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i INTRODUCTION

We would like to dedicate this work to Professor Hans Schwerdtfeger.
Professor Schwerdtfeger attended the University of Gottingen during the
years 1927-1933, when mathematics and physics blossomed. He was par-
ticularly taken with the exposition and insights to be found in the lectures
of Gustav Herglotz and he maintained this admiration throughout his life.
The student-teacher relationship ripened into a warm personal relation-
ship between Gustav Herglotz, Hans Schwerdtfeger, and his wife, Hanna
Schwerdtfeger.

In 1979 after Professor Schwerdtfeger retired from the mathematics de-
partment at McGill, he supervised the publication of Herglotz’s collected
works (Gesammelte Schriften, Vandenhoeck & Ruprecht, Gottingen).
Immediately thereafter, Professor Scherdtfeger and R.B. Guenther pub-
lished Herglotz’s Vorlesungen iiber die Mechanik der Kontinua which
appeared in the series Teubner-Archive zur Mathematik, B.G. Teubner Ver-
lagsgesellschaft, Leipzig, 1985. We decided then to make available the lec-
ture course on contact transformations, which Professor Herglotz gave in
the summer semester of 1932.

These lectures were based on developments of ideas stemming from S.
Lie and later researchers. They also contain many insights due to G. Her-
glotz himself. For historical remarks through 1935, see C. Carathéodory’s
Variationsrechnung und Partielle Differentialgleichungen Erster
Ordnung, Teubner Verlagsgesellschaft, Leipzig 1956.

Professor Herglotz emphasized techniques for constructing contact trans-
formations and gave general methods for doing so. He also emphasized the
physical applications as well as the connections to geometry. Now, with the
increasing interest in Hamiltonian systems, these lectures seem as relevant
as ever. We have completely reworked the notes which Professor Schwerdt-
feger took as a student and modernized the notation. Certain geometric
examples of contact transformations which were taken almost verbatim
from the book, Hohere Geometrie by Felix Klein, were dropped. Gus-
tav Herglotz did not give many concrete examples in his lectures and to
make the material usable, we have added a number of them. Professor
Schwerdtfeger paid careful attention to details and strove to make his work
understandable to a broad audience. We hope he would be happy with the
outcome of our endeavors.

We gratefully acknowledge the support of the Office of Naval
Research, (ONR-ARI No. N 00014-92-J-1226).

RBG JAG CMG
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Contact Transformations in the Plane

§ 1.1 Differential Equations

A differential equation of the first order

(1.1) dy/dz = y' = f(z,y)

associates with each point, (z,y), in the domain of definition of a real
valued function, f, a direction, p = f(z,y). This direction is the slope of the
function y = y(z) satisfying (1.1), and passing through the point (z,y). The
differential equation (1.1), therefore, defines a direction field, (see Figure
1.1). Integrating (1.1) corresponds to determining a one parameter family
of curves, whose tangents are given by f. If a specific point, (a, b), is chosen,
through which the curve must pass, it seems reasonable to expect that y(z)
is uniquely determined by (1.1).

~ A = /
s — 0 ~
- - /
//\7 .
1 (a,b) /
b — 1 ~ -
- s
e — 1~
~ - /
# ot A TR
v

Figure 1.1
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2 I. CONTACT TRANSFORMATIONS IN THE PLANE

This expectation holds under very general circumstances, for example,
if f is continuously differentiable. See e.g. Coddington and Levinson[2], or
Kamke][1].

The proof of the existence and uniqueness theorem when f is continu-
ously differentiable is usually based on an iteration scheme. The solution
is then obtained, as the uniform limit of a sequence of functions. Alterna-
tively, one can seek an explicit solution, or perhaps simplify the differential
equation by a substitution,

(1'2) X = X(a:,y), Y = Y(:x:,y),

which transforms the variables (z,y), one-to-one, into the (X,Y’) variables,
and equation (1.1) into

(1.3) dY/dX = F(X,Y).

The goal is to choose (1.2), so that (1.3) is simpler than the original equa-
tion. (1.3) is then solved, and the solution to (1.1) is obtained via the in-
vérse to (1.2). The word simpler here is subjective, and finding the proper
transformation, (1.2), is not always straightforward.

Example 1.1. Solve the Bernoulli equation

d

L. + 2y = zy™.
dz

SoLuTioN. Assume n # 0, and n # 1, otherwise the equation is linear.
Let
z =X, y= Yﬂs

where « is a parameter which will be chosen. Then

dy _ et dY
dx dx’
and the differential equation becomes
dy

aym—lﬁ + 2Ya = XY"“,

or
Y 2 1
2 4 fy = Zxylin—1)at1]
dX * a o

Choose o = (—n‘_:lT}"v The resulting linear equation has the solution

1 1
Y=c-X+

. Ce2n—1X
e Tamop T :

and the reverse substitution yields

_J1 1 AT
y—{2$+4(n_1)+63 .
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Example 1.2. A function f is said to be homogeneous of degree k if
fltz, ty) = t* f(z,y) for all £, =, y.
If f is homogeneous of degree zero we have
ftz, ty) = f(=z,y),

and we say the differential equation y' = f(z,y) is homogeneous. Such equations can be
reduced to ones where the variables separate.

Let
X =u, Y = y..
T
Then
By oy
dx dX
and the differential equation becomes,
dY
X—+4+Y=f(X,XY)=f(1,Y),
= =yl ) =f(LY)
which separates to
v _dx

f,Y)-Y X'

One then integrates both sides to solve for ¥ in terms of X, and reverse substitutes to
find y in terms of z.

In both of these examples, substitutions like (1.2) were used to sim-
plify the differential equation. We can gain some additional flexibility by
exploiting the geometric properties of the differential equation. We had
observed that (1.1) relates the slope p, of the solution curve, to the point
(z,y), through which the curve passes. Thus, there are three variables,
(z,y,p), which are of importance here. If we transform all three of these
variables by a transformation of the form

(14) X = X(ﬂ:,y,p), Y = Y(:anap)t P = P(ﬂv",yqp),

we should be able to integrate much more general classes of nonlinear dif-
ferential equations. However, these transformations cannot be completely
arbitrary. They have to be chosen in such a way that a curve is transformed
into a curve, and the slope, p of the original curve at the point (z,y), is
transformed into the slope, P of the image curve at the point (X,Y). The
transformations which accomplish this are the contact transformations.
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§ 1.2 Point Transformations and Extended Point Transformations

A point transformation is a mapping which assigns to each point, (z,y)
in a domain, (an open, connected set), contained in the Cartesian zy—plane,
a point (X,Y) in the XY -plane, which may or may not coincide with the
original plane. Thus, a point transformation is determined by the pair of
functions

(2.1) X=X(z,y), Y=Y(z,9),

where we use the same symbols to denote both the functions as well as the
function values.

We shall assume that the functions X(z,y), Y(z,y) are sufficiently
smooth so that the computations in the sequel can be carried out. Also, we
assume that in a simply connected domain D, contained in the zy—plane,
the Jacobian

X Y) _ | Xe(zyy) Xy(z,9)
%2 T, 1) = — = |7 S 0,

( ) ( ’y) 3($,y) Yx(m:y) Yy(£1 y) ?{:

so that the transformation (2.1) maps the domain D, one-to-one, onto
a domain D’ in the XY-plane, and the inverse mapping is continuously
differentiable on D',

Example 2.1. Consider the transformation
X =z2+4y? Y =2my,

which is defined in the entire zy—plane. Addition and subtraction of these equations
yields
X+Y=(z+y)? and X-Y=(x—1)?

and adding again gives
2X = (z+9)* + (z - v)”.

Thus the image domain D', lies between the rays ¥ = X, and ¥ = —X, with X > 0.
The domain D is not uniquely determined. One could take; for example, D = { (z,y) :
—z<y<z, x>0} The Jacobian is

2z 2y

= A2 _ 2
2y 2z 4" - %),

J'(E: y) =

which vanishes on the diagonals y? = x2. Normally, the choice of D is dictated by the
problem at hand.
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Example 2.2. Let a, and b, be fixed real numbers, and let A be real. Define the

transformation
X =z + Aa, Y =y+ Ab.

This transformation represents a translation by (Aa, Ab). We can choose for both D and
D', the entire plane, since J(z,y) = 1 for all £ and y.

Example 2.3. For a given nonzero X , define
X = Az, Y = Ay

This transformation represents a dilatation by the factor A, where the dilatation may be
either a magnification or a contraction depending on the value of M. Here the Jacobian
equals A2, so the transformation is valid in the entire plane.

Example 2.4. For A real, let
X =xcos ) — ysin A, Y =zsinA 4 ycos .

This transformation represents a counterclockwise rotation of (z,y) about the origin,
through the angle A. The Jacobian is 1.

Example 2.5. The Lorentz transformation is defined by
X:a:cosh)\+yéinhk, Y = xsinh ) + ycosh A.

Again the Jacobian is 1.

Note that in the Examples 2.2-2.5, the transformations all depend on
the parameter A. In reality we have a one parameter family of transforma-
tions. Such one parameter families of transformations will play a significant
role in the applications in the sequel.

We return to the general point transformation case and suppose the
domains D, and D', have been determined. Let -y be a continuously differ-
entiable curve lying in D which is described parametrically by

(2.3) vz =ux(t), y=yll)
The slope p(t) of v at the point (z(t),y(t)) satisfies
(2.4) p(t)z(t) = 9(),

where the dots represent derivatives with respect to £. The point trans-
formation (2.1) maps v into the curve I', which lies in D’ and is given

by,
(2.5) I': X(t) = X(z(t),y(), Y() =Y (z@),y@)
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The slope, P(t), of I, satisfies
(2.6) P(t) X(t) =Y (t).

When () # 0, X (t) # 0, we obtain from equation (2.5), and the chain
rule
X =Xpi+ Xy, V=Y54+Y,

and then by (2.4) and (2.6) the requirement that

Ya: + pY?J
2.7 = .
27) X +pX,

Equation (2.7) associates the slope p, at the point (z,y) of a curve lying in
D, with the slope P, at the point (X,Y") of the image curve lying in D'. Its
derivation shows that (2.1) together with (2.7) describes a transformation

I (muyvp) — (X?Y;P)a

having the following property.

If p is the slope of the tangent to a curve <y at the point (z,y), then P
is the slope of the tangent to the image curve I" of v at the point (X,Y).
Two curves, ¥’ and ", passing through (z,y) and having the same tangent
there, are mapped by T onto curves, I'' and I'”, respectively, having the
same tangent at (X,Y). ‘

Thus, I'V and I'" touch each other, or are in contact with each other, in
the same manner that 4’ and " are. Let us observe also that X, (z,y) +
pX,(z,y) # 0 in D, for if it were, we could conclude that since p varies
independently of z and y, first that X; = 0, and then that X, = 0, which
would violate our assumption (2.2), the non-vanishing of the Jacobian of
the transformation. Furthermore, since

ax,v,p) |%= X Xl (xy x,v.)
Bown ~ | W %= Ty P
(@v.p) |p p P (Xo +pXy)

the transformation is one-to-one.
The transformation (2.1) extended by (2.7) :

P s Ym("vay) +pr($3y)
Xﬁ(.’l’:,y) +pr(.'I.:,y)

(28) |X=X(z,9), Y =Y(ay)

3

is called the extended point transformation .
In the next section we shall characterize the most general contact trans-
formations.
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Example 2.6. The extension of the transformation of Example 1.1 is given by

p=ytr

X =22 + 47, Y = 2zy, :
T +py

If one chooses for v theray z =t, y =pt, £ > 0, =1 < p < 1, then I is given by the ray
X = (1+p%)t?, Y = 2pt?, and the slope is P = 2p/(1 + p?), with -1 < P < 1.

As a final remark, if the curve v is given by y = f(x), it can be trivially
parameterized by z = ¢, y = f(t), in which case p = f’ (z). Under an
extended point transformation, I' becomes ¥ = F(X), and P = F'(X).

§ 1.3 Contact Transformations

An element is an ordered triple, (x,, p), where (z,y) defines a point, and
p is the slope of a straight line passing through (z, Y)-

The element (z,y,p) is a curve element with respect to a curve v, if
p is the slope of the tangent line of -y at the point (z,y)-

A one-to-one, continuously differentiable transformation
31 X=X(zyp), Y=Y(yp), P=Payp),
from a cylindrical domain in the xyp-space,

{(z,y,p) : (z,y) € D, |p| £p, p a constant }

onto a domain in the XY P-space, with a non-vanishing Jacobian,

X, X, X,
OX.YP) _\y Y v, |40
Nz, up) |p P P
(2,9, P, P, P,

is called an element transformation.

An example of an element transformation is the extended point trans-
formation (2.8).

An element transformation is a contact transformation if every curve
element (z,y,p), is mapped into a curve element (XY, FP}.

Not every element transformation is a contact transformation. For if
(z,y,p) are the elements of a curve -, so that p is the slope of v at (z,¥),
then P does not necessarily have to represent the slope of the image curve
T at (X,Y). See Figure 3.1 for a pictorial example.
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/—_\
A 1
V\\}
P
oI o - Ca
| S ¥
Y Y
Figure 3.1

Before treating specific examples, it is useful to have an analytic char-
acterization of contact transformations. '

A system of three continuously differentiable functions (z(t), y(t),p(t)),
is called a union of elements if

3.2) pz—y=0,

holds for all ¢.
A curve (z(t),y(t)) together with the direction

p(t) = 4(t)/(t),

of the tangent, is a union of elements. Note, however, that certain degen-
eracies can occur. For example, a union of elements is also determined by a
single point (g, ¥o), together with an arbitrary coordinate direction, p(t).

Example 3.1. Consider the hyperbola,
viy=+vz2+ 1

Curve elements are triples of the form (z,y, p), where p = x/y. If we parameterize v by
z(t) = sinht, y(t) = cosht, then p(t) = tanht, and (sinh¢, cosht, tanht) forms a union
of elements for all real ¢.

The element transformation (3.1) is a contact transformation if it maps
unions of elements into unions of elements, that is if

(3.3) pi—5 =0 implies PX—-Y =0,

where (X (t),Y (t), P(t)) is the image of (z(t),y(t),p(t)) under (3.1).
This definition allows us to give an equivalent definition of contact trans-
formations which is often easier to work with.
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Suppose (z(t),y(t),p(t)) is any union of elements. Then we want con-
ditions on X, Y, and P, such that

X(t) = X (2(t), y(t), p(t))
Y(t) =Y (z(t), y(®), p(t))
P(t) = P(z(t),y(®),p(t))

is also a union of elements. From the first two equations we have
X = Xp6 + X9 + Xpp,
Y =Yoi + Y, + Yp,
and consequently
(3.4) PX -Y = (PX, - Y,)i + (PXy, — Y)y + (PX, — Y,)p.
Since (z(t),y(t),p(t)) is a curve element, equation (3.2) holds, and
(35) PX -V ={(PX.-%)+p(PX, - Y,) }d+ (PX, ~ V;)p

must vanish if (X,Y, P) is to be a union of elements. Equation (3.5) must
hold for all curve elements, so that & and p may be regarded as arbitrary.
Consequently if PX —Y =0, (3.5) yields the two equations

(PX, -Y,) +p(PX,-Y,) =0, and (PX,-Y,)=0.
This leads to:

Theorem 3.1. An element transformation is a contact transformation
if and only if the functions X, Y, and P, satisfy the equations,

{ (Xo +9Xy)P =Y, +pYy,

3.6
(3.6) PX,=Y,.

PRroOF. We have already shown the necessity of (3.6). To show the suf-
ficiency, let us suppose an element transformation is given which satisfies
(3.6). Again (3.5) holds, and since PX, =Y, then

PX -Y = (PX,-Y,)¢ + (PX, - Y,)y
= -p(PX, - Y,)i+ (PX, - Y,)¥
= (Y, - PX,)(p2 = 9),

by the first equation in (3.6). Now pz — 9 =0 impiies that PX — Y =0,
which proves the theorem. 0O ;

Corollary 3.1. If (3.1) is a contact tmnsformatwn, the quantity
[X, Y]z:yp = (Xz +9pXy)Y, - (Yo +pYy) X, =0
vanishes on its domain of definition.

3 — The Herglotz...
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Theorem 3.2. An element transformation is a contact transformation,
if and only if, there exists a function p(z,y,p), such that:

i) p(z,y,p) # 0 on the domain of definition of the transformation
ii) the functions p, X, Y, and P satisfy,

PX, =Y, —pp=0,
(3.7 PX,-Y,+p=0,
PX,-Y,=0.
‘ We will see that
(3.8) PX —Y = p(pi — ),

in light of which, p is called the multiplier for the transformation.

PrRoOOF. Suppose a function p exists so that the element transformation
satisfies the equations (3.7). Then by equation (3.5),

PX -Y = (PX, - Y.)i+ (PX, - Y,)y + (PX, - Y,)p
= ppzT — py

and pi — = 0, implies that PX — Y = 0. Now suppose the element
transformation is a contact transformation. In the proof of Theorem 3.1,
we had found that

PX —Y = (¥, - PX,)(pi — 3).
Define p =Y, — PX,. Thus,
PX:2+ PXyy+ PXpp—Yoi — Y9 — Yop = ppi — pyj,

or
(PXy =Y. = pp)é + (PXy — Y, + p)y + (PX, - %,)p =0.

Again, the coefficients of 4, ¢, p, must vanish, and this yields (3.7). Finally,
p # 0, for if p = 0 at some point, we find from (3.7) that

I X, =i X, X, X

XY, - Y P z Yy P
0#%’—:@: Y. Y Yu|=P X Xy X,]=0,

(z,4,p) P, P, P P, P, P,

a contradiction. O

Corollary 3.2. If X = X(z,y,p), Y = Y(z,y,p), P = P(z,y,p), is
a contact transformation, then the inverse transformation z = z(X,Y, P),
y =y(X,Y,P), p=p(X,Y,P), is also a contact transformation.
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An alternative useful formula for p, is obtained by multiplying the first
formula of equation (3.7) by X, the second by X,, and subtracting. We
find

(3.9) p= (XY, - X,Y2)/(pX, + Xz) =Y, — PX,.

Example 3.2. The element transformation
z
x=24y, v=%4s P=uy,
p p

is not a contact transformation. For if it were, we would need to have for all z, y, and p,
2
zy =P =Yp/Xp = —(y/p*)/(—2/p*) = y/z,

which is clearly impossible.

Example 3.3. The Legendre transformation
X=P: YZP.’L'—'y, PE:E,

is a contact transformation. For it is defined for all =, ¥, p, and it is invertible, the
inverse being
g=P, y=PX -Y, p=X.

Moreover, ] )
PX—-Y=gsp—pi—px+y=—(pz—y),

and p = —1.

In the next section, we shall give a derivation of the Legendre transfor-
mation, as well as a number of related transformations.

Example 3.4. Solve the following initial value problem for the Clairaut type equation

y=zy' +9y  +z -1,
(0) = 3.

Rewrite this equation as
y=p:r:+p2+m—1.

Use the Legendre transformation to convert it to the linear equation
Y+X*4+P-1=0,

or with P = dY /dX,
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The general solution is
Y(X)=-X242X -1+Ce¥.

To determine the constant C, the initial conditions must be transformed. This is
done with the help of the differential equation. When z = 0, y = 3, we have p? = 4, so
there are two possible solutions, one with p = 2, and one with p = —2. If we take p = 2,
the point (0, 3, 2) transforms to the point (2, —3,0), and we must determine C so that
Y (2) = —3. Thus C = —2¢2, and we have,

Y(X)==-X?42X-1-2(X-2),
which implies
P(X)= —2X + 2+ 2~ (X-2),

The solution to the original problem is obtained by applying the inverse transformation.
For this it is simplest to think of transforming a union of elements. Parameterize the

solution by,
X=t,

Y(t)=—t2+2t—1—2¢~(t=2),
P(t) = -2t + 2+ 2¢~(t2),
The inverse transformation gives the solution in parametric form,
o(t) = -2t + 2 + 2~ (t—2),
y(t) = —t + 1+ 2(t + 1)e~ (-2,
p(t) =t
Similarly the second solution is found to be
z(t) = =2t + 2 — 6~ (t+2)
y(t) = =12 + 1 - 6(t + 1)e~(t+2),
p(t) =t

Figure 3.2 illustrates the two solutions in the zy—plane.

Figure 3.2
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Example 3.5 . The extended point transformation is a contact transformation with

p=(Xa¥y — Xy¥e) /(X + pXy).

When (X(z,y), Y(z,y)) represents a point transformation, we have
seen that the corresponding contact transformation is given by the ex-
tended point transformation. We close this section with an answer to the
following question.

Suppose X (z,y,p) and Y (z,y,p) have been chosen. Under what condi-
tions is it possible to find a function P(z,y, p), such that the triple (X, Y, P),
is a contact transformation?

First, if such a transformation were to exist, the functional determinant
d(X,Y, P)/8(z,y, p) must be nonzero, that is, the row vectors in the matrix
representation of the Jacobian would be linearly independent. In particular
the rank of the matrix

[X_,, X, Xp]

Y, Y, Y,

must be two. In this case we say that the pair X, Y, is independent.
Next from the Corollary to Theorem 3.1, it is clear that X, ¥ must
satisfy [X,Y |gyp = 0.
Finally, by Theorem 3.1, X and Y must be such that

3.10 Xe+pX, =0 implies Y, +pY, =0,
v Y

and

(3.11) X, =0 implies Y, =0,

bacause the left hand expressions of (3.10), and (3.11), occur in the denom-
inator of the formula for P, which is a smooth function.

It turns out that these necessary conditions are also sufficient. Thus,
once X and Y have been chosen, there is only one way to choose P so that
the resulting triple (X, Y, P) is a contact transformation.

Theorem 3.3. Let X(z,y,p), and Y (z,y,p), be given functions. These
functions can be extended to form a contact transformation,

(X(z,9,p),Y (z,9,p), P(z,y,p))

if and only if the following conditions hold :

i) X(z,y,p) and Y (z,y,p) are independent,
ii) X(z,y,p) and Y (z,y,p) satisfy (3.10) and (3.11),
i) [X,Y Jogp = 0.
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PRroOOF. The discussion preceeding the formulation of the theorem implies
the necessity of (i.)—(iii.) We must show the sufficiency. If (i.)—(iii.) hold,

we define
_YatpY, ¥

P = = :

The assumption (iii.) guarantees that both of these definitions for P are
the same, provided the denominators do not vanish. However, if they both
vanished at a single point, the numerators would also vanish there by (ii.),

and so
Xe Xy Xp -pXy X, 0
. 4, Y Y, Y, 0]

and the rank would be less than two. Thus, the denominators cannot
simultaneously vanish, P is well defined, and we can use either definition.

To show that the resulting transformation is a contact transformation,
it is simplest to show there exists a nonzero p, for which the equations of
Theorem 3.2 are satisfied. Obviously PX, — Y, =0.

We set
p=Y,— PX,.
Then
PX,-Y,—-pp=PX,-Y, —p(Y, - PX,)
= P(X; +pX,) — (Yz +pY,) =0,
and

PX, -Y,+p=(PX, -Y,)+ (Y, - PX,)=0.
Finally; if p = 0 at some point, then Y, = PX, and Y; = PX,, so that

= X: Xy Xp

=% %)-rlx % R
=Tlx, x; X[

Y, % %
which has rank less than two. O

As a final remark, we note that it is possible to develop a theory for
higher order contacts of curves; however, the formulas become unwieldy,
and they are difficult to apply in concrete situations.

§ 1.4 The Directrix

Suppose X (z,y,p), Y(z,y,p), P(z,y,p), represents a contact transforma-
tion. Furthermore, suppose that the functions

(4.1) X =X(,y,p), and Y =Y(z,y,p),
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depend upon p, so that the contact transformation does not arise from
the extension of a point transformation. As long as there exists a point
(%0, Y0, P0), where X (zo,%0,p0) = 0, then at points where X,(z,y,p) # 0,
we can solve for p in terms of X, z, and y, to obtain p = p(X, z,y). Insert
this expression into the second equation in (4.1) to find

Y = ¥{z,y.0(X,2z9))

This equation can be written more generally in the form Q(X,Y;z,y) =0,
where in the case just discussed, ) = Y(m,y, p(X,:c,y)) — Y, but more
general possibilities are allowed.

A nontrivial function, & = Q(X,Y’; z,y), i.e. one for which at least one
of its partial derivatives is not identically zero, is called the directrix for
a contact transformation if

(4.2) Q(X(z,y,p),Y (z,y,p);2,9) =0

for all values, (z,y,p) in the domain of definition of the contact transfor-
mation. An equation of the form

(43) QX,Y;2,y) =0
is called a directrix equation.

Example 4.1. The first two equations of the Legendre transformation are
X=p, and Y =pz—uy.

The third equation is P = Y, /X, = x. The directrix equation is obtained by substituting
p = X into the equation for ¥, so that ¥ = 2X — y, or

X, Y z,y)=2zX - (Y +y).

In this section we shall determine sufficient conditions enabling us to
derive contact transformations from a given directrix equation. We will use
the directrix in the next section, to cbtain a wide class of useful contact
transformations. At the end of this section we shall return to the case
where X and Y are independent of p.

Let Q(X,Y;x,y) be the directrix for a contact transformation with X, #
0. Differentiate (4.2) with respect to the variables z, y, and p, to obtain
the system

(4.4) Qx X, + Y, +Q =0,
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(4.5) Qxxy + QyYy +- Qy =0,

(4.6) Qx X, + QyY, = 0.
Since Y, = PX,,, and X, # 0, equation (4.6) yields
(4.7) Qx + PQy = 0.
Now multiply equation (4.5) by p, and add the result to (4.4), to find
(Xo +pX,)0x + (Yo + pY, )0y + Q,; +pQ, = 0.
Recall from (3.6) that (X, + pX,)P =Y, + pY,, so
(Xz +pXy)(Qx + PQy) + Q, +pQ, =0,

and by (4.7),
Q; +p, =0.

