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Dedicated to Professor Lech Górniewicz

PREFACE

The present volume contains a selection of papers submitted by the par-
ticipants of the Third Polish Symposium on Nonlinear Analysis held in Łódź,
January 29–31, 2001, and organized by the Faculty of Mathematics of the Łódź
University and the Juliusz Schauder Center of Nonlinear Studies at the Nicholas
Copernicus University in Toruń.

The main purpose of this Symposium was to integrate the large group of Po-
lish researchers interested in different aspects of nonlinear problems, to present
their recent results and to create a convenient platform for the exchange of scien-
tific information and experience. Nonlinear Analysis is a major branch of mathe-
matics encompassing various problems arising in mathematical, functional and
convex analysis, topology, fixed point theory and their applications in the the-
ory of ordinary and partial differential equations, inclusions and the dynamical
systems, control and game theories. There is a number of strong Polish scientific
centers where these topics are extensively studied.

During the Symposium a special session celebrating the 60-th anniversary
of Professor Lech Górniewicz was organized. Professor Górniewicz, one of the le-
ading specialists in the field of Nonlinear Analysis, is the head and a co-founder
(together with Professor Andrzej Granas) of the Schauder Center, the Managing
Editor of the journal “Topological Methods in Nonlinear Analysis” published by
the Schauder Center and one of the persons promoting the development of non-
linear studies in Poland. The contributing authors and the editors are proud to
dedicate this volume to Professor Górniewicz.

The papers, received by the editors in Fall 2001, were refereed and appear in
alphabetical order.

The organizers of the Symposium and the editors express their gratitude to
all the participants, the authors and all other persons who contributed to the
program and activities of the Symposium, and to the publishers of the Lecture
Notes of the Juliusz Schauder Center of Nonlinear Studies, and the Nicholas
Copernicus University for the their help in preparing this volume for publication.

Wojciech Kryszewski
Andrzej Nowakowski

Łódź–Toruń, February 2002
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POINCARÉ’S TRANSLATION MULTIOPERATOR REVISITED

Jan Andres

Dedicated to Professor Lech Górniewicz on the occasion of his 60th birthday

Abstract. Poincaré’s translation multioperator is revisited for the asso-
ciated systems of ordinary, functional, random and discontinuous differen-
tial equations and inclusions (with or without constraints) in Euclidean as
well as in Banach spaces. Applications are related to periodic solutions and,
less traditionally, to other types of boundary value problems. Existence and
multiplicity results are presented on the basis of our recent papers [5]–[7].

1. Introduction (historical remarks)

Poincaré’s idea of the translation operator along the trajectories of diffe-
rential systems comes back to the end of the nineteenth century ([33]). Since
it was effectively applied for investigating periodic orbits by A. A. Andronow
([10]) in the late 20’s and by N. Levinson ([28]) in 1944, its name is also so-
metimes related to them. This topic became popular due to the monographs
[26], [32] of M. A. Krasnosel’skĭı and V. A. Pliss, dealing with ODEs, and [22]
of J. K. Hale, dealing with functional differential equations. On the other hand,
comparing the results (see e.g. [34] and the references therein) with those ob-
tained by functional-analytic methods, one should have additionally assumed
the uniqueness for Cauchy problems. This obstruction might have been elimi-
nated by applying the standard limiting argument (see e.g. [23], [26]), but such
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8 Jan Andres

a procedure can be considered (especially w.r.t. differential inclusions) as rather
technical.

It is difficult to recognize when the more promissible (in the above light) idea
of multivalued translation operator appeared for the first time. Perhaps in Re-
marque 12 of [27] saying that “La multi-application x0 → x(t) | x ∈ T , x(0) = x0
est un exemple naturel de multi-application pseudo-acyclique”, where T deno-
tes the set of solutions of a Carathéodory system of inclusions. In Chapter III
of [12], entitled Existence without uniqueness, where [27] is quoted, the multiva-
lued translation operator has been proved to be pseudoacyclic (for the definitions,
see below) and then applied for the existence of (harmonic) periodic solutions of
differential equations in Banach spaces.

Nevertheless, the systematic study of admissible (= pseudoacyclic) maps and,
in particular, translation multivalued operators, was allowed after Ph. D. Thesis
of L. Górniewicz ([17], cf. also [19]). Since 1976, i.e. the year of publication of
both [27] and [17], Poincaré’s multioperator has been treated and applied on
various levels of abstraction (see e.g. [1]–[3], [5]–[9], [11]–[15], [17]–[21], [24], [25],
[29]–[31]).

Below, these levels will be considered in detail separately. Finally, some very
recent nontrivial applications in [5]–[7] will be given. However, before doing it,
we need to recall some facts (for more details, see e.g. [19]).

Let X1 and X2 be two metric spaces. We say that ϕ:X1 → 2X2 \ {∅} is
a multivalued mapping form X1 to X2, and we write ϕ:X1;X2.

A multivalued mapping ϕ:X1;X2 is upper semi continuous (u.s.c.) if, for
any open subset B ⊂ X2, {x ∈ X1:ϕ(x) ⊂ B} is an open subset of X1.

A metric space X2 is called an absolute retract (AR) or an absolute neigh-
bourhood retract (ANR) if, for every metrizable X1 and any closed A ⊂ X1,
every continuous mapping f :A → X2 is extendable over X1 or over an open
neighbourhood U of A in X1, respectively.

By an Rδ-set, we mean the one homeomorphic to the intersection of a decre-
asing sequence of compact AR-spaces and by an Rδ-mapping the u.s.c. one with
Rδ-values.

An Rδ-set is well-known to be, in particular, nonempty, compact and acyclic
(w.r.t. any continuous theory of cohomology), i.e. it is homologicaly the same as
a one point space. By an acyclic mapping, we mean the u.s.c. one with nonempty,
compact and acyclic values.

An u.s.c. mapping is called admissible (in the sense of [17]; cf. also [19]) if it
possesses a multivalued selection which can be composed by acyclic maps.

Furthermore, let X1 be a real Banach space and B(X1) the family of all
nonempty, bounded subsets of X1. Then the function χ:B(X1)→ [0,∞) defined
by

χ(X1) := inf{r > 0 : Ω can be covered by finitely many balls of radius r}
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is called the Hausdorff measure of noncompactness (MNC). It is well-known
that χ is monotone, i.e. Ω1 ⊂ Ω2 implies χ(Ω1) ≤ χ(Ω2), and algebraically
semiadditive, i.e. χ(Ω1 + Ω2) ≤ χ(Ω1) + χ(Ω2), for bounded Ω1,Ω2 ⊂ X1.

An u.s.c. self-mapping ϕ:X1;X1, where X1 is a real Banach space, is called
condensing if, for every bounded Ω ⊂ X1, the set ϕ(Ω) ⊂ X1 is bounded and
such that

χ(ϕ(Ω)) < χ(Ω), whenever χ(Ω) 6= 0.

Finally, by a fixed-point of a multivalued mapping ϕ:X1;X2, we mean the
point x̂ ∈ X1 with x̂ ∈ ϕ(x̂).

2. Translation multioperator for ordinary systems

Consider the Carathéodory system

(1) X ′ ∈ F (t,X), X ∈ Rn,

where

(i) the set of values of F is nonempty, compact and convex, for all (t,X) ∈
[0, τ ]× Rn,

(ii) F (t, · ) is u.s.c. for a.a. t ∈ [0, τ ],
(iii) F ( · , X) is measurable, for every X ∈ Rn, i.e. for any open U ⊂ Rn and

every X ∈ Rn, the set {t ∈ [0, τ ] : F ( · , X) ∩ U 6= ∅} is measurable,
(iv) |F (t,X)| ≤ α + β|X|, for every X ∈ Rn and a.a. t ∈ [0, τ ], where α, β

are suitable positive constants.

By a solution X(t) of (1), we mean an absolutely continuous function X(t) ∈
AC([0, τ ],Rn) satisfying (1), for a.a. t ∈ [0, τ ], i.e. the one in the sense of Ca-
rathéodory; such solutions of (1) exist on [0, τ ].

Hence, if X(t,X0) := X(t, 0, X0) is a solution of (1) with X(0, X0) = X0 ∈
Rn, then the translation multioperator Tτ :Rn;Rn at the time τ > 0 along the
trajectories of (1) is defined as follows:

(2) Tτ (X0) := {X(τ,X0) : X( · , X0) is a solution of (1) with X(0, X0) = X0}.

More precisely, Tτ can be considered as the composition of two maps, namely
Tτ = ψ ◦ ϕ,

Rn ϕ
; AC([0, τ ],Rn)

ψ→ Rn,

where

ϕ(X0):X0; {X(t,X0) : X(t,X0) is a solution of (1) with X(0, X0) = X0}

is well-known (cf. e.g. [19] and the references therein) to be an Rδ-mapping and
ψ(y): y(t)→ y(τ) is obviously a continuous (single-valued) evaluation mapping.
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In other words, we have the following commutative diagram:

Rn ϕ
; AC([0, τ ],Rn)
. . . ↓ ψ

Tτ
; Rn

The following characterization of Tτ has been proved on various levels of
abstraction in [12], [14], [20], [29], [27], etc.

Theorem 1. Tτ defined by (2) is admissible and homotopic to identity. More
precisely, Tτ is a composition of an Rδ-mapping and a continuous (single-valued)
evaluation mapping.

Remark 1. Since a composition of admissible maps is admissible as well
(cf. [19]), Tτ can be still composed with further admissible maps φ such that
φ◦Tτ becomes an (admissible) self-map on a compact ENR-space (i.e. homeomor-
phic to ANR in Rn), for computation of the well-defined (cf. [19]) generalized
Lefschetz number:

Λ(φ ◦ Tτ ) = Λ(φ).

Tτ considered on ENRs can be even composed e.g. with suitable homomorphisms
H (again considered on ENRs), namelyH◦Tτ , for computation of the well-defined
(cf. e.g. [19]) fixed-point index:

ind(H ◦ Tτ ) = indH,

provided the fixed-point set of H ◦ Tλτ is compact, for λ ∈ [0, 1].

3. Translation multioperator for functional systems

Consider the functional system

(3) X ′ ∈ F (t,Xt), X ∈ Rn,

where Xt( · ) = X(t+ · ), for t ∈ [0, τ ], denotes as usual a function from [−δ, 0],
δ ≥ 0, into Rn and F : [0, τ ] × C;Rn, where C = AC([−δ, 0],Rn), is a Ca-
rathéodory multifunction, i.e.

(i) the set of values of F (t, Y ) is nonempty, compact and convex, for all
(t, Y ) ∈ [0, τ ]× C,

(ii) F (t, · ) is u.s.c., for a.a. t ∈ [0, τ ],
(iii) F ( · , Y ) is measurable, for all Y ∈ C, i.e. for any open U ⊂ Rn and

every Y ∈ C, the set {t ∈ [0, τ ] : F ( · , Y ) ∩ U 6= ∅} is measurable,
(iv) |F (t, Y )| ≤ α+β‖Y ‖, for every Y ∈ C and a.a. t ∈ [0, τ ], where α, β are

suitable positive constants.

By a solution X(t) of (the initial problem to) (3), we mean again an absolu-
tely continuous function X(t) ∈ AC([−δ, τ ],Rn) (with X(t) = X∗, t ∈ [−δ, 0],)
satisfying (3), for a.a. t ∈ [−δ, τ ]; such solutions exist on [−δ, τ ], δ ≥ 0.
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Hence, if X(t,X∗) := X(t, [−δ, 0], X∗) is a solution of (3) with X(0, X∗) =
X∗ ∈ E, for t ∈ [−δ, 0], where E consists of equicontinuous functions, then
the translation multioperator Tτ :AC([−δ, 0],Rn);AC([−δ, 0],Rn) at the time
τ > 0 along the trajectories of (3) is defined as follows:

(4) Tτ (X∗) := {X(τ,X∗) : X( · , X∗) is a solution of (3)

with X(t,X∗) = X∗, for t ∈ [−δ, 0]}.

More precisely, Tτ can be considered as the composition of two maps, namely
Tτ = ψ ◦ ϕ,

AC([−δ, 0],Rn)
ϕ
; AC([−δ, τ ],Rn)

ψ→ AC([−δ, 0],Rn),

where ϕ(X∗):X∗; {X(t,X∗) : X(t,X∗) is a solution of (3) with X(t,X∗) = X∗,
for t ∈ [−δ, 0]} is known (cf. e.g. [30]) to be an Rδ-mapping and ψ(y): y(t)→ y(τ)
is a continuous (single-valued) evaluation mapping.

In other words, we have the following commutative diagram:

AC([−δ, 0],Rn)
ϕ
; AC([−δ, τ ],Rn)
. . . ↓ ψ

Tτ
; AC([−δ, 0],Rn)

The following characterization of Tτ has been proved on various levels of
abstraction in [15], [21], [24], [30], etc.

Theorem 2. Tτ defined by (4) is admissible and homotopic to identity. More
precisely, Tτ is a composition of an Rδ-mapping and a continuous (single-valued)
evaluation mapping.

Remark 2. Theorem 2 reduces to Theorem 1, for δ = 0, and Remark 1 can
be appropriately modified here as well.

4. Translation multioperator for systems with constraints

In view of Remark 2, consider again system (3), where F : [0, τ ] × C;Rn
is the same as above. For a nonempty, compact and convex set K ⊂ Rn, the
constraint, denote K = {ξ ∈ C : ξ(t) ∈ K, for t ∈ [−δ, 0]} and assume that the
Nagumo-type condition holds,

(5) F (t, Y ) ∩ TK(Y (0)) 6= ∅, for all (t, Y ) ∈ [0, τ ]×K,

where

TK(Y (0)) =
{
y ∈ Rn : lim inf

h→0+

d(Y (0) + hy,K)
h

= 0
}

is the tangent cone (in the sense of Bouligand). Observe, that (iv) can be reduced
to

(iv’) sup(t,Y )∈[0,τ ]×K |F (t, Y )| <∞.
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Then, for every X∗ ∈ K, there exists at least one Caratéodory solution
X(t,X∗) of (3) (see e.g. [24]) such that X(t,X∗) = X∗ ∈ E, for t ∈ [−δ, 0],
and X(t,X∗) ∈ K, for t ∈ [0, τ ]. Hence, we can define, under (5), the associated
translation multioperator Tτ :K;K at the time τ > 0 along the trajectories
of (3), which makes the set K invariant, as follows:

(6) Tτ (X∗) := {X(τ,X∗) : X( · , X∗) is a solution of (3) with X(t,X∗) = X∗

for t ∈ [−δ, 0] and X(t,X∗) ∈ K, for t ∈ [0, τ ]}.

More precisely, Tτ can be considered as the composition of two maps, namely
Tτ = ψ ◦ ϕ,

K ϕ
; {y ∈ AC([−δ, τ ],Rn) : y(t) ∈ K, for t ∈ [−δ, τ ]} ψ→ K,

where

ϕ(X∗):X∗; {X(τ,X∗) : X( · , X∗) is a solution of (3)

with X(t,X∗) = X∗, for t ∈ [−δ, 0], and X(t,X∗) ∈ K, for t ∈ [0, τ ]}

is known (see e.g. [24]) to be anRδ-mapping and ψ(y): y(t)→ y(τ) is a continuous
(single-valued) evaluation mapping.

In other words, we have the following commutative diagram:

K ϕ
; {y ∈ AC([−δ, τ ],Rn) : y(t) ∈ K, for t ∈ [−δ, τ ]}
. . . ↓ ψ

Tτ
; K

The folowing characterization of Tτ has been proved on various levels of
abstraction in [11], [21], [24], [31], etc.

Theorem 3. Tτ defined by (6) is, under (5), admissible and homotopic to
identity. More precisely, Tτ is a composition of an Rδ-mapping and a continuous
(single-valued) evaluation mapping.

Remark 3. Theorem 3 coincides with Theorem 2, for K = Rn, in spite
of the fact that K is assumed to be bounded and closed. Remark 1 can be
appropriately modified as well.

5. Translation multioperator for systems in Banach spaces

Consider the functional system

(7) X ′ +AX ∈ F (t,Xt), X ∈ B,
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where Xt( · ) = X(t+ · ), for t ∈ [0, τ ], denotes as above the mapping from [−δ, 0],
δ ≥ 0, into a real separable Banach space B. Let, furthermore, the following
assumptions be satisfied:

(i) A is a closed, linear (not necessarily bounded) operator in B, generating
an analytic semigroup eAt,

(ii) the set of F (t, Y ): [0, τ ] × C;B, where C = C([−δ, 0],B) and δ ≥ 0, is
nonempty, compact and convex, for all (t, Y ) ∈ [0, τ ]× C,

(iii) F (t, · ) is u.s.c. for a.a. t ∈ [0, τ ],
(iv) F ( · , Y ) is measurable, for all Y ∈ C, i.e. for any open U ⊂ Rn and

every Y ∈ C, the set {t ∈ [0, τ ] : F ( · , Y ) ∩ U 6= ∅} is measurable,
(v) (cf. [30]) for every nonempty, bounded, equicontinuous set D ⊂ C, we

have
χ(F (t,D)) ≤ g(t, ξ(D)) for a.a. t ∈ [0, τ ]

where ξ(D) ∈ C([−δ, 0] × [0,∞)), ξ(D)(θ) = χ(D(θ)) and g: [0, τ ] ×
C([−δ, 0]× [0,∞))→ [0,∞) is a Caratéodory-type function such that

(a) g(t, · ) is nondecreasing, for a.a. t ∈ [0, τ ], in the sense that if
ϕ,ψ ∈ C([−δ, 0] × [0,∞)) satisfy ϕ(θ) < ψ(θ), for every θ ∈
[−δ, 0], then g(t, ϕ) < g(t, ψ),

(b) |g(t, ϕ) − g(t, ψ)| < k(t)‖ϕ − ψ‖1, for a.a. t ∈ [0, τ ] and for all
ϕ,ψ ∈ C([−δ, 0] × [0,∞)), where k is a Lebesgue measurable
function and ‖ · ‖1 denotes the norm in the space C([−δ, 0] ×
[0,∞)),

(c) g(t, 0) = 0 for a.a. t ∈ [0, τ ],
(vi) there exists a continuous bounded function h: [0,∞)→ [0,∞) such that

χ(eAtS) ≤ h(t) for t ∈ [0,∞),

where S denotes the unit sphere in B, and

sup
t∈[0,∞)

∫ t

0
h(t− s)k(s) ds < 1,

(vii) the solutions of the problem

(8)


w(t) = v(t) for t ∈ [−δ, 0],

w(t) =
1

h(0)
h(t)w(0) +

∫ t

0
h(t− s)g(s, ws) ds for t ∈ [0, τ ],

are uniformly asymptotically bounded in the sense that there exists a
function σ: [0,∞)→ [0,∞) such that

lim sup
t→∞

σ(t) <
1

h(0)

and, for every solution w(t, v) of (8), we have

‖wt‖1 ≤ σ(t)‖v‖1 for t ∈ [0,∞),
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(viii) ‖F (t, Y )‖ ≤ α+ β‖Y ‖0, for every Y ∈ C and a.a. t ∈ [0, τ ], where α, β
are suitable positive constants and ‖ · ‖0 denotes the norm in C.

By a solution X(t) of (the initial problem to) (7) we mean this time a mild
solution, namely X(t) ∈ C([−δ, τ ],B) such that

X(t) = eAtX(0) +
∫ t

0
eA(t−s)f(s) ds for t ∈ [0, τ ],

(with X(t) = X∗, for t ∈ [−δ, 0]), where f is an (existing) measurable selection
of F (s,Xs(t)), t ∈ [−δ, 0]; such solutions exist on [−δ, τ ], δ ≥ 0.

Hence, if X(t,X∗) = X∗ ∈ E for t ∈ [−δ, 0], where E consists of equiconti-
nuous functions, then the translation multioperator Tτ : C → C at the time τ > 0
along the trajectories of (7) is defined as follows:

(9) Tτ (X∗) := {X(τ,X∗) : X( · , X∗) is a solution of (7)

with X(t,X∗) = X∗ for t ∈ [−δ, 0]}.

More precisely, Tτ can be considered as the composition of two maps, namely
Tτ = ψ ◦ ϕ,

C([−δ, 0],B)
ϕ
; C([−δ, τ ],B)

ψ→ C([−δ, 0],B),

where ϕ(X∗):X∗; {X(t,X∗) : X(t,X∗) is a solution of (7) with X(t,X∗) = X∗
for t ∈ [−δ, 0]} is known (see [30]) to be an Rδ-mapping and ψ(y): y(t) → y(τ)
is a continuous (single-valued) evaluation mapping.

In other words, we have the following commutative diagram:

C([−δ, 0],B)
ϕ
; C([−δ, τ ],B)
. . . ↓ ψ

Tτ
; C([−δ, 0],B)

The following characterization of Tτ has been proved on various levels of
abstraction in [11], [12], [25], [30], etc.

Theorem 4. Tτ defined by (9) is admissible and homotopic to identity. More
precisely, Tτ is a composition of an Rδ-mapping and a continuous (single-valued)
evaluation mapping, provided (i)–(v) hold. Under (i)–(viii), Tτ is χ-condensing
on equicontinuous sets, i.e. with the Hausdorff MNC in C, provided τ > inf{t′ :
σ(t) < 1/h(0) for all t ≥ t′}.

Remark 4. In the ordinary case (δ = 0), the Banach space need not be ne-
cessarily separable (see e.g. [11]), condition (v) can be weaken and condition (vii)
can be avoided (see e.g. [11], [25]).

Remark 5. It is a question whether Theorem 4 can be reformulated in
an appropriate way for functional Caratéodory systems in Banach spaces with
constraints, i.e. similarly as Theorem 3, but for Rn replaced by B. So far, only
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particular cases were considered with this respect (see e.g. [11] and the references
therein).

6. Translation multioperator for random systems

Consider the random system

(10) X ′(κ, t) ∈ F (κ, t,X(κ, t)), κ ∈ Ω, X ∈ Rn,

where Ω is a complete probability space and

(i) the set of values of F (κ, t,X) is nonempty, compact and convex, for all
(κ, t,X) ∈ Ω× [0, τ ]× Rn,

(ii) F (κ, t, · ) is u.s.c., for a.a. (κ, t) ∈ Ω× [0, τ ],
(iii) F ( · , · , X) is measurable, for every X ∈ Rn, i.e. for any open U ⊂ Rn

and every X ∈ Rn, the set {(κ, t) ∈ Ω × [0, τ ] : F ( · , · , X) ∩ U 6= ∅} is
measurable,

(iv) |F (κ, t,X)| ≤ µ(κ, 1)(1+ |X|), for a.a. (κ, 1) ∈ Ω× [0, τ ] and all X ∈ Rn,
where µ: Ω × [0, τ ] → [0,∞) is a map such that µ( · , 1) is measurable
and µ(κ, · ) is Lebesque integrable.

The operator F satisfying conditions (i)–(iv) is called a random Carathéodory
operator. Similarly, for metric spaces X1 and X2, we say that a multivalued
mapping with nonempty closed values ϕ: Ω × X1;X2 is a random operator
if ϕ is product-measurable and ϕ(κ, · ) is u.s.c. for every κ ∈ Ω. By a random
homotopy χ : Ω×X1×[0, 1];X2, we understand a product-measurable mapping
with nonempty closed values which is u.s.c. w.r.t. the last variable and that, for
every λ ∈ [0, 1], χ( · , · , λ) is a random operator.

Furthemore, we say that a measurable map (a random variable) X̂: Ω →
X1 ∩X2 is a random fixed-point of a random operator ϕ: Ω×X1;X2 if X̂(κ) ∈
ϕ(κ, X̂(κ)), for a.a. κ ∈ Ω.

The following proposition, proved in [19, Proposition 31.3], is crucial for
further investigations.

Proposition 1. Let ϕ: Ω × A;Y , where A is a closed subset of a metric
space Y , be a random operator with compact values such that, for every κ ∈ Ω,
the set of fixed-points of ϕ(κ, · ) is nonempty. Then ϕ has a random fixed-point.

Because of Proposition 1, we can define the random translation multiopera-
tor Tτ in a “deterministic” way. We can namely employ, for every κ ∈ Ω and
X0 ∈ Rn, Carathéodory solutions X(t,X0) of the deterministic Cauchy problems

(11)
{
X ′ ∈ Fκ(t,X) = F (κ, t,X),

X(0, X0) = X0.

On the other hand, by a solution X(κ, t) of (10), we mean a function such that
X( · , t) is measurable, X(κ, · ) is absolutely continuous and X(κ, t) satisfies (11),
for a.a. (κ, t) ∈ Ω× [0, τ ]; the derivative X ′(κ, t) is considered w.r.t. t.
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Hence, the associated random translation multioperator Tτ : Ω×Rn;Rn at
the time τ > 0 along the trajectories of the system X ′ ∈ Fκ(t,X) is defined as
follows:

(12) Tτ (κ,X0) := {X(τ,X0) : X( · , X0) is a solution of (11)}.

More precisily, Tτ can be considered as the composition of two maps, namely
Tτ = ψ ◦ ϕ,

Ω× Rn ϕ
; AC([0, τ ],Rn)

ψ→ Rn,
where ϕ(κ,X0): (κ,X0); {X(t,X0) : X(t,X0) is a solution of (11)} is, accor-
ding to [19], an Rδ-mapping, for every X ∈ Ω, and the (single-valued) evaluation
mapping ψ(Z):Z(t)→ Z(τ) is obviously continuous.

In other words, we have the following commutative diagram:

Ω× Rn ϕ
; AC([0, τ ],Rn)
. . . ↓ ψ

Tτ
; Rn

Applying Proposition 1, one can show the following characterization of Tτ
(for more details, see [19]).

Theorem 5. Tτ defined by (12) is a random operator with compact values
composed by a random operator with Rδ-values and a continuous (single-valued)
evaluation mapping. Moreover, it is randomly homotopic to identity.

Thus, X̂ is a random fixed-point of Tω if and only if the original system (10)
has a solution X(κ, t) such that X(κ, 0) = X(κ, ω) = X̂(κ), for a.a. κ ∈ Ω.

Remark 6. In [19, pp. 156–157], the random degree theory is sketched, ha-
ving quite anologous properties as in the deterministic case, and so it is available
for proving the random fixed-points of the random translation operator Tω.

Remark 7. Theorem 5 reduces to Theorem 1 in the deterministic case,
i.e. in the absence of Ω. Remark 1 can be appropriately modified here as well.

7. Translation multioperator for directionally u.s.c. systems

Let M ∈ R and ΓM = {(t,X) ∈ R × Rn : |X| ≤ Mt} ⊂ R × Rn be
a closed, convex cone. Following [9], we say that a multivalued mapping with
nonempty closed values F = R × Rn;Rn is ΓM -directionally u.s.c. if, at each
point (t0, X0) ∈ R × Rn, and for every ε > 0, there exists δ > 0 such that, for
all (t,X) ∈ B((t0, X0), δ) (i.e. (t,X) belonging to an open ball with the radius δ
and centered at (t0, X0)) satisfying |X − X0| ≤ M(t − t0) holds F (t,X) ⊂
F (t0, X0) + εB.

Consider the ΓM -directionally u.s.c. system (1). We will show that the solu-
tion set of (1) can be characterized by means of the Filippov-like regularization
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of (1). Subsequently, the related translation multioperator to (1) can be associa-
ted to the regularized system.

Definition 1 (cf. [16]). Let F (t,X): [a, b] × Rn;Rn be closed, convex-va-
lued, locally bounded and measurable. Then the mapping

φ(t,X) =
⋂
δ>0

⋂
N⊂Rn+1
µ(N)=0

convF (B((t,X), δ) \N),

called the regularization of F , satisfies the following properties:

(i) φ(t,X) is u.s.c., for all (t,X) ∈ [a, b]× Rn,
(ii) F (t,X) ⊂ φ(t,X), for all (t,X) ∈ [a, b]× Rn,
(iii) φ is minimal in the following sense: if ψ: [a, b]×Rn;Rn satisfies (i) and

(ii), then φ(t,X) ⊂ ψ(t,X), for all (t,X) ⊂ [a, b]× Rn,

where µ(N) stands for the Lebesgue measure of N and conv denotes the clo-
sed-convex hull of a set.

The following statement has been proved in [9].

Proposition 2. Let Ω ⊂ R × Rn and F : Ω;Rn be closed, convex-valued
ΓM -directionally u.s.c. and bounded in the following way F (Ω) ⊂ B(0, L), where
0 < L < M . Let φ: Ω;Rn be the regularization of F in the sense of Definition 1.
Then every solution of the regularized inclusion

(13) X ′(t) ∈ φ(t,X(t))

is the solution of the original inclusion (1) and vice versa.

Hence, if X(t,X0) := X(t, 0, X0) is a solution of (1) with X(0, X0) = X0 ∈
Rn, then the translation multioperator Tτ :Rn;Rn, at the time τ > 0, along
the trajectories of (1) can be defined as follows:

(14) Tτ (X0) := {X(τ,X0) : X( · , X0)
is a solution of (1) with X(0, X0) = X0}.

In fact, according to Proposition 2, we also have

(15) Tτ (X0) := {X(τ,X0) : X( · , X0)
is a solution of (13) with X(0, X0) = X0}.

Tτ in (15) can be considered as the composition of two maps, namely Tτ = ψ ◦ϕ,

Rn ϕ
; AC([0, τ ],Rn)

ψ→ Rn,

where

ϕ(X0):X0; {X(t,X0) : X(t,X0) is a solution of (13) with X(0, X0) = X0}
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is, according to Theorem 1, an Rδ-mapping and ψ(Z):Z(t)→ Z(τ) is obviously
a continuous (single-valued) evaluation mapping. The same is true, according to
Proposition 2, for (14).

In other words, we have the following commutative diagram:

Rn ϕ
; AC([0, τ ],Rn)
. . . ↓ ψ

Tτ
; Rn

Hence, we can sumarize our investigations as follows.

Theorem 6. Tτ defined by (14) is admissible and admissibly homotopic to
identity. More precisely, Tτ is a composition of an Rδ-mapping and a continuous
(single-valued) evaluation mapping.

Remark 8. An appropriately modified version of Remark 1 is true here
as well.

8. Some applications: existence results

A typical application of Poincaré’s translation multioperator concern the
existence results for periodic solutions. The standard conditions are either related
to a weak semi-flow invariance of a suitable set K, under (5), (as in Chapter 4);
see e.g. [11], [21], [24], [31]; or to a uniform boundedness and a uniform ultimate
boundedness of solutions X(t,X∗) of a given system (e.g. (7)), namely there exist
D > 0 and tD > 0 such that

‖Xt(s,X∗)‖0 ≤ D, for t ≥ tD,

see e.g. [1], [13]–[15], [20], [25], [29], [30].
For example, the main result in [24] can be easily generalized in the following

way.

Theorem 7. Let the assumptions in Chapter 4 be satisfied, for τ = ω > 0.
If φ:K → K is a continuous (single-valued) self-mapping whose generalized Le-
fschetz number (for the definition, see e.g. [19]) is nontrivial, Λ(φ) 6= 0, then the
system (3) admits a solution X(t) such that

X(0) = φ(X(ω)).

If, in particular, φ = id (i.e. an identity) and F (t, Y ) ≡ F (t + ω, Y ), then the
system (3) admits an ω-periodic solution.

Remark 9. A similar generalization can be performed to the results (e.g.
in [30]) for system (7) in Banach spaces, when applying conditions guaranteeing
the strong flow-invariance.

On the other hand, rather rarely conditions like (10) are only related to
some part of components of solutions, while the other components satisfy certain
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dual (expanding-like) conditions (see e.g. [2], [4], [8]). Let us note that, in the
case of uniqueness (for differential equations), this type of conditions cannot
be apparently regarded as a semi-flow invariance.

Applying the relative generalized Lefschetz number in [6], we can modify
Theorem 6.9 in [6] as follows.

Theorem 8. Let the assumptions in Chapter 3 be satisfied, for τ = ω > 0.
Let, furthermore, A and B, where B ⊂ A ⊂ C, be compact ANR-spaces which
are (strongly) semi-flow invariant, under Poincaré’s operator defined by (4), and
such that χ(A) 6= χ(B), where χ( · ) stands for the Euler–Poincaré characteristic.
Then system (3), where F (t, Y ) ≡ F (t + ω, Y ), admits an ω-periodic solution
X(t,X∗) with X∗ ∈ A \B.

Remark 10. Conditions for a strong semi-invariance can be expressed in
terms of bounding functions (cf. [6]). Observe that Theorem 8 gives us an ad-
ditional information about the location of initial values of ω-periodic solutions
and that the set A \B need not be (semi-) flow invariant.

9. Some applications: multiplicity results

Application of Poincaré’s translation multioperator for obtaining multiplicity
results is much more delicate than those for the sole existence. In [3], [5]–[7], the
generalized Nielsen fixed-point theory, developed in [5]–[7], has been applied to
this aim.

For example, the following statement represents Theorem 12.8 in [7].

Theorem 9. Assume that F (t, . . . , xj + 1, . . . ) ≡ F (t, . . . , xj , . . . ), for j =
1, . . . , n, where X = (x1, . . . , xn), and consider system (1) on the set [0,∞) ×
Rn/Zn. Let the assumptions in Chapter 2 be satisfied, for a sufficiently big
τ > 0. Assume, futhermore, that φ is a continuous (single-valued) self-mapping
on Rn/Zn such that det(id−Ak) 6= 0, for some k ∈ N, where A is the associated
(n × n)-matrix with integer coeficients representing the induced homomorphism
of the fundamental group, which corresponds to φ and which is called the line-
arization of φ. Then the number of geometrically distinct k-tuples of solutions of
(1), satisfying

φ ◦X(ω;φ ◦X(ω; . . . φ ◦X(ω︸ ︷︷ ︸
k-times

;X(0, X0) . . . ))) = X(0, X0) (mod 1),

with the minimal period k is at least

1
k

∑
m|k

µ(k/m)|det(id−Am)|,
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where µ(d), d ∈ N is the Möbius function,

µ(d) =


1 if d = 1,

(−1)k if d is a product of k distinct primes,

0 if d is not square-free,

and ω > 0 is a given real number.

Two particular cases of Theorem 9 below, representing Theorem 7.8 and
Corollary 7.9 in [5], are more transparent.

Corollary 1. Assume that F (t, . . . , xj + 1, . . . ) ≡ F (t, . . . , xj , . . . ), for j =
1, . . . , n, where X = (x1, . . . , xn), and consider system (1) on the set [0, ω] ×
Rn/Zn. Let the assumptions in Chapter 2 be satisfied, for a sufficiently big
τ = ω > 0. If φ is a continuous (single-valued) self-mapping on Rn/Zn, then
system (1) has at least |det(id−A)| solutions X(t) such that

X(0) = φ(X(ω)) (mod 1),

where A has the same meaning as above.

Corollary 2. If, additionally to the assumptions of Corollary 1, F (t+ω,−X)
≡ −F (t,X), then system (1) possesses (for φ = id) at least 2n anti-ω-periodic
(or 2ω-periodic) solutions X(t) such that X(t+ ω) ≡ −X(t) (mod 1).
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applications aux équations differetielles multivoques, C. R. Acad. Sci. Sér Paris Sér. I
289 (1976), 163–166.

[28] N. Levinson, Transformation theory of nonlinear differential equations of the second
order, Ann. Math. 2, 45 (1944), 723–737.
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ENTROPY METHODS AND INTERMEDIATE ASYMPTOTICS
FOR NONLINEAR DRIFT-DIFFUSION SYSTEMS

Piotr Biler

Abstract. We review some recent results obtained with the use of entropy
methods for the asymptotics of solutions of drift-diffusion systems with
Poisson coupling.

1. Introduction

This paper deals with some aspects of the development in describing long
time behavior of solutions of nonlinear drift-diffusion systems with Poisson co-
upling obtained jointly with Jean Dolbeault, Maria J. Esteban and Peter A. Mar-
kowich, cf. for preliminary results [2], [3], [5].

In the model problem we consider the evolution of the densities n ≥ 0 and
p ≥ 0 of the negatively and (resp.) positively charged particles in a bipolar
plasma in Rd × R+ 3 〈y, τ〉, when the drift-diffusion equations for 〈n, p〉 are
coupled to a mean-field Poisson equation

(1)

nτ = ∇ · (∇f(n) + n∇ψ),

pτ = ∇ · (∇f(p)− p∇ψ),

∆ψ = p− n.

Here, the nonlinear (≡not necessarily linear) diffusion is described by a power
function f(s) = sm with m > 0. The case m = 1 corresponds to the usual linear
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Key words and phrases. Nonlinear parabolic-elliptic systems, drift-diffusion systems, in-

termediate asymptotics, entropy methods.



24 Piotr Biler

Brownian diffusion, m > 1 — to the porous media diffusion, and 0 < m < 1 —
to the case of “fast” diffusion.

The system (1) is supplemented by the initial data prescribed at t = 0

(2) n(y, 0) = n0(y), p(y, 0) = p0(y),

which we suppose integrable: n0, p0 ∈ L1(Rd).
We will consider sufficiently regular solutions of the Cauchy problem (1)–(2),

so that the conservation of the total charges

Mn =
∫
Rd
n(y, τ) dy =

∫
Rd
n0(y) dy,

Mp =
∫
Rd
p(y, τ) dy =

∫
Rd
p0(y) dy

holds. Formally, these relations are obtained by integrating the first two equations
in (1) over Rd.

Our aim is to describe the long time asymptotics of solutions of (1)–(2).
Taking into account the repulsive character of the self-interaction of particles
of each of the species, one can expect that particles disperse, and the Poisson
coupling through the third equation in (1) becomes asymptotically weaker and
weaker. Thus, one anticipates that the evolution of 〈n, p〉 charges is decoupled
in the limit τ = ∞, so that the densities resemble solutions % of the nonlinear
diffusion equation in Rd

(3) %τ = ∇ · (∇f(%)),

e.g. their Lq(Rd)-norms, 1 < q ≤ ∞, tend to 0 at an algebraic rate, or they behave
like self-similar solutions of (3) (i.e. those enjoying some invariance properties).

This conjecture on the intermediate asymptotics of solutions has a strong
physical background, but only recently appropriate mathematical tools have been
developed to deal with such problems, esp. when one looks for the optimal decay
rates. The idea is to combine a space-time rescaling, a priori estimates obtained
from the relative entropies ([1]), and the generalized Sobolev inequalities ([7], [8])
extending the usual and logarithmic Sobolev inequalities.

Standard notation | · |q is used for the Lebesgue norms of functions defined
on Rd. The integrals without integration limits are over the whole Rd space.

2. Results and methods

The first step in our analysis of the system (1) is the space-time rescaling

t = logR(τ), x =
y

R(τ)
,

where m > 1− 2/d, and the function R satisfies

ṘRd(m−1)+1 = 1 and R(0) = 1.
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This change of variables applied to (1) leads to the nonautonomous system

(4)

ut = ∇ · (∇f(u) + ux+ β(t)u∇ϕ),

vt = ∇ · (∇f(v) + vx− β(t)v∇ϕ),

∆ϕ = v − u,

for the rescaled functions

u(x, t) = Rd(τ)n(y, τ),

v(x, t) = Rd(τ)p(y, τ),

ϕ(x, t) = Rd−2(τ)ψ(y, τ),

and β(t) = R(τ)2−d = e(2−d)t. The system (4) for 〈u, v〉 (which can be viewed
as a system of Fokker–Planck equations with nonlinear diffusions) has the same
initial data (2) as (1) for 〈n, p〉 because R(0) = 1. The solution ϕ of the Poisson
equation in (4) is taken as the Newtonian potential

(5) ϕ = Ed ∗ (v − u),

where Ed is the fundamental solution of the Laplacian in Rd. Observe that for
d ≥ 3, the damping factor β(t) makes the transport terms u∇ϕ, v∇ϕ in (4)
negligible in the limit t→∞.

Now consider the system (4) with β = 0 which corresponds to the asymptotic
(uncoupled) problem. Both u and v then satisfy the equation of the type

(6) zt = ∇ · (∇f(z) + zx)

with suitable initial condition z(., 0) = z0 ≥ 0. Define the entropy functional

(7) W [z] =
∫ (

z

(
1
2
x2 + h(z)

)
− f(z)

)
dx

with the enthalpy function

(8) h(z) =
∫ z

1
f ′(s)s−1 ds.

Simple computations valid for sufficiently regular solutions of (6) show the con-
servation of the L1(Rd)-norm∫

z(x, t) dx =
∫
z0(x) dx,

and the production of entropy formula

(9)
d

dt
W [z(t)] +

∫
z

∣∣∣∣∇(1
2
x2 + h(z)

)∣∣∣∣2 dx = 0.
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Therefore, all the steady states z∞ of (6) satisfy the relation

(10) z∞(x) = h̃−1
(
Cz −

1
2
x2
)
,

where Cz is a real constant with Cz ≤ h(∞), and h̃−1 is the extension of h−1

given by h̃−1(s) = h−1(s) if h(0+) < s < h(∞), and h̃−1(s) = 0 if s ≤ h(0+).
Remark that in the fast diffusion case (m < 1) h(0+) = −∞, h(∞) = m/(1−

m), while h(0+) = −m/(m− 1), h(∞) = ∞ in the porous media case (m > 1).
In the case of linear diffusion steady states satisfy z∞(x) = exp(Cz − x2/2).

If 0 ≤ M < ∞ satisfy the inequality M ≤
∫
h̃−1(h(∞) − x2/2) dx, then the

steady state z∞ is uniquely determined by the requirement
∫
z∞(x) dx = M

(e.g. if f(s) = sm with m > d/2− 1). It can be shown ([1], [7]) that (9) implies
the decay of the entropy functional W [z(t)] to W [z∞], where z∞ is the unique
steady state of the form (10) with

∫
z∞ dx =

∫
z0 dx. Thus, the relative entropy

(11) W [z|z∞] = W [z]−W [z∞]

can be defined so that limt→∞W [z(t)|z∞] = 0.
Let us come back to the system (4) and define, using (11), for solutions 〈u, v〉

with
∫
u0 dx = Mu ≥ 0,

∫
v0 dx = Mv ≥ 0, the relative entropy

(12) W[〈u, v〉|〈u∞, v∞〉] = W [u|u∞] +W [v|v∞] +
β

2
|∇ϕ|22.

Here u∞, v∞ are steady states of the equation (6) corresponding to Mu, Mv,
resp.

Taking into account (4) we compute the time derivative of (12)

(13)
d

dt
W[〈u(t), v(t)〉|〈u∞, v∞〉] = −J − β2

∫
(u+ v)|∇ϕ|2 dx

− 2β
∫

(f(u)− f(v))(u− v) dx+ 2β
∫

∆ϕ∇ϕ · x dx+
1
2
dβ

dt
|∇ϕ|22,

where

(14) J =
∫
u

∣∣∣∣∇h(u) + x

∣∣∣∣2 dx+
∫
v

∣∣∣∣∇h(v) + x

∣∣∣∣2 dx.
In the next step we show thatW in (12) is a Lyapunov functional for (4). This is
obtained in the result below. Its proof is rather involved, cf. [2], [5]. In particular,
to show the inequality dW/dt+ λW ≤ 0 we use (13) and, in estimations of the
quantity J in (14), the generalized Sobolev inequalities (from [1], [7], [8]) of the
form

W [z|z∞] ≤ K
∫
z|∇h(z) + x|2 dx

for some K > 0. These are nonlinear generalizations of the classical Sobolev
inequalities as well as the (Gross) logarithmic Sobolev inequality in [8].
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Theorem. Let d ≥ 3 and f(s) = sm for m ≥ 1−1/d. Consider a sufficiently
regular, global in time solution of (4) such that Mu +Mv > 0. Then there exists
a constant λ > 0 such that

W[〈u(t), v(t)〉|〈u∞, v∞〉] ≤ e−λtW[〈u0, v0〉|〈u∞, v∞〉].

