and without
resonance and to certain local bifurcation problems.

Another interesting application of the Conley index has been given by K.Wój-
cik [109] in Permanence Theory (a theory which plays an important role in math-
ematical ecology). The so-called criterion of permanence for biological systems is
a condition ensuring the long-term survival of the species. Wójcik considers flows
in Rn× [0,∞) and proves in [109] that if S ⊂ Rn×{0} is an isolated invariant set
with nonzero homological Conley index, then there exists an x ∈ Rn×(0,∞) such
that ω(x) ⊂ S. This may be understood as a strong violation of permanence.
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In [74] Ruiz del Portal and Salazar develop some techniques based on Conley
index ideas to give a short and simple proof of a theorem of Le Calvez and
Yoccoz about the non-existence of minimal homeomorphisms of R2−K for any
finite set K. They also obtain in this paper a general theorem that allows one
to compute the fixed-point index of every iteration of any local homeomorphism
of R2 at any non-repeller fixed point which is a locally maximal invariant set.
In [20] Z. Dzedzej and W. Kryszewski develop a theory of a particular coho-

mological Conley index which allows them to detect invariant sets of multivalued
dynamical systems generated by semilinear differential inclusions in infinite di-
mensional Hilbert spaces. They give applications to the existence of periodic
orbits of asymptotically linear Hamiltonian inclusions.
In [49], S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner show how to

use rigorous computational techniques to establish computer-assisted existence
proofs for equilibria of the Cahn–Hilliard equation on the unit square. Their
method combines rigorous computations with Conley index techniques. They
establish branches of equilibria and, under more restrictive conditions, even the
local uniqueness of specific equilibrium solutions.

7.5. Regularity of isolating blocks. In [25] A. Gierzkiewicz and K. Wój-
cik consider the following question: given an isolated invariant set S, under what
conditions does it possess an isolating block N such that the inclusion j:S → N
induces isomorphisms in Čech cohomology? (for the sake of brevity we shall term
those isolating blocks “regular”, following [79] and [83]. This is a natural problem
to consider, since one might expect to obtain more information about S (which
is not an “observable” object) from N (which is an “observable” object). The
authors of [25] acknowledge R. Easton [21] as the first to consider this question.
In [25] they consider flows on locally compact metric spaces and their main

theorem gives sufficient conditions for regular isolating blocks to exist when
certain assumption about how the set n− sits in fr(N) is satisfied. Then they
specialize (following R. Easton [21] and fixing an essential gap in his arguments)
their result to the case of continuous flows in 3-manifolds: using a classical lemma
about neighbourhoods of compacta in surfaces, they prove that the condition on
n− is satisfied in this case, so for isolated invariant sets (of finite type) in 3-
manifolds regular isolating blocks always exist.
In [79] and [83] J. J. Sánchez-Gabites studies the same problem, although in

this case it is only isolated invariant sets in 3-manifolds which are considered.
The author arrives at the same characterization of regular isolating blocks as the
one given in [25] but, since now it is flows in 3-manifolds which are considered,
the stronger result is obtained that when N is a regular isolating block for S the
inclusion j:S → N is a shape equivalence.
An existence theorem is then proved in [79] and [83] but it is also comple-

mented by a uniqueness statement: if N1 and N2 are regular isolating blocks
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of S, there exists a topological equivalence of flows h:N1 → N2. The existence
theorem is used to draw consequences about the shape-theoretic properties of
isolated invariant sets, and also to show that if Sh(S) = ∗ then S has isolating
blocks which are balls. Finally, it is proved that any isolating block N for S is
obtained from a regular one by adding handles onto it. This can be used to yield
lower bounds on the complexity of S in terms of observable features of the flow
on fr(N), as shown by example in [79] and [83].

7.6. Continuations and robustness. A. Giraldo and J. M. R. Sanjurjo
study in [31] preservation of dynamical and shape theoretical properties under
continuation for parametrized families of flows. They show that, although at-
tractors continue, the same does not hold for non-saddle sets. However, when
they continue (i.e. when they are dinamically robust), their shape is preserved
in quite general settings (i.e. they are topologically robust). More concretely,
they prove [31] the following result:
Let ϕλ:M × R → M be a parametrized differentiable family of flows

(parametrized by λ ∈ I, the unit interval) in an n-manifold, M , and let K0
be a connected isolated non-saddle set for ϕ0. If K0 is dynamically robust, then
K0 is topologically robust.
If we have a continuous parametrized family of flows ϕλ:X × R → X with

λ ∈ [0, 1], and {Kλ | λ ∈ I} is a continuation relating two attractors, K0 and
K1, then on some occasions it is possible to replace at the parameter value λ = 1
the attractor K1 by another one K̂1 in such a way that the same continuation
(with λ < 1) also relates K0 and the new attractor K̂1. In some particular cases
we may even have a nested sequence of attractors of ϕ1, . . .Kn+11 ⊂ Kn1 . . . , all
of which are related to K0 through the same continuation. In this situation the
“natural” continuation of K0 through {Kλ} seems to be K ′1 =