We summarize these calculations in the following theorem.

Theorem 4.1. Let X = X(z,y,p), Y = Y(z,y,p), P = P(z,y,p), be
a contact transformation, and let Q@ = QX,Y;z,y) be a directriz for the
transformation. Then the equations

(4.8) Q=0,
(4.9) Qx + PQy =0,
(4.10) Q, +pQy, =0,

are satisfied.

Observe that as an immediate consequence of (4.9) we see that if at
some point {dy = 0, then Qx = 0 as well. Similarly by (4.10) £, = 0,
implies O, = 0.

Corollary 4.1. None of the equations
Q=0(X;z,y), Q=QY;z,y), Q=UX,Y;z), Q=9Q(X,Y;y),

can be the directriz of a contact transformation with X, # 0.
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PRrROOF. Suppose 2 = Q(X;z,y). Then Qy = 0, which implies 2x = 0,
so @ = Q(z,y). Differentiate (4.10) with respect to p to conclude that
€, = 0, hence Q, =0, i.e. {1 is identically zero. The other cases are treated
similarly. O

Example 4.2. The system of equations (4.8), (4.9), and (4.10), for the Legendre trans-
formation is

Q=zX-(Y +y)=0,
Qx + POy =xz— P =10,
Qe +pQy =X —p=0,

and it is obvious that we can solve these equations for X, Y, and P, in terms of z, y,
and p, to reconstruct the original transformation.

The equations (4.8), (4.9), and (4.10), represent a system of three equa-
tions in three unknowns, X, Y, and P. We would expect that under certain
circumstances, we could use the system to construct contact transforma-
tions. While that is true, the following examples demonstrate that addi-
tional hypotheses are required.

The first example shows that not every function of the four variables X,
Y; z, y, is the directrix of a contact transformation.

Example 4.3. Let
QX,Y;z,y) =zX +yY =0.
Equations.(4.9) and (4.10) are
z+Py=0, and X+pY =0.
But the first and third of these equations constitute a linear system
z y||X]|_|0
1 pliY] |0}’

whose determinant, px — y, is in general nonzero, so X and Y vanish identically.

Example 4.4. Now suppose ‘

X, Y;z,y) =X +yY -1=0.
Then equations (4.9) and (4.10) are

z+Py=0 and X+pY =0,

and this system of three equations has the unique solution

= B Bega o
(pz—y)’ (pz—y)’ y
It is easily checked that this is a contact transformation. Its inverse is
P -1 -X

r=pE=T YT EER-T T
and the function p = 1/(y(pz — v)).

4+ — The Herglou...
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It is advantageous to have a number of contact transformations at
one’s disposal. Often, one can significantly simplify a differential equation
through the use of an appropriate contact transformation.

Example 4.5. Solve the initial value problem

¥ (2y+2®) -2y =0,
y(0) = L.

Let ¥’ = p and rearrange the differential equation to

Zp -z

pr—y oy

Apply the contact transformation of Example 4.4 to obtain the differential equation
P=2X.

The initial conditions z = 0, y = 1, applied to the original differential equation give
p = 0. The initial curve element (0, 1,0), in the zyp-domain transforms into the curve
element (0,1, 0) in the XY P-domain. Thus the initial condition becomes ¥ (0) = 1. The
solution therefore is,

Y=X%+1

The representation of the solution in the zyp-element space is determined most simply
by letting X = £, s0 Y = 241, and P = 2t. The parametric form of the solution is then

2t -1
@-1 YT@E-y

T =

In this case, we can explicitly eliminate the parameter ¢. After some rearranging, we

find
y=3 (1+Vita?).

See Figure 4.1.

Figure 4.1



§ 1.4 The Directrix 19

Example 4.6. For a, b, ¢, d, and e, constants, let
Q=aX+bY +cx+dy+te.

The other two equations of the system are then, e + Pb =0, and ¢+ pd = 0, leading
to the conclusion that P and p are constant. A function Q(X,Y;z,y) which depends
linearly on its arguments cannot, therefore, be the directrix for a contact transformation.

Example 4.7. Let Q(X,Y;z,y) = Y2 + X — y. The system dictated by (4.8), (4.9),
and (4.10), is
Y2 +zX -y=0,

z+2YP =0,
X—-p=0.
The solution to this system is
X=p
Y = ++/y — pz,

P = 2/ (2V7 = 79)-

It is easily checked that both of these transformations are contact transformations. In
the case of the plus sign for ¥, and the minus sign for P, p = 1/(2v¥ —px). This
example demonstrates that one directrix can generate several contact transformations.

The general theorem telling when a single directrix will generate a con-
tact transformation is based on the Implicit Function Theorem. We really
only need to be able to solve (4.8) and (4.10) for X, and Y, in terms of z,
y, and p, because P is determined immediately from (4.9). Moreover, the
transformation must be invertible, which means that we must also be able
to solve for z, y, and p, in terms of X, Y, and P. In other words analogous
assumptions will be made concerning the solvability of (4.8) and (4.9).

Let us suppose that there is a point (Xo, Yy, Po; %o, Yo, po) satisfying
(4.8)—(4.10), and suppose that the Jacobian

(2, Ax + PQy, QA +pYy)
9(X,Y,P) -

a(Q, Q,, + pQ
a(X,Y)

—Qy v) # 0.

Then in a neighborhood of (Xo, Yo, Po; o, Y0, Po), (4.8)—(4.10) can be
solved for X, Y, and P, in terms of z, y, and p, to obtain the element
transformation

(4.11) X = X(z,y,p), Y =Y (z,y,p) P = P(z,y,p)-

To show that (4.11) is a contact transformation, we must show that it
is one-to-one, and that p& — g = 0, implies that PX — Y =0.
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Let (X(t),Y(t),P(t)), and (z(t),y(t),p(t)), denote unions of elements
satisfying (4.8)—(4.10). Differentiate (4.8) with respect to t to find

QxX + QyY + Qi + Q5 = 0.
From (4.9) and (4.10) we have Qx = —PQy, and 9, = —p{},, which gives
—Qy (PX = Y) = Qy(pi: — §) =0,

so that
PX -Y = (-,/Qy) (p — ).

If we require that Q, # 0, and {1y # 0, then pz — y = 0 if and only if
PX —Y = 0. Differentiating (4.8), (4.9), and (4.10), successively, with
respect to z, y, and p, yields,

9(X,Y, P) d(z,y,p) o(z,y,p) '

If we now demand that the Jacobian on the right hand side be nonzero,
and note that it is equal to

8(Q, Qx + PQy)
Az, y) ’

£

we arrive at the following theorem.
Theorem 4.2. Suppose Q(X,Y;z,y) satisfies:

1) QY(Xayaian)?éO; Qy(Xayaxay)%O:

i) (2, Q2 + pQy) 3, Qx + PQy)
A(X,Y) o(z,y)

Then the solution to the (4.8)—(4.10) system :

# 0, # 0.

Q(X,Y;.’L‘,y) = 01
Qx + PQy =0,
‘Qa: +pﬂy =0,

in the neighborhood of a point (Xo,Ys, Po; o, Yo, Po), which satisfies the
(i.)—(ii.) system, is a contact transformation.
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We have seen that if X (z,y,p), Y(z,y,p), are the first two functions of
a contact transformation with X, # 0, a single directrix equation can be
constructed for it. Conversely, given a single function, Q(X,Y;z,y), it is
sometimes possible to obtain a contact transformation depending upon z,
y, and p.

In the case where X = X(z,y), Y = Y(z,y), i.e. where X, and Y, are
independent of p, the above construction of a directrix fails; however, the
two functions may still be used to obtain the extended point transformation,
which we know to be a contact transformation, thus we can think of X and
Y as two directrixes.

Conversely, suppose we are given two equations

(4.12)
G(X,Y;z,y) =0,

and suppose they are satisfied at some point (Xo, Yo; 29, %0). If the Jacobian

8(F, G)

ax,v) 7"

" there, then we can solve for X and Y in terms of « and y. Additionally, if
we proceed as in the proof of Theorem 4.2, and require that

8(F,G)
d(z,y)

# 0,

then we can conclude that
X,Y)
oz, v)

and hence the pair X (z,y), Y(z,v), can be extended to a contact transfor-
mation.

To summarize, a single function §2, of the four variables (X Y554,
will, under certain conditions, give rise to a contact transformation, where
the functions X and Y depend upon z, y, and p. Similarly two functions
F and G of the four variables (X,Y;z,y), will, under certain conditions,
give rise to functions, X and Y of (z,y), which can then be extended to a
contact transformation.

# 0,

§ 1.5 The Contact Transformations of the Polarity

In this section we study contact transformations which arise from directrix
functions of the form

(5.1) QX,Y;z,y) = az X +b(yX+zY)+eyY +alz+X)+0y+Y)+r =0,
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where we assume throughout that a? + b% + ¢® # 0. From the definition, it
is obvious that Q is symmetric in (X,Y) and (z,y), that is

(5.2) UX,Y;z,y) = Qz,y; X,Y).
For x = X, y =Y, the equation,
(5.3) QUX,Y;7,y) = aX? 4+ 26XY +cY? + 20X +28Y + K =0,

describes the conic sections in the plane. It is possible to introduce new
coordinates and reduce the complexity of (5.1); however, for applications
it is more convenient to work with (5.1) directly.

Let us set

A(z,y) := az + by +
(5.4) B(z,y) := bz +cy + B,
Clz,y) == az + By + &,

and rewrite (5.1) in the form,

(5-5) UX,Y;3,y) = A(z,9)X + B(z,y)Y + C(az,y),
which, because of the symmetry relationship (5.2), is also given by
(5.6) Uez,y; X,Y) = A(X,Y)z+ B(X,Y)y + C(X,Y).

From the representation (5.5), we observe that for a fixed point (Z,7),
QX,Y;7,y) = 0, represents the equation of a straight line in the XY-
plane (assuming of course that A%(%,%) + B2(Z,%) # 0). The slope P, of
the straight line is

A(Z,7)

B(z,y)

If (z,y) lies on the conic section, Q(z,y;z,y) = 0, then P is the slope of
the tangent line to the conic section, at the point (Z,7).
Now let us suppose that a straight line

<y

P=-

w2

bz+my+n=0 ££24+m?#£0,

is given in the zy-plane.
Use the representation (5.6) for © to find a point (X,Y) such that the

straight line, o
Qz,y; X,Y) =0,
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coincides with the given line. This will be the case when there exists a
constant A such that ,

A(
(5.7) B(
C(X

Equation (5.7) represents a system of three equations in the three unknowns
X, Y, and A. This system is uniquely solvable when the coefficient deter-
minant is nonzero, i.e. when

1><| ><l
~ S

)
)
Y)

il

—£
-m|#0.

==n

Q oD

T 6 o

In this construction, the point (X,Y) is called the pole and the line
Q(z,y; X,Y) the polar. The one-to-one relationship between poles and
lines is called the polarity.

Example 5.1. Let
QUX,Y; X,Y)=(X/2)24+Y?—-1=0 be an ellipse.
Then
QX,Y;z,y)=2X/4+yY - 1=0.

If ¢ = 4, y = 1, the straight line, or polar, s X +Y —1=10.
On the other hand, if, for example, y = = — 4, the corresponding point, or pole, is
obtained by solving the (5.7) system,

1/4X = =2, Y =), 1= —4X

so that A= —1/4, X =1, Y = —1/4. See Figure 5.1.
Y

X+¥=1
seneried by the E s
pole (4, 1) A y=x-4

Qo

B gencrated by the pale

/ (116, -14)

Y
) % A X - Pl B .
\_)\ =
H 4 i

QX 1t n=0-" Xz v, 3')7

Figure 5.1
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The polar equation, € = 0, of a conic section, under certain conditions, is the
directrix of a contact transformation. By Theorem 4.1, we must solve the system

Az, y)X + B(z,9)Y + C(z,y) =0,
(58) A(m,y) + PB('T’:U) =0,
A(X,Y)+pB(X,Y) =0,

for (X,Y, P) in terms of (z,y, p). Observe that the first equation can be written as
AX, Yz + B(X,Y)y+ C(X,Y) =0,

so that the system is symmetric in the variables (X, Y, P) and (z,y,p). This means that
the solution of (5.8) for (z,y,p) in terms of (X,Y, P) can be obtained by simply inter-
changing the variables. Symbolically, if we represent the solution to (5.8) for (X,Y, P)
in terms of {z,y,p) by

(5.9) (X,Y, P) =T(=z,y,p),

then the inverse transformation

(5.10) (z,y,9) =T~Y(X,Y, P),
obeys
(5.11) T=7"1

Transformations which satisfy equation (5.11). are incidentally called involutions.

Example 5.2. The polar equation for the ellipse
2X24+Y?2 44X =1,
is UX,Y;x,y) = 22X + yY + 2(X + x) — 1 = 0. The system (5.8) is then
2z 4+2)X +yY =1- 2z,
(2z 4+ 2)+ Py =10,
(2X +2)+pY =0.
The contact transformation is

X = (p(1 — 22) + 2y) /(2pz + 2p — 2y),
Y =3/(y — px — p),
P=—(2z+2)/y,

and because of (5.11), we immediately find the inverse

z=(P(1-2X)+2Y)/(2PX + 2P - 2Y),
y=3/(Y - PX - P),
p=—(2X +2)/Y.
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Example 5.3. The polar equation for an imaginary conic section can also be used as
the directrix for generating a contact transformation. The imaginary circle

X24Y241=0,
has the polar equation

zX +yY +1=0,
and the resulting contact transformation is

X =p/(pz —y),
P=—g/y.

Once again in view of (5.11), the inverse is
x=P/(PX-Y),
y=-1/(PX-Y),
p=-X/Y.

Example 5.4. Not every quadratic form has a polar equation which is the directrix
for a contact transformation. We already have seen (cf. Example 4.3) that the polar
equation for the circle with radius zero

QX,Y; X, Y)=X?+Y?
does not lead to a contact transformation. Nor do the polar equations for
QUX,Y; X, Y)=(X2Y)? +2a(X £Y) +x,
which is essentially a function of the single vafiable ¢ = X + Y, lead to contact trans-
formations. i, -

Theorem 4.1 can be applied to the polar equation O = 0, and this will
allow us to conclude that in the regions where the denominators do not
vanish, the resulting transformation is a contact transformation, which is
an involution.

Theorem 5.1. Let
Alz,y,p) = (ac — b*)(pz — y) + (ac — Bb)p + (ab — af)
O(z,y) = bxr +cy + B.
Suppose that A(z,y,p) # 0, §(z,y) # 0, and that A(X,Y,P) # 0,
6(X,Y) #0. Then the solution to the (5.8) system,

(x = (b= ac)(pz — y) + (6 — ck)p + (o — brs)
Az,y,p)
(5.12) ]y _ (@b —af)(pz—y) + (bs — aB)p + (ar — o)
A(z,y,p)
o BEE G0
{ ¥ 5(z,y)

is a contact transformation. Furthermore, the inverse transformation is
obtained by interchanging (X,Y, P) with (z,y,p), respectively in (5.12).

5 — The Herglotz...
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§ 1.6 Contact Transformations and Differential Equations

The main application we have in mind for contact transformations is the

integration of differential equations. We have seen that in order for a so-
lution of a transformed differential equation to be a solution of the origi-
nal differential equation, the transformation must necessarily be a contact
transformation. However, an additional condition is also required, as is
illustrated by the following example.

Example 6.1. Consider the Clairaut Equation

y=pw+f(ﬁ), p =1y (z).

Under the Legendre transformation

X=p,
Y =px—y,
P =,

every solution transforms into a solution of
Y = —f(X),

which is not a differential equation.

fweset X =1t Y = —f(t), P = —f'{t), we find that it transforms back to a
curve whose curve elements are {—f(t), —tf'(t) + f(t), t). This solution is a singular
solution for the Clairaut equation. It is the envelope of the solutions with p = t giving
the parameterization.

Although singular solutions are occasionally of interest, our primary
focus is on initial value problems of the form

(6.1) p=vy = f(z,9).

Under a contact transformation, (6.1) transforms into a nonlinear (in gen-
eral) equation involving X,Y, P, and we would then like to solve for P to
obtain

-2 _rx,Y)

(6.2) P=——=

It is this equation which is integrated, subject to the transformed initial
conditions. To gunarantee that equation (6.2) can be set up, we need to
introduce an additional concept relating the contact transformation and
the differential equation.
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Consider the initial value problem

6.3) {p=y'=f(x,y)
y(wg) = Yo

and determine py by

(6.4) po = f(zo,Yo)-

We wish to find a union of elements, (z(t),y(t),p(t)), which satisfies (6.3),
and has the element (zo,yo,Po), as one of its members.
Let

(65) X = X(-'Ea ysp): Y= Y(xayap)a P = P(m,y,p)
be a contact transformation defined on a region of zyp-space containing the
point (g, %o, Po). Let '
(66) XU = X(mﬁiyﬂvpﬂ)! YO — Y(mﬂayﬂapﬁ)a PU = P(:rﬂry(]ap())
and let
(6.7 z=z(X,Y,P), y=yXY,P), p=pXY,P)
denote the inverse of (6.5). The differential equation in (6.3) transforms
into
(6.8) p(X,Y, P) = f(z(X,Y, P),y(X,Y, P)).
The next step is to solve (6.8) for P in terms of (X,Y).

We say that the contact transformation (6.5) is admissible for (6.3) if
it transforms solutions to

p=f(z,y) with p=dy/dz and y(zo)=1yo
into solutions to
P=F(X,Y) with P=dY/dX and Y(X,) =Y.

We summarize the above discussion as the following theorem.

Theorem 6.1. The contact transformation (6.5) is admissible for the
problem (6.8) in a neighborhood of (zq, yo,po) if

a%{p(x, Y,P) - f(o(X, ¥, P),y(X.Y, P))} 40

(Xa,Y0.Ps)

If the transformation is admissible, then the initial value problem (6.3)
transforms into an initial value problem of the form

.o P = F(X,Y)
(69) Y(Xo) = Yo,

and solutions to (6.3) transform to solutions to (6.9), and conversely.
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Example 6.2. Consider the general Clairaut Equation

Af(p, pz — )

0.
dp #

flp,pz—y) =0, f(po,pozo — yo) = 0,

Under a Legendre transformation: X =p, ¥ = pr —y, P = z, this equation becomes
f(X,Y)=0.

Thus the Legendre transformation is not admissible for this equation.

Example 6.3. Let f(z,p,pz — y) = 0 be such that the equation can be solved for p.
Under the Legendre transformation this equation becomes

FIPX,Y)=0

and if P can be solved for, the transformation is admissible.

Most of the earlier examples of transformations applied to differential
equations were admissible.

Example 6.4. A differential equation may be inadmissible with respect to some trans-
formation but still be integrable. For example, the Legendre transformation applied to
the Clairaut equation

y=pr+p leadsto ¥V =-X

and so is inadmissible. We saw that the reverse transformation leads to the envelope of
solutions, in this case described by the element x = 1, y = 0, p arbitrary. The general
solution to this equation is

y=C(z+1), C aconstant,

and every solution passes through (—1,0) with some slope C.
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Contact Transformations in Space

§ 2.1 Extended Point Transformations

A point transformation in the three dimensional zyz-space can be repre-
sented by the functions

(1.1) X =X(z4:2) Y =Y g2 2= Z(z 4,4},

which associate with each point, (z,y,z), in the domain of definition, a
point, (X,Y, Z), in the range or imagespace. We shall assume that these
functions are as continuously differentiable as necessary, and that the map-
ping is one-to-one, from a domain in the zyz-space, onto a domain in the
XY Z-space. Moreover, we require that the inverse transformation is con-
tinuously differentiable as well, so that the Jacobian

X, X, X,
aXY7) 1y Y Y, | #o.

1.2
(1.2) a(m,y,z) Z, Zy 7

Now suppose that o is a surface described by the equation

(1.3) o:  z=f(z,y)

Its tangent plane at an arbitrary point (a,b,c), where ¢ = f(a,b) is de-
scribed by

z—c=p(z—a)+qly—b)
where p = fz(a,b) = zy(a,b), and ¢ = fy(a,b) = z4(a,b). The vector
(—p, —g, 1) is the direction of the normal to the tangent plane of the surface
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o. The components are proportional to the standard direction cosines of
the normal (o, 8,7) i.e.

—p:—q:l=a:0:7,

whence p and g are referred to as the direction coefficients of the tangent
plane.
Under (1.1), surface o is transformed into a surface

(1.4) % Z=F(X,Y),
and the point (a,b,c) € o is transformed into the point (4,B,C) € I,

where A = X(a,b,c), B =Y (a,b,c), C = Z(a,b,c).
The corresponding tangent plane to T, at (4, B, C), is given by

(1.5) Z-C=P(X-A)+Q(Y —B),

where P = Zx, and @ = Zy. To determine P and @ in terms of p and g,
we observe that by equation (1.4),

Z(z,y, f(z,y)) = F (X (2,9, f(z,9)) , Y(z, 9, f(z,9)) ) -

Differentiate first with respect to z, and then with respect to y, and use
the definitions of p, ¢, P, Q, to obtain
(1 6) Zy +pZ, = (X:c +'PXZ)P + (Y:c +p}rz)Q=

' Zy+9Z, = (Xy +¢X.)P + (Y, + ¢¥,)Q.
(1.6) is a system of two equations in two unknowns, P and Q. If we denote
by A = A(z,y, z,p, q) the determinant of the coefficients,

(1.7) A= (XY, - X,Ye) + p(X.Y, - Y. X,) + ¢(X,Y, - X,Y2),
the solution to the system is given by

P= (YyZa: — Y:I:Zy) +p(YyZz - YzZy) + q(YzZa: o M
A

0 = KaZy = X,70) +p(Xo 2y = X, Z.) + o(Xs 2 = X 7o)
X :

The equations (1.1), and (1.8), represent the extended point transfor-

mation in 3-D. It associates with each element of a plane (z,v, 2, p, q),

another planar element (X,Y,Z, P,@Q). The mapping is one-to-one since

the Jacobian

X,Y,Z,P,Q) _ 9(X,Y,2) e fae)

(1.8)

a(z,y,2,p,q) d(z,y,z) | dp dg p dq

can be shown, after a clumsy calculation, to be nonzero. By its derivation,
the transformation (1.1), (1.8) preserves first order contact, and we again
call such a transformation, a contact transformation.
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Example 1.1. The point transformation
X = yz, Y =xz Z =xy

maps the domain {# > 0, y > 0, 2 > 0} one-to-one, onto the domain {X > 0,Y >
0, Z > 0}. The Jacobian is 2zyz.
The inverse transformation is

z=+YZ/X, y=+ZXJY, 2 =+/XY/Z.

The extended point transformation is obtained by appending the two additional equa-

tions
_ myq — zz — pa’

Pos it e oo 5 s
A )
2

TYp — Yz —
Q= yp ZIA qy,

with A = —z(z + pz + qy).

§ 2.2 Definition of a Contact Transformation in Space

A point, (z,y, z), in three dimensional Cartesian space, R?, together with
a plane passing through the point, is called an element. Since the plane is
determined by the point through which it passes, along with the direction
coefficients, p, and ¢, the element is denoted by five coordinates, that is, a
point (z,y, z,p, q) in a five dimensional space. A continuously differentiable,
one-to-one transformation defined on a domain in zyzpg-space with range
in XY Z PQ-space, which may or may not coincide with the original space,
given by the functions »

X=X(y2p9, Y=Y@yz2p4q, Z=2Zyz2pq)
(2.1)
P =P(z,y,2,p9), Q=Q(zY,7p4q)
is called an element transformation. We shall assume that both it, and

its inverse, are sufficiently differentiable so that the computations below
make sense, and that the Jacobian of the transformation

(X, Y, Z, P, Q)
Az, y, 2,0, 9)

(22) £0
The definition of a contact transformation in R3 is more complicated
than it is in ’?, and there are several distinct cases which must be consid-
ered.
Let o be an arbitrary surface in R?, which can be represented by three,
twice continuously differentiable functions

(2.3) o: z = z(u,v), y = y(u,v), z = z(u,v),

where u, and v, range over some set in the uv-parameter space.



32 II. CONTACT TRANSFORMATIONS IN SPACE

Case (i). We consider first the case that (2.3) represents a two dimen-
sional surface in R3. For this to be true, it is necessary and sufficient that
at least one of the determinants

d(z,y) 0y,2)
A(u,v)’ Nu,v)’ d(u,v)’

2
N
=

(2.4)

be nonzero, that is, the rank of the matrix

Ty Yu 2u
Ty Yo Do
must be two.

Example 2.1. Suppose the first determinant in (2.4) does not vanish. Then we can
solve for u, and v, in terms of x, y, in (2.3) and insert the result into the expression for
z to obtain

z = z(u(z,y), v(z,¥)) = f(z,9).

the standard expression for a surface.

Now let (z,y,2) be a point on o, and (—p, —q, 1) be the components of
the normal for the tangent plane to ¢ at this point. If o is given by the
equation z = f(z,y), we have p = 9f/dz, ¢ = 8f /dy; in which case we call
(x,y,2,p,q) a surface element. Each surface element is characterized by
the fact that

(2.5) pdr+qdy— dz=10

at every point on the surface. In terms of the variables (u,v), equation
(2.5) may be written equivalently as

(2.6) DTy + Qg — 2y = 0,

(2.7) PTy + qyy — 2y =0,

obtained by considering (2.5) along the curves: v = constant, and v =
constant, respectively. '

A strip , on the surface o, is determined by a curve 7 on o, where to
each point (z,y, z) on + is associated the tangent plane to ¢ at this point.
See Figure 2.1.
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Z
p,-q,1) A o
,——\ Y
(x¥.2)
> y
X

Figure 2.1

If v is the image on a surface ¢ of the curve u = u(t), v = v(¢), in the

uv-plane, and
Or du Oz dv

= Gudt Bvat’

we obtain from (2.5) the so-called strip equation

T

(2.8) pE+qy—3=0

Clearly (2.6) and (2.7) represent the strip condition for the curves u =
constant, and v = constant, respectively.