Remark 1. If we assume charge neutrality Mu = Mv, and |∇ϕ(0)|22 < ∞
(which is a consequence of W[〈u0, v0〉|〈u∞, v∞〉] < ∞), then the result of The-
orem remains true also in the one- and two-dimensional cases (since for ϕ defined
in (5), under the electroneutrality condition, the relation lim|x|→∞ |∇ϕ(x, t)| = 0
holds).

Remark 2. As it follows from [1], [7], [9] and [2], the exponential decay
of the relative entropy implies the exponential convergence in L1(Rd) of 〈u, v〉
to the steady state 〈u∞, v∞〉 of (4), and thus, by the space-time rescaling, the
convergence to a self-similar solution of (1) at an algebraic decay rate in the
L1(Rd)-norm. The latter result much improves upon the algebraic decay estimate
for (3) in Lq-norms, 1 < q ≤ ∞. Therefore, the solutions of (1) asymptotically
resemble self-similar solutions as τ → ∞. The relations between the entropy
and the L1-norm are a consequence of Csiszár–Kullback inequalities for relative
entropies, cf. [9].

In particular, in the case of the Brownian diffusion m = 1, we recover the
result from [2]

|n(t)− nas(t)|21 + |p(t)− pas(t)|21 + |∇ψ(t)|22 ≤ CH(t),

where the asymptotic state 〈nas, pas〉 is given by

nas(x, t) = Mn(2π(2t+ 1))−d/2 exp
(
−|x|2

2(2t+ 1)

)
,

pas(x, t) = Mp(2π(2t+ 1))−d/2 exp
(
−|x|2

2(2t+ 1)

)
,

and H(t) = (2t+ 1)−1/2 if d = 3, H(t) = (2t+ 1)−1(log(2t+ 1) + 1) if d = 4, and
H(t) = (2t + 1)−1 if d ≥ 4. Moreover, in the electroneutrality case Mn = Mp,
H(t) = (2t+ 1)−1 for each d ≥ 3. The asymptotic states nas, pas are self-similar
solutions of the heat equation which is exactly the equation (3) associated with
the problem (1) with the linear diffusion, i.e. when m = 1.

3. Extensions and generalizations

The result in Theorem can be extended in different directions.
First, one can consider, instead of the terms ux, vx in (4) generated by the

potential V (x) = x2/2, the terms u∇V , v∇V , where V is a confining potential
which tends to ∞ fast enough as |x| → ∞. A sufficient condition for that is
2D2V (x)− Tr(D2V (x)) ≥ cI with a constant c > 0.
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Second, it suffices that the relaxation factor β satisfies βt ≤ −2ωβ for some
ω > 0, instead of β(t) = e(2−d)t. For these extensions see [5].

Third, the power nonlinearity f(s) = sm can be replaced by a more general
function f , with the power-like behavior at s = 0, see [3] for the case of a single
equation (3). Another possible choice of f in (1) when d = 3 is that from the
Fermi–Dirac thermodynamical framework, i.e. f(s) = sF−1(s) −

∫ s
0 F
−1(τ) dτ ,

where F (σ) =
∫
R3 dv/(ε+ exp(|v|2/2− σ)), ε > 0, considered in [5].

Remark 3. One can also study the problem (1) in bounded domains of Rd
with suitable no-flux boundary conditions guaranteeing the conservation of char-
ge (as was in [6]). The physical interpretations include models in semiconductors
and electrolytes theory. In that case, the unique nontrivial steady states for (1)
exist for each Mn, Mp > 0, and the solutions of the evolution problem approach
them in Lq-norm, 1 ≤ q ≤ ∞, at an exponential rate as τ → ∞. This is shown
using similar tools (relative entropy methods and generalized Poincaré–Sobolev
inequalities) in [2], improving on earlier results in [6].

Remark 4. Analogous methods can be applied to a more general system
that takes also into account the evolution of the temperature (the, so called,
Streater’s energy-transport model of second kind). The solutions of that mo-
del obey the first and the second laws of thermodynamics, and it is shown in
Section 3.2 of [4] that for radially symmetric solutions of the rescaled model a
relative entropy decays. This implies, as before, an asymptotically self-similar
behavior of solutions of the original (unscaled) system.
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ON A NEW FUNCTION OF MINIMAL DISPLACEMENT

Krzysztof Bolibok

Dedicated to Professor Lech Górniewicz

Abstract. We introduce a new function of minimal displacement and show
its asymptotic behaviour. Next we discuss applications to the retraction
problem.

1. Introduction

Let (X, ‖ · ‖) be an infinitely dimensional Banach space with the closed
unit ball B and the unit sphere S. The term of minimal displacement dT =
infx∈B ‖x−Tx‖ for lipschitzian mappings T was introduced by Goebel (see [8]).
He also defined some functions describing this problem. Let recall one of them,
the so-called minimal displacement characteristic of X ψX(k) = sup{dT : T ∈
L(k), k ≥ 1}, where L(k) denotes the class of lipschitzian mappings T :B → B

with constant k. It is known that ψX(k) ≤ 1 − 1/k for any space X. There
are some “square” spaces like c0, C[0, 1] for which ψX(k) = 1 − 1/k. More-
over, it is known that limk→∞ ψX(k) = 1 for any space X. The aim of this
paper is to show that the same is true for the function ψX defined as follows
ψX(k) = sup{dT : T ∈ L(k), T (S) = 0, k ≥ 1}. This function can be very useful
in evaluations of the retraction constant k0(X) being the infimum of the set of all
numbers k > 1, for which there exists a retraction R:B → S belonging to L(k).
It is known that k0(X) ≥ 3 for any space X. The existence of such retraction
was proved by Nowak ([15]) for some spaces and by Benyamini and Sternfeld
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([1]) for all infinite dimensional normed spaces. For a wider discussion of the
topics mentioned above we refer the reader to [11]. The latest results concerning
the minimal displacement and retraction problems can be found in [2]–[6], [9],
[10], [13].

Before we proceed to the second part of our paper let us recall that the radial
projection P :X → B is the mapping defined as

Px =

{
x if x ∈ B,
x

‖x‖
if x /∈ B.

It is known that its Lipschitz constant 1 ≤ P (X) ≤ 2 for any space X (see [16]).

2. Results

Theorem 1. In every infinite dimensional Banach space X

ψX(k) ≥ 1− 2P (X)k0(X)
k

for any k > k0(X).

Proof. Let 0 < ε < 1/4 and Rε:B(ε) → S(ε) be a lipschitzian retraction
with constant kRε , where B(ε) and S(ε) denote respectively the closed ball and
the sphere of radius ε. Define a mapping T :B → B as follows

Tx =


P1−εRε(−x) for ‖x‖ ≤ ε,
P1−ε(−x) for ε ≤ ‖x‖ ≤ 1− ε,(

1− ε
ε
‖x‖+

ε− 1
ε

)
x for ‖x‖ ≥ 1− ε,

where P1−ε is a radial projection onto the ball B(1− ε).
Observe that Tx = 0 for any x ∈ S. To show that T is lipschitzian we consider

three cases.

(i) If ‖x‖ ≤ ε and ‖y‖ ≤ ε, then

‖Tx− Ty‖ = ‖P1−εRε(−x)− P1−εRε(−y)‖ ≤ P (X)kRε
ε

‖x− y‖.

(ii) If ε ≤ ‖x‖ ≤ 1− ε and ε ≤ ‖y‖ ≤ 1− ε, then

‖Tx− Ty‖ = ‖P1−ε(−x)− P1−ε(−y)‖ ≤ P (X)
ε
‖x− y‖.

(iii) If ‖x‖ ≥ 1− ε and ‖y‖ ≥ 1− ε, then

‖Tx− Ty‖ =
∥∥∥∥(1− ε

ε
‖x‖+

ε− 1
ε

)
x−

(
1− ε
ε
‖y‖+

ε− 1
ε

)
y

∥∥∥∥
≤ 1− ε

ε
‖x‖‖x− y‖+

1− ε
ε
‖y‖|‖x‖ − ‖y‖|+ 1− ε

ε
‖x− y‖

≤ 3(1− ε)
ε

‖x− y‖,
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which finally shows that T is lipschitzian with constant P (X)kRε/ε.
Now let us estimate the minimal displacement of T . Let us also consider three

cases.

(i) If ‖x‖ ≤ ε, then

‖x− Tx‖ = ‖x− P1−εRε(−x)‖ ≥ ‖P1−εRε(−x)‖ − ‖x‖ ≥ 1− 2ε.

(ii) If ε ≤ ‖x‖ ≤ 1− ε, then

‖x− Tx‖ = ‖x− P1−ε(−x)‖ =
∥∥∥∥x+ (1− ε) x

‖x‖

∥∥∥∥ = ‖x‖+ (1− ε) ≥ 1.

(iii) If ‖x‖ ≥ 1− ε, then

‖x− Tx‖ =
∥∥∥∥x− (1− ε

ε
‖x‖+

ε− 1
ε

)
x

∥∥∥∥ =
1
ε
‖x‖ − 1− ε

ε
‖x‖2 ≥ 1,

which finally shows that dT ≥ 1− 2ε.
Because ε can be arbitrary small and the Lipschitz constant of retraction Rε

can be arbitrary close to k0(X) we get our theorem. Moreover, observe that as
corollary we get. �

Theorem 2. In every infinite dimensional Banach space X

lim
k→∞

ψX(k) = 1.

In the proof of Theorem 1 we use the fact of the existence of the Lipschitz
retraction. Without this assumption we can get worse result.

Example 1. Let T :B → B, T ∈ L(k) with dT > ψX(k)− ε. Define a map-
ping T :B → B as follows Tx = (1−‖x‖n)Tx, where n ∈ N. Observe that Tx = 0
for any x ∈ S. The map T is lipschitzian. Indeed

‖Tx− Ty‖ ≤ (1− ‖x‖n)‖Tx− Ty‖+ |‖x‖n − ‖y‖n|‖Ty‖

≤ k(1− ‖x‖n)‖x− y‖+
( n−1∑
i=0

‖x‖n−1−i‖y‖i
)
‖x− y‖

≤
(
k(1− ‖x‖n) +

n−1∑
i=0

‖x‖n−1−i‖y‖i
)
‖x− y‖ = L1‖x− y‖,

and analogously

‖Tx− Ty‖ ≤
(
k(1− ‖y‖n) +

n−1∑
i=0

‖y‖n−1−i‖x‖i
)
‖x− y‖ = L2‖x− y‖.

Finally we get
‖Tx− Ty‖ ≤ min{L1, L2}‖x− y‖.
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Without loss of generality suppose that ‖x‖ ≥ ‖y‖. Then

‖Tx− Ty‖ ≤ min{L1, L2}‖x− y‖ ≤ L1‖x− y‖

= (k(1− ‖x‖n) +
n−1∑
i=0

‖x‖n−1−i‖y‖i)‖x− y‖

≤ (k(1− ‖x‖n) + n‖x‖n−1)‖x− y‖ ≤ L‖x− y‖,

where (calculations)

L =


n for n− 1 > k,

k +
(
n− 1
k

)n−1
for n− 1 ≤ k.

The minimal displacement of T can be evaluated as follows

‖x− Tx‖ = ‖x− (1− ‖x‖n)Tx‖ ≥ ‖x‖ − (1− ‖x‖n)‖Tx‖ ≥ ‖x‖n + ‖x‖ − 1.

On the other hand

‖x− Tx‖ = ‖x− (1− ‖x‖n)Tx‖ ≥ ‖x− Tx‖ − ‖x‖n‖Tx‖ ≥ dT − ‖x‖n.

We get that
‖x− Tx‖ ≥ max{‖x‖n + ‖x‖ − 1, dT − ‖x‖n}

and because dT can be arbitrary close to ψX(k) we obtain

‖x− Tx‖ ≥ max{‖x‖n + ‖x‖ − 1, ψX(k)− ‖x‖n}.

Putting n− 1 = k we have

ψX(n) ≥ max{‖x‖n + ‖x‖ − 1, ψX(n− 1)− ‖x‖n}.

Observe that

(i) If ‖x‖ ∈ [0, n
√

1/2], then ψX(n) ≥ ψX(n−1)−‖x‖n ≥ ψX(n−1)−1/2.
(ii) If ‖x‖ ∈ [ n

√
1/2, 1], then ψX(n) ≥ ‖x‖n + ‖x‖ − 1 ≥ n

√
1/2− 1/2.

In both cases we have only that limn→∞ ψX(n) ≥ 1/2.
Observe that the exact value of the function ψX would be very helpful in

estimation from above of the retraction constant k0(X).

Example 2. Define a retraction R:B → S as

Rx =
x− Tx
‖x− Tx‖

,

where T ∈ L(k), T (S) = 0 and dT ≥ ψX(k) − ε. Observe that Rx = x for any
x ∈ S and

‖Rx−Ry‖ ≤ k(X)(k + 1)
limz∈B ‖z − Tz‖

‖x− y‖ =
P (X)(k + 1)

ψX(k)
‖x− y‖.
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Using evaluation of ψX(k) from the previous example one can get that k0(X) ≤
37.74 in spaces where ψX(k) = 1− 1/k. For details see [5]. The problem of exact
evaluation of k0(X) for at least one space is still open.
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A NEW PROOF OF THE SHAFRIR LEMMA

Monika Budzyńska and Tadeusz Kuczumow

Dedicated to Professor Lech Górniewicz on the occasion of his 60th birthday

Abstract. In this paper we give a new proof of the Shafrir lemma. In his
proof, I. Shafrir used the so-called “cosine rule”. In our proof we will not
apply this rule — we will only use the basic properties of the Kobayashi
distance kBH .

1. Introduction

Let BH denote the open unit ball of a complex Hilbert space (H, ( · , · )) and
let kBH denote the Kobayashi distance in BH (see [5], [6]). For each a ∈ BH ,
consider the Möbius transformation defined by

Ma(x) =
1

1 + (x, a)
(
√

1− ‖a‖Qa + Pa)(x+ a),

where x ∈ BH , Pa is the orthogonal projection of H onto lin(a) = {λa : λ ∈ C}
and Qa = I−Pa. Each Ma is a kBH -isometry and has a norm continuous injective
extension from BH onto itself. We also note that Ma(0) = a, M−1a = M−a,
M0 = I, and for every a, b ∈ BH the mapping Mb ◦M−a takes a to b. Applying
these properties of Möbius transformations we get the following explicit formula
for kBH , namely,

kBH (x, y) = arg tanh(1− σ(x, y))1/2,
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where x, y ∈ BH and (see [2], [3])

σ(x, y) =
(1− ‖x‖2)(1− ‖y‖2)
|1− (x, y)|2

.

Let kBnH denotes the Kobayashi distance in the Cartesian product BnH of n
open unit balls BH . It is not difficult to check that

kBnH (x, y) = max
1≤j≤n

kBH (xj , yj)

(see [2], [9]).
In this paper N(BnH) will denote the class of all kBnH -nonexpansive self-ma-

pping on BnH . Note that each holomorphic selfmapping of BnH is kBnH -nonex-
pansive. The class of those mappings in N(BnH), which have a continuous (in
norm) extension to BnH , will be denoted by CN(BnH). It will also be convenient
to consider a slightly more general class of mappings N(BnH) which consists of
all norm continuous mappings f :BnH → BnH such that tf|BnH ∈ N(BnH) for all
0 < t < 1 ([8]). This class contains all holomorphic mappings f : BnH → BnH
which have a continuous (in norm) extension to BnH ([8]).

In [12] I. Shafrir proved the following theorem.

Theorem 1 ([12]). A commuting family of mappings {fα}α∈I in N(BnH)
has a common fixed point in BnH .

This theorem is a generalization of the following existence theorem due to
A. Stachura and T. Kuczumow ([8], [9], see also [1], [3], [4], [7], [10] and [11]).

Theorem 2 ([8], [9]). If f ∈ N(BnH), then Fix(f) 6= ∅.

An application of the given bellow lemma is a crucial point in the proof of
the Shafrir theorem.

Lemma 3 ([12]). Let {xα}α∈I be a kBH -unbounded net in BH satisfying

sup
α,β∈I, α≤β

{kB(xα, xβ)− kB(x, xβ)} = R <∞

for some x ∈ B and α ∈ I. Then there is a point ξ ∈ ∂B such that ξ = limα xα.

A new proof of this lemma will be presented in the next section.

2. Proof of Lemma 3

In his proof of Lemma 3, I. Shafrir used the so-called “cosine rule”. In our
proof we will not apply this rule — we will only use basic properties of the
Kobayashi distance kBH .

Proof. It is obvious that the point x can be replaced by 0. We first note that

lim
α
kB(0, xα) =∞.
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Otherwise, there would exist M and, for each index i ∈ I, an αi ≥ i such that
kBH (0, xαi) ≤M . But then, for all i, we would have

kBH (0, xi) ≤ kBH (0, xαi) + kBH (xαi , xi) ≤ 2kB(0, xαi) +R ≤ 2M +R,

contradicting the kBH -unboundedness of {xα}α∈I . Now, without loss of genera-
lity we can assume that xα 6= 0 for all α ∈ I. Then there exists 0 < r < 1 such
that for each

zα = − r

‖xα‖
xα,

α ∈ I, we have

kBH (zα, xα) = kBH (0, xα) +R.

This implies

kBH (M−zβxα,M−zβxβ) = kBH (xα, xβ) ≤ kBH (0, xβ) +R

= kBH (zβ , xβ) = kBH (0,M−zβxβ)

for α ≤ β, or equivalently,

|1− (M−zβxα,M−zβxβ)| ≤ 1− ‖M−zβxα‖2

for α ≤ β. Next, we observe that, for ‖xα‖ ≥ r,

min
‖z‖=r

kBH (M−zxα, 0) = kBH (xα, 0)−R,

and therefore

lim
α

( min
‖z‖=r

‖M−zxα‖) = 1.

Now, let {xαj}j∈J and {xβj′ }j′∈J′ be two subnets of {xα}α∈I which are weakly
convergent to ξ and ξ′, respectively. Then we obtain

1 = lim
j

lim
j′

(M−zβ
j′
xαj ,M−zβ

j′
xβj′ )

= lim
j

lim
j′

(‖xβj′‖+ r)[((xαj , xβj′ ) + r‖xβj′‖)]
(1 + r‖xβj′‖)[r(xαj , xβj′ ) + ‖xβj′‖]

=
(ξ, ξ′) + r

r(ξ, ξ′) + 1

and finally,

0 = 1− (ξ, ξ′) + r

r(ξ, ξ′) + 1
= (1− r) 1− (ξ, ξ′)

r(ξ, ξ′) + 1

which implies

ξ = ξ′ ∈ ∂B.

This concludes the proof of Lemma 3. �
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ON SOME APPLICATIONS OF REICHERT’S PRINCIPLE
TO DIFFERENTIAL EQUATIONS
IN LOCALLY CONVEX SPACES

Daria Bugajewska

Abstract. In this paper we investigate a topological structure of solution
sets of the initial value problem for some equation of nth order in locally
convex spaces. The method of our proofs is based on the connectness prin-
ciple from [4]. Our results complement similar theorems from [8] and [7] for
Banach spaces.

1. Introduction

Let E be a quasi-complete locally convex space and let P be a family of semi-
norms which generate the topology of E. Moreover, let I = [0, a] be a compact
interval in R and B = {x ∈ E : pi(x) ≤ b, i = 1, . . . , k}, b > 0, k ∈ N and
p1, . . . , pk ∈ P. Consider the problem

(1)
x(n) = f(t, x)

x(j)(0) = xj , j = 0, . . . , n− 1,

where xj ∈ E for j = 0, . . . , n − 1, x0 = 0 and f : I × B → E is a bounded,
continuous function.

Denote by (βp( · ))p∈P the Sadovski measure of noncompactness (see [5] for
the definition and basic properties). In the sequel we shall need the following two
lemmas.

2000 Mathematics Subject Classification. 34G20.
Key words and phrases. Differential equations of n-th order, Kneser type theorems, Sa-

dovski measure of noncompactness.
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Lemma 1 ([6]). Let D be a compact subset of Rn. Denote by C = C(D,E)
the space of all continuous functions D → E with the topology of uniform co-
nvergence. Let p ∈ P and H ⊂ C. If H is p-equiuniformly continuous and H(D)
is p-bounded, then the function t→ βp(H(t)), t ∈ D is continuous and

βp(H(D)) = sup{βp(H(t)) : t ∈ D}.

Lemma 2 ([7]). Let ω: [0, 2b]→ R+ be a continuous, nondecreasing function
and g: [0, c)→ [0, 2b] be a Cn function satisfying inequalities:

g(j)(t) ≥ 0, j = 0, 1, . . . , n,

g(j)(0) = 0, j = 0, 1, . . . , n− 1,

g(n)(t) ≤ ω(g(t)), t ∈ [0, c).

If ω(0) = 0, ω(r) > 0 for r > 0 and∫
0+

dr
n
√
rn−1ω(r)

= +∞,

then g ≡ 0.

Finally, define

ϕp(t,X) = lim
r→0+

βp(f(Itr ×X)) for t ∈ (0, a) and X ⊂ B,

where Itr = (t−r, t+r)∩I (cf. [3]). Moreover, set Bp(0, r) = {x ∈ E : p(x) ≤ r}.

2. Results and proofs

At the beginning of this section we prove the following

Theorem 1. Assume that for every seminorm p ∈ P there exists a conti-
nuous function up, defined on I, such that up(t) > 0 for t > 0, up(0) = . . . =
u
(n−1)
p (0) = 0, u(n)p (t) is positive and integrable in the Lebesgue sense and

(2) ϕp(t,X) ≤ u
(n)
p (t)
up(t)

βp(X)

for t ∈ (0, a) and for every bounded set X ⊂ B. Moreover, let

(3) lim
t→0+
r→0+

ϕp(t, Bp(0, r))

u
(n)
p (t)

= 0.

Then there exists an interval J = [0, d] ⊂ I such that the set S of all solutions
of (1), defined on J , is nonempty, compact and connected in C(J,E).

Proof. Let mp = sup{p(f(t, x)) : t ∈ I, x ∈ B}, where p ∈ P nad let
M = sup{pi(f(t, x)) : t ∈ I, x ∈ B, i = 1, . . . , k}. Choose a positive number d
such that d ≤ a and

∑n−1
j=1 pi(xj)dj/j! + Mdn/n! ≤ b for i = 1, . . . , k. Let
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C0 := {x ∈ C(J,E) : x(0) = 0} and U0 := {x ∈ C0 : pi(x(t)) < b for t ∈ J

and i = 1, . . . , k}. Define F :U0 → U0 in the following way

F (x)(t) =
n−1∑
j=1

xj
tj

j!
+

1
(n− 1)!

∫ t

0
(t− s)n−1f(s, x(s)) ds for t ∈ J.

The above defined operator F is a Volterra type on U0, obviously. Further, put
K0 := {0}, Kα := {t ∈ J : t ≤ αd} for 0 < α < 1. For 0 < λ < 1 set Kλ,ν := Kλν

for ν = 1, 2, . . . , n(λ)− 1 and Kλ,n(λ) := K, where

n(λ) :=
{

1/λ for 1/λ ∈ N,
[1/λ] + 1 for 1/λ /∈ N.

Then Kλ,1 = [0, λd]. Define

(4) xλ(t) :=
{

0 for t ∈ Kλ,1,

x(t− λd) for t ∈ K \Kλ,1.

It can be easily shown that F is continuous, F (U0) is a bounded and equiuni-
formly continuous set, and F (U0) ⊂W , where

(5) W :=
{
x ∈ C0 : p(x(t)) ≤

n−1∑
j=1

p(xj)
dj

j!
+mp

dn

n!
and

p(x(t)− x(s)) ≤
( n−1∑
j=1

p(xj)
dj−1

(j − 1)!
+mp

dn−1

(n− 1)!

)
|t− s|,

t, s ∈ I and p ∈ P
}
.

Let

M := {M ⊂ C0 : M 6= ∅,
M is bounded and p-equiuniformly continuous for p ∈ P}.

It is clear that M is suitable in the sense of [4]. For M ∈M define

(6) µp(M(t)) := sup
0≤τ≤t

βp(M(τ)) = βp

( ⋃
0≤τ≤t

M(τ)
)

for t ∈ [0, d] and p ∈ P, where M(t) := {x(t) : x ∈ M} (note that the second
equality above is a consequence of Lemma 1).

In view of the p-equiuniform continuity of M , the function t → βp(M(t)) is
continuous on J and therefore the function t → µp(M(t)) is also continuous on
this interval for every p ∈ P.
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Let R be a set of families {µp(t)}p∈P , where µp are continuous, nonnegative
functions, defined on J . The set R is partially ordered by the relation defined as
follows

{µp(t)}p∈P ≤ {µp(t)}p∈P ⇔ µp(t) ≤ µp(t)
for all t ∈ J and p ∈ P. Define Ψ:M→R by the formula

Ψ(M) := {µp(M(t))}p∈P .

In view of the properties of the measure (βp( · ))p∈P it is clear that the mapping
Ψ is a measure of noncompactness in the sense of [4] (in particular, Ψ(M) =
Ψ(
⋃
0≤λ≤1Mλ), where Mλ := {xλ : x ∈ M} for 0 ≤ λ ≤ 1 and xλ are defined

in (4)).
Now, we verify that F is a condensing operator on U0. Let M ∈M be such

that Ψ(M) ≤ Ψ(F (M)). By (3), for every ε > 0 there exists η > 0 such that

ϕp(t, Bp(0, η)) ≤ εu(n)p (t), 0 ≤ t ≤ η.

On the other hand, in view of the equiuniform continuity of F (M), there exists
δ ∈ (0, η] such that

p(x(t)) ≤ η for t ∈ [0, δ], x ∈ F (M).

Hence, arguing similarly as in [1, Theorem 1], one can show that

(7) βp(F (M)(t)) ≤ 1
(n− 1)!

∫ t

0
(t− s)n−1εu(n)p (s) ds = εup(t) for 0 ≤ t ≤ δ.

Fix t ∈ J . Since the function t→ βp(F (M)(t)) is continuous, by (6) there exists
tm ≤ t such that

µp(F (M)(t)) = βp(F (M)(tm)).

Again, arguing similarly as in [1, Theorem 1] we infer that

βp(F (M)(tm)) ≤ 1
(n− 1)!

∫ tm

0
(tm − s)n−1

u
(n)
p (s)
up(s)

βp(M(s)) ds,

so

βp(F (M)(tm)) ≤ 1
(n− 1)!

∫ tm

0
(tm − s)n−1

u
(n)
p (s)
up(s)

βp

( ⋃
0≤σ≤s

M(σ)
)
ds

≤ 1
(n− 1)!

t∫
0

(t− s)n−1u
(n)
p (s)
up(s)

µp(M(s)) ds,

because tm ≤ t. Hence, we obtain

µp(F (M)(t)) ≤ 1
(n− 1)!

∫ t

0
(t− s)n−1u

(n)
p (s)
up(s)

µp(M(s)) ds for t ∈ J.
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Because µp(M(t)) ≤ µp(F (M)(t)), so

(8) µp(M(t)) ≤ 1
(n− 1)!

∫ t

0
(t− s)n−1u

(n)
p (s)
up(s)

µp(M(s)) ds for t ∈ J.

Now, we apply an idea from [2]. Let wp(t) = µp(M(t))/up(t) for t ∈ (0, d]
and wp(0) = 0. By (7), the function wp is continuous. Suppose that wp is not
identically equal to zero on J . Let τ be the smallest real number such that
wp(τ) = maxt∈J wp(t). Then 0 ≤ wp(s) < wp(τ) for s ∈ [0, τ). In view of (8), we
obtain

wp(τ) =
µp(M(τ))
up(τ)

≤ 1
up(τ)(n− 1)!

∫ τ

0
(τ − s)n−1u

(n)
p (s)
up(s)

µp(M(s)) ds

=
1

up(τ)(n− 1)!

∫ τ

0
(τ − s)n−1u(n)p (s)wp(s) ds

<
wp(τ)
up(τ)

1
(n− 1)!

∫ τ

0
(τ − s)n−1u(n)p (s) ds =

wp(τ)
up(τ)

up(τ) = wp(τ),

what gives a contradiction. Thus µp(M( · )) ≡ 0 on J .
Hence F is condensing on U0. Therefore in view of [4, Theorem 1.9] the set

of all fixed points is nonempty and compact. To obtain the conectedness of S by
this theorem we must have a set W ⊂ U0. Note that the set W defined in (5)
is not contained in U0. Therefore consider again the problem (1) in the space
C0(J̃ , E), where J̃ = [0, d̃] ⊂ J and 0 < d̃ < d. Restricting F to C0(J̃ , E) we
obtain the required inclusion W ⊂ U0. Then by [4, Theorem 1.9] we infer that
the set of all fixed points of F restricted to C0(J̃ , E) is connected in this space
for every d̃ ∈ (0, d). This implies that the set S is connected in C0(J,E), because
S is compact in C0(J,E) and every fixed point of the operator F restricted to
the space C0(J̃ , E) can be extended to a fixed point of F . �

Now we prove the second result of this section, namely

Theorem 2. Assume that for every seminorm p ∈ P there exists a conti-
nuous nondecreasing function wp:R+ → R+ such that wp(0) = 0, wp(r) > 0 for
r > 0,

(9)
∫
0+

dr
n
√
rn−1w(r)

= +∞

and

(10) βp(f(T ×X)) ≤ wp(βp(X))

for T ⊂ I and any bounded set X ⊂ B. Then the set S of all solutions of the
problem (1), defined on some interval J ⊂ I, is nonempty, compact and connected
in the space C(J,E).

Proof. We will keep the same notation as in the proof of Theorem 3.
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Fix p ∈ P and t ∈ J . The functions s→ βp(M(s)) and s→ βp(F (M)(s)) are
continuous on J , so in particular, there exists τm ≤ t such that µp(F (M)(t)) =
βp(F (M)(τm)). Fix ε > 0 and choose δ > 0 such that

|(τm − τ)n−1wp(βp(M(ρ)))− (τm − s)n−1wp(βp(M(s)))| < ε

for |τ − s| < δ, |ρ − s| < δ, ρ, s, τ ∈ [0, τm]. Divide the interval [0, τm] into k

parts: 0 = t0 < . . . < tk = τm in such a way that ti − ti−1 < ρ for i = 1, . . . , k.
In view of the properties of the measure (βp( · ))p∈P , (10) and Lemma 1, we

have

βp({(τm − s)n−1f(s, x(s)) : s ∈ [ti−1, ti], x ∈M})
≤ (τm − ti−1)n−1βp(f([ti−1, ti]×M([ti−1, ti])))

≤ (τm − ti−1)n−1wp(βp(M([ti−1, ti]))) = (τm − ti−1)n−1wp(βp(M(si)))

for some si ∈ [ti−1, ti]. Thus we obtain

µp(F (M)(t)) =βp(F (M)(τm))

=βp

({
1

(n− 1)!

∫ τm

0
(τm − s)n−1f(s, x(s)) ds : x ∈M

})
≤βp

({
1

(n− 1)!

k∑
i=1

∫ ti

ti−1

(τm − s)n−1f(s, x(s)) ds : x ∈M
})

≤ 1
(n− 1)!

k∑
i=1

(ti − ti−1)

· βp(conv {(τm − s)n−1f(s, x(s)) : s ∈ [ti−1, ti], x ∈M})

=
1

(n− 1)!

k∑
i=1

(ti − ti−1)

· βp({(τm − s)n−1f(s, x(s)) : s ∈ [ti−1, ti], x ∈M})

≤ 1
(n− 1)!

k∑
i=1

(τm − ti−1)n−1wp(βp(M(si)))(ti − ti−1)

≤ 1
(n− 1)!

∫ τm

0
(τm − s)n−1wp(βp(M(s))) ds+

ετm
(n− 1)!

≤ 1
(n− 1)!

∫ t

0
(t− s)n−1wp(µp(M(s))) ds+

εt

(n− 1)!
.

Since ε > 0 is arbitrary, we infer that

µp(F (M)(t)) ≤ 1
(n− 1)!

∫ t

0
(t− s)n−1wp(µp(M(s))) ds.
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On the other hand, we know that µp(M(t)) ≤ µp(F (M)(t)), so

µp(M(t)) ≤ 1
(n− 1)!

t∫
0

(t− s)n−1wp(µp(M(s))) ds, for t ∈ J.

Put

g(t) =
1

(n− 1)!

∫ t

0
(t− s)n−1wp(µp(M(s))) ds

for t ∈ J . Then g ∈ Cn, µp(M(t)) ≤ g(t), g(j)(t) ≥ 0 for j = 0, . . . , n, g(j)(0) = 0
for j = 0, . . . , n − 1 and g(n)(t) = wp(µp(M(t))) ≤ wp(g(t)) for t ∈ J . In view
of (9) and Lemma 2 we deduce that g(t) ≡ 0 for t ∈ J . Thus µp(M(t)) = 0 for
t ∈ J and p ∈ P. Further we argue similarly as in the proof of Theorem 3. �

Note that Theorem 4 extends Theorem 2(a) from [6].
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ON THE POINCARÉ–BENDIXSON THEOREM

Krzysztof Ciesielski

Abstract. The famous Poincaré–Bendixon Theorem, its generalizations
and the development of the theory (up to the most recent results) are
presented.

1. Introduction

The Poincaré–Bendixson theorem plays an important role in the study of
the qualitative behaviour of autonomous differential equations and dynamical
systems on R2. It describes very precisely the structure of limit sets in such
systems. In 1901, precisely one hundred years ago, the famous Bendixson paper
on this theorem and related subjects was published in “Acta Mathematica”. In
this paper, we present this theorem and its development during the last century
– from the first results to the modern generalizations.

2. Preliminaries

By a Jordan arc (a Jordan curve) we mean a homeomorphic image of a
compact segment [−1, 1] (a unit circle). A homeomorphism ϕ: [−1, 1] → T will
be called a parametrization of an arc T . A 2-manifold M is called dichotomic if
any Jordan curve cuts M into two open connected domains.

Let X be a metric space. A flow (dynamical system) on X (which is called
a phase space) is a triplet (X,R, π) where π:R×X → X is a continuous function
such that π(0, x) = x and π(t, π(u, x)) = π(t+ u, x) for any t, u, x.
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caré–Bendixon Theorem, periodic orbit, section, stationary point, semiflow.
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Consider an autonomous differential equation x′ = f(x). We say that it defi-
nes a flow if for any x the solution x(t) through x exists for any t ∈ (−∞,∞) and
is unique. It is well known that the function given by the solutions of autono-
mous differential equation fulfilling the above conditions satisfies the conditions
required in the definition of a flow.

The definitions in the sequel will be given for flows, but they are applicable
in the obvious way for systems of differential equations.

By an orbit (a trajectory) through a point x we mean the set γ(x) = {π(t, x) :
t ∈ R}. By a positive semiorbit (semitrajectory) we mean the set γ+(x) =
{π(t, x) : t ≥ 0}. By a negative semiorbit (semitrajectory) we mean the set
γ−(x) = {π(t, x) : t ≤ 0}. We denote by γ([s, t], x) the set {π(u, x) : s ≤ u ≤ t}
and by γ((s, t), x) the set {π(u, x) : s < u < t}.

A point x is said to be

• stationary if π(t, x) = x for every t ≥ 0,
• periodic if there exists a t > 0 such that π(t, x) = x and x is not

stationary,
• regular if it is neither periodic nor stationary.

For a given point x we define the positive limit set of x (or ω-limit set of x)
as ω(x) = {y ∈ X:π(tn, x) → y for some tn → ∞} and the negative limit set of
x (or α-limit set of x) as α(x) = {y ∈ X:π(tn, x)→ y for some tn → −∞}.

A point x is said to be positively Poisson stable if x ∈ ω(x). It is said to be
negatively Poisson stable if x ∈ α(x).

A set A is invariant if π(R × A) = A. A set A is minimal if it is nonempty,
closed, invariant and no proper subset of A has all these properties.

A set A is a saddle set if there exists a neighbourhood U of A such that every
neighbourhood V of A contains a point x with γ+(x) * U and γ−(x) * U .

By a section through x we mean a set S containing x such that for some
λ > 0 the set U = π((−λ, λ), S) is a neighbourhood (not necessarily open) of
x and for every y ∈ U there are a unique z ∈ S and a unique t ∈ (−λ, λ) with
π(t, z) = y. In such a neigbourhood, the local parallelizability of the system is
fulfilled.

For an autonomous system of differential equations which defines a flow, by
a transversal we mean a Jordan arc which is not tangent to any orbit of the
system in any of its points.

A semiflow (semi-dynamical system) on X is a triplet (X,R+, π) where
π:R+×X → X is a continuous function such that π(0, x) = x and π(t, π(u, x)) =
π(t+ u, x) for any t, u, x.

For a given semiflow, we define stationary, periodic and regular points and
positive semiorbits in the same way as in the case of flows. We define a nega-
tive solution through x as a function σ: (−∞, 0] → X such that σ(0) = x and
π(t, σ(u)) = σ(t + u) for any t, u with u ≤ 0, t ≥ 0, t + u ≤ 0. The image
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of a negative solution is called a negative semiorbit (semitrajectory) through x.
Usually, the definition of a negative solution is stated in a more general way,
but for the subject considered in this paper we may restrict ourselves to such
definition. This will be explained in Chapter 8. We put

F (t, x) = {y ∈ X : π(t, y) = x},

F (∆, A) =
⋃
{F (u, y) : u ∈ ∆, y ∈ A}

for A ⊂ X, ∆ ⊂ R+. A set A is positively invariant if π(R+ × A) = A. A
set A is negatively invariant if F ([0,∞), A) = A. We call the set A weakly
negatively invariant if for any x ∈ A there is a negative solution σ through x

with σ(−∞, 0] ⊂ A. A set A is positively (weakly) minimal if it is nonempty,
closed, positively (weakly negatively) invariant and no proper subset of A has
all these properties.

In the case of semiflows we define ω-limit sets in the same way as in the case
of flows. However, it may happen that there are many negative solutions thro-
ugh a point x. For a given negative solution σ we define the α-limit set ασ(x)
as {y ∈ X:σ(tn) → y for some tn → −∞}. Note that for a given point x, diffe-
rent negative solutions may give different negative limit sets. It is known ([12])
that limit sets in semiflows on manifolds are positively and weakly negatively
invariant.

3. The Poincaré–Bendixson theorem

First, we formulate the Poincaré–Bendixson Theorem in its classical version.

Theorem 3.1. Consider a plane autonomous system x′ = f(x) where x ∈
R2 and assume that this system defines a flow. Assume that the positive semiorbit
γ+(p) through a point p ∈ R2 is bounded and that the positive limit set ω(p) does
not contain any stationary point. Then ω(p) is a periodic orbit. Moreover, either
p is a periodic point or γ+(p) spirals towards a limit cycle of the system. The
analogous result holds for the negative limit set α(p).

There are several proofs of this theorem. Generally, they are based on two
important facts: the Jordan Curve Theorem and the local parallelizability of a
small neighbourhood of a non-stationary point (i.e. the properties of transver-
sals). Here we describe the outline of the proof.

Step 1. Let T be a transversal. Then T is a section according to the defini-
tion of sections for flows (the most frequently presented proof uses the Implicit
Function Theorem).

Step 2. Let T be a transversal and γ([s, t], p) be a segment of the orbit through
p. Then the intersection T ∩ γ([s, t], p) is finite (possibly empty).

Step 3. Let x1, x2, x3 be common points of the transversal T and the orbit
γ(p) of a regular point p. Let xi = h(ui) where h is a parametrization of the
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transversal and let xi = γ(ti, x). Assume that u1 < u2 < u3. Then either t1 <
t2 < t3 or t3 < t2 < t1. In other words, for the common points of the transversal
and the orbit, the order on the transversal given by its parametrization coincides
with the order on the orbit given by the time variable.

Step 4. If T is a transversal and γ(p) is a periodic orbit, then T ∩ γ(p) has
at most one element.

Step 5. If L is an ω-limit set (an α-limit set) and T is a transversal, then
T ∩ L has at most one element.

Then it is shown that if any bounded limit set L contains a periodic orbit
then L is equal to that periodic orbit. The property that any bounded ω-limit
set (an α-limit set) is compact and invariant is also used.

The detailed proof can be found, for instance, in [21], [24], [37], [57], [59], [74].
Usually, the proofs are done in different ways by different authors. For example,
as the corollary of the Poincaré–Bendixson Theorem one can get the characte-
rization of the minimal sets on the plane. Some authors base the proof of the
Poincaré–Bendixson Theorem on this characterization, obtained earlier. Some
other techniques are used also in the proofs for flows; this will be described in
Chapter 7.

As an immediate consequence we have

Corollary 3.2. Under the above assumptions, if a bounded closed region
does not contain any stationary point and contains a semiorbit of some point,
then it contains also a closed orbit.

The generalized version of the theorem says:

Theorem 3.3. Consider a plane autonomous system x′ = f(x) where x ∈
R2 and assume that this system defines a flow. Assume that the positive semiorbit
γ+(p) through a point p ∈ R2 is bounded. Then either

(a) the positive limit set ω(p) is a periodic orbit, or
(b) for any q ∈ ω(p) the limit sets α(q) and ω(q) are nonempty and contain

only stationary poins.

The theorem can be immediately adopted for the systems on the 2-dimensio-
nal sphere S2. Then, it leads to the characterization of the minimal sets and
Poisson stable points. We have

Theorem 3.4. Consider an autonomous system x′ = f(x) where x ∈ S2

and assume that this system defines a flow. Then any minimal set is either
a stationary point or a periodic trajectory.

Theorem 3.5. Consider an autonomous system x′ = f(x) where x ∈ S2

and assume that this system defines a flow. If p ∈ S2 is neither stationary nor
periodic, then p /∈ α(p) and p /∈ ω(p).



On the Poincaré–Bendixson Theorem 53

The analogous theorems hold for systems on R2 (in the case of Theorem 3.4
we consider compact minimal sets). We have also

Corollary 3.6. Let an autonomous system x′ = f(x) where x ∈ S2 or
x ∈ R2 be given and assume that this system defines a flow. Then any minimal
set of the system is a single trajectory.

The Poincaré–Bendixson Theorem has several very important applications.
Let us mention here only some of them. First of all, it guarantees (under some
assumptions) the existence of periodic orbits (frequently it guarantees the exi-
stence of limit cycles). Moreover, it gives the existence of stationary points (as for
the system defined on the plane each periodic orbit must surround a stationary
point). There are several examples of differential equations where the existence
of a periodic orbit can be proved just with the use of this theorem. Consequently,
the theorem is applicable to the real second order equations. The theorem has
also very much other deep consequences, not only in looking for the properties
of solutions of differential equations. For more details about the fundamental
applications, the reader is referred for instance to [3], [24], [74].

4. The early years

Henri Poincaré (1854–1912) can be regarded as the father of the qualitative
theory of differential equations. In his four-part memorable paper [61], published
in 1881–1886, he studied celestial mechanics and two–dimensional systems. He
made the investigations of the phase portrait of the solutions. However, he con-
sidered only the systems x′ = f(x) given by an analytic function f . Theorem 3.1
in the analytic case is due to part III of the work [61]. Poincaré stated also
Corollary 3.2 for systems given by analytic functions.

It was Poincaré who introduced the concept of an orbit (or, in other words,
a trajectory), i.e. a curve in the (x, x′) plane parametrized by the time varia-
ble t. Such a curve, which was called by Poincaré a characteristic (in French:
caractéristique) can be obtained by eliminating the variable t from the given
equations. In such a way Poincaré gave a geometric framework for studying qu-
alitative behaviour of planar differential equations. Poincaré did not investigate
the method of solving the particular equations. He analysed possible behaviours
of second order differential equations. Investigating trajectories, Poincaré for-
mulated and solved several problems in the theory of differential equations as
topological problems.