⋂
Kn1 in spite of

the fact that K ′1 may be non-isolated and hence, possibly, a non-attractor. K
′
1

is called a singularity of the continuation {Kλ}. K ′1 is, in fact, a quasi-attractor,
often with a complicated topological structure.
This situation is far from being exceptional in dynamical systems. As was

remarked by Kennedy and Yorke in [46] “bizarre topology is natural in dynami-
cal systems”. Moreover, J. A. Kennedy, dealing with discrete dynamical systems
(generated by a homeomorphism) in a large class of compact metric spaces, in-
cluding manifolds of dimension at least two, proved in [45] that the property
of admitting an infinite collection of attractors, each of which has nonempty
interior and cannot be reduced to a “smallest” attractor, is generic. Hurley gen-
eralized this result in [41] by showing that this property holds for all attractors
of a generic homeomorphism (see [1] for many related matters).
A. Giraldo and J. M. R. Sanjurjo study in [30] the quasi-attractors obtained

in situations similar to the one described before. They focus, in particular, on
properties of the singularities of continuations. They introduce the continuation
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skeleton of an attractorK0, which gathers information from all the continuations
ofK0, and the related spectrum ofK0, which is the quasi-attractor of the terminal
flow, ϕ1, which “survives” all possible continuations ofK0. In spite of their weird
local topological structure, singularities of continuations and spectra of attractors
have rather regular global topological properties, which agree with those of K0.

7.7. Boundary of the region of attraction and boundary of attrac-
tors. Given an asymptotically invariant compactum K and a positively invari-
ant compact neighbourhood P of K contained in A(K) it is natural to ask
whether any relation can be ascertained between the shapes of their boundaries
∂K and ∂P . The paper by J. C. Robinson and O. M. Tearne [71] contains
a proof of the fact that ∂K agrees with the ω-limit of ∂P , which shows a dynam-
ical connection between them. The paper [84] is devoted to a general study of
the relations between ∂P and ∂K. It is proved, among other things, that if K is
an attractor in a locally compact metric space M and P ⊂ A(K) is a positively
invariant compact neighbourhood of K such that int(K) contains a homotopical
spine L of P , then Sh(∂K) ≥ Sh(∂P ). A consequence of this result is that if ∂K
can be bicollared (for example, this happens if the phase space is a differentiable
manifold and ∂K is an orientable hypersurface), then Sh(∂K) ≥ Sh(∂P ).
Similarly, some properties of the boundary of A(K) are studied in [85].

Among other things the following results are proved:

(1) Let K ⊂M be an attractor in the locally compact ANR M and suppose
that the boundary D of the basin of attraction A(K) of K is an isolated com-
pactum whose 1-dimensional cohomological Conley index satisfies CH1(D) = 0.
Then D has the shape of a finite polyhedron.

(2) Let K,K ′ ⊆ Sn be, respectively, an attractor and repeller whose basins
A(K) and R(K ′) have a common boundary D and such that Sn = A(K) ∪D ∪
R(K ′). If K has trivial shape, then Ȟk(K ′) ∼= CHn−k−1(D).
(3) Let K be an attractor in a compact phase space M . Assume that D =

∂A(K) is an isolated set whose 1-dimensional cohomological Conley index is
zero. Then there exists a repeller K ′ in M such that the boundary of R(K ′)
coincides with D and M = A(K) ∪D ∪R(K ′), where the union is disjoint.
(4) Let K be an attractor for a differentiable flow in an orientable compact

n-manifold M and suppose that CH1(D) = 0. Then the number of connected
components of the dual repeller K ′ of A(K) is bounded above by rk CHn−1(D)+
#(components of D).

The complexity of the basin topology and specially of its boundary has been
observed in many occasions. See, for instance, the papers [58] by Nusse and Yorke
and [96] by Seoane, Aguirre, Sanjuán and Lai for the description of interesting
features.
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7.8. Dynamical systems and exterior spaces. A new topological ap-
proach to the study of flows is adopted by J. M. Garćıa-Calcines, L. J. Hernán-
dez-Paricio and M. T. Rivas in [23] where they present some applications of the
theory of exterior spaces to dynamics. The structure of exterior space is given
by the quasi-filter of all open absorbing sets of the flow. In this way they can
translate notions like limit space or end space to the realm of flows. When one
considers all the end points of a dynamical system one has an induced decom-
position of the system as a disjoint union of stable (at infinity) subflows. Their
theory makes possible the construction of some natural compactifications of the
flows.
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[63] T. Porter, Čech homotopy I, J. London Math. Soc. (2) 6 (1973), 429–436.
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Universidad Complutense
28040 Madrid, SPAIN

E-mail address: jose sanjurjo@mat.ucm.es



Juliusz Schauder Center Winter School
Topological Methods in Nonlinear Analysis
Lecture Notes in Nonlinear Analysis
Volume 12, 2011, 123–139

FROM WAŻEWSKI SETS TO CHAOTIC DYNAMICS

Klaudiusz Wójcik

Abstract. The aim of this note is to present a survey of results concerning
chaotic dynamics based on the Waewski retract method and the fixed point
index theory.