Case (ii). We now consider the case where the three determinants,
(2.4), vanish identically in a domain D of the uv-plane, which is mapped by
(2.3) into the zyz-space, but where not all of the six derivatives z,,..., 2y
vanish. In this case the three functions (2.3) map the domain D onto a
curve in the zyz-space. i

In order to prove this assertion, we may assume, without loss of gener-
ality, that =, # 0. There are then two cases to consider.

First, let £, = 0. Then since the determinants in (2.4) all vanish, we
may conclude that y, = 0, and z, = 0. Thus z(u,v), y(u,v), z(u,v), are
independent of v, and we may write

z=z(), y=yl), z=zu),

- . which are the parametric equations for a curve in R3.

6 — The Herglot...



34 II. CONTACT TRANSFORMATIONS IN SPACE

Secondly, suppose that z, # 0. Then since all the determinants in (2.4)
vanish, the vectors (Zy,Yu,z.), and (zy,yy,2,), are linearly dependent.
Thus there exists a function o = a(u,v) # 0 such that

(2.9) Ty =0Ty, Yo = QYy, 2y = Oy,

The idea now is to seek a new parameterization so that z, y, and 2, depend
not upon the two variables u, and v, but on simply one variable. Let us set

(2'10) u= ¢'(31 T)) v= 'e,b(s,’r)

and determine the functions ¢, and . In term of s, and 7,

(2.11) T = a:(¢(s, 7), ¥(s, 1'))

We will show that under the assumption that z,, # 0, =, # 0, it is possible
to choose ¢, and v, so that z is independent of v, and simultaneously so
are y, and z. To guarantee that, we must have

Q_GE =ZuPr + Tyt =0

or
whence by (2.9), and the fact that =, # 0, we get
(212) a(¢a¢)¢r + 1/)'r = 0:
where a = z, /z,. Choose ¢ and 1) so that

gz == 11
(2.13) ¢
"»b‘r = “a(d)s 'l,b),

and for initial conditions choose

#(s,0) =35,  P(s,0) = A(s),
where A(s) is any function chosen so that the Jacobian
o)  _|d 11
(214) 3(31 T) 7=0 '¢'8 w‘T =0 by —O!(¢, ¢)
= X + a(¢(5,0),(s,0)) #0.
This condition guarantees the independence of ¢, and 1. Such a A can

always be found. For example: A equal to a constant will do since a # 0.
If, therefore, one sets

T7=0

$(s,7) =5+,
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and determines 1/(s,7) such that for each s

Ur(s,7) = —a(s + 1 9(s, 7)), ¥(s,0) = Als),

where A(s) is chosen to satisfy (2.14), then

which was the assertion.
REMARK: The assertion is intuitively obvious. For if (u(t),v(t)), is any
curve in the uv-plane passing through a point on the surface, say,

z(u(0),0(0)) =& y(u(0),v(0) =n,  z(u(0),v(0)) =

then by (2.9) the tangent vector at (£,7,(),

d ( (t)v'”(t)) Ty
i y( (), v( t)) =(a+1) |
2(u(t),v(t)) J 40 Zy

always points in the same direction, so it would seem reasonable to expect
that we could introduce coordinates such that one of them would move
along the line in the direction of the tangent, and so describe the curve.

Case (iii). If all six derivatives &, ..., 2, are identjcally zero in (u,v)
then (z,y,2) = (%o,Y0,%0) is a fixed point. Thus p and g can be given
arbitrarily. The strip then consists of a bundle of planes passing through
(%0, Yo, 20)-

DEFINITION. A contact transformation in space is an element transfor-
mation which maps every strip of surface elements, one-to-one, onto a strip
of surface elements. Alternatively, the element transformation (2.1) is a
contact transformation if and only if it maps some domain D in zyzpg-
space, one-to-one, onto a domain D' in XY ZPQ-space, (2.2) holds, and

(215)  pdr+qdy—dz=0 implies PdX +QdY —dZ=0.
Theorem 2.1. Equation (2.1) represents a contact transformation, if
and only if, there is a function p = p(z,y,2,p,q) # 0 such that

(2.16) PdX + QdY — dZ = p(pdz + qdy — dz)
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PrRoOOF. If a function p # 0 exists s@ that (2.16) is satisfied, then the form
PdX + QdY — dZ vanishes if and only if pdz + gdy — dz does. (2.1) is
therefore a contact transformation.

Assume now that (2.1) is a contact transformation and that p dz+qdy —
dz = 0. Then since

dX = Xz dz + X, dy+ X.dz + X, dp + X, dg,
dY =Y, dz+Y,dy+Y,dz+Y,dp+Y,dg,
dZ = Z,dz + Zydy+ Z,dz + Z,dp + Z, dg,

we see that
(2.17)
PdX +QdY — dZ =(PX, + QY, — Zy)dz + (PXy + QYy — Zy)dy

+(PX, +QY, — Z,)dz + (PX, + QY, — Z,) dp
+(PX, + QY, — Z,) dq.

When dz = pdz + gdy, the left hand side must vanish, that is we must
have

{(PX: 4+ QY, — Z;) + p(PX, + QY, — Z.)} du
+{(PX, +QY, - Z,) + ¢(PX, + QY. — Z,)} dy
+ (PX, +QY, — Z,) dp + (PX, + QY, — Z,) dg = 0.
This identity must hold for all (dz, dy, dz, dp, dg) so that if we set
(2.18) p=—(PX,+QY, - Z,),

we obtain the four additional relations

(2.19) ety = Uy =
PX, 4+ 0QY, — Z, = pq,

(2.20) et QY =2 =,
' PX,+QY,~ Z, =0.

If we insert expressions (2.18), (2.19), and (2.20), into (2.17), we find that
(PdX + QdY — dZ) = p(pdz + qdy — dz).

It remains only to show that p # 0. By way of contradiction, suppose
p = 0. Then we could write (2.18), (2.19), and (2.20), in the form

XW Y’TJ Z T

Xy Yy Z?I
Plx. |+Q|Y.|-]|2. | =0

Xp YP Z.'P

‘X q Yq Z‘?
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and obviously P? + @2 + 1 # 0. Consequently, the row vectors

Xa ¥, Z,,
Xy Yy Zy
X Y Z,
Xp Yy Zy
Xy Yo Z,
are linearly dependent, so that the Jacobian
AX.Y,Z,PQ) _,
9(z,y,2,p,9)

everywhere, contradicting our initial assumption that (2.1) is a contact
transformation. [J

Example 2.2. The Legendre transformation in space
X”—"P: Y =gq, Z=p$+qy—z7 sza Q=ys

is a contact transformation, with p = —1.

We have seen that in the plane, if two independent functions are given,
they can be extended to form a contact transformation. The situation in
three space is similar. Let us suppose that

(221) X= X("‘C:ysz)a Y= Y(m,y,z), Z = Z(m,y,z),

are given, and are independent. The equations (2.18), (2.19), and (2.20),
can be used to extend this transformation to a contact transformation. To
see how this is done, note first that (2.20) is trivially satisfied. Since the
functions X, Y, Z, are independent, (2.18) and (2.19) can be solved for
P/p, Q/p, —1/p, and from that, P and @ can be determined explicitly. Al-
ternatively, eliminate p, and solve for P and . One obtains compatibility
conditions which the functions in (2.20) must satisfy, which are analogous
to those we found in Chapter I. In Chapter III, we shall treat these ques-
tions in more generality. At the moment, we remark only that while the
program outlined above could be carried out, at this stage it is very tedious.

§ 2.3 The Directrix Equations

We have seen that a contact transformation |
(3.1)
X =X(z,0,509, Y=Y@yzpq9, Z=2zy72p9

PZP(%%%P:Q), QZQ(%?J:Z,ID,Q)
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is a one-to-one transformation from some domain of the zyzpg-space, onto
a domain of the XY ZP(Q)-space, which is characterized by the fact that
there is a function p = p(z,y, 2,p, q) # 0, such that

(3.2) PdX +QdY — dZ = p(pdz + qdy — dz).

By expanding the differentials dX, dY, dZ, and comparing coefficients,
we have seen that (3.2) is equivalent to the system

(PX: + QY — Z; = pp
PX,+QY,—Z, =pq
(3.3) S PX,+ QY ~Z,=—p
PX,+QY, - Z, =

\ PX,+QY, - Z,=0.

The system (3.3) can be regarded as an over determined, linear sys-
tem for the quantities P/p, Q/p, —1/p, so that (3.3) implicitly contains
compatibility conditions which the functions X (z,y, 2,p,q), Y(z,v, z,p, q),
and Z(z,y, z,p,q), must satisfy if they are to be the first three functions
of a contact transformation. Furthermore, we know from the remarks at
the end of §2.2 that once these functions are given, then P(z,y, z,p,q) and
Q(z,y, z,p,q) are determined. In fact we shall see that contact transforma-
tions can be constructed from equations which are independent of p, and
g, the so called directrix equations, just as was done in §1.4.

To begin with, suppose the functions X, Y, Z, in equation (3.1) are
independent of p and ¢. Then X, Y, Z, satisfy a system of the form

f(X,Y,Z;2,y,2) =0
(34) g(X,Y,Z;w,y,z) =0
h(X,Y,Z;:c,y,z) =0.

Conversely, let us suppose that we have been given three functions of
the form (3.4). We ask when we can use these functions to determine a
contact transformation. In the event that they determine one (or more) con-
tact transformations, they are called the directrix equations for the contact
transformation(s).

Guided by the development in §1.4, we shall assume that

0f0h) o Ihoh)

(3.5) Aoz 0 BAX,Y,2)

#0,
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in some domain. Consequently, (3.4) can be solved for X,Y, Z in terms of
z,y, z, at least locally, and

8(X,Y, 2)
Nz, y, 2)

Once these functions are known, we set up the system

(3.6) # 0.

PX, +QY; — Z, = pp,
(3.7) PX, +QY, - Z, = pa,
PXz+QYz—Zz= -p,

for the unknowns P, @, and p. Now p # 0, for if p = 0, we could conclude
by (3.6) that (P,Q,—1) = (0,0,0), which is impossible. Thus, (3.7) can
be regarded as a linear system for the unknowns P/p, Q/p, and —1/p, and
solved. Thus, we can determine functions X (z,v, z), Y(=z,y, 2), Z(z,y, 2),
P(x,y,2,p,9), Q(z,¥,2,p,9), and p(z,y, 2, p,q) such that (3.2) is satisfied.
We have to show that the resulting transformation is one-to-one. To see
that, note first that

. 6(1:7 y5 z,p7 Q) a("‘cf y’ z) a(p, q) )
We must show that
I(X,Y,Z,P,Q)
# 0.
d(z,y,2,p,q)
By (3.6) and (3.8), it suffices to show that
a(P,Q)
0.
) ”

To investigate that, let us first differentiate (3.7) with respect to p, and ¢,
to obtain

P X + QpYa: = P+ PPy, P X, + Qqu = PPq,
(3.9) P Xy + QpYy = gpy, and PyXy + QqYy = p+apg,
Psz + QpYz = =pPp, Pqu + Qqu = —pPq-
Now suppose
aPQ) _,
a(p,q)

Then the vectors

P, P,
[ Qp ] and [ Qq
0 0
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are linearly dependent, and we can say

Py Py
(3.10) Qo =21Q4 1 for some A # 0.
0 0

Multiply the second set of equations in (3.9) by A, and use (3.10) to conclude
that

P+ ppp = Aqpg, app = A(p + qpq), Pp = APg,

and consequently
qpp = Ap+ Agpq = Ap + qpp.

That is
Ap=0, orp=0, since X #0,

which is a contradiction since p 7 0. Therefore,

d(P, Q)
a(p,q)

#0,

and the determinant in (3.8) is nonzero. We have proved the following
theorem:

Theorem 3.1. Suppose the functions f, g, and h, satisfy (3.5). Then
they are the directriz equations for a contact transformation. More specif-
ically, the solutions X = X(z,y,2), Y =Y (z,y,2), Z = Z(z,y,2), to the
system in (3.4):

XY, Z;z,y,2) =0
9(X.Y,Z;z,y,2) =0
h(X.Y,Z;z,y,2) = 0.

are independent functions, which can be extended to a contact transforma-
tion.

Next let us suppose that the first three functions X, Y, Z, of a contact
transformation are given. Suppose further that the rank of the matrix

X.’P Y;’ ZP
Xq YIJ Z‘I

is one. We have seen in §2.2, that in this case a new parameter, 4 can be
introduced so that X, Y, Z, can be regarded as functions of the variables
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(x,y,2,u). If uis eliminated from the system, we obtain two equations of
the form

(3.11)

(XY, Z:3,,2) =0
9(X.Y, Z;z,y,2) =0

which the contact transformation has to satisfy. In this case, the contact
transformation satisfies two directrix equations.

Now let us turn to the converse question of determining when two func-
tions, f, and g, of the variables (X,Y, Z;x,y,z), represent the directrix
functions for a contact transformation. To see when this is possible, we
calculate the differentials

(3.12) df = fxdX + fy dY + fzdZ + fydx + fydy+ f.dz =10
' dg =gxdX + gy dY + gzdZ + g, dz + g, dy + g, dz = 0.

IfX,Y, Z, P, Q are to represent a contact transformation, the differentials
must also satisfy

(8.18) PdX +QdY — dZ — p(pdz + gdy — dz) = 0.

There must exist parameters A, y, such that

Afx +pgx =P Afz + pge = —pp

(3.14) My +pgy =Q Ay + pgy = —pq
Az +pgz = -1 Az +pg. =p
f(X,)Y,Z;z,y,2) =0 g( X, X, Zi %) =10

The parameter p can be eliminated from this system, and we obtain the
homogeneous linear system

{ Mfe +pfe) + gz + pgs) =0,

3.15
( ) )‘(fy +qf.) + N(gy +4q9.) =

Obviously, not both A, and g, can vanish. Consequently, the determinant
of the coefficients must vanish, that is,
(3.16)

WX.Y, Z;3,y,2,p,9) = (fo +pf) 9y +99:) — (9 +pg:=)(fy +af:) =0

We arrive at the following system for the construction of X, Y, Z,

f(X,Y,Z;z,y,2) =0,
(3-17) Q(X, ¥, Z;:Bsy:z) T O,
h(X1Y: Z;m,y,z,p,q) =0.

7 — The Herglote...
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We must now give sufficient conditions which will allow us to solve (3.17)
for X, Y, and Z, in terms of (z,y, 2,p,q), and at the same time allow us
to conclude that these functions, together with the P and @ obtained from
(3.14), form a contact transformation.

First, in order to be able to solve for X, Y, and Z we demand that

9(f,9,h)

3.18 —= # 0.
1) Bo,u2) 7
(3.18) allows us to construct the functions
(3.19)

X=X(zy2pq9, Y=Yyzpaed, Z=2Z(zy2Dp49).

Now recall that the case of the two directrix equations occurred when X,
Y, and Z, were not independent of both p and ¢. Since p and ¢ occur only
in the equation for h, we first demand that at least one of the derivatives,
hy # 0 or hy # 0. In other words,

d
(3.20)  either % #0, or gg: Z; #£ 0, or both are nonzero.
Equation (3.20) implies that p # 0. For if p were zero and say
a(f,9)
8(z,z) 7

we would conclude from (3.14), that both A and g would be zero, which
we have already precluded. (3.20) also implies that not all of the functions,
fo +pf21 92 + P9z, fy + afz, gy + @9, can vanish identically in the region
where X, Y, Z, are to be constructed. For if, say

«+pf. =0,
o, 9) # 0 there, and if fo+ 1

0(z, 2) 9z +pg= =0,

then we could infer that (1,p) = (0,0), which is impossible. Hence, we
can construct from (3.15), the ratio A/y, if both f; + pf., and g, + pg.,
are nonzero; or if perhaps f; + pf, = 0, and g; + pg, # 0, then X can be
arbitrary and g = 0, and so on. In any case, we obtain from (3.14) the
expressions

(_ _Matug

Az + pgz
_Afx + pgx
Afz + pgz
G 2y + Bgy
Y Mz tpgz

(3.21) (P =
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The functions (3.19), and (3.21), satisfy (3.2). To prove this assertion, note
that since X, Y, Z, satisfy f(X,Y,Z) =0, and ¢(X,Y, Z) =0, and

0=Mdf +pdg = (Mx +pgx)dX + (Afy + pgy) dY + (A fz + pgz) dZ
+(Afz + pgz) dz + (Afy + ugy) dy + (Af. + pg.) dz.

Now insert the expressions from (3.14), to conclude that the identity holds.
Finally, if we can show that

a(X') Y? Z? P’ Q)

3.22
(8.22) N end

7501

then we shall be able to conclude that X, Y, Z, P, @, is a contact trans-
formation.

In order to make this conclusion, we need additional hypotheses. To
motivate these assumptions, let us note that if (3.1) is a contact transfor-
mation, then so is its inverse,

{.’BZDS(X,Y,Z,P,Q), yzy(X:‘KZ:P!QL Z=Z(X,Y-,Z,P,Q)
p=p(X,Y,Z,P,Q), q=q(X,Y,Z,P,Q).

We would expect, therefore, that the hypotheses for the X, Y, Z, P, Q,
variables should be the same as those for the z, y, z, p, ¢, variables.

We construct the function H = H(X,Y,Z, P,Q;z,y,z) as we did the
function h, to find
(3.23)
H(X,Y,Z,P,Q;z,y,2z) = (fx + Pfz)(gv + Qgz) — (9x + Pgz)(fy + Qfz).

Now assume that

d(f,g,H)

(3.24) Bz, 1.2)

#0,

and at least one of the determinants

o(f,g) a(f,9)
dX,z)” oY,Z)

(3.25)

is nonzero. We now verify immediately that

Ax + pgx Afy + pugy
a(fag:hvp-l_ )\fZ'i’lJ‘gZ’Q-*_ )\fz +#gz) _ a(.f:g7h) ?/__0

9(X,Y,Z,P,Q) X,Y, 2)
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and similarly that,

H : .
a(f’g’ PN e Mavpg:)  o(f, e, H)

o(z,y,2,p,9) Az, y,z)

# 0,

so that the transformation (3.1) has an inverse, and thus the Jacobian is
nonzero. We summarize this discussion as a theorem.

Theorem 3.2. Suppose f and g are functions of the variables (X,Y, Z;
z,y,2). Let h be defined by (3.16), and H by (5.23), and suppose that
(3.18), (3.20), (3.24), and (8.25) hold. Then the solution X, Y, Z, to the
(8.17) system, together with the functions P, Q, p, given by (3.21), define
a contact transformation.

Example 3.1. Suppose both f and g are independent of at least one of the variables
X, Y, or Z. Suppose for definiteness that fx = gx = 0. Then the solution X, ¥, Z, to
the (3.17) system, is not a contact transformation.

Example 3.2. Suppose

XY, Z;z,y,2) =2+ Z +zX,
9(X,Y, Z;z,y,z) =y - Y.

Note that
a(f,9) _ | X 1,_0 3(f,g)_’0 1‘__1
Az, 2) 0 o] 7 a(y, ) 1 0| !
of,9) _|= 1‘ 0 31, 9) =‘ 0 1‘:1
ax,z) |0 o 7 ay,zy |-1 0 '

Construct the function
h = (X +p)(1) - (0)(0+ql) = X +p,

and note that

agan [ 88
aXY2 |1 o o
The solution to the three equations
24+ Z+zX =0
y—Y =0

X+p=0
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is
X =—p, Y=y. Z=p:c—-z

The (3.15) equations are
MX+p)+p-0=0

Arg+p-1=0.
Since X +p = 0, we find that p/A = —g. Thus, we see from (3.21) that
ﬂ=_1; P=—.’E, Q=_q

so that the transformation is

{X:—p, Y=y Z =pzx—z, P=—z, Q=—gq

(PdX + QdY — dZ) = —(pdz + qdy — d2)
and
3(X,Y,Z,P,Q) _ _
Az, ¥, %P, q)

The inverse transformation is given by

1.

= -—PD y='Y, z=PX—Z, PZ‘X; q='—Q'

This transformation is sometimes called the Euler - Ampére transformation.

Example 3.3. Similarly, one can find the contact transformation generated by the two
directrix equations

XY, Ziz,y,2) =2+ Z +zX +yY,

g(X?Yazrmay:z) =W+X -i-y+Y
It is

X=z[a-p) - (=+)]

b |

Sla=p) + @+
=-Za-p -G+ +3la—pD+E+)] -2
P=p-s+3la-n-(+v)]
Q=q—y+%[(q—p)+(-’ﬂ+y)]

p=-1

Let us again return to the contact transformation (3.1) and consider the
first three functions X (z,v, z,2,9), Y(z,v,2,p,9), Z(%,y,2,p,q). Suppose
the rank of the matrix

(3.26) [x,, % z,,]
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is two. Then two of the equations can be solved for p and ¢, in terms of the
other variables, and the result inserted into the third equation. This leads
to the single relationship

(3.27) QUX,Y, Z;2,y,2) =0,

among the variables X, Y, Z, x, y, z. In other words, if (3.1) is a contact
transformation, and the matrix (3.26) has rank two, the variables X, Y, Z,
x, Yy, 2, satisfy a single directrix equation.

We now ask the reverse question. Suppose one has a function 2 which is
dependent on the variables (X, Y, Z, z,y, z). When is it the directrix for a
contact transformation? The derivation is nearly identical to the previously
encountered, two dimensional case, so we can be brief. The differential of
() is given by

(3.28) dQ=Qx dX +Qy dY +QzdZ + Q, dx + Q, dy + 2, dz
and since it must be proportional to
0=PdX 4+ QdY — dZ — ppdz — ppdy + pdz,

we see that

P i, = Y0, e i,
(3.29) { X @ Y z

pp = —AQy, pg = =AYy, p = A,.
From (3.29), we see that A # 0, and Qz # 0, so that
(3.30) A=-~-1/Q5.
Since p cannot be zero, we conclude that 2, # 0, so that
(3.31) p=-80,/0z.
We are led to the system of equations
UX,Y,Z;z,y,2) =0

(3-32) Qx +PQz=0, Qy+QQz=0,

l Q. +pQ, =0, Q, +4¢82; =0.

The idea is to use the first and third equations of (3.32) to solve for X,
Y, Z, and use the second equations to construct P, and Q. We require,
therefore, that
(3.33)
B(Q, Q; +pQ,, gy + qnz)
0(X,Y, Z)

(R, 0x + PRz, Qv + Q)

Hoe0s7) #0.

# 0,
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By arguing as in the case of Theorem 3.2, we can prove immediately

Theorem 3.3. Suppose the function @ = Q(X,Y, Z;z,y,z) satisfies
Q, #0, and Qz # 0. Suppose further that equation (3.33) holds. Then the
equation § = 0, represents the directriz equation for a contact transforma-
tion. That is, the equations (3.32) can be used to construct functions X,
Y, Z, P, Q, and these functions represent a contact transformation, with
p given by (3.31).

Example 3.4. Suppose
QUX,Y, Z;z,y,2) = zX +yY — (2 + Z).

Then obviously ; = 2z = —1, and are thus both nonzero, as is p, i.e. p = —1. The
gystem (3.32) takes the form

X +yY —(z+2)=0

z-P=0, y-Q=0,
X—-p=0, Y—-g=0.

The contact transformation is

X=p, Y=q  Z=pr+qy—-2z2  P=z, Q=y,
with the inverse transformation given by

=P, y=Q, z=PX +QY - Z, p=X, g=Y.

This is the Legendre transformation in space.

Example 3.5. The contact transformation whose directrix equation is

QX,Y,Ziz,y,2) =X +yY +2Z2-1=0

is given by
X =-p/(z—pz—qy) z=—P/(Z—-PX - QY)
Y =—q/(z—pz —qy) y=-Q/(Z-PX-QY)
Z =1/(z — pz — qu) with inverse z2=1/(Z - PX - QY)
P=-z/z p=-X/Z

Q=-y/z qg=-Y/Z
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§ 2.4 Geometric Theory of Partial Differential Equations

Let z = f(z,y) denote an unknown function having continuous partial
derivatives
_of _of

% = Br = Ay
in some domain of the zy-plane. A partial differential equation of the first
order is a functional relationship between the function z, its first order
partial derivatives z;, and z,, and the independent variables z, and v,

(4.1) il a2 22 = U

If z = f(z,y) is a surface, o, then p = z; and ¢ = 2, are the direction
coefficients of the normal to o at the point (z,v, z), so that (4.1) can be
regarded at the same time as a condition on the elements (z,y, z,p, q)

(4.2) ¢(z,y,2,p,9) = 0.

We shall assume that qﬁg + <}5§ # 0. An element (zo, Yo, 20, Po,qo) which
satisfies (4.2) is called an integral element for the differential equation.
Let us now solve (4.2) for g to obtain

(4.3) q=¥(z,y,2,p).
Let (xo,%0,20) be a fixed point on 0. Then we obtain a one parameter
family of elements

($01 Yo, 20, P, ¢($G,y01 Z{},P)) :

As p varies, we obtain a set of elements which generate a cone, the Monge
cone, with vertex (zg, yo, 20). See Figure 4.1.

Monge cone
(- By, 9,1
element
(x(],y()az()s pO qu)
(X0,Y05Z0)

Figure 4.1
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The surface z = f(z,y) is a solution to (4.1) if at each point
(zo, Yo, f (zo,y0)) the tangent plane determines an integral element

(zo, Yo, f(T0, %0, f= (0, Y0), [y (o, Yo))-

Geometrically, it is clear from this discussion that a surface will be an
integral surface if and only if at each point, its tangent element should
touch the Monge cone of the equation.