Poincaré was the first who investigated a geometric picture of the trajectories
of a system given by a differential equation without integrating this equation.
The geometric picture of the phase portrait of the system would have lead to
understanding physical phenomena of the system given by the equation.

Note also that it was just Poincaré who introduced the term “limit cycle”.
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About fifteen years later, in the beginning of the twentieth century Ivar
Bendixson (1861–1935) in his paper [11] (published in 1901) completed the ana-
lysis of stationary points by making a more detailed classification. He proved
Theorem 3.1 with much weaker assumption on function f . He assumed that

(4.1) f = (f1, f2) is continuous and each of f1, f2 has continuous partial
derivatives.

Using this theorem, he proved also some important theorems characterizing
the behaviour of orbits near an isolated stationary point and near a periodic
orbit. He showed, in particular, the following theorems.

Theorem 4.1. Consider an autonomous system x′ = f(x) and assume that
(4.1) is fulfilled. Let p be an isolated stationary point. Then at least one of the
following conditions holds:

(4.1.1) in any neighbourhood of p there exist infinitely many periodic orbits
surrounding p

(4.1.2) there exists a point x 6= p such that ω(x) = {p} or α(x) = {p}.

Theorem 4.2. Consider an autonomous system x′ = f(x) and assume that
(4.1) is fulfilled. Let γ(p) be a periodic orbit. Then at least one of the following
conditions holds:

(4.2.1) in any neighbourhood of γ(p) there exist infinitely many periodic orbits,
(4.2.2) there exists a point x /∈ γ(p) such that ω(x) = γ(p) or α(x) = γ(p).

From Theorem 4.1 Bendixson obtained the classification of isolated statio-
nary points. A stationary point which fulfills the condition (4.1.1) is called a cen-
tre.

There are two types of centres which are now known as Poincaré centres and
Bendixson centres. By a Poincaré centre we mean the isolated stationary point
p such that there exists a neighbourhood U of p fulfilling the properties:

(4.3.1) U is invariant,
(4.3.2) all points in U but p are periodic,
(4.3.3) any periodic orbit contained in U surrounds p.

For example, p is a Poincaré centre in the system given by the equations:

r′(t) = 0, θ′(t) = 1 (in polar coordinates)

Assume now that (4.1.1) holds and for any periodic orbit γ(q) which surro-
unds p there exists a regular point v contained in the bounded component of
R2 \ γ(q) (then, of course, also γ(v) is contained in this component). Such sta-
tionary point is called a Bendixson centre. For example, 0 is a Bendixson centre
in the system given by the equations:

r′(t) = g(r), θ′(t) = 1 (in polar coordinates)
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where g(r) = r2 sin(π/r) for r 6= 0 and g(r) = 0 for r = 0.
In this system, 0 is an isolated stationary point which is surrounded by

infinitely many periodic orbits. Any circle of radius r = 1/n (n = 1, 2, . . . ) is a
periodic orbit. The orbits between the circle of radius r = 1/n and the circle of
radius r = 1/(n+ 1) are spirals which spiral from one circle to the second one.
For each of them, the α-limit set is the bigger circle and the ω-limit set is the
smaller circle.

The existence of Bendixson centres is impossible for planar systems given by
analytic functions. Such situation was discovered by Bendixson in [11]. Poincaré
centres were considered by Poincaré.

In his further investigations, Bendixson analysed the stationary points fulfil-
ling the condition (4.1.2) and divided a neighbourhood of such stationary point
into several subsets according to the behaviour of orbits in this subsets (called
sectors). On the base of this division, he introduced the number which is now
known as a Bendixson index. We will not follow here this idea and concentrate
on the Poincaré–Bendixson Theorem. Let us only note that Bendixson’s work
set a new direction which a large number of mathematicians followed.

It must be pointed out that Bendixson considered only such orbits for which
the ω-limit set contains finite number of stationary points.

Finally, note that Poincaré used rather analytic methods as Bendixson’s re-
asoning was rather purely geometrical.

It should be also mentioned that the terminology: α-limit points and ω-limit
points are due to George David Birkhoff (1884–1944) who introduced it in [15].

5. The systems with infinite number of stationary points

As was mentioned above, neither Poincaré nor Bendixson investigated limit
sets with infinite number of stationary points. However, the Poincaré–Bendixson
Theorem can be generalized to such case. This was done in 1945 by J. K. Solntzev
in [70].

Solntzev split each compact limit set ω(p) onto two parts, ω(p) = ωS(p) ∪
ωO(p). By ωS(p) he defined the set of all stationary points contained in ω(p), by
ωO(p) the set of all nonstationary points contained in ω(p). Any component of
ωS(p) was called a singular component. He proved the following theorem:

Theorem 5.1. Consider an autonomous system x′ = f(x) where x ∈ R2

and assume that this system defines a flow. Assume that the positive semiorbit
γ+(p) through a point p ∈ R2 is bounded. Then either

(a) the positive limit set ω(p) is a periodic orbit, or
(b) the set of nonstationary orbits contained in ω(p) is at most countable.

Then for any nonstationary point q contained in ω(p): the set α(q) is
contained in some singular component of ωS(p) and the set ω(q) is con-
tained in some singular component of ωS(p).
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As one can easily see, this is a more general version of Theorem 3.3.
According to the results of Solntzev ([70]) and Vinograd ([75]) we have also

the further precise characterization of limit sets. We present another theorem
of Solntzev (formulated in a different way than in the original paper; compare
also [9]).

Consider the limit set ω(p) of p and define an equivalence class in ω(p). We
say that x ∼ y if x = y or x, y are stationary point belonging to the same
singular component of ωS(p). Let Ω(p) = ω(p)/ ∼, ΩS(p) = ωS(p)/ ∼, ΩO(p) =
ωO(p)/ ∼. Of course, we may identify ΩO(p) with ωO(p). Then we have

Theorem 5.2. Consider an autonomous system x′ = f(x) where x ∈ R2 and
assume that this system defines a flow. Assume that the positive semiorbit γ+(p)
through a point p ∈ R2 is bounded. Then there exists a continuous surjective
mapping h from a circle to Ω(p) such that h |h−1(ΩO(p)) is a homeomorphism
from a subset of S1 onto ΩO(p).

Roughly speaking, the theorem says that we can go along the whole limit set
like along “cyclic paths” and meet any non-singular point precisely once.

The similar result concerning unbounded limit sets was obtained by Vinograd
in [75].

The limit sets may be of different shape. For instance, a limit set may be in
the shape of the circle and contain infinitely many regular trajectories (coming
from one singular component to another one). On the other hand, it may be in
the shape of a finite-leafed rose or infinite-leafed rose, with only one stationary
point common for all the leaves.

According to above theorems we have also

Theorem 5.3. Consider an autonomous system x′ = f(x), where x ∈ R2,
and assume that this system defines a flow. Assume that the positive semiorbit
γ+(p) through a point p ∈ R2 is bounded and the limit set ω(p) contains precisely
one stationary point and infinitely many regular trajectories. Then the regular
trajectories form a sequence of planar subsets with the diameters tending to 0.

6. The systems on 2-manifolds

Poincaré and Bendixson considered only planar systems. The obtained the-
orems can be in an obvious way adopted for the systems on the sphere S2. Then
the natural question arises about the similar results for the systems on other
2-dimensional compact manifolds.

The famous example of the system on the torus, in which all the orbits are
dense was already known to Poincaré. Poincaré called non-trivial trajectories
such that x ∈ ω(x) “non-closed Poisson stable”. This example shows that the
Poincaré–Bendixson Theorem in its classical form cannot be generalized for all
2-dimensional manifolds. However, many questions connected with this problems
arose. The systems on 2-manifolds were investigated by many mathematicians.
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Poincaré himself posed the question if for a flow on a torus T2 given by
the analytic function f , the only possible minimal sets are points, periodic tra-
jectories and the whole torus T2. This was proved in 1932 by Arnaud Denjoy
(1884–1974) in his celebrated paper [25]. Denjoy showed the theorem in stron-
ger version. He proved several results about the systems on the torus T2. On
the other hand, his results were important and gave a good description of the
phenomena occurring in such systems, on the other hand they gave the base fur
further investigations. Among others, he considered phenomena based on ergodi-
city and rotation numbers. We present here the theorem mostly connected with
the Poincaré–Bendixson theory.

Theorem 6.1. Assume that x′ = f(x) (x = (x1, x2) with a suitable identifi-
cation) is an autonomous system on the torus T2 where f is of class C2. Assume
that this system defines a flow. Let M be a minimal set for this system. Then
either M is a stationary point or M is homeomorphic to the circle (i.e. is a
periodic orbit) or M = T2.

As was also shown by Denjoy, the assumption that f is of class C2 is essential.
He gave an example of the system given by the function of class C1 for which
the assertion of the above theorem did not hold.

The work of Denjoy was continued by many others. In [33] the similar theorem
for orientable manifolds was stated. However, the proof was not correct, as was
pointed out by Peixoto ([58]). The theorem of Denjoy was generalized in 1963
by Arthur J. Schwartz who proved ([64]):

Theorem 6.2. Assume that x′ = f(x) is an autonomous system on a com-
pact, connected 2-dimensional manifold X of class C2 where f is of class C2.
Assume that this system defines a flow. Let M be a minimal set for this system.
Then either M is a stationary point or M is homeomorphic to the circle (i.e.
is a periodic orbit) or M = X (i.e. is the whole manifold); in the last case the
manifold X must be equal to the two-dimensional torus T2.

and

6.3. Corollary. Assume that x′ = f(x) is an autonomous system on a com-
pact, connected 2-dimensional orientable manifold X of class C2 where f is of
class C2. Assume that this system defines a flow and that the manifold X is not
a minimal set. Then, if the ω-limit set ω(p) of a point p does not contain any
fixed point, then ω(p) must be homeomorphic to the circle S1.

For a non-orientable manifold, a similar theorem was obtained in 1969 by
N. Markley. Moreover, Markley did not assume the differentiability of the flow.
This will be presented in the next chapter devoted to the results without the
assumption of differentiability.
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7. The Poincaré–Bendixson theorem for flows

In 1927 George David Birkhoff wrote his celebrate monograph [15] which was
the crucial step for the development of the qualitative theory of differential equ-
ations and dynamical systems. Soon later, in the early thirties, the abstract de-
finition of a dynamical system (a flow) was formulated independently in 1931 by
Andrei Andreievich Markov (1903–1979) ([49]) and in 1932 by Hassler Whitney
(1907–1989) ([77]). In 1933 Whitney ([78]) introduced the concept now known as
parallelizability. Independently, Whitney in 1933 ([78]) and M. Bebutov in 1939
([10]) defined sections for flows and proved the existence theorem which is now
called the Whitney–Bebutov Theorem. In these papers, the authors not only pre-
sented different proofs of the theorem, but they even approached these problems
from different sides. Their results were of great influence and are still a subject of
further investigation. Even recently, for example, the important results of flowbox
manifolds were obtained in 1991 by J. M. Aarts and L. G. Oversteegen ([1]).

Come back to the existence theorem. We have

Theorem 7.1. Let X be a metric space and (X,R, π) be a flow. If p is not
a stationary point then there exists a section through p.

This theorem allows to give a very good local description of a non-stationary
point p and helps with a qualitative analysis of the behaviour of orbits. An im-
portant phenomenon connected with the Poincaré–Bendixson Theorem, proved
with the use of Theorem 3.1, was obtained in 1936 by H. Bohr and W. Fenchel
([16]). They showed the following

Theorem 7.2. Let (R2,R, π) be a flow and p ∈ R2 be a regular point. Then
p /∈ ω(p).

This result was several years later (in 1967) proved without the use of sections
by P. Seibert and P. Tulley. They obtained the more general theorem:

Theorem 7.3. Let X ⊂ R2 and (X,R, π) be a flow. Assume that p ∈ R2 is
a regular point. Then p /∈ ω(p).

In fact, a theorem of the Poincaré–Bendixson type for flows was earlier ob-
tained by H. Kneser. However, then the flows were not formally introduced yet.
In 1924 Kneser proved in [43] the theorem which now may be formulated in the
following way:

Theorem 7.4. Denote the Klein bottle by K and let (K,R, π) be a flow
without stationary point. Then there exists an x ∈ K such that the orbit through
x is periodic.

One of the most important results which could help in the generalization of
the Poincaré–Bendixson theorem for flows is a local parallelizability of flows, i.e.
the existence of sections. This is guaranteed by the Whitney–Bebutov Theorem.
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However, the difficulties are moved to another point. In the case of flows given by
differential equations, fulfilling suitable continuity assumptions, we find without
any difficulty transversal curves through any non-stationary point of the phase
space. Now, it must be proved that the system behaves well in a neighbourhood of
this transversal, i.e. it can be described by the local parallelizability. In fact, one
need to show that a transversal curve is a section which is not quite immediate.
When we do not assume differentiability, we have the required properties of
sections guaranteed from the definition and the Whitney–Bebutov Theorem,
but we do not know anything about the topological shape of sections.

This problem was solved by O. Hajek, who proved in 1965 ([35]) the following

Theorem 7.5. Let X be a 2-dimensional manifold and let (X,R, π) be a
flow. Then every section which is a locally connected continuum is either a Jordan
arc or a Jordan curve.

This helped with the generalization of the Poincaré–Bendixson Theorem for
flows in the 2-dimensional case. It was obtained by O. Hajek ( [34]). Hajek gave
a very precise description of limit sets in planar flows. He considered mainly
dichotomic 2–dimensional manifolds, not necessarily compact.

Theorem 7.6. Let (X,R, π) be a flow on a dichotomic manifold X. Assume
that ω(p) 6= ∅ for some p ∈ X. Then ω(p) consists of stationary points and at
most countable family {Tn : n ∈ A} (A ⊂ N) of non-stationary orbits. Moreover,
each compact subset of X without stationary points has common points with at
most finite number of Tn.

Theorem 7.7. Let (X,R, π) be a flow on a dichotomic manifold X and let
the closure of ω(p) be compact for some non-stationary point p ∈ X. Then either
p is a periodic point, or ω(p) is a periodic orbit and a limit cycle, or for every
x ∈ ω(p) both α(x) and ω(x) are non-void compact connected sets containing
only stationary points.

Hajek also carried some results of Solntzev ([70]) and Vinograd ([75]) over
to flows on dichotomic 2-manifolds.

Generally, the main points in Hajek’s proof were similar to that used in
the differentiable case. However, several parts had to be done in a different
way because of the lack of the assumption of differentiation. Also, several other
techniques were used. One of them was considering the inherent topology. For
a given regular orbit, we may consider the euclidean topology induced from the
plane. On the other hand, we may define a topology on a regular orbit taking
as the base the images of open intervals through the solution (i.e. γ((β1, β2), x).
One of the main point of the proof is to show that these topologies are equal.

There are also other proofs of the Poincaré–Bendixson Theorem for flows
(see for example [2], [66]). Also the proof in [20] which will be discussed in the
next chapter, may be adopted (as another proof) to the case of flows.
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The results showed that the Poincaré–Bendixson Theorem is purely topologi-
cal and does not depend on differentiability assumptions. As it turned out about
twenty years later, it was caused by much more general deep property describing
not only limit sets. In 1986 C. Gutierrez published a paper on smoothing continu-
ous flows ([32]). The result that any continuous flow on a 2-dimensional compact
manifold X of class C∞ is topologically equivalent to a C1 flow on X was the
corollary of the main theorem of this paper. Not defining topological equiva-
lence precisely here, note only that it preserves topological properties of orbits,
in particular the properties investigated in the Poincaré–Bendixson Theorem.

From the theorem of Gutierrez, we conclude immediately that topological
properties of differential planar autonomous systems hold for flows, the Poinca-
ré–Bendixson Theorem among others. Nevertheless, it should be pointed out that
Gutierrez used in his proof many really advanced and complicated modern tech-
niques and results. Thus, the other proofs of the Poincaré–Bendixson Theorem
for flows, however not easy, were really much elementary.

Another theorem of the Poincaré–Bendixson type was obtained in 1969 by
N. G. Markley ([48]).

Theorem 7.8. Denote the Klein bottle by K and let (K,R, π) be a flow.
Assume that p ∈ ω(p) or p ∈ α(p). Then p is either stationary or periodic.

From this theorem, one may get as a simple corollary the early result of
Kneser mentioned above (Theorem 7.4).

Let us come back to the paper of C. Gutierrez ([32]). In this paper the
following theorem, which generalized the theorem of Schwartz (Theorem 6.2)
was proved.

Theorem 7.9. Let (X,R, π) be a flow on a compact 2-dimensional manifold
X of class C∞. Then the following conditions are equivalent:

(7.9.1) (X,R, π) is topologically equivalent to a C2 flow on X,
(7.9.2) (X,R, π) is topologically equivalent to a C∞ flow on X,
(7.9.3) if M is a minimal set in the flow (X,R, π) then either M is a stationary

point or M is homeomorphic to the circle (i.e. is a periodic orbit) or
M = X (i.e. the whole manifold); in the last case the manifold X must
be equal to the two–dimensional torus T2.

8. The Poincaré–Bendixson theorem for semiflows

In flows, we have the movement defined in both directions. However, one
may consider only the movement defined in positive direction. This leads to
the abstract definition of a semiflow, which was first formulated in 1965 by
Hajek ([36]). The theory of semiflows was developed soon later in the book [12]
published in 1969.



On the Poincaré–Bendixson Theorem 61

Semiflows have the movement defined only in positive direction, but a na-
tural question about negative continuations arises. For a given point x, we may
introduce negative semiorbits coming to x (it may happen that there are many
such orbits, on the other hand it is possible that there is no one) and consi-
der negative limit sets, depending not only on the point but also on a negative
semiorbit.

Thus a natural question arises about the Poincaré–Bendixson properties for
2-dimensional semiflows, not only for ω-limit sets but also for ασ-limit sets, where
σ is a negative solution through x.

In 1977 R. C. McCann wrote an important paper about isomorphisms of
semiflows ([51]). In particular, his results implied that during the investigation
of the topological properties of semiflows on 2-dimensional manifolds one could
assume that any negative solution is defined on the interval (−∞, 0] (in the way
we stated in Preliminaries).

In the proof of the Poincaré–Bendixson Theorem for flows, transversals and
sections played an important role. The local parallelizability of the flows was
fundamental for the local characterization of the neighbourhood of the system.
However, for semiflows it is impossible to give such a good description, as here
an orbit can “glue” with other orbits.

In 1992, the definition of section for semiflows was stated in [19]. These sec-
tions give a good local description of a suitable neighbourhood of a non-stationary
point in general semiflows. Also, the existence of sections in the general case was
proved. We have

Definition 8.1. A closed set S containing x is called a section through x if
there are a λ > 0 and a closed set B such that:

(a) F (λ,B) = S,
(b) F ([0, 2λ], B) is a neighbourhood (not necessarily open) of x,
(c) F (µ,B) ∩ F (ν,B) = ∅ for 0 ≤ µ < ν ≤ 2λ.

In the case of flows, this definition gives a Whitney–Bebutov section.

Theorem 8.2. Let a semiflow (X,R+, π) on a metric space X be given.
Then for any non-stationary point x there exists a section through x. Moreover,
if X is a manifold, then for any non-stationary point x there exists a compact
section through x.

According to this theorem and McCann’s results we can contain in a suitable
neighbourhood any non-stationary point x in a planar semiflow. This neighbo-
urhood is a parallelizable “box” in which all the segments of trajectories go
perfectly from one side to the opposite one in the time interval 2λ (all segments
start in one side on the box and no other trajectory joins these segments).

This local characterization was an important step for the Poincaré–Bendixson
Theorem for semiflows, which was proved in 1994 ([20]). We have the following



62 Krzysztof Ciesielski

results. In Theorems 8.3–8.6 by a limit set Λ we mean either an ω-limit set ω(p)
or an ασ-limit set ασ(p) where σ is a negative solution through a non-stationary
point p.

Theorem 8.3. Let a semiflow (X,R+, π) on a dichotomic 2-manifold X be
given. If a limit set Λ is connected and does not contain stationary points, then
Λ is a single trajectory.

Theorem 8.4. Let a semiflow (R2,R+, π) be given and let a semi-orbit
(positive or negative) be bounded. Then either the limit set Λ associated with
this orbit is a periodic orbit or any semi-orbit, contained in Λ, may contain in
its limit set only stationary points.

Theorem 8.5. Let a semiflow (X,R+, π) on a dichotomic 2-manifold X be
given. If p ∈ ω(p) (or p ∈ ωσ(p)) then p is either stationary or periodic.

Theorem 8.6. Let a semiflow (X,R+, π) on a dichotomic 2-manifold X be
given. If a compact set A is either positively minimal or weakly minimal, then it
is either a stationary point or a periodic trajectory.

In the proofs, except of the existence of sections, the following properties
played an important role:

(8.6.1) Any compact section in a semiflow on a 2-manifold X is either a Jordan
arc or a Jordan curve.

(8.6.2) For any non-stationary point y contained in a limit set Λ in a semiflow
on a 2-manifold and for any t > 0 the set Λ ∩ F (t, y) has precisely one
element.

(8.6.3) If a limit set Λ in a semiflow on a 2-manifold X does not contain any
stationary point, then the semiflow induced from X on Λ is a system
with negative unicity and (after an obvious introducing the values of
π(t, x) for negative t) gives a flow on Λ.

Also, the continuity properties in semiflows proved in [18] played an impor-
tant role in the proof. Moreover, the properties analogous to that mentioned in
Steps 2–5 in Chapter 3 had to be shown and the inherent topology (see Chap-
ter 7) was also used. Generally, the proofs of these properties were not a simple
analogy to the case of differential systems (or even to the case of flows) as se-
miflows admit complicated situations which are impossible for flows. Moreover,
all the earlier proofs of the Poincaré–Bendixson Theorem depended on the uni-
queness of the negative semi–solutions and the continuity of movement in both
directions.

Note that the Gutierrez theorem about the topological equivalence says only
about 2-dimensional flows, not semiflows. Because of the complicated structure
of semiflows and the phenomena connected with singular points in the finite
dimensional case one would not expect that the analogous theorem for semiflows
would hold.
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For the end of this section it should be pointed out that the Poincaré–Bendix-
son Theorem for semiflows shows that this theorem is not only purely topological,
but in fact it depends only on the continuous movement defined for positive
values of the time variable t. Roughly speaking, “the reason” of this theorem is a
possibility of a continuous movement forward and we do not need bother about
backward direction.

9. Some other generalizations

As was mentioned in Chapter 4, in his paper [11] Bendixson proved also se-
veral other results. The Poincaré–Bendixson Theorem and those results gave the
beginning of other investigations and generalizations; all of them could now form
a large collection which could be regarded as the developed Poincaré–Bendixson
theory. All these results together would be a good subject for a mathematical
monograph. Here, we only mention some of this generalizations and directions
in which the theory developed. It should also be noted that many applications
and continuations of the work on this subject are contained in papers not cited
here.

One of the advantages of the Poincaré–Bendixson Theorem was a precise
description of planar systems in a neighbourhood of a periodic trajectory or a
stationary point (see Theorems 4.1 and 4.2). This suggests a possible generali-
zation and a question about the behaviour of the system in the neighbourhood
of a compact invariant set, not necessarily for 2-dimensional systems. This was
obtained (in the general case of flows) in 1960 by T. Ura and I. Kimura in ([73])
and later developed by T. Saito in 1968 ([62]). The detailed description of the
Ura–Kimura Theorem can be found in [14]. This theorem turned out to be of
great importance for the theory of persistence, which rapidly developed in the
late eighties and nineties of the twentieth century.

In the development of modern theory of dynamical systems and invariant sets,
chain recurrence introduced in 1972 by C. Conley ([23]) (see also [22], [29], [30])
played an important role. In particular, chain recurrence is of importance for the
Conley index theory. Also, there are remarkable connections of chain recurrence
with the persistence theory (see for instance [31]). In 1996 K. Athanassopoulos
([5], compare also [6]) proved that the assertion of the Poincaré–Bendixson The-
orem for flows on S2 holds for really larger class than compact limit sets. He
proved an analogous theorem for any 1-dimensional invariant chain recurrent
continuum. Also, some other results connecting chain recurrence, sections and
the Poincaré–Bendixson type properties, in a very interesting way were proved
by M. W. Hirsh and C. C. Pugh in 1988 (see [39]). Other properties, also grown
from recurrence and lead to some connections to the Poincaré–Bendixson The-
orem were shown in 1970 by N. G. Markley ([47]).

Another generalization of the Poincaré–Bendixson Theorem was given in
1988 by K. Athanassopoulos and P. Strantzalos ([8]). This was a generalization
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following the results of Schwartz and the assertion of the Ura–Kimura Theorem
simultaneously. They proved that for a flow on a 2-dimensional manifold a com-
pact minimal stable set is as in the assertion of the theorem of Schwartz. Also,
they proved the assertion of the Poincaré–Bendixson Theorem for any compact
minimal saddle set in such flows. Another theorem giving the condition for the
existence of periodic orbits in flows on closed orientable 2-dimensional manifolds
was presented by D. Neumann in 1978 ([53]). The results of Athanassopoulos and
Strantzalos lead to another interesting characterization of the Poincaré–Bendix-
son type gave by K. Athanassopoulos in 1996 ([4]). It should be also mentioned
that the property of the Poincaré–Bendixson type was proved for the Poisson
stable points in a special kind of flows (so called D-stable flows) on an orientable
2-manifold of finite genus. This was obtained by K. Athanassopoulos, T. Petre-
scou and P. Strantzalos in 1997 ([7]). We should also note here about the study
of 2-dimensional flows on 2-manifolds presented by D. Neumann and T. O’Brien
in 1976 ([54]).

In 1956, L. Markus ([50]) presented a very interesting theorem of the Poinca-
ré–Bendixson type for some kind of autonomous differential equations in the
plane. Later on, in 1960 another version of this theorem was obtained by Z. Opial
([56]). These theorems had many interesting applications (compare [72]). In 1992,
H. R. Thieme ([72]) extended the Markus theorem for more general case. Another
analogue of the differentiable version of the Poincaré–Bendixson Theorem was
proved by V. V.Filippov ([28]) in 1993. Using these results, B. Klebanov in 1997
([42]) gave a precise description of orbits for some kind of planar equations and
extended the results of Markus in a similar way to Thieme’s theorems (the results
of Klebanov and Thieme did not cover each other).

As was noted in Chapter 4, Bendixson introduced the index of a stationary
point of a planar differential system. This was also a subject of further develop-
ment. In particular, recently some interesting results (connected also with the
Conley index theory) was obtained in 1996 by M. Izydorek, S. Rybicki and Z. Sza-
franiec in ([40]). The reader is referred to [40] for details and more information
about this aspects of the Poincaré–Bendixson theory.

The classical Poincaré–Bendixson Theorem is strictly 2-dimensional. Howe-
ver, there are some kind of generalizations of this theorem for higher dimen-
sions. In 1979 H. M. Hastings ([38]) proved a theorem for semiflows defined on
2-dimensional submanifolds of Rn. Assuming that the semiorbit of a given point
p is contained in a compact set A, he obtained some conditions of the style of
K. Borsuk’s shape theory for A. In the paper, there also pointed out some diffe-
rences between 2-dimensional cases and higher dimensional cases from the point
of view of this theorem. Some ideas of the Poincaré–Bendixson Theorem were
also transformed for some classes of n-dimensional equations by R. A. Smith
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in 1980 ([67]). Continuing the research on the stability aspects of the Poinca-
ré–Bendixson Theorem, in 1987 R. Smith ([68]) proved several results on orbital
stability, extending the Poincaré–Bendixson Theorem in some way.

The stability of periodic orbits and its connections with Poincaré–Bendixson
Theorem was also considered from another point of view, generally for strictly
two-dimensional case. Some stability problems were investigated by Athanasso-
poulos in some of his papers mentioned above. Also, in 1979 D. Erle ([26]) proved
some properties, particularly interesting from the point of view of mathematical
models and applications.

Also, some infinite dimensional generalizations of the Poincaré–Bendixson
Theorem are known. The investigations in this direction began in 1975 with
the work of J. L. Kaplan and J. A. Yorke ([41]) where the authors considered
differential delay equations. This was followed by many others in the papers
concerning scalar equations and slowly oscillating solutions. For some type of
ordinary differential delay equations the Poincaré–Bendixson type theorems were
proved by J. Mallet–Parret and H. L. Smith in 1990 ([46]). For some type of scalar
partial differential equations the result of this kind were obtained in 1989 by B.
Fiedler and J. Mallet–Parret ([27]). These results were followed in 1996 by the
paper on more general equations written by J. Mallet–Parret and G. Sell ([45]).
Some results for another type of infinite dimensional systems were obtained by
R. A. Smith. In 1992, he proved that the assertion of the Poincaré–Bendix-
son Theorem holds (under several additional assumptions) for bounded positive
semiorbits in some autonomous retarded differential equations. This can be found
in [69].

As was noted in Chapter 3, the Poincaré–Bendixson Theorem has a lot of im-
portant applications, mainly for the problems connected with solving particular
differential equations. In the end, let us mention that in 1966 N. P. Bhatia, A. C.
Lazer and W. Leighton showed ([13]) that among other applications, it is possi-
ble to prove the Brouwer Fixed Point Theorem (in the 2-dimensional case) as
the corollary from the Poincaré–Bendixson Theorem.
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ON MULTIVALUED MAPPINGS WITH SYMMETRIES

Zdzis law Dzedzej

Dedicated to Prof. Lech Górniewicz on his 60th birthday

Abstract. We define a homotopy invariant for a class of G-equivariant
multivalued maps considered by Bader and Kryszewski. It detects the exi-
stence of invariant orbits, not necesarrily consisting of fixed points of a map-
ping.

1. Notations

Let G denote a compact Lie group. We shall use some standard notations of
the compact transformation group theory (comp. [2]).

If H ⊂ G is a closed subgroup of G, then (H) denotes the conjugacy class
of H in G. By Ψ(G) we denote the set of all conjugacy classes in G. There is
a natural partial order in Ψ(G): (K) ≤ (H) if and only if H is conjugate to
a subgroup of K.

Let X be a topological space. An action of G on X is a continuous map
ρ:G×X → X such that

ρ(g, ρ(h, x)) = ρ(gh, x) for g, h ∈ G, x ∈ X,
ρ(e, x) = x for x ∈ X, e ∈ G unit.

A G-space X is a space with a given action of G. The element ρ(g, x) is
usually denoted by gx.
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Suppose X and Y are G-spaces. A continous map f :X → Y is G-equivariant
(a G-map) if for all x ∈ X and g ∈ G the relation f(gx) = gf(x) holds. A notion
of a G-homotopy is analogous. Similarily to the nonequivariant case we obtain:

Definition 1. A G-space X is called a G-ANR (G-absolute neighbourhood
retract), if X is metrizable and for every G-pair (Y,B) where B is closed in Y ,
and every G-map f :B → X there exists a G-invariant neighbourhood U of B
in Y and a G-equivariant extension f :U → X of f .

For a systematic presentation of the theory of G-ANR’s we refer to [9].
Suppose that X is a G-space. For each x ∈ X the set Gx = {gx ∈ X : g ∈ G}

is called an orbit through x. The set Gx = {g ∈ G : gx = x} is a closed subgroup
of G called the isotropy group of x.

We shall use the following subspaces of X:

XH := {x ∈ X : H ⊂ Gx},
X(H) := {gx ∈ X : g ∈ G and x ∈ XH} = GXH ,

X [H] :=
⋃
{XK : H ⊂ K and H 6= K},

X{H} := GX [H], X(H) := X(H) \X{H}.

The following is true (see [9]).

Proposition 1. Let X be a G-ANR. Then for every closed subgroup H ⊂ G
the sets XH , X(H), X{H}, X(H) are ANR’s. Moreover, X(H), X{H}, X(H) are
G-ANR’s, and the quotient spaces X(H)/G, X{H}/G are ANR’s.

For a given G-map f :X → Y we denote by fH , f (H), f [H], f{H} its’ restric-
tions to the corresponding subsets. By f∗:X/G → Y/G we denote the induced
map on quotient spaces, which will be denoted by X∗ = X/G , and analogously
X(H)∗ = X(H)/G, X{H}∗ = X{H}/G.

2. Multivalued maps

Let X, Y be two spaces. We say that ϕ:X → Y is a multivalued map if for
every point x ∈ X a nonempty subset ϕ(x) of Y is given.

We associate with ϕ the graph to be the set

Γϕ := {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

The image of a subset A ⊂ X is the set ϕ(A) :=
⋃
x∈A ϕ(x).

For a subset B ⊂ Y we can define two types of a counterimage:

ϕ−1(B) := {x ∈ X : ϕ(x) ⊂ B},
ϕ−1

+ (B) := {x ∈ X : ϕ(x) ∩B 6= ∅}.

They both coincide if ϕ is a singlevalued map.
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One defines a composition of ϕ:X → Y and ψ:Y → Z as a map γ:X → Z

given by γ(x) = ψ(ϕ(x)).
A multivalued map ϕ:X → Y is upper semicontinuous (u.s.c.) provided

(i) for each x ∈ X ϕ(x) ⊂ Y is compact,
(ii) for every open subset V ⊂ Y the set ϕ−1(V ) is open in X.

Let us recall some basic properties of u.s.c. maps:

(1) The image of a compact set is a compact set.
(2) The graph Γϕ is a closed subset of X × Y .
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

We would like to remind a class of admissible multivalued maps considered
by Górniewicz ([6]).

We say that a space X is acyclic if H∗(X) = H∗(point).

Definition 2. An u.s.c. map ϕ:X → Y is acyclic if all the values ϕ(x) are
acyclic sets.

A continuous map p:X → Y is a Vietoris map if:

(i) p(X) = Y ,
(ii) p is proper (i.e. p−1(A) is compact whenever A ⊂ Y is compact),
(iii) for every y ∈ Y the set p−1(y) is acyclic.

An important feature of Vietoris maps is the famous Vietoris–Begle Mapping
Theorem (see [10]) which says that if X, Y are paracompact spaces and p:X → Y

is a Vietoris map, then it induces an isomorphism on cohomology.

Definition 3. An u.s.c. map ϕ:X → Y is admissible provided there exists
a space Γ, and two continuous maps p: Γ→ X, q: Γ→ Y such that

(i) p is a Vietoris map,
(ii) for every x ∈ X q(p−1(x)) ⊂ ϕ(x).

We call every such a pair (p, q) of maps a selected pair for ϕ.
The class of admissible maps is very broad. It includes all u.s.c maps with

acyclic values (see [6]), and in particular with convex values, if Y is a normed
space. Moreover, a composition of two admissible maps is also admissible ([6]).
Many results from topological fixed point theory of singlevalued maps carry onto
this class of maps.

There are several classes of multivalued mappings, for which a fixed point
index theory has been constructed. See [6] for various approaches. As an example
we follow the one presented in [1].

Definition 4. (i) A compact subset K of a space X is proximally ∞-con-
nected if , for each ε there is 0 < δ ≤ ε such that the inclusion Oδ(K)→ Oε(K)
induces the trivial homomorphism πn(Oδ(K))→ πn(Oε(K)) for any n ≥ 0.
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(ii) An u.s.c. mapping ϕ:X → Y belongs to J(X,Y ) if, for any x ∈ X, ϕ(x)
is proximally ∞-connected.

In particular, these maps are acyclic in the sense of the Alexander–Spanier
cohomology with integer coefficients. We denote by Jc(X,Y ) the class of composi-
tions of maps from J . The main advantage of the considered maps is the existence
of arbitrarily close graph approximations, i.e. single-valued maps f :X → Y such
that Γf ⊂ Oε(Γϕ). Namely, the following was proved in [7].

Theorem 1. Let X, Y be compact ANR’s and ϕ ∈ J(X,Y ). Then, for any
ε > 0, there is an ε-approximation of ϕ. Moreover, there is 0 < δ < ε such that
any two δ-approximations of ϕ are homotopic via ε-approximations.

Let W be an open subset of a compact ANR X and let ϕ: clW → X be a
mapping such that x 6∈ ϕ(x) for x ∈ ∂W . Moreover let ϕ be given by a compo-
sition

Dϕ: clW
ϕ1−→ X1

ϕ2−→ · · · ϕn−→ Xn = X,

where ϕi ∈ J(Xi−1, Xi) and Xi ∈ ANR.

Definition 5. We define an index of the decomposition Dϕ

Ind (X,Dϕ,W ) := ind (X, fn ◦ . . . ◦ f1,W ) ∈ Z

where ind stands for the ordinary fixed point index and fi are sufficiently fine
approximations of ϕi.

By using standard retraction arguments this index can be defined for compact
mappings on open subsets of arbitrary metric ANR’s. For detailed proofs see e.g.
[6], [8].

Let X, Y be two G-spaces.

Definition 6. An u.s.c. map ϕ:X → Y is G-equivariant provided

(i) ϕ(gx) = gϕ(x) for all x ∈ X and g ∈ G,
(ii) if y, gy ∈ ϕ(x) then y = gy.

Note that in the case of a singlevalued map ϕ the condition (ii) is automa-
tically fullfilled. However without (ii) the following natural fact would not be
true.

Proposition 2. If ϕ:X → Y is G-equivariant, then for each subgroup
H ⊂ G

(i) ϕ(XH) ⊂ Y H ,
(ii) ϕ(X(H)) ⊂ Y (H).

Proof. Let x ∈ XH , y ∈ ϕ(x) and g ∈ H. Then y ∈ ϕ(x) = ϕ(g−1x) =
g−1ϕ(x). Thus we have y ∈ ϕ(x) and gy ∈ ϕ(x), and thus y = gy. Since g ∈ H
was arbitrary, y ∈ Y H . Assertion (ii) is a corollary of (i). �
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3. Fixed orbit index

In [8] a definition of a fixed point index for compact G-mappings on metric
G-ANR’ has been given. In a very similar way in [5], [3] a fixed orbit index has
been defined for singlevalued compact G-mappings. Using results of [1] we now
extend this invariant to the case of multivalued G-mappings (decompositions in
fact).

Let us denote by U(G) a free abelian group generated by Ψ(G). It can be
equipped also with a multiplicative structure (see [2]), thus we call it the tom
Dieck ring.

Let clW = X0, X1, . . . , Xn = X be compact G-ANR’s, W ⊂ X an open G-
subset of X.

Suppose that ϕi ∈ J(Xi−1, Xi) are G-equivariant and ϕ is their composition.
Let gx 6∈ ϕ(x) for all x ∈ ∂W , g ∈ G. Because of Proposition 2 for each closed
subgroup H ⊂ G restrictions of our mappings ϕi:X

(H)
i−1 → X

(H)
i are well defined

and so the induced maps ϕ∗i on quotient spaces are well defined. We use here the
same notation as for singlevalued mappings in the end of Section 1. Since the
images of points ϕ∗i (x), ϕi(x) are homeomorphic to each other, we have that ϕ∗i ∈
J(X(H)∗

i−1 , X
(H)∗
i ). Thus their composition ϕ(H)∗ belongs to Jc(clW (H)∗, X(H)∗)

and it has no fixed points on the boundary ∂W (H)∗. The same is true for ϕ{H}.
Therefore the following integer numbers are well defined

i(H)(Dϕ) = Ind (X(H)∗, Dϕ∗ ,W
(H)∗)− Ind (X{H}∗, Dϕ∗ ,W

{H}∗)

where Ind denotes the fixed point index from Definition 5.
Since G is compact and clW is a compact G-space, there are only finitely

many orbit types involved, and thus only finite number of i(H)(ϕ) are different
from zero.

Definition 7. The fixed orbit index of the decomposition Dϕ is defined by
the formula:

IG(W,X,Dϕ) :=
∑

(H)∈Ψ(G)

i(H)(Dϕ) · (H).

The basic properties of this index are easy consequences of the corresponding
properties of the fixed point index proved in [1].

Proposition 3. If W0 ⊂ W is an open G-subset gx 6∈ ϕ(x) for all x ∈
clW \W0 and g ∈ G, then

IG(W0, X,Dϕ) = IG(W,X,Dϕ).

Proposition 4. Suppose that W = W1 ∪W2,W1 ∩W2 = ∅ and gx 6∈ ϕ(x)
for all x ∈ ∂W1 ∪ ∂W2. Then

IG(W,X,Dϕ) = IG(W1, X,Dϕ) + IG(W2, X,Dϕ).
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Proposition 5. Suppose that F : clW × [0, 1] → X is a G-homotopy such
that Gx ∩ F (x × [0, 1]) = ∅ for x ∈ ∂W . Then for each decomposition DF we
have

IG(W,X,DF (·,0)) = IG(W,X,DF (·,1)).

Denote by πH :U(G)→ Z the projection map onto the (H)-coordinate, and
χH :U(G)→ Z; χH(α) =

∑
(K)≤(H) π

K(α).

Proposition 6. If Gx ∩ ϕ(x) = ∅ for all x ∈ clW (H), then

χK(IG(W,X,Dϕ)) = 0 for all (K) ≤ (H).

Proof. By definition we have

πK(I,W,X,Dϕ)) = Ind (X(K)∗, Dϕ∗ ,W
(K)∗)− Ind (X{K}, Dϕ∗ ,W

{K})

and by our assumption ϕ(K)∗ has no fixed points in clW (K) ⊂ clW (H). The
same is true for all subgroups L ∈ G such that (L) < (K). Thus all the indices
in the expression of χK(IG(W,X,Dϕ))) are zero. �

Remark. One easily checks that by retraction arguments this index can be
defined on noncompact G-ANR’s for compact mappings (see [5]).

Analogously to the singlevalued case we can define a Lefschetz type number
and then we have also a normalization property of the index. We omit the details
here.

One can also define an equivariant fixed point index as in [8] by using the
summation formula.

Notice that at least for the purpose of the definition we do not need to
have equivariant versions of approximation lemmas as in [7]. However, a careful
repeating of their arguments is possible at least for finite groups. One can assume
that the group acts by isometries, and then the proof is virtually the same. Having
such a singlevalued approximation f the fixed orbit index is obviously equal to
the fixed orbit index of f defined in [5], [3].

One can also consider homological approach for admissible mappings (see [6]),
or chain approximations. It has been considered for finite groups in [4].

Aknowledgements. The author is grateful to the anonymous referee for
a very careful reading of the paper and important improvements.
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ON INVEXITY AND UNIQUENESS
IN THE CALCULUS OF VARIATIONS

Marek Galewski

Abstract. We provide an existence and uniqueness theorem for the Diri-
chlet problem

−
d

dt
Lẋ(t, ẋ(t)) + Fx(t, x(t)) = 0, x(0) = x(T ) = 0.

We assume that F is invex and apply direct varaitional method. Applications
of the above theorem are shown.

1. Introduction

We shall consider the existence of solutions for the following equation

(1) − d

dt
Lẋ(t, ẋ(t)) + Fx(t, x(t)) = 0, x(0) = x(T ) = 0.

Existence is obtained with the aid of a direct variational method and presents
a generalization of results given in [8] to the case of possibly nonlinear differential
operator and to the class of functions taking values in abstract spaces. The new
idea of the paper bases on imposing invexity ([2]), on F with respect to the
second variable instead of convexity. This still implies uniqueness and since the
class of differentiable invex functions is much wider than the class of convex
functions applies to some other nonlinear problems.