1. Introduction

Topological approaches are frequently used in the study of dynamics gener-
ated by differential equations and proving results in problems of the existence
of solutions satisfying some boundary conditions ([4], [11], [12], [14], [15], [26],
[28], [29]). The very common strategy, restricted to equations describing some
evolution in time, applies the fixed point theory ([9]) or degree theory to trans-
lation operators along solutions ([11], [12]). In the case of ordinary differential
equations those operators are finite dimensional. For dissipative systems, the
existence of a required solution is a consequence of the fact that the translation
operator preserves some subset of the phase space of the equation with the fixed
point property. Frequently, those invariant subsets are compact and convex, so
the Brouwer fixed point theorem applies. However, for non-dissipative equa-
tions usually there are no reasonable compact subsets which are preserved by
the translation operator. The aim of this note is to describe a geometric method
which some times can be applied in that context.
In recent years there has been growing interest in the study complicated

dynamics by means of topological tools ([5], [1]–[3], [6], [13], [18]–[23], [25], [30],
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[34], [35]). Chaotic dynamics are difficult to study in general and there are
few rigorous results concerning chaotic dynamics in concrete dynamical systems.
Among the first topological criteria for chaos were two criteria presented in [16].
The first one was based on the Conley index, the other on the fixed point index
and continuation methods. The Conley index criterion was applied in [17] to
prove chaos in the famous Lorenz equations. The fixed point index criterion
developed by Zgliczyński [35] was applied to the Hénon map and the Rössler
equations.
Another topological criterion is based on the work of Srzednicki ([26], [27],

[31]), who developed the machinery of periodic segments to compute the fixed
point index of the Poincaré map of a flow directly from the features of the vector
field in the phase space. The method applies the fixed point index, the Lefschetz
fixed point theorem and Ważewski retract method to provide results on the
existence of periodic solutions and chaotic dynamics generated by periodic in
time ODEs.

2. Local flows, Ważewski sets and isolating blocks

In 1947, Tadeusz Ważewski ([32]) described a new topological method for
detecting of solutions remaining in a given set for positive values of time. Later,
in [5] Charles Conley presented a version of the Ważewski theorem with a more
convenient assaumptions. He introduced the notion of the exit set and with
its use he defined the concept of Ważewski sets. The method is based on the
observation which roughly assert that there is a solution contained in a Ważewski
set for all positive values of time if the exit set is not a retract of the whole
space. For a compact Ważewski sets which do not contain any full solutions
intersecting their boundaries, Conley discovered a homotopical invariant, called
the Conley index, which provides a quantitative information on their invariant
part ([5], [27]).
Let M be a topological manifold and let D be an open subset of R×M such

that {0} ×M ⊂ D. A continuous map Φ:D → M is called a local flow on M
if for every x ∈ M the set {t ∈ R : (t, x) ∈ D} is equal to an open interval
(αx, ωx) ⊂ R,

Φ(0, x) = x,

and if (t, x) ∈ D, (s,Φ(t, x)) ∈ D then (t+ s, x) ∈ D and
Φ(s+ t, x) = Φ(s,Φ(t, x)).

We write Φt(x) instead of Φ(t, x), hence Φ0 = id and Φs+t = Φt ◦ Φs.
The map t → Φt(x) is called an orbit of x. If it is a constant map then

x is called a stationary point. If the orbit of x is a periodic map then x is
called a periodic point. We say that a periodic point x is non-trivial if x is not
a stationary point. The trajectory of x is defined as O(x) = Φ((αx, ωx) × {x}).
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A set I ⊂ M is called invariant if for all x ∈ I we have (αx, ωx) = R and
O(x) ⊂ I.
The most natural examples of local flows come from the theory of ordinary

differential equations ([8]): if v:M → TM is a smooth vector-field on a manifold
M and ux0 : (αx0 , ωx0)→M is the unique solution of the initial value problem

ẋ = v(x), x(0) = x0,

then φ defined by Φ(t, x) := ux0(t) is the local flow generated by v. Let us
observe that in that case a point x0 is stationary if and only if v(x0) = 0.
Let W ⊂M . Define the exit set of W as

W− := {x ∈ W : Φ([0, t]× {x}) �⊂W for all t ∈ (0, ωx)},
and the entrance set as

W+ = {x ∈ W : Φ([−t, 0]× {x}) �⊂W for all t ∈ (αx, 0)}.
We call W a Ważewski set for Φ if W and its exit set W− are closed. The

asymptotic part of W is defined by

W ∗ = {x ∈W : there exists t ∈ (0, ωx) : Φt(x) /∈ W}.
The most important property of the notion of Ważewski set is given in the
following lemma.