Now let us take a curve in the surface which is tangent to the generators
of the cones. If

(4.4) z=a(r), y=y(r), z(r)=2(z(r),y(r),
is a parametric description of the curve, then
(4.5) 2=z k + 2y = pT + qY

Moreover, the five functions (z(r),y(r), z(r),p(7),q(7)) must form an in-
tegral strip, that is

(4.6) F(z(r),y(r), 2(7),p(7),q(7)) = 0.

The envelope condition is obtained from (4.5) by differentiating with respect
to p and is

., 9q.

4.7 + —y =0,
(@) b+ 5
or from (4.2)

0¢ . 0 dq

ap + B dq 9p =6
whence from (4.7)

op. 0¢.
(4.8) 9pY " 9g" = 0.

(4.8) together with (4.5) implies the validity of the ratios
o 0¢ dp d¢
SR R ( P " %3q)
whence by adjusting, if necessary, the parameter 7,

P ._0¢ .0 0
{4.9) £—-5~I;, y—aq, z——p8 +q Bq'

8 — The Herglote...
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Differentiating equation (4.2) with respect to z and y, we find

¢a: + ¢zp + Qﬁppa: + ‘?6qu =0,
(:by + ¢zq + ¢ppy + (pqq:y = 0-

By (4.9) and the fact that g, = p,, we obtain

d__d e i o 0 0P
o P= zs (2, 1)) —pxm+pyy—pm@+qm3q = —(¢z + pP2),
' d d 8¢ 3¢

7 9= A3 Y) = i+ gy =Py, T, = (b +ads).
The formulas (4.9) and (4.10) combined give

jj:é;m Q:qua 2=p¢P+q¢q7
(4.11)

D= _(9'59: +p¢z)1 q"=-(¢y+qd>z),

where the dot represents differentiation with respect to 7.

The directions of the generators of the Monge cone are called charac-
teristic directions and the equations (4.11) are called the characteristic
equations.

The solution to this set of ordinary differential equations gives the sur-
face in the parametric form

T = z(s,7),
y =y(s,7),
=),

where s is the curve parameter for an initial curve (zo(s), yo(s), z0(s)). The
initial values for p and g are obtained by solving

z0(s) = po(s) z5(s) + qo(s) yo (s)

and
gl')(sco(s), yo(3), zo(s),po(s), 90 (3)) =0

for p and g. From the geometric derivation, it is obvious that the char-
acteristic equations (4.11) can be solved, and a nontrivial solution surface
constructed if the initial strip (zo(s),y0(3), z0(s), po(s), go(s)) is not itself
a solution to (4.11).

The characteristic equations themselves can be difficult to treat, and just
as in the case of ordinary differential equations, it is sometimes possible
to transform the original, first order partial differential equation using a
contact transformation.
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Example 4.1. The characteristic equations for the differential equation
é(x)y:zrzwszy} = IZx +yz'y +rt+y—z= 0

are

dz/dr ==
dy/dr =y
dz/dt = pz + qy
dp/dr = -1
dg/dr = —1,

which is a non-linear system.
Using the Legendre transformation, we find that the partial differential equation
transforms to the linear equation

The characteristic equations are :

dX/dr=1
dY/jdr=1
dZ/dr =P +Q
dP/dr = -P
dQ/dr = -Q.

Note that the last two equations for P and @ can be integrated immediately once X and
¥ are known. The three equations are essentially linear. They can be solved subject to
appropriate initial conditions, then using the inverse transformation the solution to the
original problem can be obtained. As a rule, such a contact transformation is difficult
to find.

§ 2.5 Further Simple Examples of Contact Transformations

In the plane, we saw that the polar equation for a conic section led to
a directrix equation from which simple contact transformations could be
obtained. We can also follow such a procedure in constructing contact
transformations in space. However, in order to avoid the introduction of
ten (more or less) arbitrary constant coefficients, we restrict our discussion
to the polarity with respect to the unit sphere

2+t +22-1=0,
so that the directrix equation is

(5.1) UX,Y,Z;2,y,2) =X +yY +2Z —1=0.
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If we regard (X,Y, Z) as the running coordinates, then (5.1) is the equation
of the polar plane %,,., associated with the pole (z,y, ), by the polarity
with respect to the sphere. If (x,y,z) is a point on the sphere, the plane
Yzy, 1s the tangent plane to the sphere at this point. In no other case is
the pole a point of the polar plane. For an arbitrary pole on the sphere,
the polar plane can be constructed geometrically as it has been described
for the polar line with respect to a conic in the plane, (cf. §1.5).

By means of the equations (3.32), the contact transformation is obtained
by solving (5.1) together with

T+ Pz =0, + Gz =0,
(5.2) { y+eQ

X+pZ =0, Y +¢Z =0,

and we find as in Example 3.5

]
Bg) FeeB pod o T
pT+qy— 2 pT +qy —z pT+qy—z
. _
(5.4) - v Y ) W
z F4

According to Theorem 3.1, these equations give an analytic representa-
tion of the envelope of the polar planes £, = Szy, if z = f(z,y) is the
equation of the surface ¢ on which the point (z,y, z) moves.

The representation of the contact transformation (5.3), (5.4), can be
formally simplified by the introduction of plane coordinates. To see how
this is done, let us note that the equation of the plane 2zy. has the form

p—z)+aln—y)-((—2) =0,

so that
pE+agn—(=pz+qy— 2,
or
ué +vn+w =1,
where
o,

(5-5)u:—p+—, 'v=—~—q—, w = e

(pz + qy — 2) (pz + qy — 2) (pz + qy — 2)

The quantities (u,v,w) are the plane coordinates for £;,,. In terms of the
plane coordinates, the contact transformations (5.3), (5.4) take the simple
form

(5.6) X=u, Y=v, Z=uw,
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(5.7) U=z, V=, W =z,

where P = —U/W = —z/z, and Q@ = —V/W = —y/z. From the forms
of (5.6), and (5.7), it is obvious that the transformation coincides with its
own inverse. This fact is not apparent from the form of (5.3), (5.4), but
from equations (5.1), (5.2) one would expect it.

Note that by “adding an additional dimension”, equations (5.3), and
(5.4), simplify considerably. This turns out to be a general phenomenon
and we shall exploit it more extensively in Chapter III.

The contact transformation known as a dilatation is derived from the
directrix equation

(5.8) QX.Y,Z;z,y,2) = (X —2)24+ (Y —9)?+(Z-2)2—a® =0,

where a is a positive constant.

The surface I, is now the sphere centered at (z,y, z), with radius a >
0. If the point (z,y, z) moves on a surface o, then the point (X, Y, Z) moves
on the envelope of the corresponding spheres Y., ,; this is a surface parallel
to o which is a constant distance a from ¢, measured along the normal of o
at the point (z,v,2). The equations required for the determination of the
contact transformation are given by

59) { (X-2)+p(Z-2)=0, (Y -y)+g(Z-2)=0,
(X —z)+ P(Z —2) =0, (Y —y)+Q(Z —2) =0,

whence

(5.10) P=p, Q=yq

and

(5.11) X=xz—ahp, Y=y-—ahg  Z=z+ah,

where

(5.12) h=4(p?+ ¢+ 1)~V

The square root in (5.12) can be chosen to be either positive or negative, but
it must be the same in all of the equations in (5.11). Hence, the envelope
consists of two separate shells.

If we consider the real parameter a to be a variable, then (5.8) repre-
sents a family of dilatations. It is readily seen that if a dilation with the
parameter value a is followed by a dilatation with the parameter value b,
then we have carried out the dilatation with parameter value a + b. The
set of all dilatations then, can be shown to form a semigroup which is
isomorphic to the semigroup of non-negative real numbers.
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§ 2.6 The Apsidal Transformation

We now take up a certain transformation which, because of its appli-
cations, is of importance in its own right. This is the so-called Apsidal
transformation, it enables us to understand geometrically the Fresnel wave
front.

The geometric basis is the following. Let m = (z,y, z) be any point in
space and let O be the origin of the coordinates. Let r = (22 + y? + 22)/2
denote the length _&f the radius vector 57?1 Now construct the plane ¥
perpendicular to Om, which passes through the origin. Next, let X be the
circle of radius r, lying in X'. Thus if m is taken to be the North (or South)
pole of the sphere o with radius r, centered at the origin, then X is the
equator. Let M = (X,Y, Z) be a point on this circle and let R denote the
length of the vector W . See Figure 6.1.

m (x,y,2)

[— I

0 M(xyZz)

Figure 6.1
From the construction we must have

(6.1) Om LOM, and R=r

In order to obtain a relationship between m and M, we regard (6.1) as
the directrix equations of a contact transformation, that is

F(X,Y, Z,3,y,2) = (OM)? — (Om)?
=X2+Y2+Zz—-$2—y2—22=0

9(X,Y,Z,2,y,2) = Om-OM = 2X +yY + 22 = 0.
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Using the conditions (3.14), we obtain the additional equations

AX 4+ px =P, Az — pX = pp,
(6.3) AY +py = Q, Ay — pY = pg,
A+ pz = —1, Az — pZ = —p,

together with

6.4) {(X+PZ)(y+Qz)—(Y+QZ)($+Pz)moj

(z +p2)(Y +92) — (y+ ¢2)(X +pZ) =0.
If we multiply the corresponding equations in (6.3) together, we see that
o(Pp+Qq+1) = (A — u2) Omi - OM — Mu(B? —72) = 0,

which confirms the geometrically cbvious fact that the tangent plane to o
at m is perpendicular to the tangent plane to o at M.

Now multiply the equation for P by X, the equation for Q by Y, and
the equation for —1 by Z, then use (6.2) to conclude

PX + QY — Z=AR? andsimilarly p(pz + qy — 2) = Ar’.

In view of the occurence of the combinations PX +QY —Z, and pz+qy—z,
it is natural to introduce the plane coordinates of §2.5, whence

P=U(PX+QY - 2Z)=\UR%

Proceeding in a similar manner with the other coordinates leads to the
system

P = \UR?, pp = dur?,
(6.5) Q= AVR?, pq = dvr?,
—1=AWR?, —p = dwrZ.

Now, using (6.3) we find
(6.6) MR? = P = )X + pa.

Obviously A cannot be zero, so set 7 = p/A. We thus conclude as in the
case of (6.6) that

UR? = X + 71z, wr?=a—-71X,
(6.7) VR:=Y + 1y, ur? =y — 1Y,

WR? = Z + 72, wr? =z —1Z.
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Since R? = r2, we find upon squaring and adding the three equations in
each set that

(6.8) (U*+V24+WHR*=1+7%, (WP +0*+uw?)r2=1+72

From (6.8), we see that U2+V2+W? = w2 +v24+w? and 7 is determined,
up to its sign. Having determined 7, the Apsidal transformation, denoted
by U, is determined by

X =z —ur?,
(6.9) Y =y —or?,

77 =z — wr?

together with the equations for the plane coordinates. From (6.7), (6.8),
and (6.9),
TRU=1rX+71z =z —ur?+ 1% = (1 + 7%)z — ur?

= (u? +v® + w?)R%z — R%u
and division by R? then yields the desired equations,

U = —u + (u? + 0% + w?)z,
(6.10) TV = —v + (u? + v? + w?)y,
™W = —w + (u* + v* + w?)z.

The inverse transformation &/ ~? is given by

2 =-X +UR?,
(6.11) Ty=-Y +VR?,
T2 =—Z 4+ WR?

and
ru=U+ U?+V2+ WX,
(6.12) 0=V 4+ (U2+V2+W?y,
Tw=W+(U?+V2+W?)Z
Because of the ambiguity of the sign of 7, the Apsidal transformation
is itself ambiguous. For each element (z,y,z,u,v,w), there are two el-

ements (X,Y, Z,U,V,W) represented by diametrically opposite points of
the sphere, (cf. Fig. 6.1).

Theorem 6.1. The Apsidal transformation U commutes with the po-
larity R represented by equations (5.6)-(5.7).
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PROOF. We consider I and R as operating in the system of elements writ-
ten as sextuplets. Then we have by definition

R(:‘E? y? z7 u1 Uﬂ w) = ('U;, 'U, w! 1:? y1 Z)
and so by direct computation

UR(z,y,z,u,v,w)
1
= —(~u+a’z, —v+ady, —w+olz, x -1, y—r’, 2 —rw)
T

where o? = u? +v? + w2
Next we have

U(:,{:, y) Z'J 'U., ’U') 'lU)
1
= — (a: + rzu, y + ?“21), z+ r2w, —u — agm, ) a2y, —w — azz)
T

and an a.pplicatioh of R to this equation yields the assertion. U

In the theory of wave motion, the Apsidal transformation is used to
obtain the Fresnel wave surface as the image of the ellipsoid given by

ar? +by? +c2* =1, where a, b, and ¢ are positive constants.
The tangent plane to this ellipsoid o, at the point (z,y, z), has the equation
azf + byn + cz( = 1,

thus it has the plane coordinates u = az, v = by, w = cz, which satisfy the
condition
uz + vy + wz = ax? + by® +e?=1.

Hence in view of (6.2),

2

rX =z —r?az =z — Rlaz,

rY =y —rly =y— By,

2

17 =z —r2cz =z— R?cz.

and
7 X _ 7Y 4= T4
1—aR?)’ Y~ 1-bR?)’ T 1-cRY
Now zX +yY + 2Z = 0, so that if we multiply these equations successively
by z, y, z, add, and then divide out the 7, we obtain

Ir =

2 o2 2
(6:45) 1—<;r,R?—i_l—sz—i_l—cR2 -

Y — The Herglote...
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This is the equation for the Fresnel wave surface .

By a polarity R, the Fresnel wave surface is turned into a Fresnel wave
surface with reciprocal axes. This fact is established by Theorem 6.1; for
it is only necessary to show that if o is the ellipsoid az? + by? + c2z? = 1,
then R(o) is the ellipsoid z%/a + 42 /b + 22/c = 1. Indeed, by the polarity
(5.6)—(5.7),

ar =u =X, by=v=Y, cz=w=2;

hence, we have merely to substitute z = X/a, y = Y/b, 2 = Z/c, into
the equation of the ellipsoid and we find X?/a + Y2/b+ Z%?/c = 1. This
ellipsoid is turned by I/ into the Fresnel wave surface

X? ¥2 Z2

L 1-Reja " 1-Rb  1-RJc

1,

which was the assertion.
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Special Contact Transformations

§ 3.1 Special Contact Transformations

Let S represent an element transformation taking (z,z,p) € R, X Ry %
R,, to the element (X, Z, P) € R, X R; x R, , which we write in the form

(1.1) S(z,z,p) = (X (=, 2,p), Z(z, z,p), P(z,2,p)).
Let h be an arbitrary constant. We denote by T}, the translation operator
(1'2) Th(IE,Z,p) = (.’n,z-i—h,,'p).

T}, is obviously a contact transformation and the set {T,:—oc0o<h<oo}
forms the group of all translations in the z direction.

Lemma 1.1. The element transformation, S, commutes with the oper-
ators, Ty, for all real h, if and only if S has the form

13) X=R@p, Z=Z@p+z P=P@n)

PROOF. Suppose § is defined by (1.1). We calculate
STh(z,2p) = S(z,2+h,p) = (X(z,2+h,p), Z(z, 2 + h,p), P(z, 2+ h,p))

and
ThS(:B,z,p) = Th (X(:B,Z,p), Z(fE, z,p),P(m,z,p))

= (X(z,2p), Z(z,2,p) + b, P(z, 2,p)).
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If ST, =TS, then
X(z,z+ h,p) = X(z, 2,p), P(z,z + h,p) = P(z, z,p),

so that X and P are independent of z, i.e. X = }?(x,p), P= ﬁ(m,p). On
the other hand,
Z(z,z + h,p) = Z(z,2,p) + h.

We conclude that Z,(z,z,p) = 1, so that upon integration
Z(z,2,p) = z+ Z(=,p).

Conversely, it is readily verified that every transformation of the form (1.3)
commutes with 73,. O

A contact transformation of the form (1.3) is called a special contact
transformation. Special contact transformations appear to be somewhat
restrictive, but they are easier to analyze than the general contact transfor-
mations. Furthermore, some of the most important applications of special
contact transformations are to Hamiltonian systems. Moreover, it turns
out that a contact transformation in R,4+; can be extended to a special
contact transformation in R, 42, in such a way that the extension, when
restricted to R, 41, coincides with the original contact transformation. To
see how this construction is carried out, let

(1.4) U: X =X(z,2,p), Z = Z(z,z,p), P=Plz,z.p),

be a general contact transformation in R, ;. By Theorem 3.2 of §1.3, there
is a function p = p(z, z,p) # 0 such that

(1.5) P dX —dZ = p(p - dz — dz).
Let ¥ = (Z1,...,%n,Tn+1) bea point in R, whereZ; = z; fori =1,...,n
and Tp4+1 = —z. Then (Z,Z) € R,42. In the image space, we adjoin an

additional coordinate, Z, so that (X, Z) is in a domain in R,,p, where
X=Xy, ....,.Xn, Xns1), X;=X;fori=1,...,n and X, 4; = —Z. Next,
let P, 1, P, .1 be direction coefficients. We shall choose P, . appropriately
below. Equation (1.5) becomes

™ n
(1.6) D PdX;+dX g =p (Zpi dz; + dan) :

i=1 i=1
Let Py, ... Pn 41 be direction coefficients, where p;,...,p, are related to
P1y.++,Pn bY

(1.7) Pi = PiBasrs  i=1l...,n.
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Also, define Py,..., P, by
(18) ﬁiﬁﬂ_pn+1, iﬂl,...,n,

and P,y is chosen as follows. From (1.6) we have

n =1 n —_—

B o . e .
== dXi+ dXnp1=p (Z Lidz, + dm)
i=1 1 ntl i=1 Pn+1
or
n+1_ 1—5 n+1
(1.9) S PidX, =L N g dm.
i=1 Patr 53

The transformation U: (_crf_, z,p) — (X, Z, P) is extended to the trans-
formation U: (Z,%,p) — (X, Z, P) by adjoining to the 2n + 1 equations
defining U, the two additional equations

; = _ - — 1_
(1.10) Z=%  Ppu= 5 Prte

The system of equations

ffj=Xj{$,—$n+1,p)EYj(f,1—)), j:]-)""n

Xn-l-l = _Z($>_$n+1‘ap) = X‘n-i-l(f':ﬁ)
(111) {Z=0+% (ie Z(zp)=0)
-P.j s (}’_)n+1/P) Pj(xs '“'mn-!r-lﬂp) = ?—j(?ﬁ:ﬁ)a .7 = 17' Rl

ol

| Pry1 = (1/0) Py = Pt (T, D).
is a special contact transformation in R,y which satisfies
(1.12) P.-dX=p-dz

Conversely, when restricted to R,41, (1.11) defines a contact transforma-
tion which coincides with (1.4). We have proven the following theorem.

Theorem 1.1. A (general) contact transformation U in the n + 1-
dimensional zz-space, R,+1, can be eztended to a special contact transfor-
mation U in the n + 2-dimensional Tz—-space, R, o, which when restricted
to the subspace Ry4+1 of Ry has the same effect as U.
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Example 1.1. The Legendre transformation in Rp41 is
U: X=p, Z=p-z-2, P=gz
We have seen that
P.dX —dZ = ~(p- dzx — dz)

so that p = —1.
The extension, U is given by

Yizxizpiz by . i=1,‘..,n

Pry1
— P,
Xnt1=—Z = — (Z T —§n+1)
i=1 p“+1

Z=3Z
P b o _®m _ F _ T

Pat1  Ppgr Papa Pnt
Ppit = =Ppir-

Returning now to transformations in R, ,, we drop the tilde notation
and have the following result.

Theorem 1.2. An element transformation of the form (1.3)
X = X(z,p), Z = Z(z,p) + 2, P=P(a:,p)
is a special contact transformation if and only if the equation
(1.13) P.dX —p-dz=d(Z-2)=dZ

holds, where dZ is the total differential of a function Z of (x,p).

The condition (1.13) yields

(1.14) . v e
o= F; . ) =1, y 1
ap; Z dp; /
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These conditions characterize contact transformations of the form X =
X (z,p), P = P(z,p) in the 2n dimensional zp-space. We shall in the sequel
refer to such contact transformations as canonical transformations.
By using the equivalence of the mixed partial derivatives equation (1.14)
can be used to obtain
#z 9’z 3%z 9%z
Oz 0x;  Ozj Oz’ Opx 8p;  9p; Opr”

we obtain the following conditions on (X (z,p), P(z,p)) which are indepen-
dent of Z:

82z _ 9°Z
apk 337j N ij 6}9];,

{ n

SS[OR 0% SR OX o,
i=1 awk B'TJ Ba:j Bg;k - e =1,...,7
- -api 0X; AP 8X.]

1.15 —_— % 2 =6, Wk=1,...,n,
i ﬁ z—Zl Opy Oz; Oz; Opg ik J n
n OP, 8X; OPF, 8X; ‘

\ ;[@3—113*3_%5;; —09 _j‘,k:]_,‘_-,n,

where d;; = 0 if j # k and dgx = 1, is the Kronecker delta.
The conditions (1.15) can be written more succinctly in terms of matri-
ces. Let

X _— -%- P — -BR-
SO | Oz | ® _,a.’l:j_ ?
[0X, ] (OP:
X =|— P = 2.
P | opy | P 10ps ]

Let € denote the n x n identity matrix, and let a prime denote the matrix
transpose. Then (1.15) takes the form:

(1.16)

Xz
X

P 0 ¢
Pli—-e 0

It is traditional to set

J=

X, X,

P, P,

— 0

0 s]_

||

0 =
- 01

The following simple properties of J are summarized in

Lemma 1.2.
i) J2=-E,

where E is the 2n x 2n identity matriz
ii) The determinant of J, det(J) =1
iii) Jor=J'=~—J
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A 2n x 2n matriz M which satisfies
(1.17) MJM =J

is called a symplectic matriz. Its most important properties are contained
in Lemma 1.3

Lemma 1.3. Suppose M is a symplectic matriz. Then
i) det(M) = £1.
il) M' and M~ are also symplectic.

REMARK. One can actually prove that det (M) = +1, but the proof is
more difficult and the statement in the lemma suffices for our purposes.
PROOF.

(i) By (1.17) and Lemma 1.2,

1= det (J) = det (MJM') = det (M) det (M’) = [det(M)]
whence, det(M) = £1. '
(ii). Next, (MJM')"'=J '=—Jand so
—J=M"TI M = M () M

or
MY ygM =1

Multiply on the left by M’, and on the right by M to find
J=MJIM=MJM"

i.e. M’ is symplectic.

Finally,

~J=Jl=(MIM) =M YM = M (-D) MY
S0
J=M1tgmYy

that is, M~! is symplectic, which proves the Lemma. [

On the basis of Lemma 1.3 and equation (1.16) we know that the Jacobi
matrix

— Xﬂ’ XP
(1.18) S = {Px P,,]

and its transpose, S’, are symplectic. We combine this result, (1.16), and
Lemma 1.3 to obtain

Theorem 1.3. The element transformation (X (z,p),P(z,p)) is ca-
nonical if and only if its Jacobi matriz, (1.18), is symplectic.
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If we make use of the fact that 5 is symplectic and write out the equation

(1.19) !
we find
[ = [0X; 8X; 0X; 8X;] '
;[amk apk _apk axk_ _0’ J:k“‘lg-..,n
—[8X; 0P;  8X; 8F;] _ .
(120) S = [a,’,[’,']c apk B apk 833';9. = Y5k _],k? = 1,--.,?1,
s~[oron _oror] . .,
. k=1 B.Tk apk apk: aﬂfk - J> =L...,7

Tt is convenient to introduce the Poisson bracket symbols at this point

to simplify the notation. Let f = f(z,p), and g = g(z,p) be two differen-
tiable functions. The Poisson bracket of f and g is defined to be

L

_ X3 (0f 49 8f og
[f.9] = 1f, 9lep = ; |:3_r,gk Opr  Opk aﬂsk]

The principle properties of Poisson brackets are summarized in

Theorem 1.4.

it) [f +g,h] = [f, k] + 19, Al

)
)
iii) [fg,h] = flg, Pl + 9IS, k], [ef, 9] = olf.d]
iv) [f,[g,p1] + lg, [R, fI] + [, [f: 9]l =0 (Jacobi identity)
vl [Zemd =0 {Eup] = 0 ool =0, 23=1,.0 0

The conditions (1.20) can be rewritten in terms of the Poisson brackets.
Theorem 1.3 then yields immediately

Theorem 1.5. The equations X = X(z,p), P = P(z,p) represent a
canonical transformation if and only if

{(l[Xij]]) (1X:, P3]) _[(Eﬂ’i:%ﬂ) (Iz, p5])
(15, X;1) (IR, Fl) (Ipisz51)  (Ipisps])

These conditions represent a system of (2n)? — n? = 3n? partial differ-
ential equations which characterize the canonical {ransformations.

10 — The Herglotz...
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Example 1.2. Let n = 1. The transformation
X =+ cos2p P =z sin2p

which Poincaré introduced in his studies in celestial mechanics is canonical. For obviously
[X,X]=][P,P] =0, and

84X 9P 48X OP
P e e
[X, F] bz 8p Op Oz

=(3 2712 cos 2p)(22/? cos2p) + (22'/? sin 2p)(% x~1/2 sin2p) = 1
The function Z can be constructed from the equation

d(Z - z) = PdX —pdz

1/2

= g1/2 sin2'p{%m_1/2 cos 2pdz — 22'/? sin2pdp} — pdx

= (% sin 2p cos 2p — p) dz ~ 2z sin® 2pdp.

We integrate
8 . ;
—é;(Z—z) = % sin2p cos2p — p = % sindp — p
—(Z - 2z) = —2z sin® 2p = —z + wcosdp
to find

Z=z+ i— (z sindp — 4xy) + const.

An important property of the Poisson brackets is contained in the next
theorem.