2000 Mathematics Subject Classification. 49J40.
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Let H be a separable, real Hilbert space. We shall assume that

(H1) L: [0, T ]×H → R, L is Gateaux differentaible with repsect to the second
variable, L, Lx satisfy Caratheodory condition, there exists constants
c1, c2 > 0, functions d1 ∈ L1[0, T ;R], d2 ∈ L2[0, T ;R] such that for all
v ∈ H and for almost all t ∈ [0, T ] the following condition holds

d2(t) + c2‖v‖2 ≤ L(t, v) ≤ c1‖v‖2 + d2(t),

(H2) F : [0, T ]×H → R, F is Gateaux differentaible with repsect to the second
variable, F , Fx satisfies Caratheodory condition, there exist functions
b ∈ L2[0, T,R+], c ∈ L1[0, T,R+] and a constant a < (4π2/T 2)c2 such
that for all x ∈ H and for almost all t ∈ [0, T ] the following condition
holds

−a‖x‖2 − b(t)‖x‖ − c(t) ≤ F (t, x),

for every r > 0 there exists a function gr ∈ L1[0, T ;R] such that for all
x ∈ H, ‖x‖ < r, and for almost all t ∈ [0, T ] the following conditions
hold

F (t, x) ≤ gr(t),
‖Fx(t, x)‖H ≤ gr(t).

(H3) either L is convex with respect to the second variable for a.e. t and F

is strictly invex, [11], with respect to the second variable for a.e. t or L
is strictly convex in second variable for a.e. t and F is invex, [2], with
respect to the second variable for a.e. t.

Solutions of (1) are sought on the space H10 which comprises such func-
tions x: [0, T ] → H that x is absolutely continuous and ẋ ∈ L2[0, T,H], x(0) =
x(T ) = 0.

By Poincare inequality ([10]),

‖x‖L2[0,T,H] ≤
T 2

4π2
‖ẋ‖L2[0,T,H],

the norm in H10 , is equivalent to

‖x‖H10 =

√∫ T
0
‖ẋ(t)‖2 dt.

Let us recall that invexity of a functional f :H → R means that there exists
an operator η:H × H → H such that for all x, y ∈ H the following inequality
holds

f(x)− f(y) ≥ 〈η(x, y),∇f(y)〉,
where 〈η(x, y),∇f(y)〉 denotes the scalar product in H. In many applications it
is not the form of the functional η that is required but its existence which may
be obtained, pointwise, by use of separation theorems.
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It is well known that for an invex functional all stationary points are global
minima. The functional is called strictly invex if the inequality in the above is
a strict one. It is obvious that for a strictly invex functional a stationary point
is a unique minimizer.

Application of invexity instead of convexity in (1) appears to apply to much
a wider class of nonlinear problems, compare Section 3.

2. Existence and uniqueness

The proof of existence is based on Proposition 1.3 in [8]. We have to prove in
subsequent lemmas that the action functional J :H10 → R given by the formula

(2) J(x) =
∫ T
0

(L(t, ẋ(t)) + F (t, x(t))) dt

is coercive on H10 and lower semicontinuous.
It follows, as in [9] (compare [3]), that under assumptions (H1), (H2), J is

Gateaux differentiable and (1) constitutes its Euler–Lagrange equation.

Lemma 1. An action functional J is coercive on H10 .

Proof. Indeed by assumptions (H1) and (H2), Poincare inequality, Hölder
inequality we obtain

J(x) ≥ c2
∫ T
0
‖ẋ(t)‖2 dt− a

∫ T
0
‖x‖2 dt−

∫ T
0
b(t)‖x‖ dt

−
∫ T
0
c(t) dt−

∫ T
0
d2(t) dt

≥
(
c2 −

T 2

4π2
a

)∫ T
0
‖ẋ(t)‖2 dt− d−

√∫ T
0
‖ẋ(t)‖2 dt

√∫ T
0
b2(t) dt

≥
(
c2 −

T 2

4π2
a

)
‖x‖2H10 − b‖x‖H10 − d,

where d =
∫ T
0 c(t) dt +

∫ T
0 d2(t) dt, b =

√∫ T
0 b
2(t) dt. Letting ‖x‖H10 → ∞ we

obtain the assertion of the lemma. �

Lemma 2. An action functional J is weakly lower semicontinuous on H10 .

Proof. We shall prove that functionals

J1(x) =
∫ T
0
L(t, ẋ(t)) dt, J2(x) =

∫ T
0
F (t, x(t)) dt

are weakly lower semicontinuous on H10 . For J1 weak lower continuity is a con-
sequence of convexity.In order to prove that J2 is weakly lower semicontinuous
we will observe that if a we observe that sequence xn ⇀ x (weakly in H10 ) it
follows that xn → x in L2[0, T ;H]. Hence there exists a function g ∈ L1[0;T ;R]
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and a subsequnece of xn, which we denote still by xn, converging to x a.e. on
[0, T ] and such that for a.e. t ∈ [0, T ]

‖xn(t)‖H ≤ g(t).

Since xn is absolutely continuous and ẋn is weakly convergent it follows for a.e.
t ∈ [0, T ] that

‖xn(t)‖ ≤
∫ t
0
‖ẋn(t)‖ dt ≤

∫ T
0
‖ẋn(t)‖ dt ≤

√
T

√∫ T
0
‖ẋn(t)‖2 dt ≤ r

for a certain constant r > 0. Combinig the above with growth conditions imposed
on F and Fatou lemma we obtain the weak lower semicontinuity of J2. �

Lemma 3. Let A, B denote Hilbert spaces. If a functional J1:A → R is
striclty convex (resp. convex ) and J2:B → R is invex (resp. striclty invex ) with
respect to a certain operator η than the functional J1+J2:A×B → R is striclty
invex.

Proof. The assertion of the lemma in the first case is a consequence of the
following inequalities for all xa, ya ∈ A and all xb, yb ∈ B

J1(xa)− J1(ya) > 〈∇J1(ya), xa − ya〉,
J2(xb)− J2(yb) ≥ 〈∇J2(yb), η(xb, yb)〉.

It follows that

J1(xa) + J2(xb)− J1(ya)− J2(yb) > 〈(∇J1(ya),∇J2(yb)), (xa − yb, η(xb, yb))〉

for all (xa, xb), (ya, yb) ∈ A×B. The remaining case follows in the same manner.�

We may now state and prove the main results of the paper.

Theorem 1 (Existence). Assume (H1)–(H2) to hold. Than there exists a so-
lution to the Dirichlet problem (1).

Proof. Since the action functional J is coercive, lower semicontinuous on H10
it follows by Proposition 1.2 in [8] that there exists a solution to the problem

inf
x∈H10

J(x)

and is obtained in such a point x for which J
′
(x) = 0. Since, by convexity

of L and the growth conditions (H1), it follows that Lẋ also satisfies grotwth
condtions, the point x satisfies (1). �

Theorem 2 (Uniqueness). Assume (H1)–(H5). Than there exist the unique
solution to the Dirichlet problem (1).

Proof. The existence follows by the Theorem 1. Uniqueness is a consequence
of Lemma 3. �
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3. Example

Example. Consider now the following Dirichlet problem

ẍ = 6x5 + 8x3 + 9x2 + 2x+ 3.

Here L(t, v) = (1/2)|v|2 and F (t, x) = (x3 + x)2 + 3(x3 + x). F is again not
convex with respect to x. It is actually invex and its invexity can be shown as
in [6]. By Theorem 2 it follows that the above problem possess unique solution.
Again it can be shown that Corollary 1.3 [8] does not apply.
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MAPS WITH BOUNDED SEQUENCE
OF INDICES OF ITERATIONS

AND FINITELY MANY PERIODIC POINTS

Grzegorz Graff

Abstract. A class of self-maps f of a compact ANR X with a finite set of
periodic points and bounded sequence of local indices of iterations is consi-
dered. Under this assumptions we study relations between global topologi-
cal structure of X expressed in terms of the Euler–Poincaré characteristic
of f and its local properties determined by the behaviour of f at periodic
points.

1. k-adic expansion and the Euler characteristic of a map

Let f be a self-map of a compact ANR X and I(f, x) be a fixed point index
of f at x ∈ Fix (f). Then there are relations among I(fm, x) for different m
provided the all indices are well-defined. Let us define for anym ∈ N the numbers:

im(f, x) =
∑
s|m

µ(s)I(fm/s, x),

where µ denotes the Möbius function. If im(f) 6= 0 then the following congruences
(called Dold’s relations) hold (cf. [6]):

Theorem 1.1. For every m ∈ N im(f) ≡ 0 (mod m).

The following fact is an important consequence of Dold relations (cf. [1]):
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Theorem 1.2. Any bounded sequence of indices of iterations is periodic.

The useful language for expressing periodicity of such sequences is provided
by so-called k-adic expansion.

Definition 1.3. Define a sequence regk(q):

regk(q) =
{
k if k|q,
0 if k 6 |q.

We can represent {I(fq, x)}∞q=1 in the form of k-adic expansion (cf. [12]):

(1.1) I(fq, x) =
∑

k∈O(x)

ak(x)regk(q),

where O(x) ⊂ N, ak(x) = ik(f, x)/k.
Define the set Pn(f) by: Pn(f) = Fix (fn) \

⋃
0<k<n Fix (fk).

The class of maps under consideration in this paper consists of continuous
maps f :X → X of a compact ANR which satisfy the assumptions:

(i) the set P (f) of periodic points is finite,
(ii) for every x ∈ Pn(f) the set of local fixed point indices {I((fn)k, x)}∞k=1

is bounded.

Remark 1.4. In general a set O(x) of the expansion (1.1) may be an ar-
bitrary subset of natural numbers, but for maps satisfying the condition (ii)
it is finite (see Theorem 1.2). Among such maps there are C1 self-maps of Rn
(cf. [5], [13]), simplicial maps of smooth type (cf. [9]) and planar homeomorphi-
sms (cf. [3]).

Let x ∈ Pn(f) and I((fn)q, x) =
∑
k∈O(x) ak(x)regk(q). Then we may rewrite

it as k-adic expansion of the form: I(fq, x) =
∑
k∈O′(x) a

′
k(x)regk(q), where

O′(x) = n O(x) = {nk : k ∈ O(x)}, a′k(x) = ak/n(x)/n; with the convention
that I(fs, x) = 0 if x 6∈ Fix (fs). Let [x] = {xi = f i(x)}ni=1 denote the n-periodic
orbit of x. Then we may define the k-adic expansion of a n-orbit [x] by summing
all elements of an orbit: I(fq, [x]) =

∑n
i=1 I(fq, xi). We obtain:

(1.2) I(fq, [x]) =
∑

k∈O′(x)

a′k[x]regk(q),

where a′k[x] = ak/n(x).

Definition 1.5. For a complex number λ define an integer c[x](λ) by:

c[x](λ) =
∑

k∈O′(x);λk=1

a′k[x].

Let us remark that for x ∈ Fix (f) the invariant cx(1) =
∑
k∈O(x) ak(x) was

first studied by Chow, Mallet–Paret and Yorke for C1-maps (cf. [5]).
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Definition 1.6 (cf. [2], [7]). Let X be a compact ANR, f :X → X. By the
Euler–Poincaré characteristic of a map f we denote the number:

χ(f) =
∑
i

(−1)i dim
[
Hi(X;Q)/

⋃
m≥1

ker fm∗i

]
,

or equivalently:
χ(f) =

∑
i

(−1)iηi,

where ηi is the number of non-zero (counted with multiplicities) eigenvalues of
the endomorphism f∗i:Hi(X;Q) → Hi(X;Q) and H is the singular homology
functor.

Definition 1.7. Let X be a compact ANR, f :X → X. For a complex
number λ define an integer η(λ) by:

η(λ) =


∑
i

(−1)iηi(λ) if λ is an eigenvalue of f∗i,

0 otherwise,

where ηi(λ) is the multiplicity of λ in f∗i : Hi(X;Q)→ Hi(X;Q).

2. Main result

For the class of maps under consideration (i.e. self-maps of compact ANR
satisfying (i) and (ii)), the sequence of Lefschetz numbers of iterations is periodic
(cf. [1]). The comparison of this periodicity with the periodicity given by k-adic
expansion at periodic orbits allows to find relations among eigenvalues of f∗i
(represented by η(λ)) and c[x](λ). Our approach is based on C1-case, considered
by Matsuoka and Shiraki (cf. [11]), which we generalize onto the class of maps
with bounded indices of iterations.

Lemma 2.1.

regk(q) =
{ ∑
λk=1

λq
}∞
q=1

.

Proof. Let λ0 be a given root of unity of degree k, then:∑
λk=1

λq =
∑
λk=1

λq0λ
q = λq0

∑
λk=1

λq.

If λq0 6= 1 then
∑
λk=1 λ

q = 0, if λq0 = 1 then
∑
λk=1 λ

q = k. This gives the
assertion of the Lemma. �

Theorem 2.2. Let Γ be the set of periodic orbit of a map f . Then, for any
non-zero complex number λ, we have:

η(λ) =
∑

[x]∈Γ

c[x](λ).
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Proof. The proof is the same as in C1-case (cf. [11]), except for more general
meaning of c[x](λ). For a sequence {zq}∞q=1 define the operator Φ by:

Φ({zq}∞q=1) =
∞∑
q=1

zq/q!.

From Lemma 2.1 it follows that:

Φ(regk(q)) = Φ
({ ∑

λk=1

λq
}∞
q=1

)
=
∑
λk=1

∞∑
q=1

λq/q! =
∑
λk=1

(eλ − 1),

thus:

(∗) Φ
({ ∑

[x]∈Γ

I(fq, [x])
}∞
q=1

)
=
∑

[x]∈Γ

∑
λ 6=0

c[x](λ)(eλ − 1).

On the other hand L(fq) =
∑
λ 6=0 η(λ)λq, which implies:

(∗∗) Φ({L(fq)}∞q=1) =
∑
λ6=0

η(λ)(eλ − 1).

Consider

s(λ) =


∑

[x]∈Γ

c[x](λ)− η(λ) if λ 6= 0,

−
∑
λ6=0

s(λ) if λ = 0.

Left hand sides of the equalities (∗) and (∗∗) are equal, so we obtain:∑
λ∈G

s(λ)eλ = 0,

where G is a finite subset of algebraic numbers. Then, by the theorem of Linde-
mann (cf. [11]), {eλ}λ∈G is the set of linear independent values over the field of
algebraic numbers, which implies that s(λ) = 0 for all λ. �

Summing up by eigenvalues of f∗ in the formula of Theorem 2.2 we get the
following relation:

Theorem 2.3.
χ(f) =

∑
λ 6=0

∑
[x]∈Γ

c[x](λ).

As a consequence we obtain a corollary formulated by Fuller for homeomor-
phisms (cf. [8]).

Corollary 2.4. If X admits a map f with no periodic points and f∗ is
an isomorphism, then its Euler characteristic vanishes: χ(X) = 0.

The next corollary is based on Theorem 2.3 and the definition of c[x](λ). It
may be used to estimate the number of periodic orbits.
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Corollary 2.5. Let f :X → X be such that for each k ∈ N and [x] ∈ Γ
we have |a′k[x]| ≤ V . Let Γn be a set of n-periodic orbits. Assume that for each
[x] ∈ Γn O′(x) ⊂ An. Define dimX = dim⊕Hi(X;Q). Then:

|χ(f)| ≤
∑
n

∑
[x]∈Γn

dimX|An|V.

If for every n |An| ≤ D (or equivalently for every x ∈ P (f) |O′(x)| ≤ D), then:

|χ(f)| ≤ |Γ| dimX D V.

3. Examples and applications

3.1. Transversal maps. Let M be a compact manifold and f :M →M be
a C∞-map. We call a map f transversal if for any m ∈ N and x ∈ Fix (fm) we
have 1 6∈ σ(Dfm(x)).

Let σ+(x) (σ+(x)) denote the number of real eigenvalues of D(fm(x)) greater
than 1 (smaller than −1), counted with multiplicities.

Then for x ∈ Fix (f) (cf. [5]):

I(fm, x) =
{

(−1)σ+(x) for m odd,

(−1)σ+(x)+σ−(x) for m even.

We can divide Pn(f) into the following subsets:

PEE
n (f) = {x ∈ Pn(f) : σ+(x), σ−(x) are even},

PEO
n (f) = {x ∈ Pn(f) : σ+(x) is even, σ−(x) is odd},
POE
n (f) = {x ∈ Pn(f) : σ+(x) is odd, σ−(x) is even},

POO
n (f) = {x ∈ Pn(f) : σ+(x), σ−(x) are odd}.

As a result we have four types of k-adic expansion for n-periodic orbits
(cf. also [10]):

I(fm, [x]) = regn(m), for x ∈ PEE
n (f),

I(fm, [x]) = −regn(m), for x ∈ POE
n (f),

I(fm, [x]) = regn(m)− reg2n(m), for x ∈ PEO
n (f),

I(fm, [x]) = −regn(m) + reg2n(m), for x ∈ POO
n (f).

Let now f be a transversal self-map of a closed manifoldM , which satisfies the
conditions (i) and (ii). Then we get in the formula (1.2) for k-adic expansion of
a periodic orbit [x]. For x ∈ PEE

n (f): a′n[x] = 1, a′k[x] = 0 if k 6= n, O′(x) = {n}.
For x ∈ POE

n (f): a′n[x] = −1, a′k[x] = 0 if k 6= n, O′(x) = {n}. For x ∈ PEO
n (f):

a′n[x] = 1, a′2n[x] = −1, a′k[x] = 0 if k 6∈ {n, 2n}, O′(x) = {n, 2n}. For x ∈
POO
n (f): a′n[x] = −1, a′2n[x] = 1, a′k[x] = 0 if k 6∈ {n, 2n}, O′(x) = {n, 2n}.
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If λ is an eigenvalue of f∗, x ∈ Pn(f) we obtain:

c[x](λ) =



1 if x ∈ PEE
n (f) and λn = 1,

−1 if x ∈ POE
n (f) and λn = 1,

1 if x ∈ POO
n (f) and λ2n = 1, λn 6= 1,

−1 if x ∈ PEO
n (f) and λ2n = 1, λn 6= 1,

0 otherwise.

Let Γijn , where i, j ∈ {E,O}, be the set of n-periodic orbits which corresponds
to the set P ijn (f). Let R(n) = {λ : λ is an eigenvalue of f∗ and λn = 1}. By
Theorem 2.3 we have:

χ(f) =
∑
n

( ∑
[x]∈ΓEEn

∑
λ∈R(n)

1 +
∑

[x]∈ΓOEn

∑
λ∈R(n)

(−1)

+
∑

[x]∈ΓOOn

∑
λ∈R(2n)\R(n)

1 +
∑

[x]∈ΓEOn

∑
λ∈R(2n)\R(n)

(−1)
)

=
∑
n

[|R(n)|(|ΓEE
n | − |ΓOE

n |) + |R(2n) \ R(n)|(|ΓOO
n | − |ΓEO

n |)].

3.2. Homeomorphisms of surfaces. Let f :M →M be a homeomorphism
of a surface M without boundary which preserves the orientation and fulfills the
required assumptions (conditions (i) and (ii)). Let us assume additionally that
the following condition of “hyperbolicity” is satisfied for each x ∈ Pn(f):

(1) There is no V — a neighbourhood of x such, that

fn(V ) ⊂ V or V ⊂ fn(V ).

(2) There is W — a neighbourhood of x such, that⋂
k∈Z

(fn)k(W ) = {x}.

In this case the shape of k-adic expansion is known (cf. [4]): I(fm, [x]) =
regn(m) − rxregnq(x)(m), so a′n[x] = 1, a′nq(x)[x] = −rx, a′k[x] = 0 for k 6∈
{n, nq(x)}, O′(x) = {n, nq(x)}. What is more rx > 0.

For λ an eigenvalue of f∗, [x] ∈ Γn we have:

c[x](λ) =


−rx if λn 6= 1 and λnq(x) = 1,

1− rx if λn = 1,

0 otherwise.

Thus, from Theorem 2.3, we obtain:

χ(f) = χ(M) =
∑
n

∑
[x]∈Γn

[ ∑
λ∈R(n)

(1− rx) +
∑

λ∈R(nq(x))\R(n)

−rx
]
.
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We get:

χ(M) =
∑
n

∑
[x]∈Γn

[|R(n)| − rx(|R(n)|+ |R(nq(x)) \ R(n)|)].

Consequently, χ(M) ≤ 0 because rx > 0. This fact shows that there is no
orientation preserving homeomorphism of S2 with only hyperbolical periodic
points (cf. [4]).
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EXISTENCE OF HETEROCLINIC ORBITS FOR SYSTEMS
SATISFYING MONOTINICITY CONDITIONS

Bogdan Kaźmierczak

Dedicated to Professor Lech Górniewicz

Abstract. We use the implicit function theorem to prove the existence
of heteroclinic orbits for systems of second order ordinary differential equ-
ations satisfying global monotonicity conditions.

1. Introduction

Travelling waves are a special kind of solutions, which can describe many phy-
sical phenomena, e.g. phase transitions, ionization processes in plasma physics or
different types of species interaction in mathematical ecology. Many of these
phenomena can be described by systems of PDEs of reaction-diffusion type.
While looking for travelling wave solutions of such systems we arrive at a system
of second order ODEs.

In this paper we are interested in heteroclinic solutions to the following sys-
tem of ODEs:

(1) ai(ui, u′i)u
′′
i − qci(ui, u′i)u′i +Mi(u, u′i)u

′
i + fi(u) = 0,

where i ∈ {1, . . . , n}, u = (u1, . . . , un) and ′ denotes differentiation with respect
to ξ ∈ R1.

We prove the existence of heteroclinic solutions u(ξ) to system (1) joining
its stable equilibrium states 0 and 1 i.e. such that limξ→−∞ u(ξ) = 0 and
limξ→∞ u(ξ) = 1.

2000 Mathematics Subject Classification. 37C20, 37C29.
Key words and phrases. Heteroclinic orbits, implicit function theorem, reaction-diffusion

systems.
This work was supported by grant KBN 7 T07A 00 919.



94 Bogdan Kaźmierczak

The basic tool of the proof is the implicit function theorem. We consider
an appropriate family of systems depending on a parameter λ ∈ [0, 1] in such
a way that for λ = 1 it coincides with system (1) and for λ = 0 it becomes
a system, which can be easily analyzed. First, we prove that for all the possible
strictly monotone heteroclinic solutions both |u′|C1 and |q| are bounded from
above by constants independent of λ ∈ [0, 1]. Starting from the unique strictly
monotone heteroclinic solution for λ = 0, by means of the implicit function
theorem, we can show that the unique heteroclinic solution exists also for all
λ > 0 sufficiently small. Having shown that heteroclinic solutions uλ are strictly
monotone for λ ∈ [0, λ1], λ1 sufficiently close to 0, we can repeat the procedure.
The monotonicity property enables us to take advantage of ‘a priori’ estimates
and allows us to demonstrate that the linearization of the mapping generated by
the left hand sides of the equations is boundedly invertible. It allows us to extend
the interval of existence of heteroclinic pairs. It is necessary to underline that in
this procedure the monotonicity conditions imposed on the source terms fi are
crucial.

The system analyzed here is not the most general one. The most important
limitation consists in the fact that the nonlinear source vector function can be
continuously transformed to a standard function, which is symmetric with re-
spect to the components of u without changing the number and the character
of its zeros (see Assumption 5). From this point of view much more general
systems, e.g. in [4] and [8] and also in [13], were considered. (However, con-
trary to [4] and [13] the coefficients ai and i depend on ui and u′i.) It seems
that a proof by the use of the implicit function theorem is interesting. It is ele-
mentary an does not use advanced topological methods like the Leray Schauder
degree theory ([4], [13]) or the Conley index theory ([11], [1]). Moreover, it gives
the uniqueness of solutions at every stage of continuation.

In Section 5 we show that this method can be applied to prove the existence of
travelling wave solutions in a multitemperature model of laser sustained plasma.
These waves connect the two states of gas: the cold unionized and a hot ionized
one. This time the travelling wave solutions describe the motion of the boundaries
of the plasma region.

Most of the lemmas are stated without proofs. They will be inserted in the
subsequent paper.

2. Main assumptions and preliminary lemmas

Assumption 1. Assume that all the considered functions are sufficiently
smooth.

Assumption 2. Assume that:

(a) fi,j > 0 for all i, j ∈ {1, . . . , n}, j 6= i (monotonicity conditions).
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(b) 0 and 1 are solutions to the system

(2) f1(u) = 0, . . . , fn(u) = 0.

Both constant states 0 and 1 are stable, i.e. all the eigenvalues of the
matrices

(3) fi,j(0), fi,j(1)

have negative real parts.
(c) There is only one solution E1 = (e11, . . . , e1n) ∈ (0, 1)n to system (2)

different from 0 and 1. This solution is unstable i.e. fi,j(E1) has at least
one eigenvalue with positive real part.

For any natural m ≥ 1 we put Rm+ = {y : y ∈ Rm, y ≥ 0}.
For x, y ∈ Rm we write x ≥ y (x > y) if and only if xi ≥ yi (xi > yi) for all

i = 1, . . . ,m.
For Y ∈ Rn we put

|Y | = sup
i
|Yi|.

Assumption 3. ai(ui, zi) > 1 for all i ∈ {1, . . . , n}, all ui ∈ [0, 1] and
all zi ∈ R1+. There exists c0 > 0 such that ci(ui, zi) > c0 for all ui ∈ [0, 1],
zi ∈ R1+. There exists b > 0 such that for all u, v ∈ [0, 1], p, r ∈ R1+ with p < r

we have ci(u, p)(ci(v, r))−1 ≤ b. Mi,uj (u, zi) ≥ 0, j 6= i, for all u from some open
neighbourhood of the set [0, 1]n and all zi ∈ R1.

Remark 1. The condition ai(ui, zi) > 1 in Assumption 3 can be obviously
achieved if only ai(ui, zi) > Cai > 0 for all ui ∈ [0, 1] and all zi ∈ R1+.

For all i ∈ {1, . . . ,m}, let χi:R1+ → R1+ denote a continuous and increasing
function such that ∫ zi

0
a∗i(ui, zi)zi dzi ≥ χi(zi),

where a∗i(ui, zi) := infui∈[0,1] ai(ui, zi).
The next assumption guarantees the possibility of finding a priori estimates

of the first derivatives of the solutions.

Assumption 4. For each i ∈ {1, . . . , n} one of the below conditions holds:

(a) For all ui ∈ [0, 1] and all zi ∈ R1+ either ai,ui(ui, zi) ≤ 0 or ai,ui(ui, zi)
≥ 0. The function Mi(u, zi) satisfies the estimation:

(4) |Mi(u, zi)| ≤ k(|u|)(1 + βi(|zi|)),

with k:R1+ → R1+ continuous, and βi:R1+ → R1+ continuous and such
that βi(y)y(χi(y))−1 → 0 as y →∞.

(b) ci ≡ 1 and for all p, r ∈ R1+, p ≤ r,

Mi(u, p) ≥Mi(v, r)− M̂i(u, p, v, r)
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for all 0 ≤ u ≤ v ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1+βi(|r|)), with k:R2n+ →
R1+ continuous, βi:R1+ → R1+ continuous and such that βi(y)y(χi(y))−1

→ 0 as y →∞.
(c) ci ≡ 1 and for all p, r ∈ Rn+, p ≤ r,

Mi(u, p) ≤Mi(v, r) + M̂i(u, p, v, r)

for all 0 ≤ v ≤ u ≤ 1, M̂i(u, p, v, r) ≤ k(u, v)(1+βi(|r|)), with k:R2n+ →
R1+ continuous, βi:R1+ → R1+ continuous and such that βi(y)y(χi(y))−1

→ 0 as y →∞.
(d) ai(ui, zi) = ai(ui) and Mi(u, zi) satisfies condition (4) with βi(y)y−1 →

0 as y → ∞, or the sum ai(ui)u′′i + Mi(u, u′i)u
′
i can be written in the

form (ai(ui)u′i)
′ + µi(u, u′i)u

′
i, where µi,uj (u, zi) > 0 for all j 6= i and u

from some open neighbourhood of the set [0, 1]n, and µi(u, zi) satisfies
(4) with βi(y)y−1 → 0 as y →∞.

Remark 2. Points (b) and (c) of Assumption 4 are taken from the paper [4].
Let us note that in this case we do not assume any growth condition on the
term Mi.

Definition 1. Let g(u) = (g1(u), . . . , gn(u)) denote a C1(Rn) function sa-
tisfying for all i ∈ {2, . . . , n} the following conditions:

(a) gi(u1, . . . , ui−1, ui, ui+1, . . . , un) = g1(ui, . . . , ui−1, u1, ui+1, . . . , un),
(b) g1,1(u) ≤ −k, g1,i(u) ≥ k for all u ∈ Rn, i ∈ {2, . . . , n}, k > 0,
(c)

∑n
i=1 g1,i(0) < 0,

∑n
i=1 g1,i(1) < 0,

(d) the only solutions to the equation g(u1, u1, . . . , u1) = 0 are 0, 1 and
E0 = (e01, . . . , e0n).

Lemma 1. The solutions to the equation g(u) = 0 must lie on the diagonal
of Rn.

The crucial assumption of the paper consists in the demand that the func-
tion f(u) can be deformed continuously to the function g(u) in such a way that
the intermediate functions retain the quantitative properties of f(u).

Assumption 5. There exists a function

(5) Gλ(u): [0, 1]× Rn → Rn

such that

(6) G1(u) ≡ f(u), G0(u) ≡ g(u).

and for all λ ∈ [0, 1] the function Gλ(u) satisfies Assumption 2. In particular,
for all λ ∈ [0, 1], there is only one solution Eλ = (eλ1, . . . , eλn) ∈ (0, 1)n to the
system Gλ(u) = 0 different from 0 and 1 inside [0, 1]n. This solution is unstable
i.e. Gλi,j(Eλ) has at least one eigenvalue with positive real part.



Existence of Heteroclinic Orbits 97

3. Properties of the linearized operator

Let us consider a family of systems depending on the parameter λ ∈ [0, 1]:

(7) Mi(λ, q, u) = 0,

i = 1, . . . , n, where

Mi(λ, q, u) = aλi(ui, u′i)u
′′
i − (1− λ)qu′i(8)

+ λ[−qci(ui, u′i)u′i +Mi(u, u′i)u
′
i] +Gλi(u),

and

(9) aλi(ui, u′i) = λai(ui, u′i) + (1− λ).

Definition 2. A pair (qλ, uλ) ∈ R1×C2(R1,Rn) is called a heteroclinic pair
for system (7), if uλ(ξ) satisfies system (7) for q = qλ, uλ(ξ) → 0 as ξ → −∞,
uλ(ξ)→ 1 as ξ →∞ and u′λ(ξ)→ 0 as ξ → ±∞. It is called strictly monotone,
if u′λ(ξ) > 0 for all ξ ∈ R1.

For all the possible strictly monotone heteroclinic pairs of system (7) inde-
pendently of λ ∈ [0, 1] a priori estimates of the C1-norm and the absolute value
of the parameter q hold.

Lemma 2. If (qλ, uλ(ξ)), λ ∈ [0, 1], is a strictly monotone heteroclinic pair
for system (7) then there exists a finite constant m such that |u′λ|C0(R1) < m.
This constant is independent of λ, qλ and uλ.

Proof. The proof of the more general lemma may be found in [8]. �

The next lemma states the boundedness of the parameter q.

Lemma 3. If λ ∈ [0, 1] and (qλ, uλ) is a strictly monotone heteroclinic pair
satisfying system (7), then |qλ| < Q, where Q independent of λ and uλ.

Proof. The proof (modulo slight modifications) is contained in [4, Lemma 3.4]
or in [8]. �

The boundedness of qλ allows us to estimate the exponential behaviour of
monotone solutions near the singular points (uλ, u′λ) = (0,0) and (1,0).

Lemma 4 (see [13, Lemma 2.9]). There exist a number ε̃ > 0, such that for
all strictly monotone heteroclinic solutions uλ of the problem (7) with λ ∈ [0, 1]
and q ∈ [−Q,Q] we have the following estimates

|uλ(ξ)| ≤ K0ε̃ exp[γ(ξ − ξ0)], |u′λ(ξ)| ≤ K0ε̃ exp[γ(ξ − ξ0)],

for all ξ ≤ ξ0 and ξ0 such that |uλ(ξ0)| ≤ ε̃, and

|uλ(ξ)− 1| ≤ K1ε̃ exp[−ϑ(ξ − ξ0)], |u′λ(ξ)| ≤ K1ε̃ exp[−ϑ(ξ − ξ0)],
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for all ξ ≥ ξ0 and ξ0 such that |uλ(ξ0) − 1| ≤ ε̃. Moreover, the constants
K0,K1, γ > 0 and ϑ > 0 are independent of the solution uλ.

Proof. The system (7) can be written as a first order system. For q ∈ [−Q,Q]
all the eigenvalues of the linearization matrix for such a system at the points
(u, u′) = (0,0) and (1,0) have nonzero real parts (see [3, Theorem 3.3]). Now,
the proof of Lemma 4 follows from the Hartman–Grobman theorem. �

Remark 3. Obviously the same estimations hold for the second derivatives
of uλ, i.e. for some K2 and all λ ∈ [0, 1],

|u′′λ(ξ)| ≤ K2ε̃ exp[γ(ξ − ξ0)],

for all ξ ≤ ξ0 and ξ0 such that |uλ(ξ0)| ≤ ε̃, and

|u′′λ(ξ)| ≤ K2ε̃ exp[−ϑ(ξ − ξ0)]

for all ξ ≥ ξ0 and ξ0 such that |u′′λ(ξ0)− 1| ≤ ε̃.

Definition 3. Let B2 denote the Banach space of functions u:R1 → Rn of
C2(R1) class equipped with the norm

‖u‖2 = max
i

sup
ξ

( 2∑
k=0

|u(k)i (ξ)|
)
,

with u satisfying the following conditions:

(a) the limits limξ→∞ u(ξ) and limξ→−∞ u(ξ) exist,
(b) u′(ξ), u′′(ξ)→ 0 as |ξ| → ∞.

Let B20 denote the subspace of B2 consisting of functions u such that

u1(0) =
1
2
e1∗(u1(−∞) + u1(∞)),

where e1∗ = minλ∈[0,1] eλ1.
Let B0 denote the Banach space of functions u:R1 → Rn of C0(R1) class

such that the limits limξ→∞ u(ξ) and limξ→−∞ u(ξ) exist, equipped with the
norm

‖u‖0 = max
i

sup
ξ

(|ui(ξ)|).

Let

(10) M(λ, q, u) = (M1, . . . ,Mn),

whereMi is defined in (7).M acts from the space R1×R1×B20 to the spaceB0.
M is Frechet differentiable. (In particular its Frechet derivative with respect to
(q, u) is continuous with respect to (λ, q, u).) It is easy to check that the Frechet
derivative with respect to (q, u) at the point (λ, q, u) is the operator

DM(λ, q, u) [δq, δu] = DuM(λ, q, u)δu+M,q(λ, q, u)δq,
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with

DuM(λ, q, u)δu =A(λ, u, u′)(ξ)(δu)′′

+ C(λ, q, u, u′, u′′)(ξ)(δu)′ + B(λ, q, u, u′, u′′)(ξ)δu,

where

A = diag (aλ1(u1, u′1), . . . , aλn(un, u′n))(ξ),

Cij = {aλi(ui, u′i)u′′i − (1− λ)qu′i + λ[−qci(ui, u′i)u′i +Mi(u, u′i)u
′
i]},u′j (ξ),

Bij = {aλi(ui, u′i)u′′i − λqci(ui, u′i)u′i + λMi(u, u′i)u
′
i +Gλi(u)},uj (ξ),

and
δu = (δu1, . . . , δun)T .

Consider a linear operator:

(11) Lu = A(ξ)u′′ + C(ξ)u′ + B(ξ)u,

where A(ξ), B(ξ), C(ξ) are matrices of C1-class, A(ξ) and C(ξ) are diagonal
matrices. A(ξ) has positive diagonal elements and B(ξ) has positive off-diagonal
elements. Assume that the matrices A(ξ), B(ξ), C(ξ) have limits as ξ → ±∞
and that the matrices B± = limξ→±∞B(ξ) have negative principal eigenvalues.

The following theorem, which can be found in [13, (p. 155)], will be of basic
importance below.

Lemma 5. Let us assume that a positive solution w(ξ) exists for the equation

(12) Lu = 0,

such that limξ±∞ w(ξ) = 0. Then the following is true:

(a) the equation

(13) Lu = λu, u(±∞) = 0

has no solutions different from 0 for Reλ ≥ 0, λ 6= 0,
(b) every solution of (13) has for λ = 0 the form u(ξ) = kw(ξ), k ∈ R1,
(c) the adjoint equation

(14) L∗v = 0, v(±∞) = 0

has a positive solution. This solution is unique to within a constant
factor.

Our starting point will be system (7) for λ = 0. Then the system has exactly
one heteroclinic solution pair (q0, u0(ξ)) with u0 ∈ B20 and u′0(ξ) > 0 for all
ξ ∈ R1 joining the points 0 and 1 (see [13, Lemma 3.2, p. 173]). According
to Lemma 5 there is a unique (up to a multipliactive constant) solution to the
linearized system DuM(0, q0, u0)δu = 0, namely δu = u′0(ξ). Thus, for λ = 0,
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the problem is reduced to a scalar one. By standard arguments we infer that the
linearized operator DM(0, q0, u0) is boundedly invertible, i.e. the equation

DM(0, q0, u0) [δq, δu] = h,

has a unique solution in the space B20 × R1.
According to the implicit function theorem (see e.g. [2]) there exists λ∗ > 0

such that for all λ ∈ [0, λ∗] there exists a heteroclinic pair for system (7). If λ∗ < 1
but DM(λ∗, uλ∗ , qλ∗) [δq, δu] is boundedly invertible, then we can prolong the
interval of existence of heteroclinics to [0, λ∗1], λ∗1 > λ∗. If this procedure can be
repeated, then after a finite number of steps we are able to extend the existence
interval to the whole of [0, 1].

Lema 6. Suppose that for λ ∈ [0, λb], λb ∈ (0, 1], there exists a heteroclinic
pair (qλ, uλ) satisfying the system (7), such that uλ is strictly monotonic in all
of its components. Then the linearized system

(15) DM(λ, qλ, uλ)[δq, δu] = h,

has for all h ∈ B0 a unique (up to a multiplication constant) solution in the space
B20 × R1. The norm of [DM(λ, q, uλ)]−1 is bounded uniformly by a constant
independent of λ ∈ [0, λb].

4. Strict monotonicity of uλ and the existence proof

In this section we demonstrate that the interval of λ values, for which strictly
monotone heteroclinic solutions exist can be extended to the whole of [0, 1]. Ro-
ughly speaking the proof consists in showing that this interval is both relatively
closed and open in [0, 1], so it must coincide with [0, 1].

In the previous section we showed that the operator M linearized around
a heteroclinic pair (qλ, uλ), λ ∈ [0, 1], is boundedly invertible provided the func-
tion uλ is strictly monotone. For λ = 0 the heteroclinic solution u0 is strictly
monotone. The question arises, whether the solution may become non monotone
for larger values of λ. First, we will show that if uλ is strictly monotone for
λ ∈ [0, λ0) then it exists and is monotonic also for λ = λ0.

Lemma 7. Assume that (qλ, uλ), λ ∈ [0, λ∗), λ∗ > 0, is a continuous family
of heteroclinic pairs (obtained by means of the implicit function theorem) and
that uλ(ξ) is strictly monotonic for all all λ ∈ [0, λ0), λ0 ∈ [0, λ∗]. Then for
λ = λ0 the heteroclinic pair (qλ0 , uλ0(ξ)) also exists and uλ0(ξ) is a strictly
monotone function of ξ.

Lemma 8. Assume that (qλ, uλ), λ ∈ [0, λ∗), λ∗ > 0, be a continuous family
of heteroclinic pairs (obtained by means of the implicit function theorem) and that
uλ(ξ) ∈ B20 is strictly monotonic for all all λ ∈ [0, λ0], λ0 ∈ [0, λ∗). Then uλ(ξ)
is also a strictly monotonic for all λ ≥ λ0 sufficiently close to it.
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Lemma 9. The family (qλ, uλ) of strictly monotone heteroclinic pairs can be
continued at least up till λ = 1.

We are thus in a position to formulate the main theorem of our paper.

Theorem 1. There exists a unique family of heteroclinic pairs (qλ, uλ) ∈
R1×C2(R1), λ ∈ [0, 1], such that each (qλ, uλ) satisfies system (7), uλ(−∞) = 0,
uλ(∞) = 1 and u′λ(ξ) > 0 for x ∈ R1. This family is continuous, i.e. for all
λ1, λ2 ∈ [0, 1]:

|qλ1 − qλ2 |+ ‖uλ1 − uλ2‖B20 → 0 as λ2 → λ1.

In particular (q, u) = (q1, u1) is a heteroclinic pair for system (1) joining the
points 0 and 1.

Proof. Existence of (qλ, uλ) follows from Lemma 9. Let us prove the uniqu-
eness of the pair. First, the pair (q0, u0) is unique. Suppose to the contrary that
for some η ∈ [0, 1] we have at least two heteroclinic pairs (qηi, uηi), i = 1, 2.
These solutions can be continued back to the value λ = 0, so there must
exist η0 such that for λ = η0 these two solutions merge for the first time, i.e.
(qλ1, uλ1) 6= (qλ2, uλ2) for all λ ∈ (η0, η]. But, then due to the implicit function
theorem we would have also (qλ1, uλ1) = (qλ2, uλ2) for all λ in some vicinity
of η0. This is a contradiction, from which the uniqueness follows. �

5. Travelling waves in laser sustained plasma

As an example, let us investigate travelling waves in a system of equations de-
scribing multicomponent plasma sustained by a laser beam of a given intensity I.

Under a constant pressure p the temperatures T1 of the light (electron) com-
ponent and the temperatures of Ti, i ∈ {2, . . . , n} of heavy particles (atoms
and ions) of i-th kind are described by the following equations (see [5], [6], [9],
[10], [12]):

(16)

(
∂

∂t
+−→v 1 · ∇

){
3
2
kBN1T1 + Ẽ(T1)

}
= ∇(k1∇T1) + f1(T ),(

∂

∂t
+−→v i · ∇

){
3
2
kBNiTi

}
= ∇(ki∇Ti) + fi(T ),

where i ∈ {2, . . . , n}, T = (T1, . . . , Tn), kj = kj(Tj), j ∈ {1, . . . , n}, is the
heat conductivity coefficient, N1(T1) is the number density of electrons, Ni(Ti),
i ∈ {2, . . . , n} is the number density of the heavy component of i-th kind and
−→v j(T ), j ∈ {1, . . . , n}, denotes the convectional velocity of the j-th component.
kB is the Boltzmann constant. Ẽ(T1) is the average ionization energy for the
given temperature T1. (The energy necessary to the first ionization of an atom
depends on the kind of the atom. If we have to do with a one component plasma,
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then Ẽ would be equal simply to N1(T1)E, where E is the first ionization energy
for the given kind of atoms.) The functions fi have the following form:

(17)

f1 = F1(T1) +
∑

j∈{2,... ,n}

c1j(T )(Tj − T1),

fi =
∑

j∈{1,... ,n},j 6=i

cij(T )(Tj − Ti) +Ki(T ),

for i = 2, . . . , n. The term F1 = κ(T1)I−Erad(T1) is responsible for the absorption
of energy from the laser beam (κI) and its losses by through radiation (Erad).
The terms Ki(T ) describe the losses of energy in the process of heat conduction
and convection. The terms cij(T )(Tj − Ti) describe the transfer of energy from
the i-th to the j-th component of the plasma.

Let us look for solutions in the form of travelling waves:

(18) Ti(x, t) = ui(−→x · −→n + qt), i = 1, . . . , n,

where −→n ∈ R3 is a chosen unit vector (a direction of propagation) and χ ∈ R1 is
the speed of the wave. If we denote ξ := −→x · −→n +χt, then we arrive at a system
of ordinary differential equations:

(19) (kiu′i)
′ − qCi(ui)u′i −−→v i · −→n Ci(ui)u′i + fi(u) = 0,

i = 1, . . . , n, where u := (u1, . . . , un) and

Ci(ui) =
∂

∂ui

{
3
2
kBNi(ui)ui + δi1Ẽ(ui)

}
,

with δi1 being the Kronecker’s delta.