Lemma 2.1 ([5], [27]). If W is a Ważewski set then the mapping

σ:W ∗ � x→ sup{t ∈ [0, ωx) : Φ([0, t]× {x}) ⊂W} ∈ [0,∞)
is continuous.

As a consequence we get the following Ważewski retract theorem.

Theorem 2.2 ([5], [27]). If W− is not a strong deformation retract of
a Ważewski set W then there exists an x0 ∈W such that O+(x0) := Φ([0, ωx0)×
{x0}) ⊂W . Moreover, if W is compact then ωx0 =∞ and the ω-limit set of x0
defined by ω(x0) =

⋂
t≥0Φ([t,∞)) is a non-empty compact invariant set.

Indeed, otherwise W =W ∗ and the mapping r:W � x→ Φσ(x)(x) ∈ W− is
a strong deformation retraction.

Example 2.3. Let Φ be a local flow on the plane generated by a smooth
vector field v:C→ C.
Assume that for the annulus A = {z ∈ C : 0 < r ≤ |z| ≤ R} we have

z · v(z) > 0, |z| = R,
z · v(z) < 0, |z| = r,

where · denotes a scalar product. Then A is a Ważewski set with the exit set
A− = {z ∈ A : |z| = r} ∪ {z ∈ A : |z| = R}, so by the Ważewski retract
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method there exists x ∈ A such that O+(x) ⊂ W . Since A is compact, hence
the invariant part of A is non-empty. Moreover, if v(z) �= 0 for z ∈ A then
it follows by the Poincaré–Bendixson theorem ([8]) that there is a non-trivial
periodic point in A.

We define σ±:W → [0,∞] by
σ+(x) = sup{t ∈ (0, ωx) : Φ([0, t]× {x}) ⊂W},
σ−(x) = inf{t ∈ (αx, 0) : Φ([t, 0]× {x}) ⊂W}.

Theorem 2.4 ([5], [27]). If W is a compact Ważewski set, and W± are
compact, then the functions σ±:W → [0,∞] are continuous.
A setW ⊂M is called an isolating block ifW ,W± are compact,W = int(W )

and for every x ∈ ∂W \ (W− ∪W+)
σ±(x) <∞, Φ([−σ−(x), σ+(x)]× {x}) ⊂ ∂W.

The notion of an isolating block plays a crucial role in the Conley index
theory (see [5], [27]).

3. Detection of stationary and periodic solutions

3.1. Lefschetz number and the fixed point index. Let E = {En}n≥0
be a graded vector space (over Q) and let h = {hn}n≥0 be an endomorphism of
degree zero, i.e. hn:En → En is a linear map of degree zero for all n ≥ 0. Assume
that E is of a finite type, so En = 0 for almost all n ∈ N and dimEn < ∞ for
all n ∈ N. Then the Lefschetz number of h is well defined by

L(h) :=
∑
n≥0
(−1)ntrace(hn).

In particular, if h = I = {idEn}n≥0, then the Lefschetz number is the Euler–
Poincaré characteristic of E,

L(I) =
∑
n≥0
(−1)ndimEn = χ(E).

We recall, that a metrizable space X is called an Euclidean neighborhood
retract (shortly ENR) if there is an n ∈ N, an open set U inRn, and a map h:X →
Rn which is a homeomorphism onto its image h(X) such that h(X) is a retract
of U . Examples of ENRs include all compact polyhedra and manifolds with
boundary. It follows that if X is a compact ENR and H is a singular homology
functor with coefficients in Q, then H(X) is of finite type. In particular, for
a continuous map f :X → X its Lefschetz number L(f) := L(H(f)) is well
defined.
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Assume that X is an ENR. For a continuous map f :D → X , where D ⊂ X
is open, define its set of fixed points as

Fix(f) := {x ∈ D : f(x) = x}.

We say that f :D→ X is admissible if Fix(f) is compact.
To such an admissible map f :D → X one can associate an integer number

ind(f), called the fixed point index with the properties (compare [9]):

(1) (Solvability) If ind(f) �= 0, then there exists x ∈ D such that f(x) = x.
(2) (Lefschetz fixed point theorem) If X is a compact ENR and f :X → X
then L(f) = ind(f).

Example 3.1. Suppose that Φ is a flow on X and D ⊂ X is a compact
ENR, χ(D) �= 0 and such that Φt(D) ⊂ D for t ≥ 0. Observe that Φt|D � idD
and the homotopy is given by

h(s, x) = Φst(x), s ∈ [0, 1], x ∈ D.

Consequently, L(Φt|D) = L(idD) = χ(D) so by the Lefschetz fixed point theorem
Φt has a fixed point inD. By the compactness ofD there exists a stationary point
for Φ in D. In the next section we present a generalization of this observation
to the sets D that are not positively invariant with respect to Φ.