Theorem 1.6. The Poisson bracket is invariant under a cenonical
transformation. More precisely, if f = f(x,p) and g = g(z,p) are given
functions, and X = X(z,p), P = P(z,p) with z = z(X, P), p = p(X, P),

are canonical transformations, and if we define
P(X,P) = f(a(X,P),p(X,P) and G(X,P)=g(s(X,P),n(X,P)),

then
[f:9lep = IF, Glxp-

Proor. The proof is simply an unpleasant calculation. Note first that

Of ~~[OF 8X; OF 0P,
= {axz- oz, | BB, Bz’

=1
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and similar formulas hold for 9f /0P, dg/dzy, and dg/dpy. Thus, by
Theorem 1.5

_N~[9f 99 _9f 9

[£:9)er = kz=1 [amk Opr,  Opr Oxy
")« OF 0G (0X; 9X; 9X; 9X;
el 0X; 0X; \ Oz Oz Oz Oxp

= JOF oG (axi oP; 0X, 8P
Oz Opr  Opp Oy

{ |
i {Z": oF 0G (apj 9X, oP, axj)}
{

+ —
k=1 | é.j=1 OP; 0X; \Ozy Opy Oy Opk
+ e -
kz=1 @',jz:l OP; OP; \Ozy Opr  Ozi O
(57 0X: OF; 53l +ij:1 dP; 0X; 7 Xl

“.[OF 3G OF 8G
T [an oP; 0P, ax,;] =[5 Clxe,

which was the assertion. 0O

We have seen that the matrix S defined by (1.18), and its transpose are

symplectic. The equation
S IF8=d

is a restatement of (1.15). We introduce the so-called Lagrange brackets

. [9X; 0P, 0X; OP; .
X, P]2iP* = e e =1,
II ]l Z[awj apk 3}% 3273'] tJ n

=1

and obtain

(1.21)
[[X)P]!pjmk = —dji, E[P’ P]]Pjpk = 0.

Now let z = z(X, P), p = p(X, P) be the inverse of the transformation
X = X(z,p), P = P(z,p). By Lemma 1.3, the matrix

Sl’ 1 [:I:X l“P]
Px PP
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is symplectic and therefore

[zi,z;]xp =0, 20 0:)xp = 6y,
[pi, z;1xp = =645, [ps, pilxp = 0.

Since

(§J8)(sr1sY=8J25""=—E,

the product of the 2n x 2n matrices
([X, Ppee=s) (1%, P1%9) ] [ (Izirwilxp)  (leipilxp)
(Ix; PI=)  (IX, PP#) | | (i w51xp)  (Ipirpslxp)

We summarize these results as

=_-F

Theorem 1.7. If X = X(z,p), P = P(z,p) and z = z(X,P), p =
p(X, P) are two mutually inverse canonical transformations, then

> IX, PI% [z, el xp = i
i=1

Y [z, pilxp [X, P57 = 6.

J=1
§ 3.2 Determination of P(z,p) from X(z,p)

In applying the theory of contact or canonical transformations to the
solution of concrete, mechanical problems, one usually chooses the n func-
tions

(2.1) Xi = Xy(z,p)

to achieve certain, desired simplifications. The question then arises how
much freedom one has in choosing the n additional functions

(2.2) P; = Py(z,p)
so that the (2n + 1) equations

(2.3)
X:v:Xt(:Lup)s* Z:z—l—ﬂ(m,p), Rzﬂ(m:p)a t=1,...,n
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define a contact transformation, or equivalently, so that the 2n equations

4

(2.4) X; = X;(z,p), P; = Pi(z,p), Y

define a contact transformation. We shall show that the P; are essentially
uniquely determined from the X;.

Let us suppose that the X;(z,p) have been chosen. In view of the results
of the previous section, we may assume these X; to be independent and to
satisfy

(2.5) [X:;, X;lep =0, 4,5=1,...,n

The P, can be constructed as follows. Choose n additional, arbitrary
differentiable functions, @Q;(z,p) such that the Jacobian

0(X,Q)
d(z, p)

(2.6) # 0.

Let P
X, XP]
Qo Qp

denote the Jacobi matrix and calculate

(X: X}, — X, X) (X: Q) — X, Q) }

(@ X, - Xz) (@ Q- Qp Q)

oo |
AJA = 1:

[([[Xth’]]w) (X Qslep) |
(2.7) —

(I[inXj]]zp) (KQian];:v'p)

~ [ (0) (X, Qs]ep) |
(l[Qian]]mp) (EQ‘i:Qj]l-’CT-’) |

where the last entry follows from (2.5).
In general, AJ A’ # J; however, should AJ A" = J, take F; = Q.
By (2.6) we can solve for (z,p) in terms of (X, Q) to obtain

(2.8) z=x(X,Q), p=pX,Q).

The inverse matrix for A is given by

A—lz[ﬂ?x ﬂ'»'Q]
px Pg |’
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so that
CAT )™ = A E T L e g J A
(z'y px — Py Tx) ('’ po — P ﬁ@)}
(2 px — P zx) (zg pg — P 74)
(2.9)

[ (P zx — 2% px)  (Pxzq— w’xm)]

| (Phzx —2px)  (Phze — 4 po)

[ (a1%) (ﬂp,:v]]X*Qj)]
(a2 (Ipa1®®) |

Now the matrix A J.A' has the structure

oo 0 (8]
aan=] %, 5]

so that the matrix (AJ A’)_l must have the structure
ppd, a.r—l ﬂau-l —at
(ATA) " = [ = o |

which means that the [p, m]]Q*'Qi in (2.9) must vanish, that is

Opr Oxy, Opr Oxy
(2.10) Z . 9 92 Z . 5Q, 9Q;

or

8 2 al'k 1 afﬂk o
(2.11) 3G, (Z ’“aQ) 3G, (Z kaQ,;)’ Ghj=1,...,n

If we think of the X = (X,...,X,) as parameters, i.e. as having fixed
but arbitrary values, then (2.11) implies that the quantities

3’.5,&: g
@19 . | Zpk a0 =Leen
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are the components of the differential of a function of @, that is, there is a
function £ = Q(X, Q) such that

~ dz
(2.13) dofl = Z Pr an
ik=1 C

where the subscript means that the differential is calculated only with re-
spect to Q. €2 is then obtained by the quadrature

G- [ n gg’“ 4Q:.

3,j=1

By the previous section we must demand

n

S (PedXy — prday) = de}
k=1

or, after expanding the differential dzy

> PdXy - 2 Pk 5%, axk -5 o g%k‘_de
k=1 ‘ J

k,j=1 k,j=1
"L 90 LT
=3 oy X = ) 55 4%,
k=1 0Xp k=1 OQx
whence we conclude that

= Oz ﬁ .
{214) p,? = PJ(T,]J) Zpk k ~ = 1- y Thy
.?

where the right hand side is evaluated at X = X(z,p), Q@ = Q(z, p)-

Example 2.1. Let n = 1 and suppose
X (z,p) = zeP.

)(x, p) is chosen arbitrarily, say
Q=e".
The Jacobian has the value —1 so it never vanishes. The inverse transformation is
z=XQ
—-InQ.
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Next a
2 T
doQ=p—dQ = —(l Xd
Q P30 Q= —-(InQ) X dQ
so that N
Q=[Q-QmQ]X.
Finally,
— _10 - gD D
P=(pQ-1Q-QmQl)| _ _, =pe"~c?—pe

so that :

P=—e™P
and the canonical transformation is

X = zeP

P=—e7P,
Example 2.2. Let

X=p
Take, for example
Q=e"

The Jacobian is e™® so it never vanishes. The inverse transformation is
z=-InQ, p=X

and so
O = 1
dgQ=-X o dQ

or

Q=-X Q.
Consequently

P=1 = —
nQQ:e_z T

and we arrive at the canonical transformation

X =p, P=—z

which leads to a Legendre type transformation with p = 1.

This construction makes use of the fact that the transformation (X (z,p),
P(z,p)) is canonical if and only if there is a function  such that

i

> (PdX; — p;da;) = dO.

i=1

If det(9X;/0xz;) # 0, we can solve X = X (z,p) for p in terms of (X, z) and
insert the result into the expression, 2, to obtain

(2.15) QiXz) = ﬁ(.’r,p(X, #3):
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Conversely, if a function, (X, z), is given, it can be used to determine a
canonical transformation. For

- 2./ 00 ot
> i dz;) g(ax + 22
set
oUX, z) 00X, z)
. P="02, =
(2.16) 9X; p oz
and solve for X in terms of (z,p). This necessitates that we demand

det g #0
Insert the resulting expression into the formula for P; in (2.16) to obtain
the canonical transformation

(2.17) _ X = X(z,p), P =P(zp).
The canonical transformation can be characterized by the function

Q(X,z). QX,z) is called the generating function for the canonical
transformation.

Example 2.3. Suppose
Q(X,z) = e® arctan X,
_ 0 e
T8X 1+ x?
p=—e®arctan X so X = —tan(pe™ ")

The canonical transformation is
X= -—}Em(pe#m)
et e*
P = = = e” cos? (pe”%).
1+ tan?(pe—®)  sec?(pe—*) (pe™)

On occasion it is more convenient to think of a contact transformation
as determined by the variables (P,z) rather than (X,z). In that case
introduce the generating function S(P,z) by

(2.18) S(P,z) =P -X — X, x),
where the X is thought of as having been obtained by solving the first

equation in (2.16) for X in terms of P, and inserting the result into (2.18).
In order to carry out those computations, we require that

92
det 0
When § is defined in that way, it is easily checked that
a5 a5
— =X d — =pj.
BP; X; an oz, Pj
These remarks will be of importance in §V.2 when we discuss action-
angle variables for mechanical systems.

11 — The Herglotz...
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§ 3.3 Characterization of the General Contact Transformation

In §1 we showed that the study of a single contact transformation could
be reduced to the study of a special contact transformation in one higher
dimension. This step-up to a higher dimension is usually inconvenient in
any concrete situation and we shall rewrite the conditions characterizing a
contact transformation in terms of the original coordinates. The conditions
characterizing the analytical representation of the functions X = X(z, p),
P = P(z,p) describing a special contact transformation were given by a
system of partial differential equations, expressed in terms of the Poisson
brackets. We shall introduce a similar bracket symbol for the characteriza-
tion of the general contact transformation in the zzp-space.

Recall that the transformation (z,z,p) — (Z,Z%,P), where we again
make use of the bar notation, was defined as follows:

(31) .f.,-; = i, §n+1=*~2, 1-51 xﬁn-}-lpi: i=1,...,n
Let f = f(z,2,p), g = g(z, z,p) be two differentiable functions, and

f(.’L’,Z,p) = f(g’.h SRR PR-2Y £ PRI 7pﬂ)
= f(Els oy Ty _En-%l)‘ﬁl/f_)n-{-la v aﬁn/ﬁn+1)
= f(z,p)
and similarly
9(z,z,p) = §(Z,P).
The Poisson bracket for the pair of functions f and 7 is given by

(3.2) [7.9ls5 = 5‘

i i af aJ a7 ag]

We may now rewrite this expression in terms of the original variables

of _ of of _ 1 of i=1,....m
oz; Oy’ OP;  Pnt1 Opi
of _ 8f of pz L
Ol T oz Bpn-ﬁ-i y apb pn+1 Pn+1 ‘X‘:
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and similar formulas for g hold. The formula (3.2) takes the form

[f.9]
Ly [B_f 99 _9f 8_9]
Pny1 53 dz; Op;  Op; Ox;
(3.3) 1 ~[8f 89 dg , Of
N Dr+1 JZ 8z P Op; Oz Pi 3p3
1 = [[of of ag) (Bg dg Bf)]
= — 4 o ) o | ey a2t Y]
Prnia im1 [(613 Pi dz Op; & P; 0z Op;
The symbol
[ (drF of dg af
2= n8hoe = ; { (E ik Bz) afPJ (3333 M 82') Op; }

is called the Mayer bracket of f and g. The equation (3.3) in terms of
the Mayer bracket takes the form

(3.5) |[f gllﬂ:p s {f’g}‘nzp

n+

The Mayer bracket of two functions satisfies relations analogous to those
of the Poisson brackets. The simplest properties are given in the following
theorem.

Theorem 3.1. Let f, g, h, be differentiable functions of the variables
(z,y,2), and let o be constant. Then

i) {f.9t=—{9,f} {£.f}=0
i) {a, [} =0, {af, g} = a{f, g}
iii) {f +g,h}={f,h}+{g,h}

iv) {fg,h} = g{f,h} + f{g,h}

)

v) The Jacobi identity holds in the form

(A9 hb) + g (b 3} + T (g1} + Folgo B} + ga{h £} + halfrg} =0
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Note that the indices have been dropped. These properties (i)—(v) can
all be checked by direct computation.

The equation (3.5) leads to a formula describing how the Mayer brackets
change under a contact transformation, which is analogous to the formula
we derived in the previous section for canonical transformations.

To obtain this formula, let

(36) X = X(.’L’,Z,p), Z = Z(.’L‘,Z,p), P= P(%Z;P)
be a contact transformation, and let
r=z(X, Z,P), z:z(X,Z,P), p='p(X,Z,P)

be its inverse. Set

F(XJ Z’ P) = F(X($’ ‘z!p)7z($? Z,p),P(E, z7p)) = f(irj z3p)
G(X,Z,P) = G(X(z,z,p), Z(z,2,p), P(z,2,p)) = g(z,2,p).

Now lift the variables one dimension.and set

— 1

X'r'. = Xiu Yn+1 == —Z, F@' = ﬁn-{-l Pi: P'n,-l-l = ;ﬁn-ﬁ-l-
We find by (3.5)
1 _ — 1
—{f,9Yezp = [, T)mp = |F, Glxp = = {F,G}xzp,
Pn+1 Pﬂ-l-l

or, since Ppy1/P,i1 = 1/p,

(37) {F7 G}XZP = %{f:g}mzp-

Theorem 3.2. The element transformation
XﬂX(w,z,p), ZZZ(S’J,Z,p), P:P("Eazap)

is a contact transformation if and only if, up to a factor 1/p it leaves the
Mayer bracket of two arbitrary, differentiable functions invariant:

{F,G}xzp = %{f}g}mp.

Theorem 3.2 suggests that the Mayer brackets play the same role for
general contact transformations as the Poisson brackets play for the special,
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or canonical transformations. In order to derive the analogue of Theorem
2.5 of the previous section, we calculate the values of {f,g}szp when f
and g are any two of the functions X;(z, z,p), Z(z,z,p), Pilezip). By
Theorem 3.1, and equation (3.4), we find immediately

{X,;,Xj}g:zp=,O{X?;,Xj}xzp=0, i,jzl,...,ﬂ.

The other computations are done s1mlla.rly This proves the first part of
the following theorem.

Theorem 3.3. In order for the one to one element transformation
X=X(:]3,Z,p), ZIZ(E,Z“'D), P=P($:Z:p)a
which satisfies the relationship
(3.8) > PjdX;—dZ =p (Zpk dzy, — dz) ;
j=1 Rl

with p(z,z,p) # 0, to be a contact transformation, it is necessary and
sufficient that the the following relations are satisfied,

{Xi, X;}ozp =0, Lji=1,...,n
{Xi, Pj}ezp = pbij, i,5 =150
{Xiy Z}zzp =0, R (TR )
{P, Pi}oap =0, ij=1,...,n
{Pis Z}p2p = —pF;, i=1,...,n

Moreover, the following conditions hold:

0X;
{p)'X } e p“az

07
{puz}_ 6 p 3

aP;
{o B} = Bz

Again, the indices on the bracket symbols have been dropped, but they are
TZP.

PROOF. The last three identities are referred to as the Darboux formulas.
They are most simply verified by using the Jacobi identity of Theorem 3.1
together with the first five formulas of this theorem. Assume that n > 2
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and note that the Jacobi identity when applied to the functions f, X;, P;,
yields

{.f':{Xj:IJj}}+{Xj:{Pjuf}}+{Pja{vaj}}
+oL o,y S m n+ 2 (x5 =0,

where the indices have been omitted and f is an arbitrary function. Now
take f = Z and use the first identities in the theorem to find

B_Z_ _BXJ-
Oz p 0z

(3.9)

{Zap}w{Xjaij}_i_ pPZﬁ:Oa

or upon expanding,
{X;,pF;} = P{vapj} + P {Xj,p} = 92 + B X3P}

(3.10)
o0z 0X;
e P X gt e B2 PR
{Z?lo} PJ{X.?ﬂp} p + azp az P J 0.

Next take f = X;, 1 = 1,...,n, where ¢ # j, in (3.9) to obtain
0X;
(3.11) {Xip}+~5;ip=0, T .

Similarly, take f = P;, i =1,...,n, i # 7, in (3.9) to obtain

oP,
(3.12) {Fi,p} + 5= p=0.
Combining (3.11) and (3.10) yields
0z
! Z,py—p*+=—p=0.
(3.13) {Zpt=p"+-p=0

The equations (3.11), (3.12), (3.13) are the Darboux equations. These
equations still hold when n = 1, but the proof must be altered somewhat.
We begin with the equations

PX, - Z, = pp,
(3.14) PX,—-2Z,=—p,
PX,— =i

Differentiate the first equation in (3.14) with respect to z and the second
with respect to « and subtract to get

(3.15) Pz +pp. = X, P, — X, P,.
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Then differentiate the first equation in (3.14) with respect to p and the
third with respect to x and subtract to get

(3.16) p+ppp = Xe Py — Xp Py

Finally, differentiate the second equation in (3.14) with respect to p and
the third with respect to z and subtract to obtain

(3.17) iy = B, — K,
Now calculate directly using (3.15), (3.16), (3.17) to find
(3.18) {p, X} = pX,, {p, P} = pP..

(3.10) holds when n = 1 so that by the first equation in (3.18) and (3.10),
we obtain immediately (3.13) for n = 1, which completes the proof of the
theorem. [

BX:,-_ 6z +p8z i=1...,n.
ﬁ_ 0X; N

aF, 55 g

I 2 0P

oz p' Oz

ProOF. These identities follow by manipulating the formulas already de-
rived. For example, we have on the one hand that

{p, Xj}XZP
B Z 6,0 (9p 0X; 0x; + P 0X;\ Op| _  9p
oF; aX; 97z ] 8P, 8P

since X, /0P, = 8X;/0Z =0 and 0X;/8X; = §;;. On the other hand

, i axX;
{p, X} xzp = ;{P, Xileozp = ﬁ(:}*z—J

by one of the Darboux equalities. U

Corollary 3.2. The functions (X, P) of a contact transformation are
independent of z if and only if p is a constani.
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Corollary 3.1 implies immediately that if p is a constant, then X; and P;
are independent of z. On the other hand, we saw in our treatment of special
contact transformations, that if X = X(z,p), Y =Y (z,p), Z = 2+ Q(z, p),
then p was a constant and we could set things up so that p was one.

We close this section with a few remarks.

First, if (X(a:, z,p), Z(z,2,p), Pz, z,p)) define a contact transforma-
tion, then the Jacobi determinant is

0(X,Z,P) —

oz, z,p)

This is most easily seen by going back to the equivalent, special contact
transformation and noting by direct calculation that

a(X,P) _ P, 8(X,Z,PP,1) 1 0(X,Z,P)
B(E,ﬁ) aﬁn+1 a(mszapaﬁn-}-l) pn-{-l a(wazap) .

{ =

We also note that if the n + 1 independent functions, Z, X;,..., X, of
(z,z,p) are pairwise in involution, that is if they satisfy

{Z, Xi}mzp = Os {Xi,Xj}ﬂfz:P = 0’

then the functions Py, ..., F,, p can be calculated as follows. Since (X, Z)
are independent, the rank of the matrix

X;\ (9X;

X %) (%;;) (%%)
« =7 |(#) @

is n+ 1. Thus, there is at least one system of n + 1 independent equations
in the set

......_m--—.-— .:pj, j=1,...,ﬂ
J

=L jias SOE i
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of 2n+1 equations from which one can calculate the P;/p, i =1,...,n, 1/p,
and by the above theory, the remaining equations are identically satisfied.
This result can be stated as

Theorem 3.4. Let X1,...,Xn,Z be n+1 independent functions which
are pairwise in involution. Then there is precisely one contact transforma-
tion for which these are the first n + 1 functions and the remaining n + 1
functions Py, ..., Pn, p may be obtained by solving a linear system of equa-
tions.

In Chapters I and II, we found that contact transformations could be
generated from directrix equations. The general n-dimensional case is sim-
ilar to the treatment given in Chapter II §3 for contact transformations in
space. We sketch the development.

Consider the g independent functions, Oy, ..., 2, of the variables (X, Z;
z,2), X = X(X1,...,Xn), £ = z(21,...,%p) with 1 < g<n+1 The
differential of 2; is

63’2
Q; %Y
dQ—EaidX+ dZ—%—E d+ dz-[)j—l

At the same time, if the (X, Z, P) are to define a contact transformation,
they must satisfy

Z Py dXy, —dZ =p (Z pda; — dz)

k=1 I=1
There must be parameters Ay, ..., A, such that

Z}‘J aX : Pk1 ZAJ BX = —pPpL

q : q
a8
Z)‘J az L. Y X =te

s i=1 ;
This yields the foilowmg symmetric set of equations for the determination
of p; and P, once the Ap,..., A, have been determined.

o\ /<, oy
L= ZAJ(‘}—.’I;; / Z 3"5;:" ) l:l,...,n
j=1 I \g=1

12 — The Herglote...
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The construction of the contact transformation is carried out by elimi-
nating the A variables from the system

NM(X,Zyz,2) =0, ..., Q(X,Z;2,2) =0

q q
99 o0,
B Wi A —L =0 b= T
; 7 S pl+§ 7 5‘11'[ ) ; y T

ZAj.aZj P + ZAQBX 0, k=1,...,n,

Famk

and then finding the functions X = X(z,2,p), Z = Z(z,z,p). One then
obtains values for the X variables by solving an appropriate homogeneous
system, and then obtains the functions P = P(z, z, p).

Forn > 3, g > 2, this procedure can be quite laborious. Conditions must
be placed on the directrices, Q,(X, Z; z, z), which allow these computations
to be carried cut. Because of the limited usefulness in actual construction,
we shall limit these general considerations to the above remarks.



IV

Continuous Transformation Groups

§ 4.1 One Parameter Groups of Transformations

In the applications of contact transformations, which we treat in the
sequel, we shall often deal with transformations depending on a parameter.
In this section we shall discuss some general properties of certain classes
of transformations which will prove to be useful to us. To begin with,
we shall make no reference to the contact preserving properties of these
transformations. These considerations will take place in an m dimensional
space, and points in this space will be denoted by r, y etc.

A one parameter family of transformations of a region, %8 of this space
onto itself is a set of functions, § = {f(:,u)}, of the form

(1-1) r— 0= f(ru).

Here, r,n € ‘B, and u is a real parameter, —c < u < c¢. The family is
such that to each u there corresponds precisely one transformation from
the family.

The components of the transformations, f(r,u), are assumed to be con-
tinuously differentiable with respect to r and u. Moreover, we assume that
the family contains the identity, which we take to correspond to u = 0:

(1.2) f(0) =1t

Finally, we assume there is an open interval (—4,6), 0 < § < ¢, such
that if u,v € (=4, ), then the composition of two functions in the family
is again a function in the family, that is, if

f(x,u), f(r,v) €F
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then there is a value w € (—¢, ¢) which depends on u, v, but not on r such
that

(1.3) F(fu), v) = flrw) €3
Denote this functional relationship by
(1.4) w = ¢(u,v)

We assume that ¢(u,v) is continuously differentiable for u,v € (=4, §).
Theorem 1.1. Suppose u, v, w, ¢(u,v), ¢(v,w) € (=6,8). Then the
function ¢ satisfies

i) the associative functional equation: ¢(p(u,v),w) = ¢ (u, p(v, w))
and
ii) is symmetric: ¢(u,v) = d(v,u).

Proor. To prove the associativity, let

r=f("vw), b= fx)
Then
f(l]:w) = f(f(;c,'u),w) = f(,_t,qb(?),’LU))
= f(f(:cov U), ¢(Ua ’LU)) =f (J:Oa qﬁ(“a ¢(U! w))) :

Next,
flo,w) = f(f(r0),w) = F(F(FG°w),v), w)

w) =
= f(f(zﬂo, qS(u,U)),w) = f(IO, ¢(¢(uav):w))
which proves (i).
Before proving the symmetry of ¢, observe that
F(f & w),0) = f (& ¢(u,0)) = f(z,u)

so that ¢(u,0) = u. Similarly ¢(0,v) = v.
Now set

b1(9) = 280w gu) =

Op(u,v)
v

Since ¢1(u,0) = 1 and ¢2(0,v) = 1, ¢1(u,v) and ¢(u,v) are nonzero for
(u,v) near (0,0). Differentiate the equality in (i), first with respect to v,
then with respect to w to obtain

le ((,b(u, ’U), w) ¢2 (U}U) = ¢2 ('U,, ¢(U, w)) ﬁbl (’U, w)
b2 (D(u, v), w) = ¢2(u, p(v, w)) ¢z (v, w).
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Divide the first equation by the second and set w = 0 to get

qi51 (¢(U7U)70) " ¢1(“30)
@2 (¢(U,T)),0) ¢2(?J,0) -

Introduce the function w(v) = ¢1(v,0)/d2(v,0) and rewrite this differential
equation as

¢2 (u? U)

(1.5) w(¢) g—f = w(v).

Equation {1.5) can be regarded as an ordinary differential equation for
¢ in terms of v with u entering as a parameter. Both ¢;(0,0) = 1 and
$2(0,0) = 1 so that w(0) = 1.