Assumption 6. Assume that the function F1(u1) has exactly three zeros:
0, 1 and U0 ∈ (0, 1) such that F ′1(0) < 0, F ′1(U0) > 0 and F ′1(1) < 0.

Assumption 7. supi∈{2,... ,n} supu∈[−1,2]n(|Ki(u)| + |DKi(u)|) < τ with τ

sufficiently small. Ki(0) = 0 for all i ∈ {2, . . . , n}.

This assumption is reasonable, as both the absorption of energy (in the pro-
cess of so called Inverse Brems–Strahlung) and the energetic losses are almost
entirely carried out in the electron component.

Assumption 8. cij(u) > 0, cij(u) = cji(u) for all i, j ∈ {1, . . . , n}, u ∈ Rn.
For all i, k ∈ {1, . . . , n}, k 6= i, and all u ∈ [0, 1]n, we have

∑
j 6=i cij,k(u)(uj −

ui) + cik(u) > 0.

This assumption may be justified by the fact that the derivatives cij,k(u) are
relatively large only for small values of u thus they are, in a way, damped by the
factors (ui − uj).

Assumption 9. Ci(u) > C0i > 0 for all u ∈ [0, 1]n, i ∈ {1, . . . , n} .
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Assumption 10. For all u ∈ [−1, 2]n and i ∈ {1, . . . , n}, {−→v (u) ·−→n }i,uj ≤
0 for all j 6= i.

This is a simplifying technical condition. It can be fulfilled e.g. if we assume
that −→v i(u) = −→v i(ui). As Ci depend only on ui, then in view of Assumption 9
system (19) satisfies Asumption 3. (The condition ai(ui) > 1 for all ui ∈ [0, 1] can
be achieved by dividing the i-th equation by minui∈[0,1] ai(ui).) It also satisfies
point 4 of Asumption 4.

Now, we will show that Assumptions 6–8 imply Assumption 2. We have, for
i 6= 1, k 6= i,

fi,k(u) =
∑
j 6=i

cij,k(uj − ui) + cik(u) +Ki,k(u),

whereas, for i = 1, k 6= 1,

f1,k(u) =
∑
j 6=1

c1j,k(uj − u1) + c1k(u).

From Assumption 8 it follows that for τ > 0 sufficiently small fi,k(u) > 0. Thus
the monotonicity condition (see Assumption 2 point 1) is satisfied. Also the other
points of Assumption 2 are satisfied. To prove it we must examine the roots of
the system (2) and the structure of eigenvalues of Df at these roots. First, using
the fact that the terms Ki(u) were assumed sufficiently small, we will analyze
the solutions to the simplified system of the form:

(20)

F1(u1) +
∑
j 6=1

c1j(u)(uj − u1) = 0,

∑
j 6=i

cij(u)(uj − ui) = 0,

where i = 2, . . . , n.

Lemma 10. System (20) has only three solutions: 0, 1 and (U0, . . . , U0).

Proof. Adding the equations and using the symmetry cij = cji, we obtain:

(21) F1(u1) = 0.

Hence the first component of the solution to system (20) is equal to one of the
solutions to equation (21). The set of n − 1 equations for i = 2, . . . , n can be
written in the form:

(22) Nn−1(u2, . . . , un)T = −u1(c21(u), . . . , cn1(u))T ,

where

Nn−1 =


−
∑
j 6=2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .

cn2(u) cn3(u) . . . −
∑
j 6=n cnj(u)

 .
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Consider an auxiliary matrix arising from Nn−1 by rejecting from the diagonal
sums the terms ci1, i.e.

−
∑
j 6=1,2 c2j(u) c23(u) . . . c2n(u)
c32(u) −

∑
j 6=1,3 c3j(u) . . . c3n(u)

. . . . . . . . . . . .

cn2(u) cn3(u) . . . −
∑
j 6=1,n cnj(u)

 .

The Perron–Frobenius eigenvalue of this matrix (see e.g. [7], [3]) is equal to 0,
whereas the eigenvector corresponding to this eigenvalue is equal to (1, . . . , 1).
By using Lemma 3 in [8] we infer that all the eigenvalues ofNn−1 will be negative,
hence detNn−1 6= 0. Thus system (22), for a given u1 has exactly one solution.
It is equal to (u1, . . . , u1), where u1 satisfies the equation F1(y) = 0. The lemma
is proved. �

Now, let us find the structure of eigenvalues of Df(ũ) for τ = 0 and ũ equal
to (0, . . . , 0), (1, . . . , 1) and (U0, . . . , U0). For τ = 0, Df(ũ) has the form:

Df(ũ) =


F ′1(ũ1)−

∑
j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)

c21(ũ) −
∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .

cn1(ũ) cn2(ũ) . . . −
∑
j 6=1,n cnj(ũ)

 .

(Note that the terms proportional to ci,k(u)(ũi− ũj) vanish.) Let us consider the
matrix: 

−
∑
j 6=1 c1j(ũ) c12(ũ) . . . c1n(ũ)
c21(ũ) −

∑
j 6=2 c2j(ũ) . . . c2n(ũ)

. . . . . . . . . . . . . . .

cn1(ũ) cn2(ũ) . . . −
∑
j 6=1,n cnj(ũ)

 .

As before one notes that the Perron–Frobenius eigenvalue of this matrix is
equal to 0, whereas the eigenvector corresponding to this eigenvalue is equal
to (1, . . . , 1). Thus by means of Lemma 3 in [8] we have proved the following
lemma.

Lemma 11. For τ = 0, all the eigenvalues of Df(ũ) have their real parts
smaller than zero, if F ′1(ũ1) < 0 and larger than zero, if F ′1(ũ1) > 0.

Lemma 10 and the implicit function theorem imply the following lemma.

Lemma 12. Assume that the function F1(u1) has exactly three zeros: 0, 1
and u0 ∈ (0, 1). Then the only solutions to systems (2) with f given by (17) are
(0, . . . , 0), (u1, . . . , un) = (1, . . . , 1) + O(τ) and (û1, . . . , û1) = (u0, . . . , u0) +
O(τ).

By means of this lemma and the fact that the eigenvalues of a matrix de-
pend continuously on parameters we may prove the lemma corresponding to
Lemma 11.
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Lemma 13. For τ sufficiently small, all the eigenvalues of Df(ũ), for ũ

equal to one of the solutions to system (2), have their real parts smaller than
zero, if F ′1(ũ1) < 0 and larger than zero, if F ′1(ũ1) > 0.

By the linear change of variables ui → (ui)−1ui the largest root of system (17)
becomes equal to (1, . . . , 1) and the intermediate one changes to (u01, . . . , u0n).

Now, we will construct a homotopy satisfying Assumption 5. We divide this
homotopy into three stages.

(1) λ ∈ [2/3, 1]. Let c̃ij = minu∈[−1,2] cij(u), i, j ∈ {1, . . . , n} and let

cij(u) = c̃ij + c∗ij(u).

Let

(23) Gλi = Fi(u) + 3
(
λ− 2

3

)
Ki(u) +

∑
j 6=i

hλij(u)(uj − ui),

where Fi(u) ≡ 0 for i ∈ {2, . . . , n} and

hλij(u) = c̃ij + 3
(
λ− 2

3

)
c∗ij(u).

(2) λ ∈ [1/3, 2/3].

(24) Gλi =
∑
j 6=i

[
3
(

2
3
− λ
)
H + 3

(
λ− 1

3

)
c̃ij

]
(uj − ui)

where H > 0 is sufficiently large.
(3) λ ∈ [0, 1/3].

(25) Gλi =
∑
j 6=i

H(uj − ui) + 3
[(

1
3
− λ
)

+ λδi1

]
F1(ui).

It is obvious that for λ ∈ [1/3, 1] Assumption 2 is satisfied. Also points (a)
and (b) of Assumption 2 are satisfied for λ ∈ [0, 1/3]. We will show that point (c)
is satisfied too. As before we can replace system (2) by the system:

(26) F1(u1) + 3
(

1
3
− λ
)

(F1(u2) + . . .+ F1(un)) = 0,

N ∗n−1(u2, . . . , un)T = − u1(1, . . . , 1)T(27)

−H−13
(

1
3
− λ

)
(F1(u2), . . . , F1(un))T ,

where N ∗n−1 is an (n− 1)× (n− 1) matrix:

N ∗n−1 =


−(n− 1) 1 . . . 1

1 −(n− 1) . . . 1
. . . . . . . . . . . .

1 1 . . . −(n− 1)

 .
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Let us note that |detN ∗n−1| = nn−2. Hence due to the implicit function theorem
for H > 0 sufficiently large and given the right hand sides there exists a unique
solution (u2, . . . , un) of system (27). This solution is equal to (u1, . . . , u1) +
3(1/3 − λ)O(H−1). Putting this relation into (26) we obtain F1(u1) + (1/3 −
λ)
∑
i 6=1 F1(ui) = F1(u1)(1 + (n − 1)(1/3 − λ)) + (n − 1)(1/3 − λ)O(H−1) =

(n−1)(1/3−λ)O(H−1). By the use of the implicit function theorem we conclude
that for every solution (u1, . . . , un) to (26) u1 is equal to one of the states
0, u0, 1, plus O(H−1) terms. Hence in system (27) (F1(u2), . . . , F1(un))T =
(0, . . . , 0)T +O(H−1). This implies that ui = u1+O(H−2), i ∈ {2, . . . , n}. Now,
we may succesively repeat the procedure, to conclude that ui = u1 + O(H−k)
for any natural k. This implies that ui = u1, i ∈ {2, . . . , n} for all λ ∈ [0, 1/3].
Thus Assumption 2 is satisfied for all λ ∈ [0, 1].

Consequently using Theorem 1 we can state the following result.

Theorem 2. Suppose that all the functions in system (19) are sufficiently
smooth and that Assumption 6–9 are fulfilled. Then there exists q∗ ∈ R1 such
that for q = q∗ system (19) has a strictly monotone heteroclinic solution joining
the states 0 and 1.

Acknowledgments. The author wishes to express his gratitude to V. Vol-
pert for helpful discussions.
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ALGORITHM FOR DERIVING
HOMOTOPY MINIMAL PERIODS

OF NILMANIFOLD AND SOLVMANIFOLD MAP

Rafa l Komendarczyk and Wac law Marzantowicz

Abstract. A natural number m is called the homotopy minimal period
of a selfmap f :X → X if it is a minimal period for every map g homoto-
pic to f . In particular this invariant is stable for small perturbations of f .
We present a survey of recent theory describing the set HPer (f) of ho-
motopy minimal periods of a map of compact nilmanifold or exponential
solvmanifold of dimension d. The first step of this construction is so called
linearization of f , well-know for tori, in which a d× d integral matrix Af is
assigned to f . In this paper we present the background that is necessary to
set up a computational procedure with the matrix Af in the input and the
set HPer (f) as the output. A computer implementation of this algorithm
is written as a “Mathematica” notebook.

1. Introduction

The famous Šarkowski theorem characterizes the dynamics (minimal periods)
of a map of interval [25]. The set of minimal periods of self-maps of the circle has
been completely described by Block at al. [3] (see also [6]) in the terms of degree
of map. This led to a natural problem of study the homotopy minimal periods
of self-map f :X → X i.e. these periods which are also minimal periods for every
map g homotopic to f . Since the homotopy minimal period of a manifold map
f preserves under a small perturbation, one can say that homotopy minimal
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periods give an information about a rigid dynamics of f . A natural question:
to give a complete determination of the set HPer (f) of all homotopy minimal
periods in terms of the homological information on f was investigated by several
authors.

After the case of maps of the circle ([3]) in the second instance maps of
two-dimensional torus (X = T 2) has been investigated in a series of papers ([2]),
where the Nielsen theory was first time used to study this problem. Next in the
work of Jiang and Llibre [14] the problem was successfully studied for maps of
d-dimensional torus, d ≥ 1 . Recently and Jezierski and Marzantowicz [9] shown
that the analogous complete description of the set HPer (f) is possible for a map
of a compact nilmanifold.

It is done by usage of the Nielsen theory, which for the torus maps has
very nice algebraic description ([2], [5]) and prepossessing geometric properties
([12], [5], [8], [15], [22], [23]). Making use of these geometric properties Jiang and
Llibre [14] could apply the Anosov and summation formulas

(1) N(f) = |L(f)|, N(fm) = k | m
∑

NPk(f),

where N(f) is the Nielsen number, NPk(f) is the k-periodic Nielsen number, and
L(f) is the Lefschetz number of f (see also [15]), to describe the set HPer (f).
The proof employs very subtle and difficult combinatorial, and number theory,
arguments, which carry over the case of a nilmanifold map ([9]).

It is worth of pointing out that the Anosov and summation formulas do not
hold for every solvmanifold (cf. [15]). However Keppelmann and McCord obse-
rved that these formulas remain true for a map of exponential solvmanifolds i.e.
quotient homogenous spaces G/Γ with the covering simply-connected Lie group
G for which the exponent map is onto ([15]). This fact let us to show [9] that for
a map of a compact solvmanifold (being the quotient G/Γ of a simple-connected
completely solvable Lie group G by a lattice Γ) still holds an analogous theorem
to the main theorems of [14] and [10]. This class of solvmanifolds is included into
the exponential solvmanifolds.

In more detail, let f :X → X be a map of a compact exponential solvmanifold
X, (thus of a compact nilmanifold a particularly of a torus) and A = Af be the
integral matrix which corresponds to a given map f by the Fadell–Husseini and
Mostow fibration (see [15] or [10] for a definition of Af in the nilponent case and
[15] in the case of exponential solvmanifold.

The most important property of A says that for every map f :X → X we
have (cf. [15], [10])

(2) L(f) = det(I −A), thus L(fm) = det(I −Am)

for every m ∈ N.
Let TA := {m ∈ N : det(Id − Am) 6= 0}. We have (see [14, Theorem A], [10,

Theorem A], or [9]):
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Theorem 1.1.

(i) Either L(f) = N(f) = 0 (then HPer (f) = ∅)},
(ii) or N(f) 6= 0 and the sequence {N(fm)} is bounded, then HPer (f) is

finite and its cardinality depends on the size of A (= dimension of X)}
only,

(iii) or {N(fm)} is unbounded then TA is infinite, HPer (f) ⊂ TA, the set
TA \ HPer (f) is finite and its cardinality depends on the size of A
(= dimension of X)} only.

The basic combinatorial argument of the Boju Jiang and Llibre proof of this
theorem was the following observation ([14, Theorem 2])

Let f :T d → T d be a map of the torus. Suppose that N(f) 6= 0. Then a
natural number m ∈ TA does not belong to HPer (f) if and only if there exist

(3) p | m, p prime : N(fm/p) = N(fm).

This statement extends onto the case of a map of nilmanifold or exponential
solvmanifold X (cf. [10], [9]).

The algebraic number theory argument of the Boju Jiang and Llibre proof
of the main theorem says that the equality (3) could happen only for finitely
many m ∈ [1,m0] ⊂ N and the constant m0 depends on d (the size of A = the
dimension of X) only. In other words there exists a constant m0(d) such that for
every map f :X → X and every m ≥ m0 we have N(fm) > N(fm/p) for every
prime divisor p of m.

The above let us to construct an algorithm which checks whether a given
natural number is a homotopy minimal period of a given map of a manifold
from the discussed class. Consequently it gives the set HPer (f) ⊂ TA ⊂ N. The
starting point of the procedure is the integral d×d matrix Af of the linearization
of f .

The paper can be outlined as follows. In Section 1 we remind the information
about the definition of the linearization Af of a map f of a compact nilmani-
fold or exponential solvmanifold. We must emphasize that it is a topological
part of consideration and there is not any algorithm for it. We present different
definitions of this notion and give some examples.

Section 2 is devoted to a discussion of the effectiveness of computation of the
constant m0(d) which appears in the mentioned Boju Jiang and Llibre theorem.
We quote some known results of number theory. Finally we note that to describe
the set HPer (f), for a given f it is enough to find m̆(f) such that for every
m ≥ m(f) we have N(fm) > N(fm/p) for every prime divisor p of m. The
constant m̆(f) = m̆(Af ) is not universal with respect to f but unquestionably
smaller then m0(d) of [14] and effectively estimated in the terms of spectral
radius of Af . Finally we discuss the class of integral matrices which spectrum
intersect the unit circle at the nontrivial roots of unity only (Assumption 5).
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Under this we are able to show that there exists m̃(A) � m̆(A) also effectively
given in terms of spectral invariants of A (Theorem 3.5, Corollary 3.6) with the
same property as m̆.

In Section 4 we describe an implementation of the computational procedure
which for a given matrix A ∈Md×d(Z) derive the set HPer (f) ⊂ TA by excluding
these m ∈ TA ⊂ N for which equality 3 happens for some p | m. The estimate
of m̆(A), or m̃(A) if Assumption 5 is satisfied, let us stop the checking process
at this point. The implementation is written as a “Mathematica” notebook.

In the last Section 5 we verify our program comparing its output with tabled
lists of all minimal periods different then N of the three-dimensional torus T 3

of the paper [14]. The same we do for non-abelian three-dimensional nilmani-
fold comparing with the results of [11] and endowing with patterns of matrices
corresponding given cases.

2. The linearization of a map

Reminding a standard terminology, let f :X → X be a self-map of a compact
connected polyhedron X, and let n be a natural number. Let Fix (f) be the fixed
point set of f , Pn(f) := Fix (fn), and

Pn(f) := Pn(f) \
⋃
k<n

P k(f),

the set of periodic points with least period m.
Recall that Per (f) denotes the set of all minimal periods of f i.e. Per (f) :=

{k ∈ N; Pk(f) 6= ∅}. When a map g : X → X is homotopic to f , we will write
g ' f . Define the set of homotopy minimal periods as the set

HPer (f) :=
⋂
g'f

Per (g).

Boju Jiang and Llibre use the name “the minimal set of periods” but we hope
that the one we use here more emphasizes that n ∈ HPer (f) if and only if n is
a minimal period for every g homotopic to f .

Homogeneous spaces of nilpotent Lie groups are called nilmanifolds. A com-
pact manifold X is a nilmanifold if and only if it is of the form G/Γ where G
is a simply-connected nilpotent Lie group of dimension d and Γ is a lattice of
rank d of G i.e. a discrete, torsion free, subgroup of G of rank d [18]. Since G
is homeomorphic to the Euclidean space Rd, X = G/Γ is K(Γ, 1) space and
moreover the nilmanifold X = G/Γ is determined by Γ, up to diffeomorphism.

We would like to remind that the simplest non-trivial examples of com-
pact nilmanifolds are Iwasawa manifolds Nn(R)/Nn(Z) and Nn(C)/Nn(Z[ı]),
where Z[ı] is the ring of Gaussian integers and for any ring R with unity, Nn(R)
denotes the group of all unipotent upper triangular matrices whose entries are
elements of the ring R.
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For the next we need a definition of nilpotent class in the sense of Fadell–Hus-
seini ([5]). Let N denote a class of compact connected manifolds satisfying the
following conditions:

(1) N contains all tori (products of circles)
(2) For any map g:X → X, where X ∈ N is not a torus, there is a com-

mutative diagram
T

f0−−−−→ Ty y
M

f−−−−→ M

p

y yp
B −−−−→

f
B

where p is a principal T -fibration, T a torus, B ∈ N and f ' g.

We call a class of manifolds N satisfying N.1 and N.2 a nilpotent class.
Fadell and Husseini showed that the class of compact nilmanifolds is a nilpo-

tent class ([7, Theorem 3.3]). This allows to prove the following theorem (cf. [17]).

Theorem 2.1. Let f :X → X be a map of a compact nilmanifold X of
dimension d. Then there exists a d × d matrix A with integral coefficients such
that, for every n ∈ N, L(fn) = det(1−An).

Proof (see also [8], [15]). By [4] the proposition holds for tori. We may take as
A the n× n matrix representing the induced endomorphism of the fundamental
group. Now we prove the general case by induction. Suppose that our thesis
holds for all nilmanifolds of dimension < d.

If a nilmanifold Md is a torus then the statement holds by the above. Other-
wise by [5] there exists a principal torus bundle T k ↪→ Xd p→ B where B is a
nilmanifold of dimension d−k < d. Moreover any self-map f :Xd → Xd is homo-
topic to a fibre map g:Xd → Xd i.e. to a map such that the following diagram
commutes

X
g−−−−→ X

p

y yp
B −−−−→

g
B

The map g could be obtained as follows.

(1) Since X is the K(Γ, 1) space, homotopy classes of of selfmaps are in 1–1
correspondence with endomorphisms of Γ we take f∗:π1(X) = Γ → Γ
the induced homomorphism, which we denote by φ.

(2) Since G is a nilpotent group and Γ ⊂ G a lattice, every homomorphism
φ: Γ→ Γ extends (uniquely) to the homomorphism Φ:G→ G.
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(3) The homomorphism Φ:G→ G preserves the subgroup Γ, also the com-
mutator G1 := [G,G], thus every term Gi := [G,Gi−1], Gn = e, of the
nilpotent central tower, and consequently every subgroup Γi := Gi ∩ Γ.

(4) From (3) it follows that Φ:G → G induces maps [Φ]:X = G/Γ →
G/Γ = X, and also Gi/Γi, e.g. [Φ] : Z(G)/Z(Γ) = Gn−1/Γn−1.

(5) By the construction [Φ]:X → X induces the homomorphism f∗ on the
fundamental group, consequently we can take [Φ] as g.

Using the product property of Lefschetz number of a fibre map of the princi-
pal bundle we may assume that g has a fixed point b0. By the induction assump-
tion there exists a matrix A ∈M(d−k)×(d−k)(Z) such that L(gn) = det(I −An).
Similarly let A′ ∈Mk×k(Z) be a matrix satisfying L(fnb0) = det(I −(A′)n) where
fb0 :T

k → T k denotes the restriction of f to the fibre T k = p−1(b0).
Since L(fb0) is independent on b0, once more using the product formula we

have

L(fn) = L(f
n
)L((f ′)n) = det(I −An) det(I − (A′)m) = det(I −Am),

where

A :=
[
A 0
0 A′

]
∈Mr×r(Z) �

For given A ∈Md×d(Z) we set TA := {n ∈ N | det(I −An) 6= 0}. If A = Af
is a matrix associated to a selfmap f :X → X of a compact nilmanifold X then
we call TA the set of algebraic periods of f .

Due the Nomizu and Hattori ([17], [7]) theorems the linearization matrix Af
can be constructed also in a differential way. Let V = Te be the tangent space
to G at e, V ∗ its dual i.e. the cotangent space, ΛG := (

∑d
0 ∧iV ∗, d) the complex

of left invariant differential forms on G, called Eilenberg–Chevalley complex,
with the differential d defined by the Lie bracket on G. Now we would like to give
a differential construction of the matrix Af for completely solvable solvmanifolds.

We start with the following result of Hattori ([7]) generalizing the earlier
result of Nomizu ([17]) for nilmanifolds.

Theorem 2.2. Let (Λ∗G∗, δ) denote the Eilenberg–Chevalley complex asso-
ciated to the Lie algebra G of a simply connected completely solvable Lie group G.
If Γ ⊂ G is a lattice, then H∗(G/Γ;R) ∼= H∗(Λ∗G∗, δ).

On the other hand we have the following property of the compact completely
solvable solvmanifolds.

Proposition 2.3. Every continuous map f :G1/Γ1 → G2/Γ2 between com-
pletely solvable solvmanifolds is homotopic to the map induced by a homomor-
phism F :G1 → G2.

Let G/Γ be a completely solvable compact solvmanifold f :G/Γ → G/Γ
a map and F :G→ G the homomorphism given by Proposition 2.3.
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Let next A denotes a matrix representing the map F ∗:G∗ → G∗ induced by F
on the Lie algebra G.

Theorem 2.4. Let f :G/Γ → G/Γ be a self map of a compact completely
solvable solvmanifold of dimension d. Then d×d-matrix A defined above we have

L(fm) = det(I −Am).

Proof. See [9]. �

At the end of this section we formulate a theorem which is rather a reformula-
tion of what was stated before however it elucidates the matter more apparently.
As we said every integral matrix A ∈ Md×d(Z) induces a map [A]:T d → T d,
thus every A ∈ Md×d(Z) is a linearization of a selfmap of the torus. On the
other hand for a selfmap f :X → X of a compact nilmanifold, or solvmanifold
X its linearization Af has a special form namely it is a direct sum of dj × dj ,
1 ≤ j ≤ r, blocks Aj , where r is the length of nil, respectively solv-tower and
dj is the dimension the consecutive abelian factor. Observe that to find the set
HPer (f) we have to make only algebraic operation with the matrix Af . This
leads to the following theorem which says that the case of torus is the richest
one from the point of view of all possible sets of homotopy minimal periods.

Theorem 2.5. Let f :X → X be a map of a compact nilmanifold, or com-
pact exponential solvmanifold of dimension d, Af ∈ Md×d(Z) its linearization,
and [Af ]:T d → T d the map induced by Af . Then HPer (f) = HPer ([Af ]). Con-
sequently f belongs to the empty, finite, or generic case if and only if [Af ] belongs
to the corresponding case. Subsequently, if the pair of sets (HPer (f), TAf ) occurs
for a map of X then it occurs for a selfmap of the torus T d.

But the above condition A =
⊕r

j=1Aj is not the only restriction. In [11]
it is shown that for a map of three dimensional non-abelian nilmanifold there
is additional relation for the matrix Af . This shows that the variety dynamics
of maps, measured by the sets of homotopy minimal periods, is essentially less
complicated in this case.

3. Number theory

We begin with a short analysis of the proof of number theoretical part of
Theorem 1.1. In [14] it is based on a deep theorem from algebraic number theory
proved by the authors. For convenience of the reader we present the statement
of this theorem. It is worth to emphasize that due to its character it is not
connected with the geometry of the space thus holds as well for the torus as
compact nilmanifold as compact exponential solvmanifold.

Let α be an algebraic number. Suppose its minimal polynomial is a0xd +
a1x

d−1 + . . . + ad with roots α1, . . . , αd. Then d is called the degree of α. The
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measure of α is defined as

M(α) := a0

d∏
i=1

max{1, |ai|}.

The crucial step of the proof of Theorem 1.1 (cf. [14, Theorem 4.2]) is the
characterization of an algebraic number.

Theorem 3.1. For every algebraic number α of degree d and every natural
number m such that αm 6= 1, we have the inequality |1−αm| > e−9αH

2
/2, where

a = max
{

20, 12.85| logα|+ 1
2

logM(α)
}
,

H = max
{

17,
d

2
logm+ 0.66d+ 3.25

}
.

As a consequence of this estimate Jiang and Llibre derived an estimate for
N(fm)/N(fn), providing N(fm) 6= 0. Note that then N(fn) 6= 0 as follows
from [14, Theorem 1.6(ii)]. More precisely, the final inequality of the proof of
Theorem 4.2 of [14] looks as follows. Let ρ be the maximal module of eigenvalues
of A i.e. the spectral radius of A. Then

(4)
N(fm)
N(fn)

>
ρm/2 − 1

e9d(41.4+(log ρ)/2)(d logm)2
.

In [14] it is shown that the right hand side is greater than 1 provided m is
larger than m0(d) depending on d only. Moreover the value of m0 can be derived
in an effective, but complicated way [!].

We turn now to our task of showing how the inequality N(fm)/N(fn) > 1
follows from the mentioned result of Schinzel. To do this we need new notions
and definitions. Let α, β be non-zero integers of an algebraic number field K
of degree d. A prime ideal B of K is called a primitive divisor of αm − βm if
B | αm − βm, but B does not divide αn − βn if n < m. In 1974 A. Schinzel
proved the following theorem (cf. [19, Theorem I]).

Theorem 3.2. If (α, β) = 1 and α/β is not a root of unity then αm − βm
has a primitive divisor for all m > m̃0(d), where d is the degree of α/β and
m̃0(d) is effectively computable.

Let N(fm) = |det(Am − I )|, A ∈Md×d(Z). For every eigenvalue λj ∈ σ(A),
1 ≤ j ≤ d, take αj := λj and βj := 1. By the definitions αj , βj are integers of
the algebraic field given by the characteristic polynomial of A. If m ∈ TA i.e.
N(fm) 6= 0 then the hypothesis of the Schinzel theorem is satisfied. Note that if
n | m, k = m/n, then

(λm − 1) = (λn − 1)[1 + λn + λ2n + . . .+ λ(k−1)n].
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Consequently, for any 1 ≤ j ≤ d such that |λj | > 1 and m ∈ TA, m̃ > m0(dj)
there exists a primitive ideal Bj ⊂ K such that Bj | [1+λnj +λ2nj + . . .+λ

(k−1)n
j ]

as follows from the Schinzel theorem. Observe also that d(αj) = d(λj) is a divisor
of d := degreeK and m̃0(dj) ≤ m0(d), by an argument of proof of Theorem 3.4
contained in [19]. From this it follows that

Bj | N(fm)/N(fn) =
j∏
1

[1 + λnj + λ2nj + . . .+ λ
(k−1)n
j ], for every 1 ≤ j ≤ d.

The above implies that then there exists a prime q ∈ P ⊂ N such that q
divides N(fm)/N(fn) provided m ∈ TA, m > m̃0(d). Indeed it is enough to take
q ∈ P, where qf is the norm |Bj | of the ideal Bj , since Bj ∩Z is a prime ideal of
Z. This shows that N(fm)/N(fn) > 1 and consequently proves Theorem 1.10.

It is worth of pointing out that either the proof of referred Schinzel the-
orem 3.2 or the Jiang Llibre theorem 3.1 are based on the Baker inequality
(see [19] for more details).

We would like to point out that the problem of an effective estimate of m̃0(d)
is connected with so called Lucas-Lehmer numbers (see [20] for details).

On the other hand to exclude these numbers m ∈ TA which are not the ho-
motopy minimal periods of f with Af = A we do not need to work with the
mentioned constant m0(d), or m̃0(d) but use the inequality 4.

Corollary 3.3. Let f :X → X be a map of a compact nilmanifold or compact
exponential solvmanifold X of dimension d and A = Af ∈ Md×d its lineariza-
tion. Let next ρ ∈ R be its spectral radius. Suppose that m̆0(A) is the smallest
number for which

ρm/2 − 1
e9d(41.4+(log ρ)/2)(d logm)2

> 1.

Then TA \ HPer (f) ⊂ [1, m̆0(A)] and m ∈ TA \ HPer (f) if and only if there
exists prime p | m such that

N(fm) = |det(I −Am)| = |det(I −Am/p)| = N(fm/p).

Remark 3.4. In other words for a matrix A ∈ Md×d(Z) to determine the
set HPer (f) ⊂ N we check all ratios N(fm)/N(fm/p) for m ∈ TA m ≤ m̆(ρ, d),
ρ = sp (A) the spectral radius, p-prime, p | m.

Note that the number m̆ is also large in general, which could lead to compu-
tational problems. If the spectrum of A intersected with the unit circle consists of
the roots of unity only, in particular if it is separated from the unit circle, then
the estimate is simpler. This let us to derive a constant m̃(f) = m̃(Af ) < m̆

essentially smaller than m̆ such that TA \ HPer (f) ⊂ [1, m̃]. To do it we need
new notions.
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Let A be d× d integral matrix. Assume that sp (A) := ρ > 1 and that

(5) σ(A) ∩ {|z| = 1} ⊂ Cq1 ∪ . . . ∪ Cqr ⊂ C,

where Cq ⊂ S1 denote the set of roots from unity of the order q.
First we put an order in σ(A) such that

ρ = |λ1| ≥ |λ2| ≥ . . . ≥ |λr| > 1

= |λr+1| = . . . = |λr+s| > |λr+s+1| ≥ . . . ≥ |λr+s+t|.

where r+s+t = d. We denote the set {λ1, . . . , λr} by σ>1(A), the set {λr+1, . . . ,
λr+s} by σ1(A), and {λr+s+1, . . . , λr+s+t} by σ<1(A) respectively.

Since |λj | > 1, for 1 ≤ j ≤ r, there exists n(j) ≥ 1, such that |λj |−n(j) ≥ 2.
Put ñ := max1≤j≤r n(j). Note that ñ = n(r).

Set ρ̃ :=
∏
1≤j≤r |λj |. Next put ρ := |λr| the minimal absolute value of

eigenvalues of A which are greater than 1.
Let δq > 0 be the length of the side of the regular q-polygon in the unit circle

i.e. δq = 2 sin(π/q). Let next q0 := maxr+1≤j≤r+s qj and δ = δ(A) := δq0 .
Finally, since |λj | < 1, for r+s+1 ≤ j ≤ r+s+ t, there exists k(j) ≥ 1, such

that |λ|k(j) ≤ 1/2. Put k̃ := maxr+s+1≤j≤r+s+t k(j). Note that k̃ = k(r+ s+ 1).

Theorem 3.5. Let f :X → X be a map of a compact nilmanifold or expo-
nential solvmanifold X of dimension d and A ∈ Md×d(Z) be its linearization.
Suppose that the spectral radius ρ = sp (A) > 1 and

σ(A) ∩ {|z| = 1} ⊂ Cq1 ∪ . . . ∪ Cqr ⊂ C.

Let ρ̃, ñ, δ(A), and k̃ be the constants defined above. If m̃ is the smallest natural
number m ≥ max{ñ, k̃} such that ρ̃ m/2 > 2d2r2t/δs then TA \HPer (f) ⊂ [1, m̃].
The same holds if we take m̃ is the smallest natural number m̃ ≥ max{ñ, k̃} such
that ρ̃ m̃/2 > 22d/δs.

Proof. We estimate the value

(6) N(fm) = |L(fm)| = |det(I −Am)| =
∣∣∣∣ ∏
λj∈σ(A)

(λmj − 1)
∣∣∣∣

from above and below.
First note that the spectral radius of ∧∗A, the map induced by A on the real

cohomology of torus, is equal to ρ̃ = |λ1| . . . |λr|. Consequently,

(7) |L(fm)| ≤ ρ̃ m rankH∗(T d) = ρ̃ m2d.

To give an estimate from below we split our multiply 6 into three factors

(8) |L(fm)| =
∣∣∣∣ ∏
λj∈σ>1(A)

(λmj − 1)
∣∣∣∣∣∣∣∣ ∏
λj∈σ1(A)

(λmj − 1)
∣∣∣∣∣∣∣∣ ∏
λj∈σ<1(A)

(λmj − 1)
∣∣∣∣

:= Π1Π2Π3.
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We have

Π1 =
∣∣∣∣ ∏
λj∈σ>1(A)

(λmj − 1)
∣∣∣∣ ≥ ∏

λj∈σ>1(A)

(|λj |m − 1)(9)

=
∏

λj∈σ>1(A)

|λj |m
(

1− 1
|λj |m

)
≥ ρ̃ m

2r

if m ≥ ñ. Next note that for every m ∈ TA we have

(10) Π2 =
∣∣∣∣ ∏
λj∈σ1(A)

(λmj − 1)
∣∣∣∣ =

∏
λj∈σ1(A)

|λmj − 1| ≥ δs,

because here every λj is a root of unity and λmj 6= 1. Finally

(11) Π3 =
∣∣∣∣ ∏
λj∈σ<1(A)

(λmj − 1)
∣∣∣∣ ≥ ∏

λj∈σ<1(A)

(1− |λj |m) ≥ 1
2t

if m ≥ k̃. Combining (9), (10) and (11) we get the estimate from below

(12) |L(fm)| = |det(I −Am)| ≥ ρ̃ m δs

2r2t
,

if m ∈ TA and m ≥ max{ñ, k̃}.
Suppose that m ∈ TA and m ≥ max{ñ, k̃}, and n | m. From (7) and (12) it

follows that |L(fm)|/|L(fn)| > 1 if

(13)
ρ̃m

ρn
≥ ρ̃m

ρ̃m/2
>

2d2r2t

δs
,

because ρ̃m/ρn ≥ ρ̃m/ρm/2 as n ≤ m/2. This proves the statement with respect
to Theorem 1.1.

The second inequality gives stronger requirement on m̃ than the first, because
r + s+ t = d, and consequently r + s ≥ d. This completes the proof. �

Corollary 3.6. Suppose that A satisfies Assumption 5. Then TA\HPer (f)⊂
[1, m̃] if m̃ ≥ max{ñ, k̃} and

m̃ >
2(d+ r + t) log 2− 2s log δ

log ρ̃
or m̃ >

2(d+ r + t) log 2− 2s log δ
r log ρ

.

Proof. Note that ρ̃ ≥ ρ r, by the definition. The statement follows by taking
the logarithms of the both sides of inequality of Theorem 3.5. �
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Example 3.7. To illustrate the difference between the order of constants
m̆(A) of Corollary 3.3 and m̃(A) of Corollary 3.6 we derive their approximate
values for a 3× 3 matrix. Let A be an integral 3× 3 matrix i.e. d = 3 such that
the spectral radius ρ = 5, s = 2, thus t = 1, r = 1 and ρ = ρ = 5.

It is easy to check that k̃ = 1, ñ = 1, and q ≤ 6, which implies that δ ≥ 1,
and consequently m̃ = 2 by the second inequality of Corollary 3.6.

On the other hand one can check that for this data m̆ ≥ 10000000 by the
inequality of Corollary 3.3.

4. Explication of the algorithm construction

Based on Theorem 1.1 and auxiliary Corollaries 3.3, 3.6 one can easily con-
struct a computer algorithm which effectively calculates homotopy minimal pe-
riods for selfmaps of nilmanifolds. For the purpose of this work, the algorithm
has been implemented as a procedure under Wolfram’s Mathematica (available
at http://www.math.gatech.edu/∼rako in Min P.nb file).

An input to the routine is an integral d× d matrix A = Af associated to the
self-map f :X → X, an output is a listing of sets TA, HPer (f) and TA \HPer (f).
In order to establish a content of TA, the algorithm finds a characteristic polyno-
mial χA of A and determines multiplicities of roots of unity (it is accomplished
by reduction of χA through cyclotomic polynomials). Since HPer (f) is a subset
of TA, the next natural step is to establish which m ∈ TA belong to HPer (f),
this is verified by checking the condition N(fm) = N(fm/p) of the main the-
orem. Although, it has to be done only for finitely many m ∈ [1,m0] ∩ TA, the
universal bound m0 given by Corollary 3.3 comes out “too big” in general (i.e. in
the generic case provided by the main theorem), which might lead to long exe-
cution time. A partial remedy for this situation is given by Corollary 3.6, which
provides much smaller bound and is valid in most of the cases e.g. selfmaps of
3-nilmanifolds (see Theorem 14). Therefore a crucial step in the algorithm invo-
lves establishing a proper value for m0, then verifying which m ∈ [1,m0] ∩ TA
belongs to HPer (f). The last step can be done easily by applying the formula
N(fm) = |det(I −Am)| in the condition N(fm) = N(fm/p).

Below, we give the list of steps which constitute the algorithm. Some parts of
the code are also included, which allows a potential user to relate specific parts
of the source code to a description of the steps. Parts of the code included are
rather self-explanatory thus to avoid lengthy detours only short comments, are
provided.

4.1. Determining the set of algebraic periods TA. According to the
definition Lefschetz of TA it is clear that TA = N \M , where M is an ideal in N
generated by a set of multiplicities of unit roots of the characteristic polynomial
χA. Equivalently an M can be viewed as a set of degrees of these cyclotomic
polynomials which divide χA. Since the reduced polynomial χ̃A comes handy
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later in the process, it is useful to determine M during the reduction of χA via
cyclotomic polynomials.

. . . setting initial variables, χA ≡chp1, χ̃A ≡chp2, . . . etc.
chp1 = Det[t Id - mat]; i = 1; (* characteristic polynomial *)
chp2 = chp1; cyc = Cyclotomic[i, t];
cyc1 = {}; cyc3 = {}; cyc0 = 1;
. . . this loop divides χA by consecutive cyclotomic polynomials up to degree
deg (χA)2

(*reduce by cyclotomic polynomials*)
While[deg[cyc, t] < (deg[chp2, t] + 1)∧2,
chp3 = Simplify[chp2/cyc];
If[PolynomialQ[chp3, t], chp2 = chp3; cyc0 *= cyc;
cyc1 = Join[cyc1, cycroots[i]]; cyc3 = Append[cyc3, i]; i = 0];
cyc = Cyclotomic[++i, t];];
. . . set of generators for M is defined in cyc3,
Union removes multiple entries . . .
cyc = Union[cyc3, cyc3]; (* reuse cyc *)
. . .

4.2. Determining the case of A. By the main theorem, a self-map f can
be classified into three cases (i)–(iii), called respectively empty (E), finite (F)
and generic (G). In order to establish a case for the given A, it is required to
verify a set of conditions posed in the theorem.

Case (E). L(f) = N(f) = 0.
Occurs if 1 is an eigenvalue of A, which in sequel implies TA = ∅ (by Le-

fschetz). Since no calculation is necessary the procedure ends at this point.

(*CASE : EMPTY*)
If[Intersection[cyc, 1] == 1, Print["case: EMPTY"];
Print["TA is empty."]; Return[]];

Case (F). N(f) 6= 0 and the sequence {N(fm)} is bounded.
Occurs if eigenvalues of A are zero or roots of unity. From Lefschetz it can be

concluded that {N(fm)}m is h-periodic. The constant h depends only on d, and
can be defined as the least common multiple of the set {k ∈ N:φ(k) ≤ d}, where
φ(k) stands for the Euler function (i.e. φ(k) is a number of these m ∈ N which are
relatively prime to k, see e.g. [9]). Consequently, in order to determine HPer (f),
it suffices to check the condition N(fm) = N(fm/p) only for m ∈ [1, h] ∩ TA.

(*CASE : FINITE*)
Print["case: FINITE"];
(*calculation of h(n)*)
. . . computing a constant h ≡ hn, . . .
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. . . (invphi returns an inverse image φ−1 of the Euler function φ) . . .
hn = LCM @@ Union @@ Table[invphi[i], {i, 1, d}];
Ta = Divisors[hn];
(*ind is a complement of the ideal*)
ind = Table[i, {i, 1, Max @@ Ta}];
ind = Complement[ind,Union @@ Map[Table[i - 1, {i, 1, Max @@ Ta,
#}] &, cyc]];
. . . TA is obtained as a set of divisors of h, except multip. of roots of unity . . .
Ta = Intersection[ind, Ta];
divs = Join[{{1}}, Map[Map[#[[1]] &, FactorInteger[#]] &,
Drop[Ta, 1]]];
. . .

Case (G). {N(fm)} is unbounded.
Occurs if a spectral radius of A is greater than 1 (i.e. there exists at least

one eigenvalue of module > 1). In this case, to determine HPer (f), it suffices to
check the condition N(fm) = N(fm/p) only for m ∈ [1,m0] ∩ TA. As already
mentioned, the crucial step here is to find an appropriate bound m0, which
limits a range of search. For this task the algorithm first checks the assumptions
of Theorem 3.5 i.e. the “spectral condition”, and if they hold the estimate from
Corollary 3.6 is applied.

(*CASE: GENERIC*)
Print["case: GENERIC"];
. . . checking the spectral condition . . .