3.2. Periodic segments. Let f :R×M → TM be a smooth time dependent
vector field on a manifoldM . Then the vector field v(t, x) = (1, f(t, x)) generates
a local flow Φ on the extended phase space R×M . It is given by

Φs(t0, x0) = (t0 + s, φ(t0,s)(x0))

where φ(t0,s)(x0) is the value of the unique solution of the Cauchy problem

ṫ = 1, ẋ = f(t, x), x(t) = x0

at time t0 + s. The map φ is called a local process on M . Them map φ is called
a local process.
Assume that T > 0 and f is T -periodic with respect to t. The map φ(0,T ) is

called the Poincaré map. Observe that in this case fixed points of the Poincaré
map correspond to initial points of T -periodic solutions of the equation ẋ =
f(t, x).
In order to establish results on fixed points of the Poincaré map we introduce

a special class of Ważewski sets, called periodic segments in the extended phase
space. At first we introduce the following notation: we denote by πt and πx the
projections of R×M onto R and, respectively, M , and if Z ⊂ R×M and t ∈ R

then we put Zt = {x ∈M : (t, x) ∈ Z}.
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Figire 1. Projections in the phase space

A setW ⊂ [0, T ]×M is called a periodic segment over [0, T ] if it is a compact
Ważewski set (i.e. W and W− are compact) with respect to the local flow Φ if
the following conditions hold:

• there exists a compact subsetW−− ofW− (called the essential exit set)
such that

W− =W−− ∪ ({T } ×WT ), W− ∩ ([0, T )×M) ⊂W−−,
• there exists a homeomorphism h: [0, T ]×W0 →W such that πt ◦h = πt
and

h([0, T ]×W−−0 ) =W−−,
• W0 =WT , W−−0 =W−−T ,
• W and W− are ENRs.

We define the corresponding homeomorphism

m: (W0,W−−0 ) � x→ πxh(T, πxh−1(0, x)) ∈ (W0,W−−0 ),
called a monodromy map, and the isomorphism induced in homologies

µW = H(m):H(W0,W−−0 )→ H(W0,W−−0 ).
Theorem 3.2 ([26], [27], [31]). Let W be a periodic segment over [0, T ].

Then the set

UW := {x ∈W0 : φ(0,t)(x) ∈ Wt \W−−t for all t ∈ [0, T ]}
is open in W0 and the set of fixed points of the restriction φ(0,T )|UW :UW →W0
is compact. Moreover,

L(µW ) = ind(φ(0,T )|UW ).
In particular, if L(µW ) �= 0, then the equation ẋ = f(t, x) has a T -periodic
solution passing through W0 at time 0.
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Example 3.3. Consider a planar non-autonomous equation

(3.1) ż = z + f(t, z), z ∈ C

where f :R× C→ C is a smooth function T -periodic with respect to t for some
T > 0. Assume that

f(t, z)
|z| → 0, as |z| → ∞ uniformly in t.

Figure 2. An isolating segment over [0, T ] for the equation (3.1)

For r > 0 we put

V1:R× R2 � (t, x, y) → x
2

r2
− 1 ∈ R,

V2:R× R2 � (t, x, y) → y
2

r2
− 1 ∈ R.

If r > 0 is sufficiently large then

∇V1(t, x, 0) · v(t, x, 0) > 0, |x| = r, t ∈ R,

where v(t, x, y) = (1, f1(t, x, y), f2(t, x, y)). Indeed,

∇V1(t, x, 0) · v(t, x, 0) =
(
0
2x
r2
, 0
)
· (1, x+ f1(t, x, 0), f2(t, x, 0))

=
2x2

r2
+
2xf1(t, x, 0)
r2

≥ 2x
2

r2
(1− f1(t, x, 0)|x| ) > 0,

if |x| = r is sufficiently large. In a similar way, we get that
∇V2(t, 0, y) · v(t, 0, y) < 0, |y| = r, t ∈ R,

for sufficiently large r. It follows, that W = [0, T ]× [−r, r]× [−r, r] is a periodic
segment for the equation (3.1) with the essential exit setW−− = [0, T ]×{−r, r}×
[−r, r] and such that

L(µW ) = L(idH(W0,W−−0 )) = χ(W0)− χ(W−−0 ) = −1,

hence there exists a T -periodic solution of the equation (3.1).



130 Klaudiusz Wójcik

Example 3.3. Let us modify the previous example to the equation

(3.2) ż = eitz + f(t, z), z ∈ C

where f :R×C→ C is a smooth function 2π-periodic with respect to t. Assume
that

f(t, z)
|z| → 0, as |z| → ∞ uniformly in t.

Figure 3. An isolating segment over [0, 2π] for the equation (3.2)

A direct calculation shows that there exists a periodic segmentW over [0, 2π]
depicted in Figure 3. It follows that L(µW ) = 1, hence there exists a 2π-periodic
solution of the equation (3.2).