Now let 1/ be a function such that 9'(v) = w(v) and let 1(0) = 0. Then
for u fixed, (1.5) is

(L6) ¥(8) dg = ' (v) do.
Note that when v = 0, ¢(u,0) = u so that integrating (1.6) yields

v

®
$(9)| =)

0
or
| B(6(u,)) = $(v) + Pl
' (0) = w(0) = 1 # 0 so that 9(v) is invertible near zero. Thus,

Bu,v) = P (h(v) + P(w)) =7 (1h(u) + P (v) = ¢(v,u)

which proves the assertion. [

As a by product of the proof, we see that ¢(u,v) is given in terms
of a monotonically increasing function. It is convenient to introduce a
new parameter, ¢t = t(u). The new parameter is called a canonical or an
additive parameter for the family §. It contains the additive identity ¢ = 0
and one obtains the inverse for a transformation y = f(x,u) = f(r, 9! (1))
by replacing ¢ with —t, for

Fo,9~ (=) = F(Fe e (@), 97 (=) = F (1 (™ (1), 97 (—1))
= f(r, v (D) + (@~ (1)) = f(5,0) =1

Because of this relationship, we say that the transformations of our
family form a commutative or abelian group.
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It will be convenient for the subsequent development to introduce the
standard notation for transformation groups. In place of the parameters
u, v, etc., originally introduced, we use the canonical parameters ¢, 7, etc.
We think of the ¢t transformation, S;, as operating on a point r € B and
sending it to another point y € B, defined by

(1.7) p=_Scr=f(r, v ()

The product of two transformations, S, S; is obtained by operating first
on a point r € B by S; and then operating on S;x by S;, which means
that it is ultimately defined in terms of the composition of mappings from
the set §. The family satisfies, by what we have proven above, the group
properties:

Sor =1 so Sy =E, the identity

S5¢ 87 = St4r = r+t = 57 S

St(ST Ss) = (St S—r)Ss

S_t = S;l 80 St S_g = Stut = [,

The group properties for the transformations, {S;}, have the same prop-
erties as the additive group of real numbers. In this sense we say that the
given family represents an additive group of transformations.

Families of transformations indexed naturally by the parameter t, de-
noting time, arise in the solution of differential equations

t=F(tr),  x0)=r.

If we make certain minimal assumptions on the problem so that there exists
a unique solution near points (0,rg), then we see that the solution operator
to each point ro, is the point r, which is the value of the solution at the
time ¢. This family of transformations need not define a one parameter
group of transformations; however, if F' is independent of ¢, then it does,
and in fact, we can prove a little more. Consider for this discussion the
autonomous! system

(1.9) E=F@E),  (0) =1,

where F' is assumed to be at least once continuously differentiable. By
the standard existence and uniqueness theorem, we know that a solution,
(), to the problem (1.9) exists for |¢| sufficiently small. Thus, for xg, the
solution r at time ¢ is given in terms of a family of operators, {S;}, such
that

(1.10) £ = Si(xo)-
The family of operators {S;} is a one parameter group of operators since, by
the existence and uniqueness theory for ordinary differentiable equations?,

(1.8)

IThe system is called autonomous if the right hand side does not explicitly depend
ont
2See Coddington and Levinson or Kamke, E.
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S, is the identity operator, S_; = §; ' and S; S;, = S;++,, from which the
associativity and commutativity of the operators follow. The converse of
this result also holds, that is if {S;} is a one parameter group of operators,
there is a function, F'(r), such that solutions to § = F(r) generate the group.
We formulate this assertion as :

Theorem 1.2.
i) Let r =1(t), ro € B and suppose for some c,

(1.11) ¥ = {t) = B, [t <e, 0<ec< o0

where {S;} represents a one parameter group with the additive pa-
rameter t. Then there exists a vector valued function F(r) which is
continuous in B such that £(t) given by (1.11) satisfies

(1.12) E=F(),  z(0)=ro.

ii) The solution, r(t), to the differential equation problem (1.12) is of
the form (1.11), where the {S:} form a one parameter group of
operators with the additive parameter t.

Proor. We need only prove (i.)
Let us set x = Sy ro. By supposition

St+s(2:{3) = Ss(StFO) = Ss L SOI =1

so that g s
T s(?) _ O(F)

5—0 8

= %Ss(zc) = Fiz)

does not depend explicitly on ¢. To show that ¢ = F'(x), we simply observe
that

m FEEAD—5t) _ ) Sk = S0k _ gy

; AT
Bt + At) Aa},_m At At—0 At

which completes the proof. O

The function, F(x), is sometimes called the generator of the group.

Example 1.1. Let m = 1 and r = #. Then the solution to
&=z, z(0) = xzp

is
I =Xp e‘

and S; = e! defines the transformation group.
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Example 1.2. Let mm = 2. The solution to

= [(1) _01]1% #(0) = o

is

cost —sint
Ty =
£(t) [sint cost ] &

and the one parameter transformation group is defined by

cost —sint
Sy =", .
[ sint . cost j{

Example 1.3. Suppose m = 1, r = z. The solution to
T =x+t, z(0) = xg

is given by
m:et($g+1)+t+l

and the solution operators
x(t) = Sexo =et (o + 1)+ £+ 1

do not form a group.

Example 1.4. The family of transformations, S defined by

g s cosht sinht £
i sinht cosht] 0

is a one parameter group. The associated differential .equa,tio‘n is given by calculating

] . Ssx—Sor . coshss-1 sir;h ) 01
= lim = lim sinhs coshs—1 | ¥ i 0 L
5 5

s—0 5 s—0

334

The notation Syre brings out the fact that a point py “Hows”or “is
carried” to the point r. The set of points {S;ro: ro € B’ C B} is called the
flow and the curve r(f) = S; 1o is called the trajectory or solution curve
{passing through xo).
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§ 4.2 One Parameter Families of Contact Transformations

We now consider the special system of 2n + 1 differential equations for
2n-41 unknowns X = (Xi,... ,Xn), Z,. P = Py 3 Pu)

(21) X =¢X,Z,Pt), Z=(X,Z,Pt), P=n(X,ZP1)
which satisfy the initial conditions
(2.2} X =z, Z =z, P=p, whent=0.

The functions & = (€1,...,&), ¢, ™ = (m1,...,7) are all assumed to be
continuously differentiable. The solutions to (2.1), (2.2)

(2.3) X'= X2, 5,0, %), Z=Flg. 2pt); P = Pl pgb)
determine a family of transformations,
(2.4) S;: (z,z,p) — (X, Z,P).

In this section we give the necessary and sufficient conditions on £, ¢, and
7, which imply that the transformations (2.4) are contact transformations
uniformly in ¢.

In Chapter III, we had found that the transformations must satisfy

(2.5) P.dX —dZ = p(p - dx — dz), p#0

(2.5) is supposed to hold when the differentials are calculated only with
respect to the spatial variables. When X, Z, P, also depend upon ¢, then
dZ, for example, is actually given by

g Z
dZ:Za d$j+ d +Z dpj a = dt.
=1

A similar assertion holds for the dX;. Thus, the condition (2.5) must be
replaced by
(2.6)

3 = X, 0Z
(;Pde,;—dZ) = (1-:1 5 )dt— (szdﬂ_dz),

By (2.1), 8X;/0t = &(X, Z, P,t), 0Z/0t = ((X, Z, P,t). Let us introduce
the function

27)  H=H(X,ZPt)=) P&X, % Pt) - ((X,Z,Pt).
=1

13 — The Herglotr...
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Then the relation (2.6) takes the form
(2.8) P-dX —dZ =p(p-dx—dz) + Hdt

If dt = 0, equation (2.8) reduces to (2.5). (2.8) represents a system of
2n + 2 equations relating the variables (X, Z, P, ¢) with those of (z, z,p, t),
which is obtained by expanding the differentials and comparing coefficients.
To obtain the conditions we seek, we shall rewrite these conditions in the
(X, Z, P,t) variables. This is most simply done by working directly with
(2.8). First differentiate (2.8) with respect to t and note that the differential
operator, d, commutes with the differentiation d/d¢. This leads to

(2.9) ijdeJrZdegj—dg:p(ijdzj—dz +Hdt

J=1 i=1 =1

where the dot, as usual, represents d/dt. From (2.8) and (2.9) we obtain

(2.10) S de+ZIDjd§j—-dC—?:£dt:§ N PjdX; —dZ - Hdt

1=1 i=1 j=1
From (2.7), we find
dM = & dP;+ Y Pjdf; —d
i=1 J=1

so that (2.10) takes the form

(2.11)
dH+ > midX; - &dP =2 | S Pax; -az | + ('H = EH) di.
] - P\ p
2 J J
Expand dH in the form
= OH N “ O oM
dH =S il dX; + o= dZ 22 ap 4+ 2 d
i ;axj it %z +§apj it g

insert the result into (2.11) and compare coeflicients to obtain the following
system of equalities

oH b o,
ox; = Tt Ty
(2.12)
o __p oy b

9z p’ ot P
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We now obtain expressions for &;, ¢, 7;. The ¢; and ; are obtained directly
from (2.12) by eliminating the quotient, p/p, and solving. ( is obtained by
combining (2.7) with (2.12). We find

gj_apj7
" T 6?{
(2.13) { (=) P&i~-H=) Bz -H,
- -~ 7
j=1 i=1
o OH _pOH
\ YT 8x; oz’

These computations prove

Theorem 2.1. In order for the solution (2.3) of the system (2.1) to
represent a one parameter family of contact transformations containing the
identity, it is necessary that (2.1) be a canonical system, that s, that there
exists a function, H = H(X, Z, P,t) called the characteristic function, such
that the system (2.1) has the form

( d OH
A
d ., OH
(2.14) ¢ FHZ= ;Pj‘é”é —H,
d oH oH
| &= "ax; ez

The converse to this theorem is also valid. We state and prove

Theorem 2.2. The solution to the canonical equations (2.14), which
satisfy the initial conditions (2.2), generates a one parameter family of
contact transformations, which for t =0 contains the identity.

PROOF. We must show that every solution (2.14) and (2.2) satisfies the
strip condition (2.8). For notational purposes, let us set

Q=Qt) =) PjdX; —dZ - Hdt
=1

and

QO0) =w =Y pjds; —dz

J=1
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Then the strip condition, (2.8), takes the form
121 = .

We set up a differential equation for 2 making use of (2.14). The proof is
simply a calculation. We find

0= Zn:(deXj +deXj) —dZ — Hdt.
j=1

Now

so that
T

0= (Bax; - X ap;)

=k

", [ OH
Z_Z(ax )dX Z
Jj=1
M oM
ﬁ_z B—X:de+a';dﬂ)—-ﬁ;deXj
" OH oM I
{ (22 i, ) + 3%}

{ZP dX; } ag dZ + M, dt

.

oH oM
=—dH——{ZPdX —dZ — ’H,dt} ag Mt + Hedt

OH 6?{
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Next we calculate using (2.14)

U OH dK; | S OH AR | OW 2

oX, dt T2 0F, & 0z i "

O OH SO (O, O
B < 0X; 0P; 47 0P; \0X; 182
OH [ OH
i P
oH
Thus,
. oM
dH = —’Héfzf di +H, dt
and so from the previous calculation
: oH
Q= ﬁéué—ﬂ.
We integrate to obtain
(2.15) Q= pw

where

‘ L OH
(2.16) p = exp (—Jé 37 dt)

which proves the assertion. [J

We combine this result with Theorem 2 of section 1 to obtain the fol-
lowing theorem.

Theorem 2.3. A family of element transformations
X:X(ﬂ:aznpat)a Z=Z(a:,z,p,t), PZP(LE,Z,p,t)
is
i) a family of contact transformations containing the identity for t =
0 in R,.1 if and only if it represents a solution of the canonical
differential equations (2.14) and satisfies (2.2) att =0,
ii) a group of contact transformations if and only if the cheracteristic

function, H, of the canonical system does not depend ezplicitly on
the parameter t, i.e. H is autonomous.
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We shall close this section with a few remarks on the characteristic
function H = H(X, Z, P,t). From the fourth equation in (2.12), we have

H .
pa—p’ﬂ—p%-

Divide by p? to find

10H _pH—pH _d (H
p Ot p? dt ’

Integrate with respect to ¢ to find
0
(2.17) ﬂ - ﬂ— f Yot at,

where the superscript indicates that the arguments of H and p are to be
taken at ¢ = (O:

P’ =p(z,2,p,0) =1, H°=H(z,zp,0).

The fact that p® = 1 is a consequence of (2.16).
We consider two special cases.

Case 1. g1 /8t = 0 so that H does not depend explicitly on ¢.
Then the family, {S:}, represents a one parameter group of contact
transformations. The relation (v2.17) implies that

(2.18) H(X,Z,P) = Ho(w,z,p) p(z, z,p).

(2.18) has a geometric interpretation. Let us think of the parameter, ¢, as
the time and the curve along which

(X, Z,P) = St(ﬂ':,Z,p)

moves in Ry,+1 as its orbit under the group of contact transformations.
Along this orbit, the function H(X, Z, P), up to the factor H°, coincides
with po(X, Z, P).

If in particular H° = 0 at a point (z, z,p), then H(X, Z, P) = 0 along
the whole orbit through it. The strip condition is along the orbit. If we
think of (X, Z, P) as an element in R, then we refer to the orbit as an
orbital strip of the group of contact transformations in R,,;,. For points
on the orbital strip, the second equation in (2.14) simplifies to

dZ o~ _ OH

=1
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Case 2 0H/8Z = 0 so that H does not depend explicitly on Z and by
(2.16) p = p(X, 2, P,t) = 1.
The canonical equations (2.14) reduce to

dXx; o aP; oM

2. —L == =1 =
(2.19) dt 0P’ dt 9X;

together with the additional equation
az & oH
: - = Pi— -
(2.20) = 2 iap,

for the construction of Z.

The transformations determined by (2.19) are the special, or zp-trans-
formations which commute with translations along the z-axis. The equa-
tion (2.8) in this case reads

> (PjdX; —pjdz;) = d(Z — z) + Hdt.
i=1

If in addition, 8H/0t = 0, then H = H°. The family determined by
solutions to (2.19) is a group of contact transformations which on the orbit
passing through (z, z,p) satisfies H(X, Z, P) = H°(z, z,p).

§ 4.3 Transformations of Canonical Differential Equations

Since a canonical system is always uniquely determined by the char-
acteristic function, 2, we shall begin this discussion with the canonical
differential equations written as

rm _B_?i j =1 n
] 8])77 J"' H 1
. M
(3.1) 2= pig—H
ﬁ = dp;
__oH _ OH I
\p.? 6-’5:,’ p.‘? azﬂ J=1. )

and denote the initial values by

(3.2) z;(0) = m?, 2(0) = 2% p; =pj, d=1,...,0
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We wish to investigate how these equations transform under a one pa-
rameter family of contact transformations. For this purpose, let

Xj =Xj(m,z,p,t),
(3.3) Z = Z{g,z,p,t), i=1,...,n
Pj =P;,'(:E,Z,p,t),

or more succinctly, let
(34) (X7Z1P) :Tt(:’gaz:p)

denote such a transformation and let K = K(X,Z Pt) and 0 =
o(X, Z, P,t) be the functions such that

(3.5) Y PjdX;—dZ —Kdt=0 Y pjdz; —dz

=1 j=1

We have seen that the solution (z,z,p,t) to (3.1), (3.2) depends upon
(z°,2°,p°, ) and can be written as

(36) (CL',Z:p) :St(m[],z(],p())_

Now carry out the substitution indicated by (3.3) or, equivalently, by (3.4).
The initial values transform to functions of

(X0, 8%, P = Byl ")
= (X(:EO?zD’pO’G)’ Z(:L'G’Zo?poﬂo)’P(a:U’zaﬁpO)D))

and the solutions to (3.1), (3.2) transform to functions of (X°,Z°, P ¢)
according to

(3.7) (X2 Py=T,80;1{%" 2°,P")
Let
(3.8) 8 =T8T,

{S/} is a one parameter family of contact transformations, so there exists
a canonical system for it which is determined by a characteristic function

H* = H* (X, Z,P,1).

We must determine H* in terms of known quantities.
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Since Ty is a contact transformation, we find from (3.5)
T n
(3.9) N P dX) - dz° =0 | > p]da) —d2°
j=1 j=1

where 0¥ = ¢(X?, Z% P° 0). Further,

(3.10) ij dz; —dz=p zp? d:v? —d2° | +H dt.
g=1 J=1
Now, using (3.5), (3.10) and (3.9) we find

ZdeXj—dZ:O' ijda:j—dz + K dt
j=1

j=1

n

=oqp| D pjda)—dz® | +Hdiy + K dt
j=1

- P [ <= po gx0

=0 Q%5 | DoF)dX] —dZ° | +Hdt p + K dt
i=1

.. 9P o N— 0
-z ;deXJ—dZ + (oH + K)dt.

The coefficient of di represents the desired characteristic function
(3.11) H* = H*(X,Z,P,t) = (JH e K).

Observe that o and K are already evaluated at (X, Z, P,t). The function
#, initially evaluated at (z,z,p,t), must simply be rewritten in terms of
the new variables (X, Z, P) = Ty !(x, z,p).

Having determined the characteristic function, H*, we can rewrite the
system (3.1) immediately in terms of the new variables.

Example 3.1. Suppose H = (z2 + p?)/2. The canonical equations are
T =p, p=—zx
Let us make the substitution
X =x?/2, P=ypfx.

14 — The Herglotz...
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Then
PdX =pdx

so that ¢ = 1 and K = 0. Consequently, H* is obtained by evaluating H at z = v2X,
p = v/2X P which yields
H(X,P)=X +XP?

and the canonical equations are

X=2XP P=-(1+P?%.

This transformation essentially uncouples the original system. This system integrates
directly to
X = fcos?(t — a), P = —tan{t — a)

where «, 3 are arbitrary constants. z, and p are obtained by

z=V2X = /28 cos(t —a) = (\/é‘cosa) cost + (\/QE Sina) sint
p=+v2XP= —\/2_/3 sin(t —a) = — (\/ﬁ cosa) sint + (\/TBE sina) cost

or taking A = +/2f cosa, B = /2@ sina

x = Acost+ Bsint
p=—Asint -+ Bcost

~ which is the standard solution.

We close this section with a final remark. Suppose #H is independent of
z so that the canonical equations are

(3.12) O ; gr

==,  Pj=—5—
Op; Oz;
Now make the substitution

X = X(z,p), P = P(z,p)

(3.13) .
with P-dX =p-dz.
This is a special contact transformation which is independent of the pa-
rameter t. Then ¢ = 1, K = 0 and H" is obtained by evaluating H at
z = z(X,P), p = p(X, P) and the canonical equations in the {X, P) vari-
ables are
oMH* . aH*

. X:— P.=— .

Since (3.12) transforms in (3.14) with H* arising from H by means of (3.13),
the special contact transformation is also called a canonical transformation.
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§ 4.4 The Theorems of Liouville and Poisson

In this section, we prove some results of Liouville and Poisson. They
are special cases of a more general approach due to Lie, but are interesting
and important in their own right.

We shall first suppose that # is independent of z so that the caronical
system is

5o O
_Bpj’ j=1,...,n
4.1
(4.1) .__OH ji=1,...,n
P ij

and the resulting contact transformations are the special or zp-transform-
ations. Let us suppose further that X;(z,p,t) is a (first) integral for (4.1},
that is along a solution,

(42) X@(CE,p, t) =G

where the ¢; are constants. From the theory of ordinary differential equa-
tions, we might expect that we would need 2n independent first integrals,
X;, P, in order to construct the solution to (4.1). However, we have seen
in I11.3.2 that, given the X; components of a special contact transforma-
tion, we can construct the P; components by means of a quadrature. The
assertion of the first theorem is, therefore, plausible.

Theorem 4.1. (Liouville). If X1(z,p,t),..., Xn(z,p,t) are n indepen-
dent first integrals for (4.1) which are pairwise in involution:

" [8X;8X; 8X;0X;
43 1Kk =Y | S o ;

k=1

— =0 el == dgs 5

Oz Op,  Opy Oxg ’ i verea B
then the general solution of the canonical system can be constructed by
means of a quadrature.

PROOF. We begin by thinking of the functions Py, (z,p,t), ... ,Pu(z,p,1)
as being constructed from the X1, (z,p,1), ... ,Xn(z,p,t) so that (X, P) is
a special contact transformation. Introduce (X, P) as new variables and let
H* denote the characteristic function obtained from # in the X P-variables.
Along a solution, the X; are constant so that the characteristic equations
are

. oH*
X, = = } = oLy o
2 aPJ U: 7 1» 3 1T
. oH*
Pjﬂ— j=1,,'ﬂ

X,
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These equations imply that H* is independent of P; so H* = H*(X,t) and
that X; = ¢; so that with ¢ = (¢1,...,¢,), H* = H*(c,t). Thus,

Xj = ij

(e, t
P = | o HE i=1,...
J f acj dtv J 15 N

and the Z component is

Z = —/’H*(c,t) dt.
This completes the proof of Liouvilles theorem. O

The importance of Liouvilles theorem lies in the fact that only n first
integrals are needed to comstruct the complete solution to the canonical
system (4.1).

Let us now suppose that F(z,p,t) is an integral of (4.1). Then along a
solution it is a constant, so

d “\[0F _  OF,
j=1

"\ [OF 01 OF oM
. ; da:_,- 8pj Bpj Bacj

from which it follows that

Conversely, the equation (4.4) can be regarded as a first order, partial
differential equation for F'. The characteristic equations for F are

dt

Ll By _gr W OH
dr

(4.5) dr 5;; dr 5::";’

17 jzl,...,ﬂ

The first equation has t = 7+ 1y for its solution and if we take 7o = 0, t = 7
then (4.5) is the canonical system (4.1). We summarize this discussion as

Theorem 4.2. F(z,p,t) =constant is a first integral for (4.1) if and
only if it satisfies (4.4).
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Now suppose that both F and G are integrals for (4.1). Then along a
solution,

F(z,p,t) =0, G(z,p,t) =0,

where o and f are constants, both F and G satisfy Theorem 1.4 of §3.1,
and (4.4). The Jacobi identity yields

0= IIFa HGvH]]]] + [[G,]LH,FM + IIH7 EF: GM
= f!IFa Gt]l + [[G>FtE - MF, G:ﬁﬂH]]

--{Zv.a+1ra.m}.

This argument proves

Theorem 4.3. (Poisson) If F(z,p,t) and G(z,p,t) are two integrals
for (4.1), then so is [F,G].

Poisson’s theorem tells us that if we know two integrals for (4.1}, a third
can be found by differentiation processes. However, the integral so obtained
may or may not be independent of the first two integrals.

These theorems can be generalized to the more general canonical system

':.5 —WB% § =1 i
2 apj J_ L) )
= OH
(4.6 U 2= e —H
) k=1 ap
oM o -
pj' 6'EJ p.? 82!’ J=4i,. b

where H = H(z, z,p, t).

Again, an integral is a function F' = F(z, z,p, t) which is constant along
a solution. However, the Poisson brackets must now be replaced by the
Mayer brackets.

Theorem 4.4. Suppose X1,...,Xn,Z are n+ 1 independent first in-
tegrals of (4.6) which satisfy

{X'jo}’rzp:D, ’-’:,jzl,...,n
{‘X'hz}:czp:[), 'E:].,,n

Then the general solution to (4.6) can be constructed by means of a quad-
rature.
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PrOOF. Construct the functions P, ..., P, so that (X, Z, P) is a contact
transformation. Along a solution, X; = ¢;, Z = v where ¢;, and y are
constants so that X; = Z = 0 as before. These relations and (4.6) imply
that the function H*, expressed in terms of (X, Z, P) is independent of P,
so that H* = H*(c,,t). The third set of equations in (4.6) is in the new

variables o P
A N
7 863, K B’y
which is immediately solvable. The complete solution is given by

X B2 D=, i=1,...,n

Z(z,z,p,t) =7,
— {Jexp (f L8 at) GL (e, 1) dt }
P’i(mazapﬂt): 3”11' 3 T
exp (f %i— dt)
which was the assertion of the theorem. [J
REMARK: If n first integrals, X;,...,X,, are known which are pairwise in

involution, the equations uncouple. Introduce new coordinates (X, Z, P) as
before. H goes into H*(c, Z,t). A nonlinear equation for Z must be solved.
Once that is done, we can proceed to construct the functions P, as in the
proof of the theorem.

Again, we observe that if F(z,z,p,t) is a first integral for (4.6), then

OF . <~ [9F
OAF}E—I—Z(BSEJ) L 5;24*;(6133)?3

=F+ Y Fo My +F | Y piHy, —H | + > By (M, —pite)
J J J

™

=Fo+ Y (Foy +0iF:) Hp, = > (Hoy +piH.) By, — FH
J i
we, therefore, obtain the equality

(4.7) Fy+ {F,H} — F,# =0.

This equation can also be regarded as a first order partial differential
equation for F' having (4.6) as its system of characteristic equations. The
analogue of Theorem 4.2 is

Theorem 4.5. F(z,z,p,t) =const. is a first integral for (4.6) if and
only if it satisfies (4.7).
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Finally, we derive an analogue for Theorem 4.3.
Let F(x,2,p,t) = o, G(z,2,p,t) = B, «, and [ constants, be two first
integrals for (4.6). The Jacobi identity, (see Theorem I11.3.1) is

{F G H}} +{G,{#, F}}
& {H, {Fs G}} + FZ{G}?{} T+ GZ{?{-:‘F} + ’Hz{FG} = 0.
Now replace the expressions for {F,H} and {G,H} using (4.7), expand

the resulting expression using Theorem II1.3.1, and rearrange the result to
obtain the identity

9 ; 8 OH B
_E{Fﬂ G} - {{F,G}, H} +’H5;{Fr G} it ?};{F,G} = 0.

We can rewrite this identity as
4 (p{F,G}) =0
dt p 3 i

where p = exp (w- fgt %?zi d’?‘) and conclude that along a solution, p{F, G}
is a constant, that is,

Theorem 4.6. (Jacobi-Poisson). If F(z,z,p,t) = a, G(z,z,p,t) =
are first integrals for (4.6), (o and B constants), then p{F,G} 1is also a first
integral for (4.6). '

§ 4.5 The Theorems of Liouville and Poincaré

The theorems in this section deal with properties of the solutions to the
canonical system

o

.’,CJ-—EE;J- j=1,. , N,
(5.1) o

)j = ——— =1,.