If[(mrt > 1) && (mit > 0),(* spectral condition is satisfied *)
Print["Spectral condition satisfied . . . "];
eigenv1 = Map[Abs[#] &, eigenv1]; . . .
. . . calculating constants r, s, t necessary to estimate m0 (see Theorem 3.5)
dots
tt = Length[eigsm]; (* # of < 1 *)
rt = Length[eigla]; (* # of > 1 *)
st = d - tt - rt; (* # of == 1 *)
nt = Round[(1/Log[2, Min[eigla]] + 1)]; (* n - tilde *)
If[st != 0, kt = (1/Log[2, 1/Max[eigsm]] + 1), kt = 0];
(* k - tilde *)
. . . calculating m0 from the formula in Corollary 3.6 . . .
mt = Round[(2*(d + rt + tt) - If[cyc=={}, 0, 2*st*Log[2,
2*Sin[Pi/Max[cyc]]]])/Log[2,Times @@ eigla]] + 1;
cr = mt;Print["m0=", cr];

If the “spectral condition” is not satisfied then m0 has to be estimated from the
formula obtained in Corollary 3.3
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Print["Searching for an upper bound of m0 ..."];
. . . ratio calculates the right hand side of the inequality given in
Corollary 3.3 . . .
ratio[m , rho , d ]:=(rho∧(m/2) - 1)/(Exp[9 d (41.4 + .5 Log[rho])
(d Log[m])∧2]);
. . . searching for the first m which is a candidate for m0 . . .
cr = 1; While[ratio[2∧(cr), mrt, dg2] <= 1, cr++;];
. . . refining the previous m0 with the bisection method . . .
Print["Searching for m0 with the bisection method ..."];
cr1 = 2∧(cr - 1); cr2 = 2∧cr;
While[Abs[cr1 - cr2] > 1, cr = Floor[(cr1 + cr2)/2];
m1 = ratio[cr, mrt, dg2];
If[m1 > 1, cr2 = cr, cr1 = cr];];
cr = cr2; (*< -final m0 for GENERIC case*)
Print["m 0=", cr];];
. . .

4.3. Final step — checking the condition N(fm) = N(fm/p) for m ∈
[1,m0]∩TA to determine HPer (f). SinceN(fm) = |det(I−Am)|, verifying the
condition N(fm) = N(fm/p), may be accomplished by raising A to appropriate
powers and calculating determinants. In order to speed up the procedure all the
determinants are calculated in advance and buffered. It is worth pointing out
that this calculation may be based on eigenvalues of A (i.e. one might exploit
the formula (6)). This approach, however, may lead to the numerical precision
problems, contrary to the above method, where the calculation is based purely
on integer numbers.

. . . buffering determinants of matrices I −Am . . .

Print["Calculating determinants ..."];
matsd = Table[Abs[Det[Id - #]] &, mats];
Print["Calculating minimal periods ..."];
minp = {}; For[j = 1, j < Length[Ta], j++, i = Ta[[j]];
pom = matsd[[i + 1]];
. . . marking m’s which satisfy the condition N(fm) = N(fm/p) . . .
pom1 = Map[ If[(Greater[pom, N[matsd[[i/# + 1]]]] || ((i == 1) &&
(pom != 0))), 1, 0] &, divs[[j]]];
pom1 = Times @@ pom1;
If[pom1 == If[dg2 > 0, 0, 1], minp = Append[minp, i]] ];
(* end For *)
. . . printing out the results . . .
If[cyc != {}, Print["TA=N", cyc, "N"], Print["TA=N"]];
If[dg2 == 0,(*for finite case display HPer*)
Print["Result HPer=", minp];,
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(*for generic case display TA/HPer*)
Print["Result TA \HPer =", minp];]

The last paragraph of this section is devoted to the example.

Example. MinP[{{−5,−4, 3}, {7, 4, 2}, {2, 1, 1}}, 100].
The first parameter in MinP routine is the matrix A = Af of a selfmap. The

second parameter determines the bound m0, which allows restricting the search
in the case when the “spectral condition” is not satisfied and m0 is� 1. However
if the second parameter is set to zero then m0 is calculated automatically (see
the step 2 of the algorithm).

Results.
Characteristic polynomial: 1 - t + t∧3
Reduced characteristic polynomial: 1 - t + t∧3
Roots of unity: {}
Modules of roots of char. polynomial: 1.3247, 0.8688, 0.8688
Spectral radius: 1.3247
case: GENERIC
Spectral condition satisfied . . .
m0=44
Assuming constant m0=44
Calculating prime divisors . . .
Calculating matrices . . .
Calculating determinants . . .
Calculating minimal periods . . .
TA = N
Result TA \HPer = {2, 6, 8, 9, 10}

5. Examples of matrices

In this section we list all possible sets of homotopy minimal periods of maps
of compact three nilmanifolds. For the selfmaps of the torus T 3 it was derived by
Jiang and Llibre in [14] (cf. [14, Theorem 3]) and we rewrite it. They gave this
classification in the term of the coefficients a, b, c of the characteristic polynomial
of A. To enrich these classification we endow every case with the matrix A which
has the given characteristic polynomial and the set TA. Next we present the same
list for maps of compact three dimensional nilmanifold X not diffeomorphic to
the torus. This classification does not depend on the topological isomorphism
class (homotopy type) of X and was given in [11]. And also here we present
matrices that induce a given map.

The torus. For a given integral matrix A ∈M3×3(Z) let

det(tI −A) = t3 − at2 + bt− c
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be its characteristic polynomial. Remind that a = trA, b = tr ∧2 A, and c =
tr ∧3 A = detA.

For selfmaps of T 3 we have the following 10 cases of type (F) — finite:

1. (a, b, c) = (0, 0, 0), TA = N, HPer (A) = {1},

matrix pattern:

 0 0 0
0 0 0
0 0 0

 .
2. (a, b, c) = (−1, 0, 0), TA = N \ 2N, HPer (A) = {1},

matrix pattern:

−1 −1 −1
−1 −1 −1

1 1 1

 .
3. (a, b, c) = (−2,−1, 0), TA = N \ 2N, HPer (A) = {1},

matrix pattern:

−2 −2 −2
−2 −1 −2

1 2 1

 .
4. (a, b, c) = (−1,−1, 0), TA = N \ 3N, HPer (A) = {1},

matrix pattern:

−1 −1 −1
0 −1 −1
1 1 1

 .
5. (a, b, c) = (0, 1, 0), TA = N \ 4N, HPer (A) = {1, 2},

matrix pattern:

−1 −1 −1
0 0 −1
1 1 1

 .
6. (a, b, c) = (1, 1, 0), TA = N \ 6N, HPer (A) = {1, 2, 3},

matrix pattern:

−1 −1 −1
0 1 −1
1 1 1

 .
7. (a, b, c) = (−3, 3, 0), TA = N \ 2N, HPer (A) = {1},

matrix pattern:

−2 −2 −2
1 −2 −2
−1 1 1

 .
8. (a, b, c) = (−2, 2, 1), TA = N \ (2N ∪ 3N), HPer (A) = {1},

matrix pattern:

−2 −2 1
0 −1 1
−1 −2 1

 .
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9. (a, b, c) = (−1, 1,−1), TA = N \ 2N, HPer (A) = {1},

matrix pattern:

−1 0 −1
0 −1 −1
1 1 1

 .
10. (a, b, c) = (0, 0,−1), TA = N \ 2N, HPer (A) = {1, 3},

matrix pattern:

−1 −1 −1
0 0 −1
0 1 1

 .
Remind that we say an integral matrix A with ρ = sp (A) > 1 represents

the special case if TA 6= HPer (A) . Additionally we say that a special case is
exceptional if it corresponds to a a single point (a, b, c) in the parameter space
Z× Z× Z (not a line or two dimensional hyper-subspace).

For selfmaps of T 3 we have infinite series of special cases listed in Theorem C
of [14] with TA \ HPer (A) ⊂ {2, 3, 3, 4} and the following 9 exceptional cases of
type (G) – generic (also listed there but without the matrix which gave them):

1. (a, b, c) = (0,−1, 1), TA = N, TA \HPer (A) = {2, 3, 5, 8},

matrix pattern:

−1 −1 −1
0 −1 −1
1 1 2

 .
2. (a, b, c) = (−1, 0, 1), TA = N, TA \HPer (A) = {2, 3, 5, 8},

matrix pattern:

−1 −1 −1
0 −1 −1
1 0 1

 .
3. (a, b, c) = (0, 1,−1), TA = N, TA \HPer (A) = {2, 4, 5, 6},

matrix pattern:

−1 −1 −1
1 0 −1
0 1 1

 .
4. (a, b, c) = (−1, 0, 1), TA = N, TA \HPer (A) = {2, 4, 5, 6},

matri pattern:

−1 −1 −1
0 −1 −1
1 0 1

 .
5. (a, b, c) = (1, 0,−1), TA = N, TA \HPer (A) = {2, 6, 8, 9, 10},

matrix pattern:

−1 −1 −1
0 1 1
1 0 1

 .
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6. (a, b, c) = (0,−1,−1), TA = N, TA \HPer (A) = {2, 6, 8, 9, 10},

matrix pattern:

−1 −1 −1
−1 0 −1

0 1 1

 .
7. (a, b, c) = (0,−2,−2), TA = N, TA \HPer (A) = {2, 5},

matrix pattern:

−1 −1 −1
0 −1 −1
1 0 2


8. (a, b, c) = (−1, 0,−2), TA = N, TA \HPer (A) = {5},

matrix pattern:

−1 −1 −1
−1 −1 0

2 0 1

 .
9. (a, b, c) = (−1, 0,−2), TA = N, TA \HPer (A) = {2, 6},

matrix pattern:

−1 −1 −1
1 0 −1
−1 1 1

 .
It is worth of pointing out that for finding an integral matrix with given traces

a = trA, b = tr ∧2 A, and c = tr ∧3 A = detA we used a simple program which
searches the suitable overlooking all 3× 3 matrices with coefficients contained in
an interval [k, l]. The program is written in “Delphi”.

To check and confirm the list of finite and exceptional generic cases presented
in [14] we used the program – notebook written in “Mathematica”. The authors
derived it by long theoretic consideration, but of course such an argument shows
also that these are the only special generic cases.

Nonabelian three nilmanifolds. For selfmaps of a compact nilmanifold
we have a specification of the linearizations that occur in this case. To present
it we need an information about the three-dimensional compact nilmanifolds.

Examples of three dimensional compact nilmanifolds are the quotient spaces
N3(R)/Γp,q,r, where Nn(R) denotes the group of all unipotent upper triangular
matrices with real coefficients and Γp,q,r, with fixed p, q, r ∈ N, the subgroup
consisted of all matrices of the form

(14)

 1 k/p m/p · q · r
0 1 l/q

0 0 1

 , where k, l,m ∈ Z.

The nilmanifolds of the form N3(R)/Γp,q,r are called Heisenberg manifolds since
the group N3(R) is also the Heisenberg group.

It is known that (cf. [16], also [11] for references):
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Theorem 5.1. Let X be a compact nilmanifold of dimension 3. Then X

is diffeomorphic to T 3 or to N3(R)/Γ1,1,r with some r ∈ N. Moreover every
non-abelian X = N3(R)/Γ1,1,r form an S1-bundle over T 2 with the Euler number
equal to r.

The following theorem ([11]) states that in this case for every fiber map
f :X → X the degree of the map along the fiber is equal to the degree of the
map along the base. Together with previously stated fact that every map f of X
is homotopic to a fiber map this shows that the linearization Af = A of f is the
direct sum of a 1× 1 matrix A1 (linearization along fiber) and 2× 2 matrix A2,
and det(A1) = det(A2).

Theorem 5.2. Let f :X → X be a map of three-dimensional compact nil-
manifold X not diffeomorphic to T 3. Let A = A1 ⊕A ∈M3×3(Z) be the matrix
induced by the fibre map f = (f1, f) (Theorem 2.1) and χA(t) = χA1(t) ·χA(t) =
(t−d)(t2−at+b) be its characteristic polynomial. Then d = b and there are three
types for the minimal homotopy periods of f : “empty”, “finite”, and “generic”.

Of course, HPer (f) = ∅ if and only if or d = 1 or −a + d + 1 = 0, because
then 1 ∈ σ(A).

The case of finite homotopy minimal periods is the following.
(F) HPer (f) is nonempty and finite only for 2 cases corresponding to d = 0

combined with one of the two pairs (a, b): (0, 0) and (−1, 0).
We have HPer (f) = {1} then. Moreover, the sets TA, HPer (f), and the

matrices patterns are the following:

1. (d, a, b) = (0, 0, 0), TA = N, HPer (A) = {1},

matrix pattern:

 0 0 0
0 0 0
0 0 0

 ,
2. (d, a, b) = (0,−1, 0), TA = N \ 2N, HPer (A) = {1},

matrix pattern:

 0 0 0
0 1 0
0 0 0

 .
(G) HPer (f) is infinite for the remaining (d, a, b = d). Furthermore, HPer (f)

is equal to N for all triples (d, a, b = d) ∈ Z3 with except the following special
cases listed below.

An infinite series of special cases: (d, a, d) where a + d + 1 = 0, with a 6= 0,
and d /∈ {−2,−1, 0, 1}, TA = N \ 2N, HPer (A) = N \ 2N.
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Also there is 6 exceptional cases:

1. (d, a, d) = (0,−2, 0), TA = N, TA \HPer (A) = {2},

matrix pattern:

 0 0 0
0 −2 0
0 0 0

 .
2. (d, a, d) = (−1, 1,−1), TA = N \ 2N TA \HPer (A) = ∅,

matrix pattern:

−1 0 0
0 2 1
0 −1 −1

 .
3. (d, a, d) = (−1,−1,−1), TA = N \ 2N, TA \HPer (A) = ∅,

matrix pattern:

−1 0 0
0 −2 −1
0 −1 1

 .
4. (d, a, d) = (−2,−1,−2), TA = N \ 2N, TA \HPer (A) = ∅,

matrix pattern:

−2 0 0
0 2 0
0 0 1

 .
5. (d, a, d) = (−2, 0,−2), TA = N, TA \HPer (A) = {2},

matrix pattern:

−2 0 0
0 2 2
0 −1 −2

 .
6. (d, a, d) = (−2, 2,−2), TA = N, TA \HPer (A) = {2},

matrix pattern:

−2 0 0
0 2 2
0 1 0

 .
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REPRESENTATION THEOREM
FOR LOCALLY DEFINED OPERATORS IN THE SPACE

OF WHITNEY DIFFERENTIABLE FUNCTIONS

Janusz Matkowski and Małgorzata Wróbel

Abstract. A representation formula for locally defined operators mapping
the space of m-times continuously differentiable functions in the Whitney
sense into the space of continuous functions is given.

1. Introduction

For a real interval I ⊂ R and a nonnegative integer m, by Cm(I) denote the
set of all m-times continuously differentiable functions ϕ: I → R. An operator
K:Cm(I)→ C0(I) is said to be locally defined if for every two functions ϕ,ψ ∈
Cm(I) and for every open subinterval J ⊂ I the relation ϕ|J = ψ|J implies that
K(ϕ)|J = K(ψ)|J . Answering a question posed by F. Neuman, the authors of [2]
proved that: every locally defined operator K:Cm(I) → C0(I) must be of the
form

K(ϕ)(x) = h(x, ϕ(x), ϕ′(x), . . . , ϕ(m)(x)), ϕ ∈ Cm(I), x ∈ I,

for a certain function h: I ×Rm+1 → R. Moreover, the assumption “K is locally
defined” can be replaced here by a weaker one that “K is left defined and right
defined”.

In the present paper we generalize this result showing that analogous repre-
sentation theorem holds true for locally defined operators K:Cm(A) → C0(A)

2000 Mathematics Subject Classification. Primary 47H30.
Key words and phrases. Locally defined operator, left and right defined operators, substi-
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where A ⊂ Rn is an arbitrary closed set and Cm(A) is the space of m-times
continuously differentiable functions in the sense of Whitney.

2. Preliminaries

In this paper the symbols N, R denote, respectively, the set of positive inte-
gers, the set of real numbers, and N0 := N ∪ {0}.

Let n ∈ N be fixed. For k ∈ Nn0 , k = (k1, . . . , kn) we put

|k| := k1 + . . .+ kn and k! = (k1!) . . . (kn!).

Moreover, for i = (i1, . . . , in) ∈ Nn0 and x = (x1, . . . , xn) ∈ Rn, we put

xi := xi1 · . . . · xin , and ‖x‖ :=
( n∑
i=1

(xi)2
)1/2

.

Definition 1 ([4], cf. also [3]). Let A ⊂ Rn be a nonempty set and let
m ∈ N0. A function f :A→ R is said to be of the class Cm in the Whitney sense
on A, if there exists a family of functions

{fk | fk:A→ R, k ∈ Nn0 , |k| ≤ m}

with f (0,... ,0) = f such that for all k ∈ Nn0 , |k| ≤ m, x0 ∈ A and ε > 0, there
exists a δ > 0 such that, for all x, y ∈ A, the inequalities

‖x− x0‖ < δ and ‖y − x0‖ < δ

imply that ∣∣∣∣fk(x)−
∑

|i|≤m−|k|

fk+i(y)
i!

(x− y)i
∣∣∣∣ ≤ ε‖x− y‖m−|k|.

Notation. Let m ∈ N0, A ⊂ Rn and suppose that f :A → Rn. The symbol
f ∈ Cm(A) stands for a family of functions

(1) {fk | fk:A→ R, k ∈ Nn0 , |k| ≤ m} with f (0,... ,0) = f,

satisfying the conditions of the above definition.

Thus f, g ∈ Cm(A) and f = g imply that

f = {fk | fk:A→ R, k ∈ Nn0 , |k| ≤ m},
g = {gk | gk:A→ R, k ∈ Nn0 , |k| ≤ m}

and
fk = gk for all k ∈ Nn0 , |k| ≤ m.

Remark 1. A function f :A→ R is continuous if and only if f ∈ C0(A).
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Remark 2. Let A ⊂ Rn be an open set or the closure of an open set. Then
f ∈ Cm(A) if and only if f is of the class Cm on A in the usual sense, that is, f
is m-times continuously differentiable in A and, moreover,

fk =
∂|k|f

∂xi1 . . . ∂xin
, k ∈ Nn0 , |k| ≤ m.

We shall need the following Whitney Extension Theorem [4] (cf. also [3]).

Theorem 1 (Whitney). Let n ∈ N, m ∈ N0 and a closed set A ⊂ Rn be
fixed. If a function f :A→ R, with the family of functions

{fk | fk:A→ R, k ∈ Nn0 , |k| ≤ m},

is of the class Cm in the Whitney sense on the set A, then there exists a function
g:Rn → R of the class Cm on Rn such that

(2)
∂|k|g

∂xi1 . . . ∂xin
(x) = fk(x), x ∈ A, k ∈ Nn0 , |k| ≤ m.

Remark 3. Let n ∈ N, m ∈ N0 ∪ {∞} and A ⊂ Rn be a nonempty and
compact. Then a function f :A → R, with the family of functions (1), is of the
class Cm in the Whitney sense on the set A if and only if

fk(x)−
∑

|i|≤m−|k|

fk+i(y)
i!

(x− y)i = o(‖x− y‖m−|k|) as ‖x− y‖ → 0,

for all k, |k| ≤ m, and x, y ∈ A.

The following lemma is a consequence of Theorem 1.

Lemma 1. Let A ⊂ Rn be a compact set with only one cluster point z ∈ Rn.
Suppose that m ∈ N0∪{∞} and {fk | fk:A→ R, k ∈ Nn0 , |k| ≤ m}, is a family
of functions satisfying the condition

(3) fk(x)−
∑

|i|≤m−|k|

fk+i(z)
i!

(x− z)i = o(‖x− z‖m−|k|) as x→ z,

for all k, |k| ≤ m. If for some α ∈ (0, 1),

(4) x 6= y ⇒ ‖x− y‖ ≥ αmin(‖x− z‖, ‖y − z‖), x, y ∈ A,

then there exists a function g ∈ Cm(Rn) satisfying conditions (2).

Proof. Since z is the only cluster point of the set A, by Whitney’s Theorem
and Remark 3, it is enough to show that for all k ∈ Nn0 , |k| ≤ m,

lim
x→z,y→z

(
fk(x)−

∑
|i|≤m−|k|

fk+i(y)
i!

(x− y)i
)

1
‖x− y‖m−|k|

= 0.



134 Janusz Matkowski and Małgorzata Wróbel

Define a polynomial P :Rn → R by

P (x) =
∑

j∈Nn0 , |j|≤m

f j(z)
j!

(x− z)j .

By Taylor’s formula, for every k ∈ Nn0 , |k| ≤ m,

(5)
∂|k|P

∂xi1 . . . ∂xin
(x) =

∑
|i|≤m−|k|

1
i!

∂|k|+|i|P

∂xi1 . . . ∂xin
(y)(x− y)i, x, y ∈ Rn.

Moreover, from the definition of the polynomial P , we have

(6)
∂|k|P

∂xi1 . . . ∂xin
(x) =

∑
|j|≤m−|k|

fk+j(z)
i!

(x− z)j , k ∈ Nn0 , |k| ≤ m, x ∈ Rn.

Take x, y ∈ A, x 6= y. Making use of (3) for k ∈ Nn0 , |k| ≤ m, we obtain

fk(x)−
∑

|i|≤m−|k|

fk+i(y)
i!

(x−y)i =
∑

|j|≤m−|k|

fk+j(z)
i!

(x−z)j+o(‖x−z‖m−|k|)

−
∑

|i|≤m−|k|

1
i!

( ∑
|j|≤m−|k|−|i|

fk+i+j(z)
j!

(y − z)j + o(‖y − z‖m−|k|−|i|)
)

(x− y)i,

when ‖x− z‖ → 0 and ‖y − z‖ → 0. Taking into account (5) and (6), we get

fk(x)−
∑

|i|≤m−|k|

fk+i(y)
i!

(x− y)i

=
∂|k|P

∂xi1 . . . ∂xin
(x) + o(‖x− z‖m−|k|)−

∑
|i|≤m−|k|

1
i!

∂|k|+|i|P

∂xi1 . . . ∂xin
(y)(x− y)i

−
∑

|i|≤m−|k|

1
i!
o(‖y − z‖m−|k|−|i|)(x− y)i

= o(‖x− z‖m−|k|)−
∑

|i|≤m−|k|

1
i!
o(‖y − z‖m−|k|−|i|)(x− y)i

and, consequently,(
fk(x)−

∑
|i|≤m−|k|

fk+i(y)
i!

(x− y)i
)

1
‖x− y‖m−|k|

=
o(‖x− y‖m−|k|)
‖x− y‖m−|k|

−
∑

|i|≤m−|k|

1
i!
o(‖y − z‖m−|k|−|i|)(x− y)i

‖x− y‖m−|k|−|i|‖y − z‖|i|

when ‖x− z‖ → 0 and ‖y − z‖ → 0. Making use of (4) we get

‖x− y‖m−|k| ≥ αm−|k|‖x− z‖m−|k|
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and
‖x− y‖m−|k|−|i| ≥ αm−|k|−|i|‖y − z‖m−|k|−|i|

for all x 6= y, |k| ≤ m, |i| ≤ m− |k|, k, i ∈ Nn0 . Hence and from the inequalities

|(x− y)i| = |(x1 − y1)i1 · . . . · (xn − yn)in |
≤ ‖x− y‖i1 · . . . · ‖x− y‖in = ‖x− y‖i

we have

lim
x→z,y→z

o(‖x− z‖m−|k|)
‖x− y‖m−|k|

= lim
x→z,y→z

o(‖x− z‖m−|k|)
‖x− z‖m−|k|

‖x− z‖m−|k|

‖x− y‖m−|k|
= 0

and

lim
x→z,y→z

o(‖y − z‖m−|k|−|i|)(x− y)i

‖x− y‖m−|k|

= lim
x→z,y→z

o(‖y − z‖m−|k|−|i|)
‖y − z‖m−|k|−|i|

‖y − z‖m−|k|−|i|

‖x− y‖m−|k|−|i|
(x− y)i

‖x− y‖ |i|
= 0

for all |k| ≤ m, |i| ≤ m− |k|, k, i ∈ Nn0 , which completes the proof. �

3. Locally defined and one-sided defined operators

We begin this section with definitions of locally defined and one-sided defined
operators of the type K:Cm(A)→ Cp(A).

Let Ji ⊂ R, i = 1, . . . , n, be open intervals. A set J ⊂ Rn, J = Pni=1Ji, the
Cartesian product of the intervals Ji, will be called an open interval in Rn.

Definition 2. Let m, p ∈ N0 and a nonempty and closed set A ⊂ Rn be
fixed. An operator K:Cm(A) → Cp(A) is said to be locally defined if for every
two functions ϕ,ψ ∈ Cm(A) and for every open interval J ⊂ Rn,

ϕ|A∩J = ψ|A∩J ⇒ K(ϕ)|A∩J = K(ψ)|A∩J .

Definition 3. Let m, p ∈ N0 and a nonempty and closed set A ⊂ Rn be
fixed. An operator K:Cm(A) → Cp(A) is said to be left defined, if for every
point (x1, . . . , xn) ∈ A and for all ϕ,ψ ∈ Cm(A),

ϕ|A∩Pni=1(−∞,xi) = ψ|A∩Pni=1(−∞,xi)
⇒ K(ϕ)|A∩Pni=1(−∞,xi) = K(ψ)|A∩Pni=1(−∞,xi).

An operator K:Cm(A) → Cp(A) is said to be right defined, if for every point
(x1, . . . , xn) ∈ A and for all ϕ,ψ ∈ Cm(A),

ϕ|A∩Pni=1(xi,∞) = ψ|A∩Pni=1(xi,∞) ⇒ K(ϕ)|A∩Pni=1(xi,∞) = K(ψ)|A∩Pni=1(xi,∞).
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Example 1. Let A := [a1, b1] × . . . × [an, bn] for some ai, bi ∈ R, ai < bi,
(i = 1, . . . , n). Suppose that a continuous function H : A×R→ R is continuous.
Then the operator K:C0(A)→ C1(A) given by

K(ϕ)(x1, . . . , xn) =
∫ x1
a1
. . .

∫ xn
an

H(y1, . . . , yn, ϕ(y1, . . . , yn)) dy1 . . . dyn

is left defined; and K:C0(A)→ C1(A) given by

K(ϕ)(x1, . . . , xn) =
∫ b1
x1
. . .

∫ bn
xn

∫ xn
an

H(y1, . . . , yn, ϕ(y1, . . . , yn)) dy1 . . . dyn

is right defined.

Example 2. Let A := [a1, b1] × . . . × [an, bn] for some ai, bi ∈ R, ai < bi,
(i = 1, . . . , n). Suppose that H : A × R → R and fi:A → [ai, bi], i = 1, . . . , n,
are continuous. Then the operator K:C0(A)→ C0(A) given by

K(ϕ)(x) = H(x, ϕ(f1(x), . . . , fn(x)))

is left defined if, for all (x1, . . . , xn) ∈ A,

fi(x1, . . . , xn) ≤ xi, i = 1, . . . , n;

and right defined if, for all (x1, . . . , xn) ∈ A,

fi(x1, . . . , xn) ≥ xi, i = 1, . . . , n.

Theorem 2. Let m ∈ N0 and a nonempty and closed set A ⊂ Rn be fixed.
An operator K:Cm(A)→ C0(A) is locally defined if, and only if, it is left defined
and right defined.

Proof. If K:Cm(A) → C0(A) is locally defined then, obviously, it is left
defined and right defined.

Let K be left defined and right defined. Take arbitrary ϕ,ψ ∈ Cm(A) and
suppose that there exists an open interval J ⊂ Rn such that ϕ|A∩J = ψ|A∩J .
There are ai, bi ∈ R, ai < bi, for i = 1, . . . , n, such that J = Pni=1(ai, bi).

Let us define a function γ0:A ∩ [Pni=1(−∞, bi] ∪ Pni=1[ai,∞)] → R by the
formula

γ0(x) :=
{
ϕ(x) for x ∈ A ∩ Pni=1(−∞, bi],
ψ(x) for x ∈ A ∩ Pni=1[ai,∞).

Since γ0 satisfies the assumptions of Theorem 1, there exists its extension func-
tion γ ∈ Cm(Rn). Consequently, we have

γ|A∩Pni=1(−∞,bi) = ϕ|A∩Pni=1(−∞,bi) and γ|A∩Pni=1(ai,∞) = ψ|A∩Pni=1(ai,∞).

By the assumption and Definition 3,

K(γ)|A∩Pni=1(−∞,bi) = K(ϕ)|A∩Pni=1(−∞,bi),
K(γ)|A∩Pni=1(ai,∞) = K(ψ)|A∩Pni=1(ai,∞).
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It follows thatK(ϕ)|A∩J = K(γ)|A∩J = K(ψ)|A∩J , which proves thatK is locally
defined. �

4. Representation theorem

For a number m ∈ N0 put

S(m) :=
m∑
s=0

(
n+ s− 1

s

)
.

Remark 4. If g ∈ Cm(Rn) then the set of all partial derivatives{
∂|k|g

∂xi1 . . . ∂xin
: |k| ≤ m

}
consists of S(m) elements.

The main result reads as follows

Theorem 3. Let m ∈ N0, n ∈ N, and a nonempty and closed set A ⊂ Rn
be fixed. If an operator K:Cm(A)→ C0(A) is locally defined then there exists a
unique function h:A× RS(m) → R such that

K(ϕ)(x) = h(x, ϕ(0,... ,0)(x), ϕ(1,... ,0)(x), . . . ,

ϕ(0,... ,1)(x), . . . , ϕ(m,... ,0)(x), . . . , ϕ(0,... ,m)(x))

for all ϕ ∈ Cm(A), and x ∈ A.

Proof. Take two arbitrary functions ϕ,ψ ∈ Cm(A). Thus there are two fa-
milies of functions

{ϕk | ϕk:A→ R, k ∈ Nn0 , |k| ≤ m} and {ψk | ψk:A→ R, k ∈ Nn0 , |k| ≤ m},

satisfying the suitable conditions of Definition 1; in particular ϕ = ϕ(0,... ,0),
ψ = ψ(0,... ,0).

We shall prove that, for every x0 ∈ A, if ϕk(x0) = ψk(x0) for all k ∈ Nn0 ,
|k| ≤ m, then K(ϕ)(x0) = K(ψ)(x0).

In the case when x0 is an isolated point of the set A, this is an immediate
consequence of Definition 2. In the opposite case we can always find a sequence
xs ∈ A, s ∈ N, such that lims→∞ xs = x0 and, for all s, t ∈ N,

s > t⇒ ‖xs − xt‖ ≥
1
2
‖xs − x0‖.

Applying Lemma 1 for the family of functions {fk | k ∈ Nn0 , |k| ≤ m} defined
on the compact set {x1, x2, . . . } ∪ {x0} by

fk(xs) :=


ϕk(xs) for even s,

ψk(xs) for odd s,

ϕk(x0) for s = 0,
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we obtain a function g ∈ Cm such that

∂|k|g

∂xi1 . . . ∂xin
(x2s) = ϕk(x2s),

∂|k|g

∂xi1 . . . ∂xin
(x2s−1) = ψk(x2s−1),

for all s ∈ N, k ∈ Nn0 , |k| ≤ m. Hence, according to the previous case, we have

K(ϕ)(x2s) = K(g)(x2s), K(ψ)(x2s−1) = K(g)(x2s−1), s ∈ N.

Letting here s → ∞ and making use of the continuity of the functions K(g),
K(ϕ) and K(ψ), we obtain K(ϕ)(x0) = K(g)(x0) = K(ψ)(x0) which proves the
desired claim.

To define the function h:A× RS(m) → R, let us fix arbitrarily

x = (x1, . . . , xn) ∈ A,
y(j1,... ,jn) ∈ R, j1, . . . , jn ∈ {0, . . . ,m}, j1 + . . .+ jn ≤ m,

then take the polynomial

Px1,... ,xn,y(0,... ,0),y(1,0... ,0),... ,y(0,... ,0,1)(z
1, . . . , zn)

:=
∑

j1,... ,jn∈{0,1,... ,m}, j1+...+jn≤m

y(j1,... ,jn)

j1! . . . , jn!
(z1 − x1)j1 · . . . · (zn − xn)jn

for all z1, . . . , zn ∈ R, and put

h(x1, . . . , xn, y(0,... ,0), y(1,0... ,0), . . . , y(0,... ,0,1))

:= K(Px1,... ,xn,y(0,... ,0),y(1,0... ,0),... ,y(0,... ,0,1))(x
1, . . . , xn).

Now, for a ϕ ∈ Cm(A), ϕ = {ϕk | k ∈ Nn0 , |k| ≤ m}, we have

ϕk(x)

= P kx1,... ,xn,ϕ(0,... ,0)(x),ϕ(1,... ,0)(x),... ,ϕ(0,... ,1)(x),... ,ϕ(m,... ,0)(x),... ,ϕ(0,... ,m)(x)(x)

for all k ∈ Nn0 , |k| ≤ m. It follows that

K(ϕ)(x)

= K(P x1,...,xn,ϕ(0,...,0)(x),ϕ(1,...,0)(x),... ,ϕ(0,...,1)(x),... ,ϕ(m,...,0)(x),... ,ϕ(0,...,m)(x))(x),

which, by the definition of h, means that

K(ϕ)(x) = h(x, ϕ(0,... ,0)(x), ϕ(1,... ,0)(x), . . . , ϕ(0,... ,1)(x), . . . ,

ϕ(m,... ,0)(x), . . . , ϕ(0,... ,m)(x)),

which proves the representation formula for K.
Since the uniqueness of h is obvious, the proof is completed. �

Recall (cf. J. Appell and P. P. Zabrĕıko [1, Theorem 6.3, p. 167]) the following:
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Theorem 4. Let X be a compact metric space and let g:X × R→ R be
an arbitrary function. Denote by F (X) the set of all real function on X and
by C(X) the set of all real continuous functions on X. Then the superposition
operator G:C(X)→ F (X) defined by

G(ϕ)(x) := g(x, ϕ(x)), x ∈ X,

maps C(X) into C(X) if and only if the function g is continuous on the set
X ′ × R, where X ′ denotes the set of all accumulation points of X.

From Theorem 3 and Theorem 4 we obtain

Corollary 1. Let n ∈ N and a nonempty and closed set A ⊂ Rn be fixed.
An operator K:C0(A) → C0(A) is locally defined if and only if it is a continu-
ous superposition (or Nemytskĭı) operator, i.e. there exists a unique continuous
function h:A× R→ R such that

K(ϕ)(x) = h(x, ϕ(x))

for all ϕ ∈ C0(A) and x ∈ A.

Remark 5. Applying Theorem 2 we infer that Theorem 3 generalizes the
main result of [2] concerning the left and right defined operators in the case
n = 1.
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WEAK SOLUTIONS TO STOCHASTIC
DIFFERENTIAL INCLUSIONS
A MARTINGALE APPROACH

Mariusz Michta

Abstract. A martingale problem approach is used to analyze the nonemp-
ties and compactness property of the set of weak solutions to stochastic
differential inclusions of Ito type with convex integrands. Next a weak via-
bility (or the viability under distribution constraints) problem is considered
for such solutions.

1. Introduction

The theory of stochastic differential inclusions starts its history in the be-
ginning of 90’s of the last century. The fundamental studies can be found in the
papers done by Hiai ([4]), and Kisielewicz ([8]). The major contributions in this
field were connected with strong solutions. In the same time there have appeared
papers connected with the viability problems for strong solutions to stochastic
equations or stochastic differential inclusions due to Aubin and Da Prato ([1]),
Gautier and Thibault ([3]), and others. On the other hand, Mazliak in [11] has
studied the same problem for controlled diffusion equation in the sense of weak
solution. Mazliak’s approach was essentially based on so-called martingale pro-
blem which solutions are closely connected with weak solutions to stochastic
equations. In the paper we use a similar approach in a multivalued case. We for-
mulate the basic connection between weak solutions to the stochastic differential
inclusion and solutions to the martingale problem for multivalued mappings.

2000 Mathematics Subject Classification. 93E03, 93C30.
Key words and phrases. Stochastic differential inclusions, weak solutions, martingale pro-

blem, weak convergence of probability measures, viability property.
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Next we study compactness property of solutions set for this problem. Similar
results were recently and independently obtained by Kisielewicz ([9]). The final
section presents a multivalued version of Mazliak’s viability result.

2. The results

2.1. Weak solutions to stochastic differential inclusions. Let us con-
sider the stochastic differential inclusion:

(1)
dξt ∈ F (t, ξt) dt+G(t, ξt) dWt, t ∈ [0, T ],

P ξ0 = µ,

where F : [0, T ]×Rd → Conv(Rd), G: [0, T ]×Rd → Conv(Rd×m) are measurable,
compact and convex valued multifunctions,W is am-dimensional Wiener process
on the filtered probability space (Ω,F , {Ft}t≥0, P ), and µ is a given probability
measure on the space (Rd, β(Rd)). Here Conv( · ) denotes the space of nonempty,
convex and compact subsets of the underlying space. By Rd×m we denote the
space of all d×m matrices (gij)d×k with real elements, equipped with the norm:

‖(gij)d×m‖ = max
1≤i≤d, 1≤j≤m

|gij |.

For Rd-valued stochastic process X, let

X∗t = sup
0≤s≤t

‖Xs‖.

By FXt we denote a σ-field generated by the process X to the time t, i.e. FXt =
σ{Xs : s ≤ t}. The basic notion in the paper is a weak solution.

Definition 1. By a weak solution to stochastic inclusion (1) we mean d-di-
mensional, continuous stochastic process ξ defined on some probability space
(Ω,F , P ), (Wt,Fξt )-Wiener process, and (Fξt )-adapted processes ft ∈ F (t, ξt),
gt ∈ G(t, ξt) : dt× dP − a.e. such that:

(2)
ξt = ξ0 +

∫ t

0
fs ds+

∫ t

0
gs dWs, t ∈ [0, T ],

P ξ0 = µ.

The major contribution on weak solutions to stochastic inclusions has been
quoted recently in [9]. The main ideas were based on selection properties for
multivalued mappings, Skorohod Representation Theorem and convergence in
distribution of stochastic processes. In the case of stochastic differential equations
an equivalent approach to weak solutions is to consider martingale problems on
a path space (canonical space) (see e.g. [7], [12], [13]). It is possible to employ
this approach in the case of weak solutions to stochastic inclusions. Let C :=
C([0, T ],Rd) be the space of vector valued continuous functions. By β(C) we
denote a Borel σ-field in C. We shall use projections πt:C → Rd, πt(x) = x(t),
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a natural filtration (βt), βt = σ{πs : s ≤ t}, t ∈ [0, T ], and its right continuous
version (Γt), Γt = βt+. Let a: [0, T ]×C → Rd, b: [0, T ]×C → Rd×m be measurable
functions. Let u ∈ C2b (Rd) i.e. a function u:Rd → R is bounded and twice
differentiable. Suppose y ∈ C. We use the following differential operator:

(Atu)(y) :=
1
2

d∑
i=1

d∑
k=1

γik(t, y)
∂2u(y(t))
∂xi∂xk

+
d∑
i=1

ai(t, y)
∂u(y(t))
∂xi

,

where γik(t, y) =
∑m
j=1 bij(t, y)bkj(t, y), 1 ≤ i, k ≤ d.

LetM(C) denote the set of all probability measures on (C, β(C)). For given
multifuctions F , G, and a probability measure µ on (Rd, β(Rd)) we introduce:

Definition 2. A probability measure Q ∈ M(C) is said to be a solution to
martingale (local martingale) problem for (F,G, µ) if:

(i) Qπ0 = µ,
(ii) there exist measurable mappings a: [0, T ]×C → Rd, and b: [0, T ]×C →

Rd×m, such that a(t, y) ∈ F (t, y(t)), b(t, y) ∈ G(t, y(t)) dt×dQ-a.e. and,
for every f ∈ C2b (Rd), the process (Mf

t ) (on (C, β(C), Q))

Mf
t := f ◦ πt − f ◦ π0 −

∫ t

0
(Asf) ds, t ≥ 0,

is a (Γt, Q)-local martingale.

Let Rloc(F,G, µ) denote the set of those measures Q ∈ M(C), which are
solutions of the local martingale problem for (F,G, µ).

There is the following connection between the existence of weak solution to
stochastic inclusion and solution set of the local martingale problem

Proposition 1. Let F,G: [0, T ]×Rd → 2R
d

, 2R
d×m

be β([0, T ]×Rd)-measur-
able multifunctions. Let µ be a probability measure on (Rd, β(Rd)). Then, there
exists a weak solution to stochastic inclusion (1) if and only if Rloc(F,G, µ) 6= Φ.

Proof. Let us suppose that (Ω,F , P,Wt,Fξt , ξ, f, g) is a weak solution to sto-
chastic inclusion (1). Since ft ∈ F (t, ξt), gt ∈ G(t, ξt): dt× dP -a.e. and ft, gt are
Fξt -measurable for t ∈ [0, T ], then by Lemma 4.9 in [10], there exist measurable
functionals a: [0, T ] × C → Rd, and b: [0, T ] × C → Rd×m, such that a(t, · ) and
b(t, · ) are Γt-measurable, for t ∈ [0, T ], hence progressively measurable. More-
over, a(t, ξ) = ft and b(t, ξ) = gt. Thus a(t, y) ∈ F (t, y(t)) and b(t, y) ∈ G(t, y(t))
dt × dP ξ-a.e. Next, we get (Ω,F , P,Wt,Fξt , ξ) as a weak solution to stochastic
differential equation

(3)
dξt = a(t, ξ)dt+ b(t, ξ)dWt,

P ξ0 = µ.

The rest of the proof follows from Proposition 4.11 in [7, Chapter 5], which
indicates the equivalence between existence of weak solution to the stochastic
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differential equation (3) and existence of solution to local martingale problem
for (a, b, µ). The measures P and Q are related by: Q = P ξ. �

For lower semicontinuous multivalued mappings (see e.g. [6]), the nonemp-
tiness of the set Rloc(F,G, µ), can be seen by applying selections results and
reducing the problem to the single valued case. Then the theory of stochastic
equations applies. By Proposition 1 it can be made the following observation.

Proposition 2. Let

F : [0, T ]× Rd → Conv(Rd) and G: [0, T ]× Rd → Conv(Rd×m)

be B([0, T ]) × B(Rd)-measurable multifunctions, such that F (t, · ) and G(t, · )
are lower semicontinuous for t ∈ [0, T ], and suppose that

max{‖F (t, x)‖2, ‖G(t, x)‖2} ≤ K(1 + ‖x‖2).

Then Rloc(F,G, µ) 6= Φ.

Proof. From Theorem 7.23 in [6], there exist mappings f, g: [0, T ] × Rd →
Rd,Rd×m, being Caratheodory selections for F and G respectively. Let a: [0, T ]×
C → Rd, and b: [0, T ] × C → Rd×m be funtionals defined by a(t, y) = f(t, y(t))
and b(t, y) = g(t, y(t)). Hence they are bounded, jointly measurable and con-
tinuous with respect to the second variable. Now applying Theorem 2 in [4,
Chapter 5, Section 2] there exists a weak solution to stochastic equation:

dξt = a(t, ξ) dt+ b(t, ξ) dWt, P ξ0 = µ,

what completes the proof. �

2.2. Weak compactness property of the set Rloc(F,G, µ). In [9] the
topological properties of the set of weak solutions to stochastic inclusion (1) has
been studied.

Let SI(F,G, µ) denote the set of all weak solutions to stochastic inclusion (1)
and let SI(Ω, F,G, µ) be a set of weak solutions defined on a common probability
space (Ω,F , (Ft)t∈[0,T ], P ). It was proved the following result.

Theorem 1 ([9, Theorem 13]). If F : [0, T ]×Rd → Conv(Rd), and G: [0, T ]×
Rd → Conv(Rd×m) are measurable and bounded set-valued mappings such that
F (t, · ) and G(t, · ) are continuous for each fixed t ∈ [0, T ], then for every fil-
tered probability space (Ω, F, (Ft)t∈[0,T ], P ) and every probability measure µ on
(Rd, β(Rd)) the set SI(Ω, F,G, µ) is nonempty and relatively compact with respect
to convergence in distribution.