Corollary 3.5. Assume that U ⊂ W are two periodic segments over [0, T ]
for the T -periodic equation ẋ = v(t, x). If L(µU ) �= L(µW ) then there exists
a T -periodic solution u such that

u(t) ∈Wt, t ∈ [0, T ]
and there is t0 ∈ [0, T ] such that u(t0) /∈ Ut0 .
Example 3.6. Let us consider a 2π-periodic equation

(3.3) ż = eitz2 + z, z ∈ C.

Figire 4. Isolating segment W for equation (3.3)

Observe that the zero solution is 2π-periodic, so one should look for a non-
trivial one. One can check there is a large segment W for the equation being
a twisted prism with hexagonal base centered at the origin and its time sections
Wt are obtained by rotating the base with the angular velocity 1/3 over time in-
terval [0, 2π]. The essential exit set W−− consists of 3 disjoint ribbons winding
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around the prism. One can choose the rotation by the angle 2π/3 as a mon-
odromy map of the segment W , hence L(µW ) = 1. It can be proved that there
is another segment U ⊂W for that equation. It is a prism having a sufficiently
small square centered at origin as a base and such that L(µU ) = −1. Since the
zero solution is contained in the segment U , so by the above corollary we get
a non-trivial solution.

Remark 3.7. Assume that Φ is a local flow generated by smooth vector
field v:M → TM on a manifold M . Then a corresponding local process is given
by φ(a,t) := Φt for each a ∈ R. If B is a compact Ważewski set for Φ such that
B, B− are ENRs, then [0, T ]× B is periodic segment over [0, T ] and its proper
exit set is equal to W = [0, T ]×B−. Since the monodromy map is the identity,
one has that L(µW ) = χ(B)− χ(B−). It follows that the set

U = {x ∈ B : Φt(x) ∈ B \B− for all t ∈ [0, T ]}

is an open subset of B and the set of fixed points of the restriction ΦT |U :U →W
is compact. Moreover,

ind(ΦT |U ) = χ(B)− χ(B−).

In particular, if χ(B) �= χ(B−) then ΦT has a fixed point in B. One can check
that, by the compactness of B, there exists a stationary point in B.

We say that a flow Φ:R ×M → M is bounded if there exist a compact set
K ∈M such that

K ∩ Φ([0,∞)× {x}) �= ∅
for all x ∈ M . As an application of the above discussion one can prove the
following theorem.

Theorem 3.8 ([29]). If Φ:R×M → M is bounded and χ(M) �= 0, then Φ
has a stationary point.

Remark 3.9. Let Φ be a local flow generated by the smooth vector field
v:Rn → Rn. In that case (see [19], [27]), if B is an isolating block for Φ such
that B, B− are ENRs then

deg (0, v, intB) = (−1)n(χ(B)− χ(B−)),

where deg (0, v, intB) is a Brouwer degree.

We recall that a Lusternik–Schnirelmann category cat(X) of topological space
X is an element ofN∪{∞} such that cat(X) ≤ n, if there exist closed sets Ai ⊂ X
such that X =

⋃n
i=1 and Ai is contractible in X for i = 1, . . . , n. We say that
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A ⊂ X is contractible in X if there exists a continuous map h:A × [0, 1] → X
such that

h(x, 0) = x, x ∈ A,
h(x, 1) = h(y, 1), x, y ∈ A.

The classical result of the critical point theory says that if f :M → R is
a smooth map on compact, connected Riemannian manifold M , then f has at
least cat(M) critical points, i.e. such that derivative of f is zero. Observe that
critical points of f corresponds to the stationary points of the gradient flow Φ
generated by the equation

ẋ = −∇f(x),
where ∇f :M → TM is a gradient of f .
We say that a (local) flow Φ is a gradient like if there is a continuous function

g :M → R such that if x is not a stationary point, then

g(Φ(t, x)) < g(Φ(s, x)), s < t.

Theorem 3.10 ([27]). If Φ is a gradient like, B ⊂ M is an isolating block
such that B, B− are ENRs, then

card {x ∈ B : x stationary} ≥ cat(B/B−)− 1,
where B/B− is a quotient space.

By definition, X/∅ is equal to X ∪ {[∅]} and its topology is equal to the sum
topology of X and the one-point space {[∅]}.
Remark 3.11. The method of guiding functions for detecting periodic so-

lutions of the equation x′ = f(t, x), where f :R × Rn → Rn is smooth and T -
periodic with respect to t was developed in [11], [12]. We recall that V :Rn → R

is a guiding function for the vector field f if there is R > 0 such that

∇V (x) · f(t, x) > 0

for ‖x‖ ≥ R, t ∈ R. We define the index of V by

IndV = deg(0,∇V,DR),
where DR = {x ∈ Rn : ‖x‖ ≤ R} and deg is a Brouwer degree.
Let V1, . . . , Vk:Rn → R be a guiding functions for the vector field f . We say

that V1, . . . , Vk is a complete set of guiding functions if

lim
‖x‖→∞

|V1(x)|+ . . .+ |Vk(x)| =∞.
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Theorem 3.12 ([12]). If V1, . . . , Vk is a complete set of guiding functions
for f and IndV1 �= 0 then the equation x′ = f(t, x) has at least one T -periodic
solutions.