Py awj J 3 LD

where M = H(xz,p). The initial conditions for (5.1) are

(5.2)
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We have proven that for each ¢, the family of transformations

(5.3) (z,0) = S{a",0%)
is a contact transformation and the Jacobian determinant
a(xip) ?(__ 0'
z.p°)

However, we can in the present circumstances be more precise. For this
computation, it is simplest to introduce the notation

52 (‘511"'16211) = (mla"'amnﬂpl:"'!pn)

50:(5?5"'55371):(m({’""?Egjp??"'?p?l)'
Denote the solution, (5.3), by
(5.4) ¢ = $(£%,1),

and the inverse by

(5-5) P = P(¢,1).
Let

and the inverse by

.7 7(e = 236D _ g (22460)

and recall that if X and ) are two matrices,
det(X9)) = det(X) det(D).

Now use the formula for the derivative of a determinant to conclude

2n 5
” 0¢; 0%;
(58) JtJ 1=
i,i=1 65? 9E;

where, as usual, the subscript ¢ refers to the partial derivative with respect
to t and the dot refers to the time derivative. ¢; = ¢;(£°,¢) and so

CHi€0) = Bile” 1) = hi(2(6,),).
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Whence

aq‘ﬁ? a(sz a@k
¢ Z Bfk 863

and so

_ Oop;
Fe gt Z BZ

Finally we make use of (5.1) and the definition of £ to conclude that

. aqbz aqsm 2 0y
2 R AR

PH(x 0*H(z,p) & 0*H(z,p) ,
=0
z 01, 0p; Z Op; 0z,
that is J;J~* = 0 or J; = 0. This implies that J is independent of ¢, that
is
J(E0, 1) =J(E,0 =1,
since ¢(£°,0) = £° is the identity transformation.

Theorem 5.1.
J(E%t) =1

Next let us envision the initial conditions for (5.1) as being taken from

some bounded domain, Vg, in the £° = (2%, p°) space. The domain Vj, will
be transformed to a domain

Vi = ¢(Vo, t) = 5¢(Va).

Theorem 5.1 implies that the measure or volume, |V}|, remains constant.

Theorem 5.2. (Liouwville)

Vil = Val.
Proor.
V| = dg;dp:/ Jd,’:codpozf dz® dp® = |Vp|.
Vi Vo Va

a

15 — The Herglotz...
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REMARK: If we envision {S;} as generating a flow, then Theorem 5.2 states
that the flow is volume preserving,.

Theorem 5.2 has another consequence which is due to Liouville. To
formulate it, we need to introduce the concept of a density function, § =
§(¢,t) = d(z,p,t) which describes the number of particles in a bounded
domain, V;. Liouvilles theorem states that this number is a constant, and
that d(z,p,t) is a constant of motion. More precisely,

Corollary 5.3. (Liouville)

d
7 |, e dzd =0,

and

& + [6,H] = 0.

PROOF. Let dy = 6(z°,p",0).
first we find that

(5.9) §(z,p, 1) dg:dpzf §(z°,p°, ) J dz® de:/ 8o dz° dp®
Vi Vo Vo

which is a constant, and the first part of Liouville’s theorem follows. Next,
divide (5.9) by |Vp| and use Theorem 5.2 to conclude that

5(-’13;19; t) = 50a

and &y is independent of . We calculate

d = (85, ad .
0= Egé(m,p, ) = 6; + ZJ" (B’;C;IEJ + éggpj)

" (35 OH 9§ OH ,
63 (o s~ gy, ) =0+ 6

b

which completes the proof. O

Liouvilles theorem can be combined with the following theorem to ob-
tain some surprising information about systems governed by (5.1).

Theorem 5.4. (Poincaré Recurrence Theorem) Suppose S is a con-
tinuous, one-to-one, volume preserving mapping of a bounded set 9 in a
Euclidean space onto itself, i.e. SO = M. Suppose £° is an arbitrary point
in MM and U is any neighborhood of £°. Then there is a point & € U and an
integer k > 1 such that S*¢ € U.
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ProOOF. Let U be the neighborhood of ¢°, and consider the sets U, SU,
5277, ... all of which lie in 9. By hypothesis, they all have the same
nonempty volume. Thus, nonzero intersections must now occur. For if
they did not 9 would be unbounded, which contradicts our assumption.
Consequently, there are integers j > 0, [ > 0, such that

SIHU (87U £ 6,

and whence

SU\U # 0.
Suppose

neSUNU.

Then there is a £ € U such that
n=S8¢eSUUCU.

The theorem follows with & = [.

Example 5.1. Let 97 be a unit circle in two dimensional space, and let S, denote a
rotation in the counterclockwise direction through an angle a. There are two cases to
consider.

i) Suppose @ = 2rr, where r = m/n is a rational number. Then 57 is the identity
and Poincaré’s theorem is obvious.

ii) Suppose @ = 2nr, where r is irrational. Then starting with any point f on the
unit circle, a certain power S™# will be arbitrarily close to any given point, that
is the set {S™8} is dense on the circle.

Observe that if z = z(t), p = p(#) is a solution to (5.1) then
(5.10)
%H(ﬂ:,p) =[H,H] =0 or H(z,p) = H(z°, p%) a constant.
We shall find in our applications to mechanical systems that H(z,p) rep-
resents the energy of the system and (5.10) is simply the statement that
energy is conserved. The function H in that context is called the Hamil-
tonian. Theorem 5.2 asserts that the solution operator for (5.1) is volume
preserving. As the set 901, we can take {(z,p): |H(z,p)| < E < oo}, which
is a bounded set in zp-space. Theorem 5.4 contains, therefore, the following
theorem as a special case.

Theorem 5.5. (Poincaré). A mechanical system governed by (5.1)
enclosed in a bounded set in zp-space and having finite energy, will return
to an arbitrarily small neighborhood of almost any given initial state, in a
finite period of time.
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§ 4.6 The Euler-Lagrange Equations and a Generalized Variational Cal-
culus

In this section, we determine the relationship between the canonical
systems and the classical Euler-Lagrange equations of mechanics and the
calculus of variations. We proceed in a general way and the classical results
will be special cases of the theory developed here.

Let us denote by

(6.1) L=L(ed:88) 2 LB, .o Bay @i, von yEing 2,1

the Lagrange function, or Lagrangian, of the variables (z, %, z,¢). The dot
denotes, as usual, the time derivative of z = z(t). While z = 2(t) is a scalar
valued function of £. In classical mechanics, the Lagrangian is a function of
(z,) and perhaps ¢, and is the difference between the kinetic and potential
energies of the system. The variable z is to be determined as the solution
to the differential equation

(6.2) Sems ol e B

Observe that (6.2) represents a family of differential equations, since for
each z(t) a different differential equation arises, that is, given z(t), z(t) is
determined by (6.2) so that z(¢) depends on z(t). A fact which we make
explicit by writing

(6.3) z = z(z;t) = z(z, %, ).

The problem (6.2) is a kind of control problem. The differential equation
for z describes a process which depends on (x,%) and which in turn can
be chosen, that is they give us the opportunity to control or guide the
process and are therefore referred to as controls. In the classical theory
of the calculus of variations, £ is independent of z and can be integrated
immediately from 0 to T say, to obtain

T
(6.4) z(m,:&,T)—z(zO,;&O,O}zf £(z(t), £(2), ¢) dt.
0

One then seeks stationary values for (6.4). We shall proceed similarly in
our case. However, we need to work directly with (6.2).

To determine stationary values, we introduce the idea of the “rate of
change” of z(z;t) in the “direction” of a function, £ = (£1,...,&,). Let z(t)
denote a fixed curve, € a real parameter, and £ an “arbitrary” curve, also



§ 4.6 The Euler-Lagrange Equations and a Generalized Variational Calculus 109

called a variation. Then x + €£ is a curve which for small € is close to z.
The rate of change of z in the direction of &, also called the first variation
of z, is defined to be

(6.5) %z(z + €€, & + €€, )| e=0 = ((2)

Using the definition (6.5), we find from (6.2) that { satisfies the differential

equation
oL 8£ oL
= z( + o)+ e

3'

which is a linear differential equation for (.
The solution is

exp(—/ﬂ g—ﬁdt?)C O

¢ aL " [ac oL
—fﬂexp(‘/o ER dﬁ)ﬂ@“azﬂ“
7

where (? means that ¢ is to be evaluated at ¢ = 0. To simplify the notation,

let
oL oL

L= — ey
J 8(133;1 pj 83.77

and rewrite (6.6) using integration by parts as

& or
S T
o (- [ SEa0) ¢

o ([
+/Utexp (-fe %ﬁdﬂ)zw + L.p; — s1é; dr

Now let us suppose that the values of = are prescribed at an initial state,
t = 0, and at some final state at ¢t = 7. Then z(z;t) can only be defined
for those z which assume those prescribed values so that the variations ¢,
must satisfy

(6.8) £(0) =¢(T) =0
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Evaluate (6.7) at ¢ = 7" and use (6.8) to obtain

Tac
exp (* B dQ) &) —¢°

g TOL N\ o -
= i exp | — 5;059 Z[ﬁj—l—ﬁzpj—pj]éjdf

J0O

(6.9)

for the first variation, {, of z evaluated at t = T.
We seek functions, z(t), such that z(z;t) is stationary, that is, such that

tac
exp(—f 8_d9)C=CO for 0<t<T,
0 0z

for all variations, £;, so that the left hand side of (6.9) vanishes. By the
fundamental lemma of the calculus of variations, this means that the inte-
grand on the right hand side of (6.9) must vanish. Since the exponential
never vanishes, we conclude that for each j

ﬁj B [.'.zpj —fﬁj =1

Thus the (z,z) must satisfy the following system of ordinary differential
equations

p; = L+ L.pj, Wl P,

(6.10) ar 47
g=L with Lj:a_ﬂ_'}j_’ pj:%

We prove the following

Theorem 6.1. Let £ = L(z,#, z,t) and suppose det(02L/di;0%;) # 0.
Then the solutions to (6.10) determine a family of contact transformations.
If L is independent of t, the family is a one parameter group.

PROOF. Denote the initial values for (6.10) by (z°,%° 2%). Then the solu-
tion to (6.10) subject to these initial conditions will be given by

T = w(mo,dzﬂ,zg,t)
(6.11) & = &(x?, 2%, 20, ¢)

z = 2z(z%, 4% 2% ¢)
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where the dependence on the initial conditions is explicitly displayed. Now
differentiate the equation 2 = £ with respect to ¢ to get

L T
F= Lid;+ L.+ Y pids + Lo

3 il

Set

+ .
(6.12) A =exp (#/’ o ci'r)
0

and write this equation as

jt (/\A) =AY (€5 + psi] + ALy

j
= )\Zﬁ & — ijdt Aps) + o prjaj + ALy
d
= E’L Apjikj + ALy
by (6.10). Hence
d -
= A z—;pjmj = ALy
and upon integration and division by A

7

1 _ 1t
ijmj—zmi Za:r . ﬂi]g AL dT.

Let
1 i
(6.13) = _'Xf AC, dr
0

and rewrite this relationship in terms of differentials to find

(6.14) ijda::, (/Zpﬁdm ~dz ) + H dt.

7
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Equation (6.14) characterizes the contact transformations which depend on
a parameter, {. We must rewrite the transformations in terms of p instead
of . For that it suffices to observe that the system

6.15 i =—(x,%,2,1
can be solved for z in terms of p because the Jacobi determinant is nonzero.

This completes the proof of the theorem. O

The expression H is, at the moment, in an inconvenient form. We can
put it in a more familiar form as follows. Let A continue to be given by
(6.12) and use (6.10) to find after some rearranging

d

L) =— Z ALgy i + ALy

so that
d - :
My = A= Z_:Aﬁijmj
2
By (6.13), we find
1 n ) ™ )
H= 5 { A Loy — A =D £ + £°
3 J

where the superscripts indicate that the expressions are to be evaluated at
the initial condition. Let us think of the L;, as being replaced by the p;
so that

H=H(z,p,2,1) = Zp,:nj—f. = By Zpgig—
J

The last term is a function of . We will be differentiating H with respect
to the (z,p, z) variables to set up the canonical equations. This term will
therefore contribute a zero. Thus, we define the function

: oL
(6.16) H{z,p, z,t) ijzj (z,%,2,1), p; = E{a

This means that the previous expression for H must be replaced by H —
ATIHC,
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The equations (6.10) can be written in terms of H.

Jiapj

. = OH
(6.17) j Z—ijpkép—k—%a

o _ (9 oH

Pi= O pjaz

N

On the other hand, if one has a family of contact transformations, cor-
responding to it is a characteristic function, #, and an associated canonical

system.
We summarize these considerations in the following general statement.

The following four kinds of problems are équivalent:

i) Variational Problems
ii) Lagrangian Differential Equations
iii) Canonical Differential Equations

)
iv) One parameter Families of Contact Transformations

Example 6.1. Let n = 1 and define a Lagrangian function by

L — —2— - oz, where m,l,e are all positive constants.
Then
Liy=mi=p
L= -l
L;=—u
The Hamiltonian or characteristic function H is
2 Ix?
H = H(z,p,z) = £ + — + az.
2m 2
The canonical system (6.17) is
; D
= —
m
p2 12
g=|————oz
2m 2
= —(lz + op)

and the Lagrange equation, (6.10), is

mz = —lz — ame

or

&+ o + wlz =0, where w? =

=

which is the equation for a damped, harmonic oscillator.

16 — The Herglotz...
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Example 6.2. More generally, consider the Lagrangian in one spatial dimension

the system (6.10) is given by:
Ly = —lx, Li=mi=2p L, =~f'(2)

S0

miE = —lx ~ f'(2)ma
ma?  lg?
=% 7

The Hamiltonian formulation is also easily obtained. Here

. ? g?
Hiz,4,2) = 2+ — + f(2)

and so
D
= —
m
p=—lz— f'(z)p
2 2
D Iz
T om 2 (z)

§ 4.7 Partial Differential Equations and Canonical Systems

In this section we develop the one-to-one correspondence between partial
differential equations of the first order and canonical systems based on the
concept of a one-parameter group of contact transformations.

Let H be a function of (2n + 1) variables and consider the partial dif-
ferential equation

(7.1) Hizs, w2yl

where z = z(z1,...,2,) and 2z, = Vz = (82/0z1,...,02/0z,) is the
gradient of z. By a solution to (7.1) we mean a function

(7.2) z = f(x)

which when inserted into H satisfies (7.1). In general, a function (7.2)
which satisfies (7.1) is an n-dimensional, integral surface, F, in R, ;. By
adjoining direction quantities, we shall be able to think of E, as an n-
parameter union of elements. As in Chapter I, certain degenerate cases
may arise. In Rs special cases of an integral surface were curves and points.
In the case of R,,;1, there are lower dimensional degeneracies, E,_1, E,_o,
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., which may arise. Here we shall only treat the case when the integral
surface is an n-dimensional object in R, 1.

We now take up the problem of finding a nondegenerate integral surface

E,, for (7.1). We shall think of E, as given in terms of the u parameters

u = (u1,...,un). Thus, we seek functions

(7.3) z=z(u), z=2z(), p=ply),
such that

(7.4) H(2(u), 2(u), p(u)) = 0

where 1z, z, p satisfy

or more explicitly

LI
(7.5) Yopiar =0, k=1l...,n

In order that functions (7.3) be independent and depend on the parameters

(uy,...,u,) we must require that the rank of the n x (2n + 1) matrix
Sz Ozq 82 9py pn
6“1 e Bul 6‘LL1 Bul T B‘lbl
Y =
LR Ay, Oz dpy 8p,
Bun """ Bup  OGun  Bup """ Bup

be n. In view of (7.5), it is in fact only necessary to demand this from the
n X 2n matrix obtained by deleting the column containing the dz/du;.

We now take the function H and set up the canonical system

ra: —Qz{m =1 7
7 apj? J - b H
= OH
. _ L
(7.6) 4 §pk8pk
_ OH A(?H 1 n
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Since H is independent of ¢, the solutions to (7.6) form a one parameter
group of contact transformations, assuming of course that the initial con-
“ditions are chosen so that the identity transformation belongs to the family
{S:}. On a solution curve to (7.6),

g’i%: ] %iﬁ%ﬂgg}%p} =—H,H
so that
(7.7) H =Hexp (— /; H, dt)
where
(7.8) HO = H(z0, 20, p°).

If the initial element, (z°,2° p%) is chosen so that #° = 0, then by (7.7)
the elements '
(z(t), 2(8), p(t)) = Se(2°, 2°,p°)

all satisfy H = 0, that is, the elements (z, z,p) all lie on an orbital strip of
the group which is characterized by H = 0. All the elements satisfy, there-
fore, the partial differential equation. We come now to the main theorem
of the theory.

Theorem 7.1. Every integral surface E,, of the partial differential
equation (7.1) is transformed by the application of the group of contact
transformations arising from (7.6) back onto itself.

REMARK: In other words, if one has any element of the integral surface
E,, i.e. a point together with a tangent plane for which % = 0, then the
group determined by (7.6) generates a characteristic strip containing this
element, and this strip lies in F£,,.

ProOF. We must show that we can find functions u = u(t) such that:
i) The element (z°,2°, p®) corresponding to the initial values

u(0) = u®

lies on F,.
ii) The family of elements (z, z,p) determined by

v = u(t)

making up an orbital strip belongs to F,,. In other words, through
every element of I,,, one can pass an orbital strip which has the
same elements as F,,.
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Let us formulate the conditions which w(#) must satisfy more precisely.
Differentiate (7.3) with respect to ¢ to find for j =1,...,n

. Oy dp;
(7.9) L; = d E)ukuk’ zmzmyk ZEUR

Now make use of (7.6) and observe that the summand, H, in the expression
for 7 can be dropped since it is zero for the elements with which we are
dealing. We find

=, 0z . 4 OH
(7.10) { 3523 Uk_zpkﬂzo

S | OH oM

o — = 0. v o
Oy e+ oz, + P55, J * "

We are regarding the integral surface E,, as known, so that only known
functions of u occur in (7.10). Thus, (7.10) represents a system of (2n + 1)
equations in n unknowns. They are not all independent of each other.
First, if all the X; vanish, then by (7.5) and the definition of 3

k(]

n 2 a ) n a n
0=ij3{5j:zpja Ziﬂadp za— A—ZzJap
3 Jk k
Next the equations

X, =0, B; =0, 5 = Lyen s

represent a system of 2n equations in the n unknowns ;. The rank of the
coefficient matrix is n by assumption, so we may select n equations which,
possibly by renumbering, are given by

xX; =0, j=1,...,m 0<r<n
(f.11) B, =0, 4 = Ly oy 0<s<n
r+s8=mn
and are such that the coefficient matrix of 4, ..., %y is nonsingular. Solve

this system for y,...,%,. We obtain in this way n linearly independent
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differential equations for ui,...,w,, which we solve subject to the initial
conditions. To complete the proof of the theorem, we must show that the
rermaining equations

X; =0, Jj=r+1l,...,n

B; =0, ji=s+1,...,n
are satisfied.

There are three separate cases to consider: r =n,s = 0; 7 = 0,s = n;

1 <r<n,1 <s<n. We only consider the case r = n,s = 0. In this case
the matrix (9z;/0u;) is invertible. Its entries can be obtained by solving

¢ = z(u) for u in terms of z to obtain u = u(z) and then forming (Ou;/Bz;).
The equation X; = 0 then implies that

du; 0%
= Zk: Oz apk.
Consequently,

. 8p3 oH IoH
By = Juy, Buy et §f TP 0z

Z?&%?ﬁ L o

- Buk ax; 6}’){ ai‘j P a
Z Ip; OH _OH  OH
Oy 3pt oz; Py

8
8.’14'3 %(.I',Z,p) - 0

since H = 0 and p; = dz/dz;.
The other cases are treated similarly. This completes the proof of the
theorem. O

These considerations yield the following corollaries.

Corollary 7.2. If E, is an integral surface for both partial differential
equations

Hiz zozs) =10 and 220 =08

then it is an integral surface for the equation
Lz zyzp) = {H, K}asp =0, P = %,
where {H,K}zzp is the Mayer bracket for H and K.



§ 4.7 Partial Differential Equations and Canonical Systems 119

ProoF. Simply form {H,K},., and use (7.6). O

Corollary 7.3. Suppose E, and E| are two distinct n dimensional
integral surfaces of the differential equalion

Hig 2 .55 =0,
Then the intersection in the sel theoretic sense,
By =B, (-"Eﬂ;, m<n
s an integral surface for the differential equation.

We close this section with a discussion of a concrete integration problem.
Suppose we have an n—1 dimensional integral surface, F,,_1, for the partial
differential equation

(7.12) ?‘i(.’ﬂ,z,p) =0, P =2y,
that is we are given functions of s = (s1,...,8p-1)
20 = 2%(s)
(7.13) 2° = 2%(s)
p° =p%(s)

such that

(7.14) Hle" 2", g%
and
L 9z 50
plfg) —L . 77 — = —
(7.15) ij(s)ask B 0, E=l.ahe-l

J

In a concrete case, the functions (z°, 2°) are usually given and the functions,

p? are chosen by the n conditions, (7.14) and (7.15). In order to guarantee
the solvability of (7.14) and (7.15), we require that

oz 8z  9H(z’,2%p°)
sy " Osp-1 Op1
(7.16) i ; f # 0.
_4_33%_ 62;2 OH(x?,2°,p")
ds1 88p-1 Opn
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When n = 2, that is when the dimension of the space is 3, these conditions
amount to giving data on a union of elements, that is a curve with direction
coefficients. This problem was treated in detail in our geometric theory of
partial differential equations. Here we treat the general case.

Set up the canonical equations

(4 O
&y ;
L OH
7.17 A — —H
(7.17) { ;pk oo
o OH .874.
\p"? - oz, Pig,
and solve them subject to the initial conditions
(7.18) z(s,0) = z(s), 2(s,0) = 2%(s), p(s,0) = p°(s),
to obtain the solution
(719)  (a(s, 1), 2(5,0),p(5,8) = 5u(2%(s), °(5), 5°(5)).

This represents an n parameter family with v = (s,¢). We show that it is
an integral manifold. This is most easily seen by noting that by (2.18)

H = pH(z,2°p") =0

and
n n
ijdrﬂj—dz:p Zp?da:?—dzo
J J

so that the solutions form a union of elements.
It is also possible to construct the solution, (7.2), to (7.1). For that we
must require that the deferminant

(Fzsg) #e

at least near the initial manifold, that is

Oz Oz Oz
851 e 85y —1 at

6(:311 Jﬁn) ﬁ

B9y 8 ) )

8( L ! n) t=0 Ozyp Oz, 8zn
98, i O8p—1 ot li=q
az3 0ef  oH(E%"0")
dsy Osn—1 ap1
('3;{:0n (9.17?1 OH(2°,2%,p°)
951 T Jsn-1 Opn
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is nonzero, which is precisely the condition (7.16). If that is the case, we
can solve for (s,t) in terms of = and insert the result into the expression
for z to obtain

(7.19) z = 2(s(x), t(2)) = ().

Example 7.1. Solve
z2y(l4+ 2zz)—z=3+y

z(z,0) = 1.
First, let
%{xsyazapSQ} = Q(l -|-P) e T v T
And let
22s) =5, Py=0, Ls)=1
and determine p° and ¢° by
PA+p’)~1-s=0
0de®  ody® d° _ o

P ds 1 ds ds =8
S0
@ =1+s
The Jacobi determinant is
1 Hp(a® 10, 2% 10 ¢%)
=170.
0 Hq(z%y°,2% 9" ¢%)
The characteristic equations are
i =gq, z(s,0) = s
y=14+p, y(s,0) =0
z=pg+q(l+p)—(q(l+p)—2z—-z—1y), z(s,0) =1
p=1+p p(s,0) =0
g=1+g, q(s,0) =1+s
The solution to the system is
(s, t) = t(5+ 2)—t-2
y(s,t) = et
#(s,8) = 2t(s+z)~e(s+4)+t+3
p(s,t) = ¢
q(s,t) = e’(s + 2} -1

The solution for z in terms of x and y is

z=—-In(y+1)+1+(z+In(y+1)+1-y)y.

The fact that (7.19) satisfies (7.12) can be checked directly at this point
as well. We summarize this discussion in

Theorem 7T.4. There exzists @ unique integral menifold satisfying
(%18}, (7-13)

17 — The Herglotz...
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If (7.16) holds, only z° and z° must be specified and p° is determined by
(7.14) and (7.15). In that case the solution surface (7.2) can be constructed
by solving (7.17) and (7.18), expressing (s,?) in terms of z and inserting
that result into the expression for z(s, ).

§ 4.8 Integration of the Canonical System given a Complete Integral of
the Partial Differential Equation

In this section we take up the converse problem to that treated in the
previous section. We wish to integrate the canonical system

Ti = d—% 7=1 n
3 apj’ : ey
(8.1)
e
p_'.l_ am‘?: 3_ §ulsy
where the Hamiltonian
(8.2) H=H(z,p,t)

is given. We suppose that we can find a complete integral for the associated
partial differential equation

(8.3) Zeb Hld: 2at) = 0

Before proceeding with the construction, we must make precise what
we mean by a complete integral for the partial differential equation (8.3).
First, note that if z is a solution to (8.3), then z + const. is also a solution.