It is worth seeing that a similar result can be proved for the whole set of
solutions, without restriction to the common space. Moreover, the result holds
true with a weaker-lower semicontinuity assumptions imposed on F and G.
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Proposition 3. Let F : [0, T ] × Rd → Conv(Rd), and G: [0, T ] × Rd →
Conv(Rd×m) be measurable and bounded set-valued mappings such that F (t, · )
and G(t, · ) are lower continuous for each fixed t ∈ [0, T ], and let a sequence of
probability measures (µk) be tight. Then

⋃
k≥1Rloc(F,G, µk) is nonempty and

relatively compact subset of M(C).

Proof. The nonemptiness of the set
⋃
k≥1Rloc(F,G, µk) follows from Propo-

sition 1. By Prokhorov’s Theorem ([2]), it is enough to show that this set is tight.
Let us note first that

lim
a→∞

sup
Q∈

⋃
k≥1Rloc(F,G,µk)

Q{y ∈ C : ‖y(0)‖ > a}

≤ lim
a→∞

sup
k≥1

µk{x ∈ Rd : ‖x‖ > a} = 0,

because the sequence (µk) is tight. Hence, by [2, Theorem 8.2], it is sufficient to
show that, for every ε > 0,

(4) lim
n→∞

sup
Q∈

⋃
k≥1Rloc(F,G,µk)

Q{y ∈ C : ∆(1/n, y) > ε} = 0,

where ∆(δ, y) = sup{‖y(t)− y(s)‖ : s, t ∈ [0, T ], |s− t| < δ}, for y ∈ C. Let Q be
arbitrary chosen from the set

⋃
k≥1Rloc(F,G, µk). Then by the definition there

exist k ≥ 1, and measurable and bounded (say by a constant L > 0) functionals
ak, bk: [0, T ]× C → Rd,Rd×m such that ak(t, y) ∈ F (t, y(t)), bk(t, y) ∈ G(t, y(t))
dt×dQ-a.e. and Q ∈ Rloc(ak, bk, µk). Hence, taking functions f :Rd → R: f(x) =
xi, i = 1, . . . , d, we obtain continuous Q-local martingales (on C)

Mk,i
t = πit −

∫ t

0
aki (s, · ) ds,

with quadratic covariations

[Mk,i,Mk,j ]t =
∫ t

0
(bk(bk)T )ij(s, · ) ds,

i, j = 1, . . . , d. Let Mk = (Mk,1, . . . ,Mk,d). For 0 ≤ t0 < t1 < T , let us
introduce the stopping time

τ(y) = inf{u > 0 : ‖πt0+u(y)− πt0(y)‖ > ε/3} ∧ (t1 − t0),

where y ∈ C. Then the process Mk
t0+t∧τ −M

k
t0 is a continuous (Γt0+t, Q)-mar-

tingale. We let t0 = 0 for simplicity. Then one can show that

‖πt∧τ − π0‖2 ≤ 2‖Mk
t∧τ −Mk

0 ‖2 + 2‖
∫ t∧τ

0
ak(s, · ) ds‖2

(Q-a.e.), and consequently

(5) (π − π0)∗2t∧τ ≤ 2(Mk −Mk
0 )∗2t∧τ + 2L2τ2.
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Thus, by virtue of (5), we get, for any p ≥ 1,

(6) EQ(π − π0)∗2pτ ≤ 2pEQ(Mk −Mk
0 )∗2pτ + 2pL2pEQ(τ2p).

For a continuous Q-local martingale Mk −Mk
0 we apply Burholder’s inequality

(see e.g. [12]) (with the same p) getting

EQ(Mk −Mk
0 )∗2pτ ≤ C2pEQ

{∫ τ

0

d∑
i=1

(bk(bk)T )ii(s, · ) ds
}p
,

where C2p = {((2p− 1)/2p)2pp(2p − 1)}p. Thus, by virtue of the boundness
of multifunctions F and G, the inequality (6) has the form: EQ(π − π0)∗2pτ ≤
2pALpC2pEQ(τp) + 2pL2pEQ(τ2p), where A is some constant depending on L, p
and d. Thus restoring t0 and setting α = t1 − t0, p = 2, we obtain:

EQ(π − πt0)∗4α ≤ 4AL2C4α2 + 4L4α4.

Hence, by Tchebyshev inequality, we get for each ε > 0

(7) Q{sup
s≤α
‖πt0+s − πt0‖ > ε} ≤ 4AL2C4α2 + 4L4α4

ε4

For arbitrary n ∈ N, let us divide the interval [0, T ] by points {i/n}, i =
0, . . . , Tn. Then

Q{y : ∆(1/n, y) > ε} = Q

{ Tn−1⋃
i=0

{ sup
0≤s≤1/n

‖πi/n+s − πi/n‖ > ε/3}
}
.

Hence, using (7), with α = 1/n, we get

Q{y : ∆(1/n, y) > ε} ≤ 34T
(

4AL2C4
nε4

+
4L4

n3ε4

)
,

what proves (4) and completes the proof. �

The closedness of Rloc(F,G, µ) is related to the same property of the set of
weak solutions to the stochastic inclusion (1). Recall (see [9]) that a set U ⊂ Rn×d
is said to be diagonally convex if a set D(U) = {uuT : u ∈ U} is a convex subset
of Rn×n. Consequently, a multivalued mapping G is said to be diagonally convex
valued if the set G(t, x) is diagonally convex for all t ∈ [0, T ], x ∈ Rd. In [9] it
was proved that if multivalued mappings F (t, · ), and G(t, · ) are continuous for
all t ∈ [0, T ], and G is diagonally convex valued, then the set SI(F,G, µ) is closed
in the topology of convergence in distribution.

Corollary. Let F : [0, T ] × Rd → Conv(Rd), G: [0, T ] × Rd → Conv(Rd×m)
be measurable and bounded set-valued mappings such that F (t, · ) and G(t, · ) are
continuous for each fixed t ∈ [0, T ]. Assume also that G is diagonally convex va-
lued. Then, for every probability measure µ on (Rd, β(Rd)), the set Rloc(F,G, µ)
is nonempty and compact in M(C).
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2.3. The weak viability problem. Let us consider the set Π(K, ε) =
{µ ∈ M(Rd) : µ{K} ≥ 1 − ε}, for a fixed, nonempty and closed set K ⊂ Rd
and ε ∈ [0, 1). We say that the stochastic inclusion (1) has a weakly viable (or
ε-viable) solution in K, if for every µ ∈ Π(K, ε), there exists its weak solution
(Ω,F , P,Wt, (Fξt )t∈[0,T ], ξ) such that P ξt ∈ Π(K, ε), for every t ∈ [0, T ]. For
strong solutions the viability problem for ε = 0 was studied first by Aubin
and Da Prato in [1]. The case of weakly viable solutions to controlled diffusion
equation was considered in [11]. By Proposition 1, it follows that there exists a
weakly viable solution to stochastic differential inclusion (1) if and only if, there
exists Q ∈ Rloc(F,G, µ) such that Qπt{K} ≥ 1−ε, for t ∈ [0, T ], and µ ∈ Πε(K).
To ensure a weak viability property, we introduce a multivalued version of the
weak tangential condition used in [11].

Definition 3. We say that the weak tangential condition holds for F , G, µ
and K if, for every Q ∈ Rloc(F,G, µ) and for every Γt-measurable random vector
α on (C, β(C)), with Qα{K} ≥ 1 − ε, there exist: t′ ∈ (t, T ) and sequences of
processes {D(n)}, {a(n)}, {b(n)} on (C, β(C)) such that:

(a) Dn
t = α and (D(n)s )t≤s≤t′ is a diffusion process with generator

A(n) =
1
2

d∑
i=1

d∑
k=1

(b(n)b(n)
T

)ik
∂2

∂xi∂xk
+

d∑
i=1

a
(n)
i

∂

∂xi
,

(b) QD
(n)
s {K} ≥ 1− ε for all s ∈ (t, t′],

(c) supt≤s≤t′{dist{a(n)s , F (s, πs( · ))} + dist{b(n)s , G(s, πs( · ).)}} →Q 0, as
n→∞, where the symbol “→Q 0” means the convergence in probability
Q.

Let RK,ε(F,G, µ) = {Q ∈ Rloc(F,G, µ), for all s ∈ [0, T ];Qπs{K} ≥ 1− ε}.

Theorem 3. Let µ ∈ Πε(K) and suppose that F and G satisfy assumptions
of the Corollary. If the weak tangential condition holds for F,G, µ and K, then
RK,ε(F,G, µ) is nonempty and compact subset of the space M(C).

Proof. Let us define the set A = {t ∈ [0, T ] : exists Q ∈ Rloc(F,G, µ), for all
s ∈ [0, t];Qπs{K} ≥ 1−ε}. For nonempties of the set RK,ε(F,G, µ), it is enough
to show that A = [0, T ]. Since Rloc(F,G, µ) 6= Φ we get 0 ∈ A.

Next we can claim that A is closed in the same way as in [11]. We show that
supA = T . Let c = supA, and suppose c < T . Since c ∈ A, thus there exists
Q ∈ Rloc(F,G, µ) such that Qπt{K} ≥ 1− ε, t ∈ [0, c].

Let us take now α = πc. Then we can find c′ > c, and processes D(n),
a(n), b(n) satisfying conditions in Definition 3. For every n ≥ 1, we can extend
the process D(n) by: D(n)s = πs, for s ∈ [0, c]. Hence by (b) (in Definition 3)
QD

(n)
s {K} ≥ 1 − ε, for all s ∈ [0, c′]. From (c) and assumptions imposed on
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multifunctions F , and G we can choose Caratheodory’s selections a′(n)(s, y) ∈
F (s, y(t)), b′(n)(s, y) ∈ G(s, y(t)) such that supc≤s≤c′ ‖a

(n)
s − a′(n)(s, · )‖ →Q 0,

and supc≤s≤c′ ‖b
(n)
s − b′(n)(s, · )‖ →Q 0.

Let D
′(n) be a diffusion process with generator A′(n) built on funtionals a′(n),

and b′(n). Let us extend this process for s ∈ [0, c] in the same way as D(n). Due
to the convergence of coefficients a(n), a

′(n) and b(n), b
′(n), we have convergence

of distributions in Levy–Prokhorov’s metric: dL−P (Q{D
(n)
s }0≤s≤c′ , Q{D

′
s
(n)}0≤s≤c′ )

→ 0, as n → ∞. On the other hand the choice of selections a
′(n) and b′(n) im-

plies that Q{D
′
s
(n)}0≤s≤c′ ∈ Rloc(F,G, µ), for every n ≥ 1. Thus (passing to the

subsequence if needed) we get Q{D
′
s
(n)}0≤s≤c′ ⇒ Q˜, for some Q˜ ∈ Rloc(F,G, µ),

what finally implies Q{D
(n)
s }0≤s≤c′ ⇒ Q˜. Now using Continuous Mapping The-

orem and Theorem 2.1 in [2, Section 4, Chapter 1], one has Q˜πs{K} ≥ 1 − ε,
for all s ∈ [0, c′]. Thus c′ ∈ A, what contradicts with the choice of c. The com-
pactness of RK,ε(F,G, µ) follows from its closedness. �

Remark. Let us note that if µ{K} > 1−ε, for some ε ∈ (0, 1), and µ{∂K} =
0, where ∂K denotes a boundary of the set K, then under the same assumptions
as in Corollary, it can be proved that there exists Q ∈ Rloc(F,G, µ), and T0 ∈
(0, T ] such that Qπt{K} > 1− ε, for t ∈ [0, T0].

Acknowledgments. The autor is grateful to the anonymous referee for his
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PICARD ITERATIONS SCHEME
FOR NONLOCAL ELLIPTIC PROBLEMS
WITH DECREASING NONLINEARITY

Tadeusz Nadzieja and Ewa Sylwestrzak

Abstract. We prove that for some class of nonlocal elliptic problems appe-
aring in mathematical physics the Picard iteration sequence is convergent.

1. Introduction

In this paper we study the following nonlocal elliptic equation

(1) −∆ϕ = M
f(ϕ)

(
∫

Ω f(ϕ))p
,

with the homogeneous boundary Dirichlet condition

(2) ϕ|∂Ω = 0.

Here ϕ: Ω→ R is an unknown function from a bounded subdomain Ω of Rn into
R, n ≥ 2, f :R → R+ is a given continuous function and M > 0, p > 0 are real
parameters.

The roots for the study of the problems of the type (1), (2) lie in statistical
mechanics ([2], [7], [9]), the theory of electrolytes ([6], [17]), and the theory of
thermistors ([10], [15]).

If the parameter p equals 1 and the nonlinearity f(ϕ) has the exponential
form f(ϕ) = e−ϕ then (1) is the well-known Poisson–Boltzmann equation. The
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physical interpretation of ϕ is the electric potential of a system of charged Brown-
ian particles in thermodynamical equilibrium, and the parameter M is the total
charge of the particles.

The Poisson–Boltzmann equation arises also in investigations of phenomena
associated with the occurrence of shear bands in metals being deformed under
high strain rates [4], and in the modelling of turbulent behaviour of flows [9].

The general problem (1), (2) with given f(ϕ) and p = 2 appears in modelling
the stationary temperature ϕ, which results when an electric current flows thro-
ugh a material with temperature-dependent electrical resistivity f(ϕ), subject
to a fixed potential difference

√
M [10], [15].

The integral form of (1), (2) is

(3) ϕ(x) =
M

(
∫

Ω f(ϕ))p

∫
Ω
K(x, y)f(ϕ(y)) dy,

where K is the Green function corresponding to −∆ and zero boundary data.
We will consider the equation (3) with general symmetric kernel K satisfying
the integrability condition

(4) sup
x∈Ω

∫
Ω
|Kr(x, y)| dy <∞

for some r > 1. This condition implies that the operator

(5) T (ϕ)(x) =
M

(
∫

Ω f(ϕ))p

∫
Ω
K(x, y)f(ϕ(y)) dy,

defined on the space of continuous functions on Ω, C0(Ω), with the uniform norm
|ϕ|∞ = supx∈Ω |ϕ(x)|, is compact and continuous [13].

The assumption that ∂Ω is of class C1+ε guarantees that the Green function
satisfies the estimate (4) with any r < n/(n− 2) ([12]).

The problem (3) is also motivated by the study of the stationary solutions
of parabolic-elliptic systems describing the temporal evolution of a cloud of
self-interacting Brownian particles [8], [18]. The kernel K in (3) depends on
the kind of interaction between the particles under consideration.

It is known [1] that certain assumptions on the function f guarantee that
the Picard iteration sequence for the local elliptic problem −∆ϕ = f(ϕ), ϕ|∂Ω =
0, is convergent in an appropriate space of functions. Results of this kind are
not known for the nonlocal problems. Our main goal here is to prove that for
decreasing f and 0 < p < 2, the Picard iteration sequence for the problem (1), (2)
is convergent (Theorem 7).

We prove also some new results about the existence of solutions of (3) (The-
orems 4 and 5).



Picard Iterations Scheme 153

2. Existence of solutions

The existence and the uniqueness of the solution of the Poisson–Boltzmann
equation with zero Dirichlet data was proved in [9]. The key point in the proof
is that the Poisson–Boltzmann equation is the Euler–Lagrange equation for the
functional M log

∫
Ω e
−ϕ + (1/2)

∫
Ω |∇ϕ|

2. It seems that the variational methods
work only when the nonlinearity f is of the form f(ϕ) = e−ϕ or f(ϕ) = eϕ.

It is worth noting that, the following result can be proved, as a consequence
of the well-known Pohozaev identity [3].

Theorem 1 ([3]). Assume that Ω is a star-shaped domain, and n > 1. If
f(ϕ) = eϕ, 0 ≤ p ≤ 1 or f(ϕ) = e−ϕ, p ≥ 2, then the problem (1), (2) has no
solution for sufficiently large M .

In the proof of Theorem 1 the particular form of f is essential.
The construction of specific subsolutions for the problem ∆ϕ + λf(ϕ) = 0

allows the authors of [3] to extend the proof of nonexistence of solutions, for
sufficiently large M , for any integrable and decreasing function f , even when Ω
is not necessarily star-shaped domain.

Theorem 2 ([3]). Suppose that
∫∞

0 f < ∞ and f is decreasing. If p ≥ 2
then (1), (2) has no solutions for sufficiently large M .

The technique of sub- and supersolutions applied to our problem gives the
following results

Theorem 3 ([3]). Assume that
∫∞

0 f = A <∞. If p < 2, then (1), (2) has
a solution for all M . For p = 2 the solution exists for M < 2A|∂Ω|2.

An alternative approach to the problem of existence of solutions of (1), (2)
or (3) is based on the topological Leray–Schauder principle [6], [14], [16].

We will use the following form of the Leray–Schauder theorem.

Theorem (Leray–Schauder). Assume that T is a continuous and compact
operator on a Banach space and there exists a constant B such that ‖xλ‖ ≤ B

for all possible solutions xλ of the equation

(6) x = λTx, λ ∈ [0, 1].

Then there exists a continuous curve x(λ), starting from 0, of solutions of the
family of equations (6).

We may assume that the origin 0 ∈ Ω and the volume |Ω| = 1. In fact, the
function ψ(x) = ϕ(x/α) with α = |Ω|−1/n is defined on a set of measure 1 and
satisfies (3) with M replaced by Mαnp−2.

Various inessential constants depending on f and Ω only will be denoted
by C, even if they may vary from line to line.
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As we mentioned above, the operator (5) is compact and continuous. Hence
for the proof of existence of a fixed point of T , it is enough to find a prior estimate
for all solutions of (3).

Theorem 4. Assume that the kernel K satisfies (4), f ≥ 0 is continuous
and bounded, 0 ≤ f ≤ F , then (3) has a solution for all M ≥ 0 if one of the
following conditions is satisfied:

(i) p > 0, f ≥ a > 0,
(ii) 0 ≤ p ≤ 1 and f is convex,

(iii) p > 1, f is decreasing, convex and limz→∞ z1/(p−1)f(z) =∞.

Proof. From (3) we get

(8) |ϕ|∞ ≤MC

(∫
Ω
f(ϕ)

)−p
.

Now what we need is to estimate the integral
∫

Ω f(ϕ) from below. If (i) is
satisfied then |ϕ|∞ ≤MCa−p.

For convex f from the Jensen inequality we have f(
∫

Ω ϕ) ≤
∫

Ω f(ϕ) (we
assumed, with no loss of generality, |Ω| = 1).

To have the desired estimate we must to find a prior estimate for
∫

Ω ϕ.
Integrating (3) over Ω we obtain

(9)
∣∣∣∣ ∫

Ω
ϕ

∣∣∣∣ ≤ M

(
∫

Ω f(ϕ))p

∫
Ω

∫
Ω
|K(x, y)|f(ϕ(y)) dy dx ≤MC

(∫
Ω
f(ϕ)

)1−p

.

If (ii) holds, p ≤ 1, then the right hand side of (9) is less than MCF 1−p.
For f convex and decreasing we have

(10) f

(
MC

(∫
Ω
f(ϕ)

)1−p)
≤ f

(∫
Ω
ϕ

)
≤
∫

Ω
f(ϕ).

Denoting z = MC(
∫

Ω f(ϕ))1−p, (10) can be written in the form

z1/(p−1)f(z) ≤ (MC)1/(p−1).

The last inequality and (iii) give the prior estimate for z, and thus for |ϕ|∞. �

Theorem 4 does not guarantee the existence of a solution of (3) for an unbo-
unded function f , for example as in the Poisson–Boltzmann equation.

It was proved in [7], [16], that if Ω is star-shaped and K is the fundamental
solution of the Laplacian, f(ϕ) = e−ϕ and p = 1 then the problem (3) has no
solution for sufficiently large M .

This result as well as the Theorems 1 and 2 suggest that we should assume
some additional properties of K to obtain the existence of solutions of (3) for an
unbounded f .
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Theorem 5. Assume that K satisfies (4), K ≥ A, f ≥ 0 is continuous,
convex, bounded on [0,∞) and p = 1. Then the problem (3) has a solution for
all M ≥ 0.

Proof. Suppose that ϕ is a solution of (3). Obviously ϕ(x) ≥ AM , and so
f(ϕ(x)) is bounded. Next, proceeding as in the proof of the Theorem 4(ii), we
obtain the desired estimate for |ϕ|∞. �

Remark. Note that the fundamental solution of −∆ and the Green funtion
of −∆ are bounded from below, so they satisfy the assumption imposed on K

in Theorem 5.

3. Picard iterations

We consider the following elliptic problem:

(11) −∆ϕ = λf(ϕ), ϕ|∂Ω = 0,

where λ > 0 is a given constant. The following result is standard and can be
found in books on PDE; we give its simple proof for the completeness of the
exposition.

Theorem 6. If f is a positive decreasing function, then the problem (11)
has a unique solution.

Proof. We transform (11) to the integral form

(12) ϕ(x) = λ

∫
Ω
G(x, y)f(ϕ(y)) dy,

where G is the Green function of −∆ in Ω.
The right hand side of (12) defines a continuous and compact operator

on C0(Ω). To obtain the prior estimate for solutions we note that ϕ(x) ≤
λf(0) supx∈Ω

∫
ΩG(x, y) dy.

To prove the uniqueness, we take the difference of equations (11) written for
ϕ1 and ϕ2, multiply it by ϕ1 − ϕ2 and integrate over Ω, which gives∫

Ω
|∇(ϕ1 − ϕ2)|2 = λ

∫
Ω

(f(ϕ1)− f(ϕ2))(ϕ1 − ϕ2).

The right hand side of the last equation is nonpositive, hence ∇(ϕ1−ϕ2) = 0,
which implies ϕ1 = ϕ2 in Ω due to ϕ1 = ϕ2 on ∂Ω. �

For ϕ ∈ C0(Ω) we define S(ϕ) as the unique solution of (11) with λ =
M(
∫

Ω f(ϕ))−p. The sequence of iterations Sn(ϕ) of ϕ we call the Picard itera-
tions sequence for the problem (1), (2).
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Theorem 7. If f is a positive decreasing function and 0 < p < 2, then for
every ϕ ∈ C0(Ω) the Picard iteration sequence is convergent in the supremum
norm to a solution of (1), (2).

Proof. We denote by ϕλ the solution of (11). Note that if s > t then ϕs > ϕt
in Ω. If not, there exists x0 such that ϕs(x0) ≤ ϕt(x0) and ∆(ϕt − ϕs)(x0) ≤ 0,
whereas the differenceMsf(ϕs(x0))−Mtf(ϕt(x0)) of the right hand side terms of
(11) at x0 is positive, a contradiction. Thus the mapping F (λ) = M(

∫
Ω f(ϕλ))−p

is increasing and due to the continuous dependence of ϕλ on the parameter λ;
obviously F is continuous in λ.

Hence the iterations Fn(λ) = λn of any λ tend to a fixed point of F or
diverge to ∞. However, it was proved in [3] that

(∫
Ω f(ϕλ)

)−1
grows like C

√
λ

as λ tends to ∞. This implies that F (λ) ∼ Cλp/2 < λ for sufficiently large
λ. Thus for each λ, Fn(λ) converges to a fixed point λ of F . Hence for any
ϕ0 ∈ C0(Ω) the sequence ϕλn = Sn+1(ϕ0), λn = Fn(λ0), λ0 = M(

∫
Ω f(ϕ0))−p,

n = 0, 1, . . . , tends to a solution of the nonlocal problem (1), (2). �

Problem 1. Theorem 3 ([14]) implies that for 0 ≤ p ≤ 1 the operator S has
a unique fixed point and due to Theorem 7 we know that S has no periodic orbits.
It follows from theorem of Bessaga ([5]) that there exists a metric on C0(Ω)) such
that S is a contraction. It would be interesting to find such a metric.

Problem 2. For which conditions imposed on K and f the sequence Tnϕ
converges for each ϕ ∈ C0(Ω)?
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SHADOWING AND LIKES AS C0 GENERIC PROPERTIES

Jerzy Ombach and Marcin Mazur

Abstract. We review some known results on shadowing, inverse shado-
wing, tolerance stability and related concepts. We also announce here a few
yet unpublished results, among them the solution of the main part of Ze-
eman’s Tolerance Stability Conjecture, Statement 2 in Theorem 8.

1. Introduction

While simulating behavior of a dynamical system we often encounter the
following problems.

(1) Does the orbit displayed on the computer screen really correspond to
some true orbit?

(2) Can every true orbit be recovered, at least with a given accuracy?

The first problem is in fact a question about the shadowing property of the
system while the second one corresponds to the property known as inverse sha-
dowing. The shadowing or the pseudo-orbits tracing property (abbr. POTP), was
established by Anosov and Bowen ([17], [3]), for theoretical purposes about 30
years ago. It says that any δ-pseudo-orbit can be uniformly approximated by a
“true” orbit with a given accuracy if δ > 0 is sufficiently small. Inverse shadowing
was established by Corless and Pilyugin ([4]), and also as a part of the concept of
bishadowing by Diamond at al ([8]–[11]). Kloeden and Ombach ([19]) redefined
this property using the concept of a δ-method. Generally speaking, a dynamical

2000 Mathematics Subject Classification. Primary 37C20, 37C50; Secondary 36B35.
Key words and phrases. Shadowing, POTP, inverse shadowing, tolerance stability, C0 ge-

neric property.
Supported by grant KBN 5 P03A 016 20.
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system is inverse shadowing with respect to a class of methods if any “true”
orbit can be uniformly approximated with given accuracy by a δ-pseudo-orbit
generated by a method from the chosen class if δ > 0 is small enough. Another
concepts closely related to the above ones are (strong) tolerance stability and
weak shadowing.
In Sections 2, 3 and 4 we present basic definitions and theorems on shadowing,

inverse shadowing and tolerance stability. In Section 5 we establish several results
on C0 genericity of the mentioned properties.
The main result is that strong tolerance stability is C0 generic in the space

of all homeomorphisms of a compact and smooth manifold without boundary.
It is stated in Statement 2 of Theorem 8. In fact, it gives the positive answer to
the main part of the Zeeman’s Tolerance Stability Conjecture in the topological
formulation suggested by Takens ([42]).
LetM be a compact topological manifold (in this paper we consider manifolds

without boundary). The following figure summarizes present knowledge on the
concept of shadowing and the likes. The bottom part of each box, beginning with
the letter “G”, indicates a situation when the related property is C0 generic.

HYPERBOLICITY

SHADOWING
G: M-smooth

TOLERANCE
STABILITY

STRONG
TOLERANCE
STABILITY
G: M-smooth

WEAK
SHADOWING
G: M-top.

TC-INVERSE
SHADOWING
G: dim(M)<4

TH-INVERSE
SHADOWING

TH-BI-SHADOWING
CONTINUOUS
SHADOWING

[Theorem 3]

[Theorem 2]

[Theorem 6]

Figure 1. Shadowing and likes

2. Shadowing

Firstly we introduce some notation which remains obligatory throughout this
paper.
Let (X, d) be a metric space, f :X → X a continuous map, J ⊂ Z an interval

of the form J = {0, . . . , N}, J = {0, 1, . . .} or J = Z. By Of (x) we denote the
orbit of the point x ∈ X .
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A sequence {yn}n∈J ⊂ X is called a δ-pseudo-orbit if

d(fyn, yn+1) ≤ δ for all n ∈ J.

Definition. The map f is shadowing (f has POTP) if for every ε > 0 there
exists δ > 0 such that any δ-pseudo-orbit {yn}n∈J is ε-traced by the orbit of
some point x ∈ X , i.e.

d(yn, fnx) ≤ ε for all n ∈ J.

A classical result, known as the Shadowing Lemma, was first proved by Ano-
sov and Bowen.

Shadowing Lemma (Anosov, Bowen). Hyperbolicity condition implies pse-
udo-orbits traicing property (POTP).

See [18], [30], [32], [37] or another book on dynamical systems for the precise
statement and a proof. In the simplest, though non-trivial case, when f is a linear
map a proof is elementary and instructive ([29]). On the other hand, a proof
in a rather general general situation of semi-hyperbolic sets (not necessarily
invariant) can be found in [20].
Another classical result closely related to the above one is due to Robin-

son ([36]).

Theorem 1 (Robinson). A structurally stable diffeomorphism on a compact
smooth manifold has POTP.

Hyperbolicity is not a necessary condition for shadowing. Namely, we have
the following

Remark. Let J = {0, 1, ...}. By a result of [5] we know that:
1. The tent map fx = 1− |2x− 1| has POTP on the unit interval.

And then:

2. The logistics map fx = 4x(1− x) has POTP on the unit interval.

Otherwise, there are many simple dynamical systems that are not shadowing.

Example. It is easily seen that rotation of the unit circle S1 does not have
POTP.

One can also consider more general property than shadowing, see for exam-
ple [4].

Definition. If f is a homeomorfism then f is weakly shadowing if for every
ε > 0 there exists δ > 0 such that for any δ-pseudo-orbit y = {yn}n∈Z there
exists a point x ∈ M such that y ⊂ Vε(Of (x)), where Vε(A) denotes the
ε-neighbourhood of a set A ⊂ X .
More restrictive condition than shadowing is continuous shadowing.
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Definition (Kloeden, Ombach, Pokrovskĭı ([20])). The map f is continu-
ously shadowing if for every ε > 0 there exist δ > 0 and a continuous map
Wδ: Tδ → X such that for any δ-pseudo-orbit y = {yn}n∈J

d(fnWδ(y), yn) ≤ ε,

for all n ∈ J , where Tδ is the set of all δ-pseudo-orbits with coordinate-wise
topology.

At the end of this section we recall the notion of expansiveness.

Definition. If f is a homeomorphism then f is expansive if there exists e > 0
such that for all points x, y ∈ X , x �= y there is n ∈ Z such that d(fnx, fny) > e.

Theorem 2. If f is a hyperbolic (i.e. expansive and shadowing) homeomor-
phism then f is continuously shadowing. In this case, the map Wδ is uniquely
determined.

The proof of the above theorem is similar to the proof of Theorem 1 in [19].

3. Inverse shadowing

We begin this section with a definition of a δ-method. Let XJ denote the
family of all sequences of elements of X indexed by J .

Definition (Kloeden, Ombach ([19])). A map ϕ:X → XJ is called a δ-me
thod if the following conditions hold:

1. ϕ(y)0 = y, for all y ∈ X ,
2. ϕ(y) is a δ-pseudo-orbit.

Example. Let g:X → X satisfy D∞(f, g) < δ, where

D∞(f, g)
df= sup
x∈X
d(fx, gx).

We define the map ϕ(y) = Og(y). Then ϕ is a δ-method.

Example. Let I = {0, 1, . . .} and let gi:X → X satisfy D∞(gi, f) < δ,
i ∈ I. We define the map

ϕ(y) = {y, gα1y, gα2gα1y, gα3gα2gα1y, . . . },

with α1, α2, α3, . . . ∈ I. Then ϕ is a δ-method.

In [4] Corless and Pilyugin introduced and examined the following concept
of inverse shadowing. Actually, they did not use a notion of δ-method there.
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Definition (Corless, Pilyugin). If f is a homeomorphism then f is inverse
shadowing if for any ε > 0 there is δ > 0 such that for any orbit {xn}n∈Z and
any δ-method ϕ:X → XZ there is y ∈ X such that

d(xn, ϕ(y)n) ≤ ε for all n ∈ Z.

In the same paper the authors showed that this definition was, in fact, of
a limited interest.
Denote by T a collection of δ-methods satisfying condition: for any positive δ

there is a δ-method ϕ ∈ T .

Definition (Kloeden, Ombach ([19])). The map f is T -inverse shadowing
if for any ε > 0 there is δ > 0 such that for any orbit {xn}n∈J and any δ-method
ϕ ∈ T there is y ∈ X such that

d(xn, ϕ(y)n) < ε for all n ∈ J.

Remark. Let f be a homeomorphism and let J = Z. Consider the class of
methods:

Th df= {ϕ : there exists a homeomorfism g:X → X
such that ϕ(y) = Og(y), for all y ∈ X}.

Then Th-inverse shadowing is equivalent to persistency (see [22] for the defini-
tion).

Hence, by the result of [22] we then have

Corollary. A topologically stable diffeomorphism of a compact smooth ma-
nifold is Th-inverse shadowing.

Consider now a broader class of methods:

Tc df= {ϕ : ϕ is a continuous δ-method, for some δ > 0}.

Theorem 3. Assume that f :M → M is a continuously shadowing map of
a compact topological manifold M . Then f is Tc-inverse shadowing.

Proof. Choose δ andWδ to ε by continuous shadowing. Let ϕ be a continuous
δ-method, y ∈ X .

(1) d(fnWδ(ϕ(y)), ϕ(y)n) ≤ ε for all n ∈ Z.

In particular, putting n = 0 we have: d(Wδ(ϕ(y)), y) ≤ ε for all y ∈ X . Since
Wδ◦ϕ is continuous, it is onto for small ε. For any point x ∈ X there exists y ∈ X
such that (Wδ ◦ϕ)(y) = x. From inequality (1) we then have: d(fnx, ϕ(y)n) ≤ ε,
for all n ∈ Z. �
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Corollary (Kloeden, Ombach ([19])). Hyperbolic homeomorphism is Tc-in-
verse shadowing.

The above result can be extended to some noninvertible maps.

Definition (Reddy ([35])). The map f is called expanding if f is continuous,
onto, open and there exist a compatible metric �, constants ε > 0 and λ > 1
such that

0 < �(x, y) < ε⇒ �(fx, fy) > λ�(x, y).

Theorem 4 (Kloeden, Ombach ([19])). An expanding map of a compact
manifold is Tc-inverse shadowing (here J = {0, 1, . . .}).

Theorem 5 (Pilyugin ([34])). C0-structurally stable homeomorphism is Tc-
inverse shadowing.

Example. Tent map f is not Tc-inverse shadowing with J = {0, 1, . . .}. It
is enough to consider the orbit Of (1) = {1, 0, 0, . . .} and δ-methods

ϕδ(y) = Og(y), where gy =
{
1− |2y − 1| for 0 ≤ y ≤ 1− δ,
2δ for 1− δ ≤ y ≤ 1.

4. Tolerance stability

The notion of tolerance stability was introduced by Zeeman and considered
by Takens in [42]. The ideas behind it and the concept of shadowing were close
to each other, still it seems that they were established independently.
In the sequel we assume that f :X → X is a homeomorphism. Let H(X)

denotes the space of all homeomorphisms of X with the C0 topology.

Definition. A sequence y = {yn}n∈Z is ε-set-traced by the orbit of the point
x ∈ X if

�H(Cl (Of (x)), Cl (y)) ≤ ε.
Here �H denotes the Hausdorff metric induced by d.

Definition. The homeomorphism f is tolerance stable if for every ε > 0
there exists δ > 0 such that for every g ∈ H(X), d(f, g) < δ, each f -orbit is
ε-set-traced by some g-orbit and each g-orbit is ε-set-traced by some f -orbit.

Definition. The homeomorphism f is strongly tolerance stable if for every
ε > 0 there exists δ > 0 such that for every g ∈ H(X), d(f, g) < δ, each f -orbit
is ε-traced by some g-orbit and each g-orbit is ε-traced by some f -orbit.

One can prove that strong tolerance stability implies shadowing in the case
of homeomorpisms of a compact topological manifold ([28]1). So we have

1Actually, in this paper Odani assumed a differential structure on a manifold. However,
the proof was a simple modification of the proof of the classical Walters’ result saying that
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Theorem 6. Let M be a compact topological manifold and let f :M → M
be a homeomorphism. Then f is strongly tolerance stable if and only if f is
shadowing and Th-inverse shadowing.

5. C0 genericity

One can ask how many dynamical systems share the shadowing and/or the
related properties discussed above. More particular question is whether a specific
family of dynamical systems is generic. The answer to this question depends on
a space of dynamical systems we are interested in. We consider here the space
of all homeomorphisms H(X) with the C0 topology. Takens ([42]) established
topological version of Zeeman’s Tolerance Stability Conjecture which says that
for a subspace D ⊂ H(X), equipped with the topology not coarser than that of
H(X), the set of all f ∈ D having tolerance stability property is residual in D,
i.e. it includes a countable intersection of open and dense subsets of D. This con-
dition means in fact that tolerance stability is a generic property in the space D.
Then, White ([45]) presented the counterexample showing that the set D cannot
be chosen arbitrarily. There were also proved several results in the direction of
Zeeman’s Tolerance Stability Conjecture ([7], [16], [31], [43]). Odani ([28]) sho-
wed that the set of all homeomorphisms satisfying the strong tolerance stability
condition is residual in H(M), where M is a compact differentiable manifold of
the dimension at most 3. Corless and Pilyugin ([4]) proved that weak shado-
wing is generic in H(M) under additional assumption that M has also a smooth
differential structure.
Let M be a compact topological manifold.
One of the most important recent results is the following

Theorem 7 (Pilyugin, Plamenevskaya ([32], [33])). If M is a smooth ma-
nifold then shadowing property is generic in H(M).

Now, we also have

Theorem 8 (Mazur ([25]–[27])). The following properties are generic in
H(M):

(1) TC-inverse shadowing, if M is a smooth manifold and dim (M) ≤ 3,
(2) strong tolerance stability, if M is a smooth manifold,
(3) the chain recurrent set CR is a Cantor set, if M is a smooth manifold,
(4) weak shadowing.

It seems that Statement 2 is the most remarkable one. It extends the corre-
sponding result ([28]) established for the case when dim (M) ≤ 3. Actually, it

topological stability implies POTP ([44]), which can be also proved in the case of topological
manifold ([2]).
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resolves the main part of Zeeman’s and Taken’s Tolerance Stability Conjecture.
Statement 4 extends Corless’ and Pilyugin’s result ([4]) mentioned above.
Statement 3 is of a different meaning than the others. The analogous theorem,

under additional assumption that dim (M) ≤ 3, was proved by Hurley ([15]). In
fact, it says that asymptotic behaviour of a C0 generic homeomorphism concen-
trates on a Cantor set. For the concept of the chain recurrent set CR we refer,
for example, to [36]. We just mention here that C0 generically CR is the closure
of the set of all periodic orbits ([6], [41]). So, in the other words, Statement 3
means that C0 generically dynamics of a homeomorphism is in a specific way
chaotic.
Proof of the above theorem is established in [25]–[27] and will be published

elsewhere.
The proof of Statement 1 uses Shub’s Density Theorem ([40]). It is very

similar to the proof of Odani’s result ([28]), mentioned above.
The proofs of Statements 2 and 3 employ the ideas and techniques of handle

decomposition established by Pilyugin and Plamenevskaya ([33]) to the proof of
Theorem 7.
In the proof of Statement 4 we use a topological method of characteriza-

tion of residual sets by continuity points of semi-continuous multivalued maps,
which was established by Takens ([42]) as a reformulation of a Kuratowski’s the-
orem ([21]). This technique was previously applied by Takens to the proof of
a similar but weaker result ([42]).
For a characterization of diffeomorphisms having POTP we refer to Sakai’s

papers [38], [39].
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Abstract. We use nonstandard analysis methods and a recently introdu-
ced notion of neocompact sets to study the structure of fixed point sets of
nonexpansive mappings in nonstandard hulls of Banach spaces.

1. Introduction

Throughout the paper E will always denote a Banach space, C a nonempty
bounded closed and convex subset of E and T :C → C a nonexpansive mapping.
We say that C has the generic fixed point property (GFPP) if every nonexpansive
mapping T :C → C has a fixed point in every nonempty closed convex subset C0
of C for which T (C0) ⊂ C0. We will denote by FixT the set of fixed points of T
in C.

One of very deep results in metric fixed point theory is a theorem of R. E.
Bruck ([4]) which asserts that if C is a weakly compact set which has the GFPP,
then FixT is a nonexpansive retract of C. The applications of Bruck’s theorem
are immense (see for instance [5], [11], [12]).

It turns out (see [4, Theorem 3]) that if FixT is a nonexpansive retract
of C, then FixT is metrically convex, that is, for every x, y ∈ FixT there exists
z ∈ FixT such that

‖x− y‖ = ‖x− z‖+ ‖z − y‖.
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On the other hand, it is not difficult to find examples of bounded closed and
convex subsets of E and nonexpansive self-mappings whose fixed-point sets are
not metrically convex.

The situation is different if we consider Banach ultrapowers. Let us recall
that the ultrapower Ẽ (or (E)U ) of a Banach space E over a free ultrafilter
U ⊂ 2N is the quotient space of

l∞(E) = {(xn) : xn ∈ E for all n ∈ N and ‖(xn)‖ = sup
n
‖xn‖ <∞}

by kerN = {(xn) ∈ l∞(E) : lim U‖xn‖ = 0}. Here limU denotes the ultralimit
over U . One can prove that the quotient norm on (E)U is given by ‖(xn)U‖ =
limU ‖xn‖, where (xn)U is the equivalence class of (xn). For a given set C ⊂ E

and nonexpansive T :C → C set

C̃ = {(xn)U ∈ Ẽ : xn ∈ C for all n ∈ N}

and T̃ ((xn)U ) = (Txn)U . It is not difficult to see that T̃ : C̃ → C̃ is a well defined
nonexpansive mapping and that Fix T̃ 6= ∅ is characterized as those points from C̃

represented by sequences (xn) in C for which limU ‖Txn − xn‖ = 0.
It was proved by B. Maurey in [13] that, under our standard assumptions,

Fix T̃ is metrically convex (see also [15] for a short proof of even more general
result). This is now one of the basic facts for the so-called nonstandard methods
in fixed point theory (see [1], [14] and the references given there). A positive
answer to the following open question might be regarded as a generalization of
Maurey’s result:

Question. If C is a bounded closed and convex subset of a Banach space
and if T :C → C is a nonexpansive mapping, is then Fix T̃ a nonexpansive retract
of C̃?

It is shown in [16] that a positive answer to the above question yields a posi-
tive solution to the long-standing problem concerning the existence of common
approximate fixed points for commuting nonexpansive mappings (see [10, p. 11]).

Our paper is a first step to answer the question in the affirmative. It is shown
that Fix T̃ is an ‘almost’ nonexpansive retract of C̃ in the sense given below.
As corollary, we obtain a nonexpansive mapping of C̃ into Fix T̃ which leaves
a countable set D ⊂ Fix T̃ fixed. We use nonstandard analysis approach instead
of the ultraproduct language and a recently introduced notion of neocompactness
due to S. Fajardo and H. J. Keisler [6], [7].

2. Results

Let us first recall the terminology. We assume the reader is familiar with basic
notions of nonstandard analysis, including the transfer principle, the overspill
principle and the notion of internal sets (see [2], [9]). We work in an ℵ1-saturated
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nonstandard universe (V (Ξ), V (∗Ξ), ∗ ). Recall that for a given metric space
(M,ρ) in the original superstructure V (Ξ), the standard part of an element
X ∈ ∗M is the equivalence class ◦X = {Y ∈ ∗M : ∗ρ(X,Y ) ≈ 0}. For each
U ∈ ∗M , the nonstandard hull H(∗M,U) is the set {◦X : ∗ρ(X,U) is finite}
with the metric ρ(◦X, ◦Y ) = st (∗ρ(X,Y )), where stx denotes the standard part
of x ∈ ∗R. It is well known that each nonstandard hull is a complete metric
space. The monad of a subset A ⊂ H(∗M,U) is the set

monad (A) = {X ∈ ∗M : ◦X ∈ A}.