It was proved in [10], that if V1, . . . , Vk is a complete set of guiding functions
for f , then there exists a periodic segment W over [0, T ] such that

L(µW ) = (−1)nIndV1,
hence Theorem 3.12 is a special case of Theorem 3.2.

4. Detection of chaotic dynamics

In order to formulate results on chaotic dynamics we use the notion of shift
on 2 symbols. It is a pair (Σ2, σ), where Σ2 = {0, 1}Z is the set of bi-infinite
sequences of 2 symbols (called the shift space), and the shift map σ: Σ2 → Σ2
given by

σ(. . . s−1.s0s1 . . . ) = (. . . s0.s1s2 . . . ),

hence σ moves the sequence by one position to the left. The shift space Σ2 is
a compact metric space with the product topology and the shift map σ: Σ2 → Σ2
is a homeomorphism.
By cnk ∈ Σ2 we will denote a n-periodic sequence of symbols 0 and 1 such

that 1 appears k ∈ {0, . . . , n} times in (c0, . . . , cn−1). Let Σ2(n, k) ⊂ Σ2 be the
set of all such sequences.
For a periodic isolating segment W we consider a Lefschetz sequence given

by
Lk = L(µkW ), k ≥ 0.

It is well-defined, since W0, W−0 are compact ENRs, so H(W0,W
−
0 ) is of finite

type. We also define the dual sequence {L∗k}k≥0 of {Lk}k≥0 by

L∗k =
k∑
l=0

(−1)k−l
(
k

l

)
Ll, k ≥ 0.

In particular, L∗0 = L0 = L(I) = χ(E).
We assume that U ⊂ W are two periodic isolating segments over [0, T ] for

the equation ẋ = f(t, x) (with the vector field f being T -periodic in time) such
that

U0 =W0, U−−0 =W−−0 , µU = idH(W0,W−0 ).

Figure 5. Two isolating segments with equal 0-sections
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The following was essentially proved in [33] (see also [30], [31]).

Theorem 4.1. There are a compact set I ⊂W0 invariant for the Poincaré
map P and a continuous map g: I → Σ2 such that

σ ◦ g = g ◦ P,
and with the property that L∗k �= 0 implies that for all sequence cnk , there exists
x ∈ g−1(cnk ) such that Pn(x) = x.

Figure 6. The map g. If the trajectory of the point x ∈ I leaves the

smaller segment U on the time interval [kT, (k + 1)T ], then g(x)k = 1.
Otherwise its equal to 0.

The set I is the set of all points in W0 whose full trajectories are contained
in the segment W , i.e.

I =
∞⋂

n=−∞
{x ∈W0 : φ(0,t+nT )(x) ∈Wt for all t ∈ [0, T ]}.

For x ∈ I we define g(x) ∈ Σ2 by the following rule:
• if on the time interval [iT, (i+ 1)T ] the trajectory of x is contained in
the smaller segment U , then g(x)i = 0,
• if φi(0,T )(x) leaves U in time less then T , then g(x)i = 1.

It follows that g: I → Σ2 is continuous and σ ◦ g = g ◦ P . The last part of
the above theorem is a consequence of the next lemma ([33], [31]).
For the sequence cnk we define a periodic segment W (c

n
k ) over [0, nT ] ob-

tained by gluing translated copies of segments U and W with the following
rule: W (cnk )|[iT,(i+1)T ] = W if ci = 1 and W (cnk )|[iT,(i+1)T ] = U if ci = 0
(i = 0, . . . , n− 1).
Lemma 4.2. The set

V = {x ∈ W0 : φ(0,t)(x) ∈W (cnk )t \W (cnk )−−t for all t ∈ [0, nT ]} ∩ g−1(cnk )
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is open in W0. Moreover, the set of fixed points of the restriction Pn|V :V →W0
is compact and

ind(Pn|V ) = L∗k.
We define the sets

Pn = {x ∈ I : Pn(x) = x}, n ≥ 1, Pn = Pn \
⋃
1≤k<n

Pk, P =
⋃
n≥1

Pn.

It follows that the condition L∗k �= 0 implies that g−1(cnk ) ∩ Pn �= ∅, for all n ≥ k
and all sequences cnk ∈ Σ2(n, k). Let us observe that by the compactness of g(I)
we have

{cnk : L∗k �= 0, n ≥ k} ⊂ g(I) ⊂ Σ2,
so if {cnk : L∗k �= 0, n ≥ k} is dense in Σ2, then g is surjective. We define a set

ν(L) = {k ∈ N : L∗k �= 0}.
Corollary 4.3. If ν(L) is infinite, then g is surjective. In particular, the

topological entropy of f is positive.