Conversely, if B ⊂ monad (H(∗M,U)), then ◦B = {◦X : X ∈ B}.
Note that the concept of the nonstandard hull of a Banach space is closely

related to the Banach ultrapower construction. If E is a Banach space (in V (Ξ))
and A ⊂ E is bounded, we shall write Ẽ for the nonstandard hull H(∗E, 0)
and Ã for the set ◦(∗A). Let T :C → C be a nonexpansive mapping. Then, by
transfer, we obtain a *nonexpansive mapping ∗T : ∗C → ∗C and we may define
a nonexpansive mapping T̃ : C̃ → C̃ putting T̃ (◦X) = ◦(∗TX) for X ∈ ∗C. We
shall identify each x ∈ E with ◦(∗x). Hence E may be regarded as a subspace of
Ẽ and T̃ as an extension of T .

Let (H,B, C) be the huge neometric family for the nonstandard universe
(V (Ξ), V (∗Ξ), ∗ ), see [6]. Recall that D is neocompact in Ẽ if there exists a coun-
table collection {Bn} of internal subsets of monad (Ẽ) such that D = ◦

⋂∞
n=1Bn.

In particular, Ã is neocompact in Ẽ for every bounded A ⊂ E. Moreover, it fol-
lows from [6, Theorem 4.16] that T̃ is a neocontinuous mapping from C̃ to C̃

(see [6] for the precise definition of neocontinuity).
In further considerations we shall need the following result which is a di-

rect consequence of the existence of approximate fixed points for nonexpansive
self-mappings and the Approximation Theorem [7, Theorem 6.1].

Theorem 1 (see also [3, Theorem 2.3]). Let E be a Banach space (from
the original superstructure). Suppose D is a nonempty convex and neocompact
(hence closed and bounded) subset of a nonstandard hull Ẽ and let S:D → D be
a nonexpansive neocontinuous mapping. Then FixS 6= ∅.

Let ω ∈ ∗N and set

Fix ωT̃ = {x ∈ C̃ : there exists X ∈ ∗C
such that ◦X = x and ‖∗TX −X‖∗ ≤ 1/ω}.

It is not difficult to see that Fix ωT̃ ⊂ Fix T̃ for every hyperinteger ω ∈ ∗N \ N
and that Fix T̃ =

⋃
ω∈∗N\N Fix ωT̃ .

Theorem 2. Let C be a nonempty bounded closed and convex subset of
a Banach space E and let T :C → C be a nonexpansive mapping. Then, for
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every ω ∈ ∗N \ N, there exists a nonexpansive mapping rω: C̃ → Fix T̃ such that
rωx = x for every x ∈ Fix ωT̃ .

Proof. Denote by B(C,E) the Banach space of all bounded mappings ϕ:C →
E with the standard uniform norm

‖ϕ‖ = sup{‖ϕx‖ : x ∈ C}

and let B̃(C,E) be its nonstandard hull H(∗B(C,E),0). Set

D = {S ∈ B(C,E) : S is nonexpansive from C to C}.

Fix ω ∈ ∗N \ N, k ∈ N and let

Nω,k = {F ∈ ∗D : (for all Y ∈ ∗C) (‖∗TY − Y ‖∗ ≤ 1/ω ⇒ ‖FY − Y ‖∗ ≤ 1/k)}.

By Keisler’s Internal Definition Principle (see for instance [9]), Nω,k is internal
for each k ∈ N and consequently

N(Fix ωT̃ ) =
◦ ∞⋂
k=1

Nω,k =
{
◦F : F ∈

∞⋂
k=1

Nω,k

}
is neocompact in D̃ (here ◦F denotes the standard part of F with respect to
the *sup norm, that is, ◦F = {G ∈ ∗D : ‖F − G‖∗ ≈ 0}). Let us notice that a
nonexpansive mapping T :C → C induces a nonexpansive mapping T :D → D

in the following way:

(T f)x = (T ◦ f)x, f ∈ D, x ∈ C.

Define T̃ : D̃ → D̃ putting

T̃ (◦F ) = ◦(∗T F ), F ∈ ∗D.

It is not difficult to see that T̃ is a well defined neocontinuous nonexpansive
mapping from D̃ to D̃ (see [6, Theorem 4.16]). Moreover N(Fix ωT̃ ) is convex
and invariant under T̃ . Indeed, if f, g ∈ N(Fix ωT̃ ) and α ∈ (0, 1), then there
exist F,G ∈

⋂∞
k=1Nω,k such that ◦F = f and ◦G = g. Hence

αf + (1− α)g = α ◦F + (1− α) ◦G = ◦(αF + (1− α)G) ∈ N(Fix ωT̃ )

and
T̃ f = T̃ ( ◦F ) = ◦(∗T F ) = ◦(∗TF ) ∈ N(Fix ωT̃ )

since

‖∗TFY − Y ‖∗ ≤ ‖∗TFY − ∗TY ‖∗ + ‖∗TY − Y ‖∗

≤ ‖FY − Y ‖∗ + ‖∗TY − Y ‖∗ ≤
1

k + 1
+

1
ω
<

1
k
,

whenever Y ∈ ∗C, ‖∗TY − Y ‖∗ ≤ 1/ω and k ∈ N. Therefore, we may use
Theorem 1 to obtain a fixed point of T̃ in N(Fix ωT̃ ). Hence, there exists Rω ∈
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k=1Nω,k such that ‖∗TRω − Rω‖∗ ≈ 0 and we may define a nonexpansive

mapping rω: C̃ → C̃ putting rω(◦Y ) = ◦(RωY ) for Y ∈ ∗C. It is easy to see
that T̃ rωx = rωx for every x ∈ C̃ and thus rω(C̃) ⊂ Fix T̃ . If x ∈ Fix ωT̃ , then
‖∗TX −X‖∗ ≤ 1/ω for some X ∈ ∗C with ◦X = x. Hence ‖RωX −X‖∗ ≤ 1/k
for all k ∈ N, that is, ‖RωX −X‖∗ ≈ 0. It follows that rωx = x and the proof is
complete. �

Corollary. For any countable set A ⊂ Fix T̃ there exists a nonexpansive
mapping r: C̃ → Fix T̃ such that rx = x for x ∈ A.

Proof. For each xi ∈ A, i = 1, 2, . . . , there exists Xi ∈ ∗C such that ◦Xi = xi
and ‖∗TXi − Xi‖∗ ≤ 1/k for all k ∈ N. It follows from the overspill principle
that there exist ω1, ω2, . . . ∈ ∗N \ N such that ‖∗TXi−Xi‖∗ ≤ 1/ωi, i = 1, 2, . . . .
By ℵ1-saturation, ‖∗TXi −Xi‖∗ ≤ 1/ω for some ω ∈ ∗N \ N and it is enough to
apply Theorem 2. �

In some special cases one can use Theorem 2 to obtain a nonexpansive re-
traction of C̃ onto Fix T̃ . Assume that C̃ is weakly compact, fix ω0 ∈ ∗N \ N
and notice that the set J = {ω ∈ ∗N \ N : ω ≤ ω0} is directed by the relation
≤ (or ≤∗ to be precise), and can be considered as a net itself. Let (jβ)β∈J′ be
an ultranet in J . It follows from Theorem 2 that there exist nonexpansive map-
pings rjβ : C̃ → Fix T̃ such that rjβx = x for x ∈ Fix jβ T̃ and β ∈ J ′. By the
weak compactness of C̃, the ultranet (rjβx)β∈J′ tends weakly to r(x) ∈ C̃ for
each x ∈ C̃. One can check that since the norm is weak lower semicontinuous
a mapping r: C̃ → C̃ is nonexpansive. Moreover, if x ∈ Fix T̃ , then (by overspill)
x ∈ Fix ω1 T̃ for some ω1 ∈ J and consequently there exists β1 ∈ J ′ such that
rjβx = x for β ≥ β1. Hence rx = x for x ∈ Fix T̃ . What is left is to show that
r(C̃) ⊂ Fix T̃ . This is rather easy to prove in the case Ẽ is uniformly convex or
has the Opial property for nets but we cannot do that in general.
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Klaudiusz Wójcik

Dedicated to Professor Lech Górniewicz on his 60th birthday

Abstract. We present two methods for detecting complicated dynamics
in nonautonomous ODE’s. First is based on the Waewski Retract Theorem
and the Lefschetz Fixed Point Theorem. Second is based on the continu-
ation of the considered system to the model one.

1. Introduction

In recent years there has been a growing interest in the differential equations
that generate chaotic dynamics. This interest was inspired by common access
to fast computers, which give numerical evidence of the existence of chaos in
many equations. Examples of complicated dynamics are ubiquitous, extending
well beyond the mathematical literature into the realm of theoretical sciences
and engineering. However, there seem to be few methods that permit proving
the existence of chaos in a rigorous mathematical way. The set of examples
for which chaos has been rigorously demonstrated is quite small. The methods
that had been most frequently applied is based on the existence of homoclinic
trajectory with transversal intersection of the stable and unstable manifolds,
which is sufficient to the existence of Smale’s horseshoe (based mainly on ideas
of Melnikov and Shilnikov, see [5], [9]).

A different topological methods in the field of chaotic dynamics are present
for example in [5], [7], [16], [17]. In [8] a new method for the detection of chaos
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in dynamical systems generated by time periodic non-autonomous differential
equations was introduced. The method is based on the concept of a periodic
isolating segment introduced by Srzednicki (see [6]). The notion of a periodic
isolating segment is a modification of an isolating block from the Conley index
theory (see [2]) adapted to the setting of nonautonomous ODE’s. In all practical
applications the isolating segments are manifolds with corners contained in the
extended phase space, such that in any point on the boundary of the segment the
vector field is directed either outward or inward with respect of the segment. It
was first observed by Srzednicki in [6], that the fixed point index of the Poincaré
map inside the segment is equal to the Lefschetz number of the monodromy
homeomorphism given by the segment. This result was used in [8] (see also [10],
[11]) to prove a sufficient condition for chaos in the sense that there exists a
compact invariant set I for the Poincaré map P such that P is semiconjugated
to the shift on two symbols and the counterimage by the semiconjugacy of any
periodic point in the shift contains a periodic point of the Poincaré map. As an
application the authors in [8] considered the following planar periodic equation
of the variable z ∈ C

(∗) ż = z(1 + |z|2eiκt) for some κ ∈ R.

In this paper we describe a new method introduced in [13] (see also [14], [15])
based on the continuation theorem and a construction of the topological model
map. This continuation result enables us to dig deeper into the structure of
the set of periodic solutions than does the Lefschetz Fixed Point Theorem used
originally in [8]. As a result we are able to show that there exists a symbolic
dynamics on three symbols for the system (∗) for 0 < κ ≤ 0.495. In [8] it was
proved that the above equation has symbolic dynamics on two symbols for the
parameter range 0 < κ ≤ 1/288. Compared to [8] two new ingredients are added:
the continuation theorem and a topological model for equation (∗). Combining
the topological data with local hyperbolic behavior we are also able to prove the
existence of infinitely many homoclinic solutions.

Our continuation theorem allows us to prove that the dynamics of the topo-
logical model continues to that of equation (∗). This is a rare phenomenon in
the theory of dynamical systems. Usually one cannot claim rigorously that the
dynamics of the model reflects that of the system under consideration.

The continuation theorem gives conditions for determining when the chaotic
system can be homotoped to another system. The main idea is well known: find a
simple system for which a fixed point can be found, determine that the fixed point
index is non-zero, and homotopy to the system of interest. The important point
is that index is insensitive to bifurcations: as long as fixed points do not encroach
on the boundary of the domain of interest, the index remains constant. While
the idea is clear, the details are difficult to handle. The continuation theorem
presents the algebraic invariants that remain constant under the appropriate
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homotopies and simultanously provide a minimal description of the complexity
of the dynamics of the considered system.

2. Semiprocesses and periodic isolating segments

Some notation: R+ = [0,∞), ρ euclidean distance function, B(Z, δ) a ball of
size δ arround the set Z, ind(F,D)-fixed point index of map F relatively to the
set D (see [4]).

We start with introducing the notion of a local semiprocess which formalizes
the notion of a continuous family of local forward trajectories in an extended
phase-space.

Definition 1. Assume that X is a topological space and ϕ:D → X is a
continuous mapping, D ⊂ R× R+ ×X is an open set. We will denote by ϕ(σ,t)
the function ϕ(σ, t, · ). ϕ is called a T -periodic local semiprocess if the following
conditions are satisfied

(S1) {t ∈ R+ : (σ, t, x) ∈ D} is an open interval for all σ ∈ R, x ∈ X,
(S2) ϕ(σ,0) = idX for all σ ∈ R,
(S3) ϕ(σ,s+t) = ϕ(σ+s,t) ◦ ϕ(σ,s) for all σ ∈ R, and for all s, t ∈ R+,
(S4) ϕ(σ+T,t) = ϕ(σ,t) for all σ, t ∈ R+.

A local semiprocess ϕ on X determines a local semiflow Φ on R×X by the
formula

Φt(σ, x) = (σ + t, ϕ(σ,t)(x)).

Let ϕ be a T -periodic local semiprocess and let Φ be a local flow associated to ϕ.
It follows by (S1) and (S2) that for every z = (σ, x) there is an 0 < ωz ≤ ∞ such
that (σ, t, x) ∈ D if and only if ≤ t < ωz. Let x ∈ X, σ ∈ R, then a left solution
trough z = (σ, x) is a continuous map v: (a, 0] → R × X for some a ∈ [−∞, 0)
such that v(0) = z and for all t ∈ (a, 0] and s > 0 with s+ t ≤ 0 it follows that
s < ωv(t) and Φs(v(t)) = v(t+ s). If a = −∞ then we call v a full left solution.
We can extend a left solution through z onto (a, ωz) by setting v(t) = Φt((σ, x))
for 0 ≤ t < ωz, to obtain a solution through z.

Remark. The differential equation

ẋ = f(t, x)

such that f is regular enough to guarantee the uniqueness for the solutions of
the Cauchy problems associated to f generates a local process as follows: for
x(t0, x0; · ) the solution of the Cauchy problem x(t0, x0; t0) = x0 we put

ϕ(t0,τ)(x0) = x(t0, x0; t0 + τ).

If f is T -periodic with respect to t then ϕ is a T -periodic local process. By P we
will be denote a Poincaré map ϕ(0,T ).
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We use the following notation: by π1:R × X → R and π2:R × X → X we
denote the projections and for a subset Z ⊂ R×X and t ∈ R we put

Zt = {x ∈ X : (t, x) ∈ Z}.

Definition 2. We will say that a set Z ⊂ R ×X is T -periodic, if and only
if ZnT+t = Zt for every n ∈ N and t ∈ R.

Definition 3. Let (W,W−) ⊂ R × X be a pair of subsets. We call W a
T -periodic isolating segment for the T -periodic semiprocess ϕ if:

(a) W , W− are T -periodic,
(b) (W,W−) ∩ ([0, T ]×X) is a pair of compact sets,
(c) for every σ ∈ R, x ∈ ∂Wσ there exists δ > 0 such that for all t ∈ (0, δ)

ϕ(σ,t)(x) /∈Wσ+t or ϕ(σ,t)(x) ∈ intWσ+t,
(d) W− = {(σ, x) ∈ W : exists δ > 0 for all t ∈ (0, δ) such that ϕ(σ,t)(x) /∈

Wσ+t}, W+ := cl(∂W \W−),
(e) for all z ∈W+ and all v: (a, 0]→ R×X a left solution through z there

is a ≤ b < 0 such that for all t ∈ (b, 0) v(t) /∈W ,
(f) there exists η > 0 such that for al x ∈ W− there exists t > 0 such that

for all τ ∈ (0, t] Φτ (x) /∈W and ρ(Φt(x),W ) > η.

Roughly speaking, W− and W+ are sections for the semiflows, through which
trajectories leave and enter W , respectively. One can check that a T -periodic
isolating segment is a Waewski set (see [2]).

3. Chaos via Lefschetz Fixed Point Theorem

Recall that a topological space is an ENR if and only if it is homeomorphic
with a retract of an open set in some Euclidean space.

Definition 4. Let (W,W−) ⊂ R × X be a pair of subsets. We call W a
T -periodic regular isolating segment for the T -periodic semiprocess ϕ if W is
T -periodic isolating segment for ϕ and the following conditions hold

(b’) (W,W−) ∩ ([0, T ]×X) is a pair of compact ENR’s
(g) there exists a T -periodic homeomorphism of pairs

h:R× (W0,W−0 )→ (W,W−)

such that π1 = π1 ◦ h.

Let W be a T -periodic regular isolating segment for a given T -periodic pro-
cess ϕ. Following [8] we define a homeomorphism

h̃: (W0,W−0 )→ (WT ,W
−
T ) = (W0,W−0 )
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by h̃(x) = π2(h(T, π2h−1(0, x))) for x ∈W0. A different choice of the homeomor-
phism h in (vii) leads to a map which is homotopic to h̃ (see [6]), hence the
automorphism

µW = h̃∗:H(W0,W−0 )→ H(W0,W−0 )

induced by h̃ in singular homology, is an invariant of the segment W . Recall that
its Lefschetz number is defined as

Lef(µw) =
∞∑
n=0

(−1)ntrh̃∗n.

In particular, if µW = idH(W0,W−
0 )

then it is equal to the Euler characterictic

χ(W0,W−0 ).
Let Σk = {0, . . . , k − 1}Z and σ: Σk → Σk be a shift map. For α ∈ Σk by

p(α) we will denote its principal period. For α non-periodic we set p(α) =∞.

Definition 5. We say that a T -periodic semiprocess ϕ is Σk-chaotic if there
exists a compact set I invariant with respect to the Poincaré map ϕ(0,T ) and a
continuous surjective map g: I → Σk such that

(j) σ ◦ g = g ◦ ϕ(0,T ),
(jj) for every periodic sequence α ∈ Σk its counterimage g−1(α) contains at

least one p(α) periodic point of ϕ(0,T ).

Since I is compact and the set of periodic points is dense in Σk, condition
(jj) implies that g must be a surjection. It follows in particular that a Σk-chaotic
semiprocess, for every l ∈ N, has a periodic orbit with the principal period lT

and the topological entropy of the Poincaré map is positive.
The following theorem was proved in [8]

Theorem 1. Let U , W be two T -periodic regular isolating segments for the
T -periodic process ϕ. Assume that

(a) U ⊂W , U0 = W0, U−0 = W−0 ,
(b) µU = idH(W0,W−

0 )
= µ2W ,

(c) Lef(µW ) 6= χ(U0, U−0 ) 6= 0.

Then ϕ is Σ2-chaotic.

In [8] the authors applied this result to prove that the equation (∗) is Σ2-cha-
otic provided 0 < κ ≤ 1/288. The result follows by the construction of two
T = 2π/κ-periodic regular isolating segments U and W satisfying assumptions
of the above theorem. The symbolic dynamics is obtained as follows. Let

IW := {x ∈W0 : ϕ(0, t, x) ∈Wt, for t ∈ R}

The semiconjugacy map g: IW → Σ2 is given by the rule: g(x)l = 1, when a
trajectory of x ∈ IW leaves a small segment U in a moment between lT and
(l + 1)T , and g(x)l = 0, otherwise.
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4. Main result

Let T = 2π/κ be a period of equation (∗) and ϕ be a T -periodic local process
generated by (∗). Let P = ϕ(0,T ) be a Poincaré map.

Theorem 2. There exists a compact set I, such that P (I) = I and a conti-
nuous map g: I → Σ3, such that

(a) σ ◦ g = g ◦ P ,
(b) g(I) = Σ3,
(c) if α ∈ Σ3 is a periodic sequence, then g−1(α) contains a point with a

period equal to p(α),
(d) for any α ∈ Σ3 such that αi = 0 for i > i0, g−1(α) contains a point x

such that limt→∞ ϕ(0, t, x) = (0, 0),
(e) for any α ∈ Σ3 such that αi = 0 for i < i0, g−1(α) contains a point x

such that limt→−∞ ϕ(0, t, x) = (0, 0),
(f) for any α ∈ Σ3 such that αi = 0 for |i| > i0 g

−1(α) contains a point x
such that limt→±∞ ϕ(0, t, x) = (0, 0).

The main idea of the proof will be described in the next sections. For more
details we refer the reader to [13] and [14]. Assertion (a)–(c) are proved in [13].
The new element in [14] are the statements about existence of complicated orbits
(α in (d)–(f) can be an arbitrary finite sequence of −1, 0, 1) which are asymptotic
to the hyperbolic periodic orbits passing through the origin. Assertion (vi) is a
statement about an existence of plenty of orbits homoclinic to the origin, in
literature (see [1], [3] and references cited there) such orbits are often called
multibump solutions. The proof consists in the construction of a topological
model for a process induced by (∗), for which assertions (a)–(f) hold. Then we
show by a continuation argument, that these assertion also hold for ϕ. Note that
to obtain a symbolic dynamics (assertion (a)–(c) we have built in [13] (see also
[8]) “large” isolating segments. To deal with solutions which are asymptotic to
the origin we shrink the isolating segments almost to a line. Obviously the actual
proof is much more complicated (see [14]).

5. Continuation result

Let H: [0, 1] × R × R+ × Rd → Rd be a continuous family of T -periodic
semiprocesses and Φλ be a T -periodic semiflow generated by Hλ.

Let U , W be two T -periodic isolating segments for the semiprocess Hλ for
every λ ∈ [0, 1], such that

U ⊂W, U0 = W0, U−0 = W−0 .

Let

U− =
K⋃
l=1

U−l
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be a decomposition of the exit set U− into a disjoint union of closed T -periodic
sets U−l .

Definition 6. Let α = (α0, . . . , αn−1) ∈ {0, . . . ,K}n and λ ∈ [0, 1]. We
define (int(W0)α(Hλ) as a set of points fulfilling the following conditions

(a) Hλ(0, lT, x) ∈ intW0, l = 0, . . . , n,
(b) Φλt (0, x) = (t,Hλ(0, t, x)) ∈ intW , t ∈ (0, nT ),
(c) if αl = 0, then ΦlT+t(0, x) ∈ intU , for t ∈ (0, T ),
(d) if αl 6= 0, then ΦlT (0, x) leaves U in time less then T through U−αl .

Under the above assumptions and notation we have (see [13])

Theorem 3. Assume that there exists η > 0 such that for every λ ∈ [0, 1]
and for every x ∈W− (x ∈ U−) there exists t > 0 such that for 0 < τ ≤ t holds
Φλτ (x) /∈W and ρ(Φλt (x),W ) > η (resp. Φλτ /∈ U and ρ(Φλt (x), U) > η). Then for
every α = (α0, . . . , αn−1) ∈ {0, . . . ,K}n the fixed point indices

ind (Hλ(0, nT ), (intW0)α(Hλ))

are well defined and equal (i.e. do not depend on λ).

It should be stressed that we have a good reason to state our definitions and
the above continuation theorem for semiprocesses: a Poincaré map of our model
T -periodic semiprocess constructed in next section is 1-dimensional, hence is not
invertible. This fact (one-dimensionality of this map) enables us to calculate the
various fixed point indices of interest.

6. Model semiprocess

Let U ⊂ W be a periodic isolating segments for (∗) constructed in [13] for
0 < κ ≤ 0.495. We start with the description of U and W . W (the big segment)
is a twisted prism with a square base centered at origin. Its cross-sections Wt will
be obtained by rotating a base W0 = U0 = [−R,R]2 with the angular velocity
κ/2 over the t-interval [0, 2π/κ]. The segment U is a regular square-based prism
with broadening ends. Its cross-sections Ut corresponding to t near the center
of the interval have the side of length 2r < 2R and they are broadened to the
length 2R when t approaches to 0 or 2π/κ. The exit sets W−0 = U−0 consist of
two components. We refer the reader to [8] for the picture.

Let U+1, U−1 be two connected components of U−, the right one and the
left one, respectively.

The following theorem was proved in [13].

Theorem 4. There exists a semiprocess ϕM such that there are disjoint
closed segments J−1 = [−b,−a], J0 = [−c, c], J1 = [a, b], Jl ⊂ (−R,R) for
l = −1, 0, 1 and a continuous function f : J−1 ∪ J0 ∪ J1 → [−R,R] such that

(a) Z := {p ∈W0 : ϕM (0, t, p) ∈W, t ∈ [0, T ]} = {J−1∪J0∪J1}× [−R,R],
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(b) Z0 := {p ∈W0 : ϕM (0, t, p) ∈ U, t ∈ [0, T ]} = J0 × [−R,R],
(c) Zl = {p ∈ Z : p leaves U through U l in time ≤ T} = Jl × [−R,R],

l = −1, 1,
(d) ϕM (0, T, (x, y)) = (f(x), 0) where (x, y) ∈ Z,
(e) f(−x) = −f(x), f(c) = R, f(a) = R, f(b) = −R,
(f) f is strictly increasing on J0 and is strictly decreasing on J−1 and J1,
(g) there exists a continuous family of T -periodic semiprocesses Hλ such

that H0 = ϕ, H1 = ϕM ,
(h) for every λ ∈ [0, 1] the pairs (U,U−) and (W,W−) are periodic isolating

segments for Hλ and the assumptions in continuation theorem hold,
(i) for every α = (α0, . . . , αn−1) ∈ {−1, 0, 1}n the fixed point index

ind(ϕM0,nT , (int W0)α)

is nontrivial.

The assertion (a)–(c) in the main theorem (Theorem 2) are obtained as
follows. Let

I = IW = {x ∈W0 : ϕ(0, t, x) ∈W, for t ∈ R}.
The semiconjugacy map g: I → Σ3 is given by g(x)l = 0 if ϕ(0, (lt, (l+1)T ), x) ⊂
U , g(x)l = −1 if ϕ(0, lT, x) leaves U in time less than T through U−1 and g(x)l =
+1 if ϕ(0, lT, x) leaves U in time less than T through U+1. The above theorem
imply that all fixed point indices for periodic points with prescribed periodic
sequence of symbols are nontrivial. Hence g(I) contains all periodic sequences
from Σ3. But the set of all periodic sequences is dense in Σ3, so g(I) = σ3. The
proof of assertion (d)–(f) of Theorem 2 is technically more complicated and we
refer the reader to [14] for details.
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EXISTENCE OF SOLUTIONS OF INITIAL-BOUNDARY
VALUE PROBLEMS FOR THE HEAT-EQUATION

IN SOBOLEV SPACES WITH THE WEIGHT
AS A POWER OF THE DISTANCE TO SOME AXIS

Wojciech M. Zajączkowski

Abstract. We examine initial-boundary value problems for the heat-equa-
tion in a domain in R3 which contains an axis. Assuming that data functions
belong to Sobolev spaces with weights equal to a power of the distance from
the axis we prove existence of solutions in the same kind of weighted Sobolev
spaces.

1. Introduction

In this paper we prove the existence and show some regularity properties of
solutions to the Dirichlet

(1.1)

ut −∆u = f in Ω× (0, T ) ≡ ΩT ,

u = b on S × (0, T ) ≡ ST ,
u|t=0 = u0 in Ω,

and the Neumann

(1.2)

ut −∆u = f in ΩT ,
∂u

∂n
= b on ST ,

u|t=0 = u0 in Ω,
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problems in a bounded domain Ω ⊂ R3 with the boundary S.
We assume that through the domain Ω passes a given axis L. We consider

problems (1.1) and (1.2) in Sobolev spaces Hk+2
µ (ΩT ), k ∈ N0 = N∪{0}, µ ∈ R+,

with the weight equal to the power function of the distance from the axis L (for
the definition see Section 2).

To prove the existence of solutions to problems (1.1) and (1.2) we use the
technique of regularizer. Therefore we have to consider problems (1.1) and (1.2)
locally. The most difficult problems appear when we localize them to any neigh-
bourhood of points from the distinguished axis. Therefore we shall restrict our
considerations to such neighbourhoods only. Moreover, we consider the internal
points only. To examine a behaviour of solutions we apply the Kondratiev theory
(see [1]) so following [6], [7] we consider the following artificial problem

(1.3)
∆′u = f in R2,

u|γ0 = |γ2π , uϕ|γ0 = uϕ|γ2π ,

where ∆′ = ∂2
x1 + ∂2

x2 , γ0 = γ2π = {x ∈ R3 : x2 = 0} and r, ϕ are the polar
coordinates.

Moreover, we introduce such system of coordinates that the axis x3 is the
distinguished axis L.

2. Notation and auxiliary results

Let (x1, x2, x3) be a system of local coordinates such that the axis x3 is the
distinguished axis L passing through Ω. Let x′ = (x1, x2) and |x′| =

√
x2

1 + x2
2.

Then we introduce space Hk
µ(R2), k ∈ N0 = N ∪ {0}, µ ∈ R+, with the norm

‖u‖Hkµ(R2) =
( ∑
|α′|≤k

∫
R2
|Dα′

x′ u|2|x′|2(µ−(k−|α′|)) dx′
)1/2

,

where α′ = (α1, α2), |α′| = α1 + α2 is multiindex and Dα′

x′ = ∂α1x1 ∂
α2
x2 . Moreover,

H0
µ(R2) = L2,µ(R2) and ‖u‖Lk2,µ(R2) =

∑
|α′|=k ‖Dα′

x′ u‖L2,µ(R2).

Let k ∈ N0, µ ≥ 0. By L
◦

k,k/2
2,µ (R3×(0, T )) we mean a closure of a set of smooth

functions with compact support vanishing for t ≤ 0 in the norm

‖u‖
L
◦
k,k/2
2,µ (R3×(0,T )) =

( ∑
|α|+2a=k

∫ T

0
dt

∫
R3
|Dα

x∂
a
t u(x, t)|2|x′|2µ dx

+
∑

2a+|α|=k−1

∫
R3
|x′|2µ

∫ T

−∞
dt

·
∫ T

−∞
dt′|Dα

x∂
a
t u(x, t)−Dα

x∂
a
t′u(x, t′)|2 1

|t− t′|2

)1/2

,
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where α = (α1, α2, α3), |α| = α1 + α2 + α3, Dα
x = ∂α1x1 ∂

α2
x2 ∂

α3
x3 . Boundedness of

the norm means that the following conditions are satisfied

∂iu

∂ti
|t=0 = 0 for

{
i ≤ [k/2] for k odd,

i < [k/2] for k even.

Taking the Fourier transform

ũ(x′, ξ, ξ0) = (2π)−1
∫
R
dx3

∫ ∞
−∞

u(x, t)e−i(x3·ξ+tξ0) dt

we write the norm of L
◦

k,k/2
2,µ (R3 × (0,∞)) in the form

‖u‖
L
◦
k,k/2
2,µ (R3×(0,∞)) =

(∫
R
dξ

∫ ∞
−∞

dξ0

k∑
j=0

‖ũ‖Lk−j2,µ (R2)(|ξ|
2 + |ξ0|)j

)1/2

.

Next we introduce anisotropic spaces Hk,k/2
µ (R3 × (0, T )) with the norm

‖u‖
H
k,k/2
µ (R3×(0,T )) =

( ∑
|α|+2a≤k

∫ T

0
dt

∫
R3
|Dα

x∂
a
t u|2|x′|2(µ−(k−|α|−2a)) dx

)1/2

.

Let ζ(t) ∈ C∞0 (R+) be a monotone function such that ζ(t) = 1 for t ≤ 1/2 and
ζ(t) = 0 for t ≥ 1.

We introduce also the spaces

‖u‖
W
k,k/2
2,µ (ΩT ) =

( ∑
|α|+2a≤k

∫
ΩT
|Dα

x∂
a
t u|2|x′|2µ dx dt

)1/2

, k ∈ N0,

and

‖u‖Lp,q(ΩT ) =
(∫ T

0

∫
Ω
|u(x, t)|p dx

)q/p
dt)1/q, p, q ∈ [1,∞].

From [6] and [7] we know that (1.3) has eigenvalues equal to integer numbers.
Moreover from [6] and [7] we have

Theorem 2.1. Assume that f ∈ Hk
µ(R2), µ ∈ (0, 1), k ∈ N0, h = 1 + k −

µ 6= 0. Then there exists a unique solution u ∈ Hk+2
µ (R2) of (1.3) such that

(2.1) ‖u‖Hk+2µ (R2) ≤ c‖f‖Hkµ(R2).

Moreover,

Theorem 2.2. Assume that f ∈ Hk
µ(R2)∩Hk′

µ (R2), µ, µ′ ∈ (0, 1), k, k′ ∈ N0

and h′ = 1+k′−µ′ > 1+k−µ = h, where h, h′ 6∈ Z. Assume that l1, l2, . . . , lµ ∈
Z and l1, l2, . . . , lµ ∈ (h, h′). Then there exist two solutions of problem (1.3),
u ∈ Hk+2

µ (R2) and u′ ∈ Hk′+2
µ′ (R2) such that

(2.2) ‖u‖Hk+2µ (R2) ≤ c‖f‖Hkµ(R2), ‖u′‖
Hk
′+2
µ′ (R2) ≤ c‖f‖Hk′µ′ (R2),
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(2.3) u =
lµ∑
σ=l1

(aσrσ sinσϕ+ bσr
σ cosσϕ) + u′.

3. Existence of solutions for (1.1) in a neighbourhood of L

To show existence of solutions to problem (1.1) in some weighted Sobolev
spaces we apply the methods from [3], [5], [7]. Localizing problem (1.1) in a ne-
ighbourhood of the axis L we consider the following problem

(3.1)

ut −∆u = f,

u|Γ0 = u|Γ2π ,
∂u

∂x2

∣∣∣∣
Γ0

=
∂u

∂x2

∣∣∣∣
Γ2π

, u|t=0 = u0,

where Γ0 = Γ2π = {x ∈ R3 : x2 = 0} and f has a compact support. In the
cylindrical coordinates r, ϕ, z the axis L is determined by r = 0.

First we have to consider the problem with vanishing initial data. Let ũ0 be
an extension of u0 such that

(3.2) ũ|t=0 = u0.

Then introducing the new quantity

(3.3) v = u− ũ0,

we write (3.1) in the form

(3.4)
vt −∆v = f − (ũ0t −∆ũ0) ≡ g,

v|Γ0 = v|Γ2π , vx2 |Γ0 = vx2 |Γ2π , v|t=0 = 0.

where we used the compatibility conditions for u0.
By a weak solution to (3.4) we mean a function v which satisfies the following

integral identity

(3.5)
∫ T

0
dt

∫
R3

(−vηt +∇v · ∇η) dx =
∫ T

0
dt

∫
R3
dxgη,

which holds for any η such that ηt,∇η ∈ L2(R3 × (0, T )) and η(T ) = 0.
For the weak solutions (3.5) we have the estimate

(3.6)
∫
R3
|v|2 dx+

∫ T

0
dt

∫
R3
|∇v|2 dx+

∫ T

0
dt

∫
R3

1
t
|v(x, t)|2 dx

+
∫
R3
dx

∫ T

0
dt

∫ T

0
dt′
|v(x, t)− v(x, t′)|2

|t− t′|2
≤ c‖g‖Lr′,q′ (R3×(0,T )),

where 1/r + 1/r′ = 1, 1/q + 1/q′ = 1, 1/r + 3/2q = 3/4.
In view of (3.6) we have existence of weak solutions in such classes that (3.6)

holds.
Now we show higher regularity of the weak solution.
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Lemma 3.1. Assume that g ∈ L2,µ(R3 × (0, T )). Then the weak solution
of (3.4) is such that v ∈ L

◦
2,1
2,µ(R3 × (0, T )) and the estimate holds

(3.7) ‖v‖
L
◦
2,1
2,µ(R3×(0,T )) ≤ c‖g‖L2,µ(R3×(0,T )).

Moreover, let v|r=0 = v∗. Then v − v∗ ∈ H2,1
µ (R3 × (0, T )) and

(3.8) ‖v − v∗‖H2,1µ (R3×(0,T )) ≤ c‖g‖L2,µ(R3×(0,T )).

Proof. The first part of the proof follows easily from the proof of Theorem 2.1
from [3]. Extending function g with respect to t on (0,∞) we apply the Fourier
transform with respect to x3 and t to the problem (3.4). Then we obtain

(3.9)
−∆′ṽ + qṽ = g̃ in R2,

ṽ|γ0 = ṽ|γ2π , ṽx2 |γ0 = ṽx2 |γ2π ,

where q = ξ2 + iξ0.
The problem (3.9) has a generalized solution ṽ ∈ H1(R2) satisfying the inte-

gral identity

(3.10)
∫
R2

(∇′ṽ · ∇′ϕ+ qṽϕ) dx′ =
∫
R2
g̃ϕ dx′,

which holds for any ϕ ∈ H1(R2). Inserting ϕ = ṽ(1− i sgn ξ0)|q|1−µ we obtain

(3.11) |q|1−µ
∫
R2

(|∇′ṽ|2 + |q||ṽ|2) dx′ ≤ c
∫
R2
|g̃|2|x′|2µ dx′.

Next inserting ϕ = ṽVs(x′, q)(1− i sgn ξ0), where

Vs = min(s|q|−µ,max(|x′|2µ, |q|−µ))|q|,

into (3.11) and passing with s to ∞ we obtain

(3.12) |q|
∫
R2

(|∇′ṽ|2 + |q||ṽ|2)|x′|2µ dx′ ≤ c
∫
R2
|g̃|2|x′|2µ dx′.

Now using Theorem 2.1 and (3.12) we obtain

(3.13)
∫
R2

( ∑
|α′|=2

|Dα′

x′ ṽ|2 + |q||∇′ṽ|2 + |q|2|ṽ|2
)
|x′|2µ dx′ ≤ c

∫
R2
|g̃|2|x′|2µ dx′.

Taking the inverse Fourier transform we get (3.7).
To show (3.8) we repeat the considerations from the proof of Lemma 3.1

from [7]. Introducing the function

(3.14) ṽR = ṽζ

(
|q|1/2|x′|

R

)
,
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where R will be chosen sufficiently large, we write problem (3.9) in the form

(3.15)
−∆′ṽR + qṽR = g̃ζ − 2∇′ṽ∇′ζ − ṽ∆′ζ ≡ hR,

ṽR|γ0 = ṽR|γ2π , ṽR,ϕ|γ0 = ṽR,ϕ|γ2π .

where ṽ in the r.h.s. is the weak solution.
Now, exactly as in [7], we show existence of two solutions ṽ1

R ∈ H2
µ(R2) and

ṽ2
R ∈ H2

1+µ(R2) and the relation ṽ2
R = ṽ1

R + c0, where c0 = ṽ|r=0.
Therefore we obtain (3.8). This concludes the proof. �

Considering problem (3.1) with nonvanishing initial data we assume that u0 ∈
H1
µ(R3) so there exists an extension for t > 0 denoted by ũ0 ∈ H2,1

µ (R3× (0, T ))
and

(3.16) ‖ũ0‖H2,1µ (R3×(0,T )) ≤ c‖u0‖H1µ(R3).

Then we have that

(3.17) ‖g‖L2,µ(R3×(0,T )) ≤ c(‖f‖L2,µ(R3×(0,T )) + ‖ũ0‖H2,1µ (R3×(0,T )))

≤ c(‖f‖L2,µ(R3×(0,T )) + ‖u0‖H1µ(R3)).

In view of (3.16) and (3.17) we have

Lemma 3.2. Assume that f ∈ L2,µ(R3 × (0, T )), µ ∈ (0, 1), u0 ∈ H1
µ(R3).

Then the weak solution of (3.1) is such that u ∈W 2,1
2,µ(R3 × (0, T )) and

(3.18) ‖u‖W 2,1
2,µ(R3×(0,T )) ≤ c(‖f‖L2,µ(R3×(0,T )) + ‖u0‖H1µ(R3)).

Moreover, we have

(3.19) ‖u− u(0)‖H2,12,µ(R3×(0,T )) ≤ c(‖f‖L2,µ(R3×(0,T )) + ‖u0‖H1µ(R3)).

where u(0) = u|L.

Repeating the proof of Theorem 3.4 and 3.5 from [7] we have

Lemma 3.3. Assume that f ∈ W k,k/2
2,µ (R3 × (0, T )), u0 ∈ W k+1

2,µ (R3), µ ∈
(0, 1). Then there exists a solution to problem (3.1) such that

u ∈W k+2,k/2+1
2,µ (R3 × (0, T )),

‖u‖
W
k+2,k/2+1
2,µ (R3×(0,T )) ≤ c(‖f‖Wk,k/2

2,µ (R3×(0,T )) + ‖u0‖Wk+1
2,µ (R3)).(3.20)

To show Lemma 3.3 some considerations from [4] must be used.
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4. Existence of solutions to problem (1.1)

First we consider problem (1.1) with b = 0.

Definition 4.1. By a weak to problem (1.1) with b = 0 we mean a function
satisfying the following integral indentity

(4.1)
∫ T

0
dt

∫
Ω

[−uηt +∇u · ∇η] dx =
∫

Ω
u0η(x, 0) dx+

∫ T

0
dt

∫
Ω
fη dx,

which holds for any η ∈ H1(ΩT ) such that η(T ) = 0 and η|S = 0.

From (4.1) we prove the existence of the weak solution and the corresponding
estimate

Lemma 4.2. Assume that u0 ∈ L2(Ω), f ∈ Lr′,q′(Ω× (0, T )), b = 0, 1/r +
1/r′ = 1, 1/q+ 1/q′ = 1, 1/r+ 3/2q = 3/4. Then there exists a weak solution to
problem (1.1) such that u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and

(4.2)
∫

Ω
|u|2 dx+

∫ T

0
dt

∫
Ω
|∇u|2 dx ≤ c‖f‖2Lr′,q′ (ΩT ) + ‖u0‖2L2(Ω).

To show higher regularity we apply the idea of regularizer (see [2]). For
this purpose we consider problem (1.1) locally. We distinguish four kinds of
subdomains:

(1) neighbourhoods of internal points of L,
(2) neighbourhoods of the points where L meets S,
(3) neighbourhoods of internal points which are in a positive distance fromL,
(4) neighbourhoods of points of S which are in a positive distance from L.

Assuming that L is perpendicular to S and that the boundary conditions vanish
we can extend the problem (1.1) by reflection with respect to a plane perpendi-
cular to L. In this case we can restrict our considerations to neighbourhoods of
kind (1) only because regularity problems in neighbourhood (3) and (4) are well
known.

Therefore we have

Theorem 4.3. Assume that u0 ∈W k+1
2,µ (Ω), b ∈W k+3/2,k/2+3/4

2,µ (S×(0, T )),

f ∈ Lr,q(Ω× (0, T )) ∩W k,k/2
2,µ (Ω× (0, T )), 1/r + 3/2q = 7/4, k ∈ N0, µ ∈ (0, 1).

Then u ∈W k+2,k/2+1
2,µ (Ω× (0, T )) and

(4.3) ‖u‖
W
k+2,k/2+1
2,µ (Ω×(0,T )) ≤ c(‖u0‖Wk+1

2,µ (Ω) + ‖b‖
W
k+3/2,k/2+3/4
2,µ (S×(0,T ))

+ ‖f‖
W
k,k/2
2,µ (Ω×(0,T )) + ‖f‖Lr,q(Ω×(0,T ))).



192 W. M. Zajączkowski

5. Existence of solutions to (1.2)

Similarly as Theorem 4.3 we can prove

Theorem 5.1. Assume that u0 ∈W k+1
2,µ (Ω), b ∈W k+1/2,k/2+1/4

2,µ (S×(0, T )),

f ∈ Lr,q(Ω× (0, T )) ∩W k,k/2
2,µ (Ω× (0, T )), 1/r + 3/2q = 7/4, µ ∈ (0, 1), k ∈ N0.

Then u ∈W k+2,k/2+1
2,µ (Ω× (0, T )) and

(5.1) ‖u‖
W
k+2,k/2+1
2,µ (Ω×(0,T )) ≤ c(‖u0‖Wk+1

2,µ (Ω) + ‖b‖
W
k+1/2,k/2+1/4
2,µ (S×(0,T ))

+ ‖f‖
W
k,k/2
2,µ (Ω×(0,T )) + ‖f‖Lr,q(Ω×(0,T ))).
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