We show that in the context described above the map g is usually surjective
and the set P of periodic points of P is infinite.
We recall that the Möbius function µ:N→ Z is given by

µ(n) =



1 if n = 1,

(−1)k if n = p1 · . . . · pk, pi different primes,
0 otherwise.

We say that a sequence an of integers satisfies the Dold’s relations (see [9])
if, for all n ∈ N, ∑

d|n
µ

(
n

d

)
ad ∼= 0 modn.

In particular, if p is prime then a1 ∼= ap mod p.
Proposition 4.4 ([13]). For the authomorphism µW the following condi-

tions hold

(a) L∗k = L((µW − I)k) for k > 0,
(b) sequences {Lk} and {L∗k} satisfy Dold’s relations,
(c) If Lk is m-periodic (m > 1), then there exists k0 such that L∗2mk �= 0
for k > k0. Moreover, there exists ρ > 1 such that

lim
k→∞

L∗2mk
ρ2mk

= a �= 0.

In particular, the sequence {L∗k} is unbounded.
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Example 4.5. Let {Lk} be a Lefschetz sequence such that L1 �= L0. We
show that {p ∈ N : |L1−L0| < p, p prime} ⊂ ν(L). Indeed, suppose that L∗p = 0
for some prime p > |L1 − L0|. Since L∗1 = L1 − L0, and the dual sequence L∗k
satisfies the Dold’s relations, so 0 = L∗p ∼= L∗1 mod p, hence p|L1 − L0 �= 0, and
we get a contradiction. In particular, g is surjective.

The following result, concerning the periodic Lefschetz sequences of the type
(L0, L1, L1, . . . , L1, L0, L1, . . . ) was essentially proved in [24].

Proposition 4.6. Let {Lk} be a Lefschetz sequence such that L1 �= L0. If
{Lk} is m-periodic and L1 = . . . = Lm−1 �= Lm = L0, then
(a) ν(L) = N, for an even m,
(b) ν(L) = N \ {nm : n– odd}, for an odd m.

Example 4.7. If {Lk} is p-periodic with p odd prime, then ν(L) = N\{np :
n – odd}. It is sufficient to show that L1 = . . . = Lp−1. Let (r, p) = 1. We prove
that Lr = L1. Since (r, p) = 1, then by Dirichlet’s theorem there exists nk →∞
such that pk = r + nkp is a prime number for each k ∈ N. In particular, there
is a k such that pk > |Lr − L1|. Then, from the Dold’s relation follows that
Lr = Lpk ∼= L1 mod pk, so we get that pk|Lr − L1, hence Lr = L1.
Theorem 4.8 ([7]). Assume that {Lk}k≥0 is p-periodic with p prime and

L1 �= L0. Then g: I → Σ2 is surjective. Moreover,
(a) if p = 2, then g−1(cnk ) ∩ Pn is non-empty for each n-periodic sequence
cnk and for q prime we have

cardPq ≥ 2q − 2.
(b) if p is odd prime, then the set g−1(cnk ) ∩ Pn is non-empty for each n-
periodic sequence cnk such that k is not an odd multiplicity of p and for
q prime we have

cardPq ≥
∑
k∈C(q)

(
q

k

)
,

where C(q) = {1 ≤ k < q : p � | k or k is even}.

Example 4.9. The method developed in this paper was motivated by the
study of the dynamics generated by the equation

(4.1) z′ = (1 + eiηt|z|2)z, z ∈ C.

It was first studied in [30], [34], where the symbolic dynamics was proved
for the parameter value η ∈ (0, 0.495]. The authors showed that the equation
(4.1) satisfies the assumptions of Theorem 4.8 with p = 2. Later it was improved
in [21] to the parameter value η ∈ (0, 0.5044].
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Figure 7. Two isolating segments with equal 0-sections for the equa-
tion (4.1)

The dynamics generated by this equation is very difficult to computer sim-
ulating. The equation exhibits extremely strong expansion and most of its tra-
jectories escape to infinity in a very short time. The method introduced in [18]
shows how to go around this problem using partial Poincaré sections and the
main result in [18] prove that the equation (4.1) is chaotic for η = 1.

Example 4.10. The equation

(4.2) ż = z2(1 + |z|2eiηt), z ∈ C

satisfies the assumptions of the above theorem (with p = 3) for sufficiently small
parameters values η > 0. The Lefschetz sequence for the bigger segment W is
given by (−2, 1, 1,−2, 1, 1, . . .).

Figure 8. Two isolating segments with equal 0-sections for the equa-
tion (4.2)
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[10] G. Kosiorowski, Remark on Krasnosiel’skĭı’s guiding functions and Srzednicki’s peri-
odic segments, Nonlinear Anal. 70 (2009), 2145–2149.
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