We shall say that

(8.4) z = f(z,t,X) +¢, X =X[X150 0:5,);

is a complete integral for (8.3), for all choices of the parameters (X, c)
taken from a region in R, 1, if z satisfies (8.3) in the variables (z,t), and
if

62 j’(a’;? t? 'X)
; —— 0
(8.5) det ( o b

To obtain the general solution for (8.1), fix the parameters X. For
definiteness, set
Xi:ai, ’.i:l,...,n
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and now solve the system
of (z,t,a)
(8.6) e == By i=1, 0040
BX? ¥ ¥
for z in terms of {(a,b,t), where the b; are arbitrary constants. This is

possible because of (8.5). We obtain in this way the functions
(87) mj:‘rj(t}zéj(a:b:t): J=1l...,n
Next, define p;(t) by

af (¢(a,b,1),t,a)

3
Bscj

(88) b; = pj(t) = Trbj(aﬂbvt) e

j=1,...

, N

We show that the z,, p; defined in this way satisfies (8.1). To see this,

observe first that f satisfies by definition

(8.9) fe(z,t, X) +H(z, fo(z,t,X),t) =0  with X =a.

Differentiate with respect to X; and set X = a to find

oH  9*f

(8.10) araX — Bpy, 00X,

Next, differentiate the identity
—f((,b(a b,t),t a) =b;
9 )CJ R R | i

with respect to ¢ to obtain (since b; is a constant),

o?f 5 - 82f

(8:11) X, 0t 5x

¢5k =0.
Subtract (8.10) from (8.11) to conclude
~ &f . OH
95:0%, \ > "o |
e QU Pk

and by (8.5), ¢x satisfies the first equation in (8.1).
Next, differentiate (8.9) with respect to z; to find

o f oH O*f
Z

el) B0 amj Opr, 0zx0z;
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By the definition (8.8),

_daf 0% Z. B

8.13 ) = ——— = 1)
( ) p;,‘ dt0z;  Oz;0t - 0z;0zy #

Subtract (8.12) from (8.13) to get

oM S~ P [-_Qﬁ_}__é?i
k apk c%j

since qbk = OH/Opy by what we have just proven. This is the second
equation in (8.1). '
We summarize this discussion in the following theorem.

Theorem 8.1. (Jacobi) Suppose z = f(z,t,a)+c is a complete integral
for the partial differential equation

z + H(z,p,t) =0, e

Then the general solution for the canonical system

b O
J_apj
. oH
b5 = ",
J

is given by z = ¢(a,b,t), p = ¥(a,b,t) where ¢ is obtained as the solution
to the system
of (z,t,a) .
=1y, g= K oo i
8Xj ) 1
for = in terms of (a,b,t) and 1 is defined by

",bj(a‘?b:t) = gf

L

(¢(a,b,1),t,a).

The main weakness of the theory in this section is the determination
of a complete integral. Nevertheless, if a complete integral can be found
easily, the method can be very convenient.
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Example 8.1. The system
1 = p1, T2 = P2
p1 =20 ps =0
arises from the Hamiltonian

1
e 5(?% +p3).

The associated partial differential equation is

+1(8z)2+1 ’3z)2 "

z - [ = - — —

T2\ 6 2 \ dzo

The complete integral can be obtained by separation of variables. Assume a solution

in the form
z = T(t) + S1(z1) + Sa(x2)

so that "
T'(t) + 5 ([S;(m)]2 4 [S;,_(azg)f) -

Solve for [S] (ml)lz to obtain
! 1 1 i
T'(8) + 5 [S3(2)]” = —5 [Si(@)]".

The right and lefs hand sides vary independently of each other and so must be constant.
With malice of forethought, let the constant be —(1/2)a? so that

Si(z1)=a or Si{z1) = a111 + 0.

Next 1 1
Tt = _..'2_ [5’5(3;2)]2 - 50.%.

Again the right and left sides vary independently of each other and so must be constant.
Denote the constant by —(1/2)a2. Then

Sh(x2) = 4/a —a
Sg{:ﬂg) = [\/a% — a%] T + a2

1
T(t) = —§a§ t+ as.

or

and

The complete integral is

f 1
z=a1:c1+[ a%—af]m-g—-ﬁa%t-{—c,

where ¢ = a1 + a2 + a3 is a constant.
Next set up the system

al
Ty - —2——51;2 =h
2
ai —a}
az
xg —agt=by
2 2

ay — &
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from which we obtain
T = —l(azt +ba) + by

a2
{2 2
a5 ‘“1(
az

pr=ay

To agt + bg)

P2 = (/a3 —af.

If we set

™
-

|
o
=

,82 S i
we obtain the result
1 = a1t + [,
Ty = agt + Pa,
P1 = oy,

P2 = az.

Example 8.2. The Hamiltonian for the undamped Harmonic oscillator is
1 o 2
H(z,p) = 5(a* + )
and the canonical equations are
E=p
j=—a.

The associated partial differential equation is
1.2, 2
zt+-§(z$+a: )=0.
The complete integral is again constructed by separation of variables Set
2z, t) =T(t) + S(x).

Then 5 "
T'(t) = -3 ([s"@))* + ) = —%

where —a? /2 is the separation constant. The solutions for T and S are
2
a
Tt)=- ?t +c

2 2 _ ,2\1/2
S(z) = % (arcsin SR u—) + ca
a

a2
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so that a complete integral is

2 2 il _saNige
(8.14) z(z,t) = s gt B b arouig 24 20 il + e
2 2 a a?

Differentiate with respect to a and set the result equal to b to obtain, after cancellation

. T
—at + ¢ arcsin — = b,
a

whence

z = asin (¢ + 9)
a

Now differentiate (8.14) with respect to  and insert the expression just obtained to find

2 2
@ 1 x b
= 4 =02 — 3% - —— = /a? ~2? = acos(t 4+ ).
4 2va? —z2 2 2va? — z? et ﬂ)
If we set b/a = —¢, we obtain the solution for the harmonic oscillator in the standard
form
x = asin (f — @), p=acos(t—¢).

§ 4.9 Multiparameter Families of Contact Transformations

Let £ = (Z1,.--,Zn), P = (P1,...,Pn) denote as usual points in R, so
that (z,z,p) is a point in a (2n + 1) dimensional space. ¢ = (t1,...,%)
will denote a system of r parameters and f = f(f1,...,fn), g, and h =
(hy,...,hy,) are functions of (z°, 20,p0%,¢). We call

T = f(moszﬂ:poat)
(9.1) z=g(a",2°p" 1)

an r parameter family of contact transformations if, for each fixed ¢, the
functions f, g, and h satisfy the strip condition. It is often convenient to
write the transformation (9.1) in the form

(92) (:L‘,Z_,p) = St(moazﬂapo)

to bring out the fact that the point (2%, 2% p%) is carried into the point
(z,z,p). We do not at this point demand that the family of transforma-
tions {S;} contains the identity, nor that (z0, 2%, p°) represent initial values.
Rather, (z°, 2%, p°) is a generic point in the (2n+1) dimensional space where
the transformations are defined.
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By repeating the arguments given in §2 for each parameter t;, while
holding the others fixed, we arrive at the following theorem.

Theorem 9.1. If {S:} is an r parameter family of contact transforma-
tions, then there ezists functions,

(93) Hj:Hj($1zvpit)a e e 4

such that the (z,z,p) of (9.1) satisfy the total canonical system

( . OH,,
dg;sz——dtk, j=1,...,n
T T 6?'{
(9.4) | =242 pig —Hip dty
k=1 7 pj
s [ OHy, .
dp; = — ( +p‘—) dty., F= Ly g
7 }; Oz 792

\

The functions, H;(z, 2, p, t) of (9.3), characterize the particular family of
contact transformations and are again called characteristic or Hamiltonian
functions. Although they may be derived from (9.1) as indicated, in practi-
cal problems one is usually faced with the converse problem of constructing
the family (9.1) or (9.2) from (9.4) given the (9.3). In order to carry out
the integrations, the H; must satisfy certain integrability conditions. To
obtain them, it is convenient to rewrite the system (9.4) as

r%:%ﬁ%, =, i k=T, T
J
Oz B, O
(9.5) E;_;pf”_apj gy, Bl o
apj _ OHy, a%k )
\E_ 8.‘133 Pj 32;’ ]:1,...,?’1, k=1,...17‘

'To formulate the integrability conditions, it is advantageous to introduce
one more bracket symbol. Let us continue to denote the Mayer bracket of
two functions, F and G, by {F, G},.,. Define

G oF
(9.6) [F, Glasp = {F, Glezp + Fa - G~a7,
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which when written out becomes

", /OF 8G OF 9G
BChn=3 (3 o - 5 Be)

1

OF (<~ 0G
5 (Sneee)
0G [~ OF
-5 (Erdr).
This bracket symbol also satisfies the Jacobi identity
(9.7) [F,[G, H]] + G, [H, F]| + [H,[F,G]] = 0

Now let us define the symbols

- oy O
(98) ?{kl‘. = [HkaHL]:nzp + 8t; al‘fk .

The integrability conditions require that the second mixed partials of the

functions z;, z, p; with respect to the ¢ variables are equal. An unpleasant
calculation making use of (9.5) and the definition (9.8) yields the relations

r & o2 d

TR BT T “BE_'HM
82 82 9 5
(9.9) ﬁ Btlatkpj - Stk{)‘t;pj = —%HM +p_?'5;?{kl
32 92 n 9
Buoh”  Badn”  2ePapy T

In order to force the right hand sides to be zero in these expressions, we
see that the Hjy; must vanish, which in view of (9.8) says

L

(9.10) [‘Hk,?{z]mp = -55;- B,

which are the integrability conditions.
To formulate the next result, we need the following remark. Suppose

F = F(z,%,p,1)

18 — The Herglotz...
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where (z, z,p) satisfy (9.4) or equivalently, (9.5). Calculate the differential
using (9.4) to obtain

oF oF ", OF .\ OF
dF =Y —dz; + — = dp, sl )
8 Tj + 0 dz + ZJ: Bo; dp; + ; 3L, dt;
OF 5?{ OF <~ | o~ OH;
—ZZ&% , * a—l i

OH; "\ OF

We conclude after some rearranging

X OH, OF
11 dF = PHleu~P—2 - i
or in terms of components
OF OH; OF
: F. ——
(9.12) 8t; = B Hilesp — F 0z i oty

If we now calculate the second derivative and form the difference, we find

O?F PF OH i

(913) ot 9ty - 8tkatt = [F, Hkl]mzp - F—

We now state and prove the converse of Theorem 9.1.

Theorem 9.2. Suppose the total canonical system (9.4) is given where
the characteristic functions satisfy the integrability conditions, (9.10). Then
the family of transformations {S:} obtained by solving (9.4) subject to the
initial conditions

("L‘a z,p)lt—(} = (Q’IO: Zﬂapu)

is an r-paremeter family of contact transformations.

The proof is similar to the one parameter case, see §IV.2.
We again define the linear differential form

{91’1) w = ij dﬁj —dz — z H; di’z
J i=1
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when t =0, i.e. t = (t1,...,t,) = (0,...,0), w goes over into
(9.15) "= Zpg dx — dz°
J

We apply the arguments leading to equation (IV.2.15) for each ¢; to obtain

Bw 8%2 .
(9.16) ETo» w, R e

and consequently the total differential equation

(9.175 dw =

This equation is integrable because it satisfies (9.13) by hypothesis, i.e.

32w 82(_,_) a
0t duor, — @ Hiklesr —wz-His =0

Now let ¢ be a permissible value for the functions in question. We
determine the function

p=p(z°,2°,p° 1)

Inp=— / %dtk
T[o,] sy

where the integral is taken over a path, I, connecting 0 and . Because of
the integrability conditions, the integral is independent of the path. Expo-
nentiate to find for p the expression

OHy,
9.18 = = —dt
o e[ S

and set

from the equation

(9.19) w = pu’.

By carrying out the differentiations, it is easy to verify that w defined by
(9.19) satisfies the total differential equation (9.4). But (9.19) is simply

Zn:deﬂﬂj —dz=p ipﬁd:cg —d2° "*“i%dt@
J 7 3]
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that is, the strip condition holds, which completes the proof of the asser-
tion. (1

We close this section with a derivation of several formulas which will be
of use to us in the sequel, and a discussion of two special cases similar to
the ones of §IV.2.

To begin with, observe that from (9.18)

(9.20) = —pz ———dtk

so that, combining (9.20) with (9.12) where F is replaced by p, we obtain

(9.21) Z ([p,'H. - gf) dt; =

i=1

Next, calculate using (9.12) and (9.20) again to get

Fd.ln(%) =Fd(lnF —Ilnp) =dF - -f;—dp
: oM; OF oM
w;([1%*,?111']%~~F~-§Z_— = ) dt; ——( pz )
. OF
- ; ([F, Hilezp + B_ti) dt;

and so we find the general formula

F 5 aF ‘
In particular if F is replaced by H;, we get
Hk 5 3?‘(13 1

il
Now by (9.8) and the fact that Hz; = 0 by the integrability conditions,

OHi _ o 6?{%- OH;
ot st a5 = B

[,Hk:a z]:rzp e
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we see that (9.20) becomes

(9.24) ’H;cdhl( ) Zatk E

For ease in reference, we gather the more important of these formulas
together in

Theorem 9.3. Let p, Hy, F be as above. Then

r

Fd(F[p)=) ([F Hiloen+ gf) di;

j==1

n ap B
Z ([pa ?{z]mzp + ét_,,) dtz' = 0

i

Hi\ < (M .
deln(p)_Z(atJdt,.

i=1

We now turn to the special cases.

Case 1.
i
0z

The functions, H;, are all independent of z and the total canonical
system (9.4) reduces to the 2n equations

=0, i=1,...,7

dCEj— %ﬂdtk, F= L.y

23:1?3 dtr, §= Ly T

and once the z; and p; are calculated the z is obtained by quadrature.

i

OH
ij k k dﬁk-
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In addition the function
p=1

and the strip condition reduces to

n n T
ij d; — Zp? dmg - Z’Hk dty = d(z — 2°).
7 7 k=1

Case 2.
oH;
Oty

The functions H; depend only on (x, z,p) and are independent of the ¢
variables. Theorem 9.3 (or equation 9.24) implies

=0, e 1

HedIn(Hg/p) = 0.

Expand and rewrite this equality to obtain

d
dHy = #H, 22
P
or
(9.25) dInHy = dlnp.

Set H) = Hy, (2% 2% p®) and recall that at ¢t =0, p = 1. Integrate (9.25) to
find
InHi —InHY = Inp,

that is
(9.26) Hi=pHY, k=1,...,n
Case 3.
OHy oMy
az =0 and a—tt' =),
In this case,
Hi = Hk(va)

Again p =1 and by (9.26) we obtain immediately r integrals of the form

Hi(z,p) =Hg, k=1,..,m
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§ 4.10 The Infinitesimal Contact Transformations

Before introducing the concept of an infinitesimal contact transforma-
tion, we wish to list the properties of the bracket symbol

OF 0G OF G\  OF [~ 8G
B8 = ; ( 9z; p; ~ Opy dwﬂ) o (;pja—pj —
(10.1)

ke

oG oF
5 (2 T

introduced in the previous section. We group these properties together as
Theorem 10.1.
i) [F + G,H] = [F,H] + [G,H] and [oF,G] = a|F,G], [F,aG] =

ofF, G] where « is a constant. In other words, [-,-] is linear in each
argument.
ii) [F,F] =0 and [F,G] = ~-[G, F].
iii) [Fg, H] = F[G, H] + G[F, H] — FG2Z.
iv) £&[F,G]= [d”G] B 5S] = 5G] -2 B
v) [F,[G,H)|+[G,[H,F]] + [H,[F,G]] = 0 (Jacobi identity).
i) I

vi) If (z,2,p) — (X, Z, P) is a contact transformation with

indX'j”dZ-_-P ipjdxj_'dz )
3

J
then :
;[pF, pGlxzp = [F,Gluzp.

REMARK: In the statement of this theorem, the subscripts, zzp, have been
dropped except in item (vi). We will consistently drop the zzp subscripts
in this section, and the bracket symbol will refer to the bracket defined by
(10.1).

The proofs of these assertions are straightforward computations. The
proof of (vi) can be simplified somewhat by using Theorem III1.3.2 for the
Mayer brackets.
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After these preliminary remarks, let us consider again a one parameter
family of contact transformations, which are characterized by means of the
Hamiltonian, H = H(z, z,p, t), as the solution to the canonical system

(. _ OH -
:}—‘apj: J=4L...,N
10.2 { z= Pj
( ) Z Japj
e om
ij“* 3.“L'j pjaza J =41 ;T

We call the quantities
OH C. OH OH IH
(10.3) fj*@: C—gpjéj—);—% T = — (8333 +pi 5 )

j=1,...,n, the components of the transformation of the contact transfor-
mation generated by #. It is customary in the theory of continuous groups
to define the symbol, §, as a differential operator by setting

BF 8F ~. @F
(10.4) Zég a—z+;ﬂjg§n
where F is a differentiable function of z,z,p. In terms of the bracket

symbols, £, can also be written

oH oF
(10-5) ﬁ(F) = [Fa H]mzp - Fg - {FvH}xZP - H@"-

Let R be the symbol for the Hamiltonian /. The prodﬁct of the differential
operators is defined by

(10.6) RH(F) = R(H(F))
Making use of Theorem 10.1 we find
R(5(F)) = R([FH] - FH,)
- [[F, ] - F’HZ,!C] - ([F,’H] - F?{z)}Cz

- ..[;c, 7, m] — [FH,, K] = K [FH] + FH.K.
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and similarly

H(REF)) = 9 ([F, K] = FICZ)
= [H, [F, K] = [FKC., H] = H[F, K] + FIC.H,.
The commutator is the difference
(10.7) C(F) = RA(F) — HR(F).

Making use of Theorem 10.1 and (iv), we obtain the explicit expression

(10.8) ¢(F) = [F, [, k]| - F;)—zm,iq

From (10.8) it is immediately clear that
(10.9) C(F)=0

is the condition that the infinitesimal transformations, f) and R, commute.
We shall see below that (10.9) has a deeper significance for the relationship
between the solutions to the canonical equations (10.1) generated by H and
those generated by K, i.e. those where in (10.1) the # is replaced by K.

We would also like to make some remarks concerning the designation
“infinitesimal contact transformation”. This arises from the fact that the
element (z, z,p) is transformed during a time span, ¢, into the neighboring
element (x + €£, z + €(,p + em), where € is thought of as being so small that
terms multiplied by higher powers of € may be neglected.

We now take up the multiparameter case and for this purpose consider
the system of total differentiable equations

(10.10) dy; = Ajdty, j=1,...,m
k=1
whereforj=1,...,m k=1,...,r

(10.11) A = Ajx(y,t), Y= (Y1ye» s Y )s b= (B0 b

We shall later identify y with (z, z,p) and m will be 2n + 1. The A, are,
as usual, assumed to be smooth functions on their domains of definition
and to satisfy the integrability conditions

y; 0y,
At ooty

19 — The Herglotz...
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which when written out in terms of the A’s, is by (10.10)

0An OAm (., BAy ., DA\
(10.12) Bt 5%, +;(Agk—é§:“¢4”a—% =0

We can rewrite (10.12) more compactly as follows. Let
F = F(y;t)

be a differentiable function and set

gF -t oF
10. F)= — o
(10.13) Ak (F) Bt +J§=1Agk8yj

The commutator is
95 (9u(F)) — 9:(9:(F)) =

oA BA =, OAi  , OAx\ | OF
{ 8, ot +§ (Aik e §

Jj=1

and it vanishes for all F if and only if the integrability condition (10.12)
holds; we conclude that (10.12) is equivalent to requiring

(10.14) Ak (91(F)) — H51(Hx(F)) =0 forall F.

We specialize to the case r = 1. Consider the system of ordinary differ-
ential equations

(10.15) Qj =Aj(y,t), j = 1,...,m
We define the symbol, 2, of an infinitesimal transformation by

. OF OF
(10.16) AF) = Aia—yi + =

i=1

where A; is the right hand side of (10.15). Note that the symbol of an
infinitesimal transformation is obtained by computing the total derivative
of F(y,t) with respect to ¢ and making use of (10.15).

Now suppose the A; = A;(y), that is the A; are independent of ¢ in
(10.15) and let B denote the symbol for the infinitesimal transformation
generated by (B1(y), ..., Bm(y)), where again the B; = B;(y). We say that
B is compatible with 2 if, whenever y is a solution to (10.15), y + eB(y)
is as well, where ¢ is a parameter which ranges over some interval {|e| < €}.
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We may express this definition analytically by observing first that

d
E(yj +€Bj(y)) = A;(y + €B)
so that
) . 8B, .
'y_j‘l‘EZW:yk Z JAk = A;(y + eB).
k=1 k=1

Now differentiate with respect to € and set € = 0 to find

= OB; A
10.17 - A=) LB,
1o 2 gam ‘

or in terms of the‘ symbols

= dA;\ | OF
A(B(F)) — B(AF)) = { (Ak,_"‘ _a)} 9t
for all F, ie.
AB — BA=0.

(10.17) is the integrability condition for the system

dyj e AJ‘ dt, + B dis.

§ 4.11 Multiparameter Groups of Contact Transformations

The definition of a multiparameter group is modeled on that of a one
parameter group. In this section, the letters ¢, s, etc., will denote the set of
parameters (t1,...,%), (51,...,8), etc. In the development which follows,
the value ¢t = 0 will correspond to the identity transformation. Strictly
speaking these considerations take place in some neighborhood of ¢ = 0,
but that fact will be suppressed in the sequel.

Definition 11.1
An r-parameter group of contact transformations is a family, {S;}, of
contact transformations which satisfy the following conditions:

i} The family includes an element, Sy, called the identity.
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i) There is an operation called multiplication such that if S; and S,
are elements of the family, there exists an element, S, of the family
such that

Sa— = StSS,

This multiplication is determined by a smooth function
¢=(P1,.-.,¢r)

of the variables (¢, s).
111) StSD = S{)St = Sh that iS,

¢(t7 0) = ¢(07 t) =1,

and the Jacobi determinant

8(¢1(t1 3)7 5y gbr(tv S))
a(tia . e :t'r)

#0

for ¢, s near 0. In particular, ¢(0,0) # 0.
iv) The associative law holds, that is

St(SsSa) = (StSs)Sa-;
in other words, ¢ satisfies

B(t, ¢(s,0)) = ¢((t,9),0).

The condition (iii) implies the existence of an inverse, because the equa-
tion

So‘St = 307

or more precisely

(}3(0’, t) =0

is solvable for ¢ in terms of ¢. In operator notation, let
8, =851
denote that solution. We must show that also
AN
‘For this calculation, let S} be such that S35, = So. Then

518y = 80(5:Ss) = (5555)(8:Ss) = 5,(555:)S, = S35, = S
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so that S, = S; ! is both a right and a left inverse, and the standard group
axioms hold. S; ' is easily seen to be unique and moreover we find that

for £, s near 0.
After these preliminaries, we state the main theorem of this section.

Theorem 11.1. In order that an r-parameter family, {S:} of contact
transformations be a group, it is necessary and sufficient that the charac-
teristic functions, Hy, have the form

(111) Hi, :Hk(.’E,Z,p,t) ZZ]Ci(waz?p)wik(t)r Kim= Ly ouy®
s=d

Here the K; are independent of t and the w;;, depend only on t. Moreover,
the functions, KC1,... K, are linearly independent, and the determinant of
the r X r matriz (wx) is nonzero.

Before giving a proof of this theorem, we first make a few observations

and introduce some notation.
Let us set

T
(11.2) dw; =Y wipdty, i=1,...,r
k

so that (11.1) takes the form

(11.3) i?‘f;‘, di, = ZT:/Ci dw;.
k i

The differential form

i?‘lk diy,
k

is integrable and by (9.10) the integrability conditions are

o _ o
Oty ot

If the Hj, are given by (11.1), then (11.4) has the form

(11.4) [Hk,?'ﬁl]mp =

r . awkﬁ Owra
(11.5) Z[Kk,lCz]xzpwka wyg = ?IC;c [ Bt, Ot } ;

k,l
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Since det(w;;) # 0, the matrix (wi;) has an inverse which we denote by
(mi;). Consequently,

T T
(11.6) Zwiknkj = 51'3', kawkj = 51-5,- 'i,j = 1, ceea Ty
k k

where d;; is the Kronecker delta. Multiply (11.5) by 74, and ng,, sum over
a and f3, and use (11.6) to get

(11.7) (K, Kol = Zcm o opo=1,....7
where

- (9wjg Bwja
(11.8) Cooj = azﬂ (E: - otg NaptlBe

Now multiply (11.8) by w,rwer, sum over p and o and use (11.6) to find

Owj;  Ow,; S
(11.9) Eé—" —~ at"’;’“ =) Gtk
PO
The formulas (11.7) and (11.9) are called the Maurer relations.

The ¢,,; are independent of (z, z, p) by their definition, but apparently
may depend upon ¢. We assert that the c¢,,; are all constant. To see that,
we note that the left hand side of (11.7) is independent of t. Differentiate
with respect to t; to get ;

~( 9
> (o) K5 =0
j 2

The K; are linearly independent so that

L.
at-; Pol

that is the c,,; are independent of ¢ and hence are constant.
The c,,; are called the structure constants of the group. From the
definition

=0,

. i Ow;pg awja n
apj ot Bt NastlBp
a8

Ow; o Ow i3
= Z ( a;ﬁ o e ) NBpNae = —Cpaj
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so the ¢,,; are antisymmetric in the first two indices:
(11.10) Gy + Gopy =10,

Moreover, the c,,; satisfy a Jacobi type identity:

r
(1111) Z (Cikacjozm + ChkjaCiam + cjioccko:m) =0

[s]

The next theorem characterizes the function, ¢ = ¢(t,s), which de-
scribes the multiplication rule for the multiparameter group of transforma-
tions.

Theorem 11.2. The functions describing the group operation

t = ¢(tﬂ 3)

is determined by the Maurer-Cartan system of total differential equations
: r v
(11.12) Z wii(t') dt; = sz‘j(t) dt;, briefly, dw;= dw;

J g

which satisfy the initial conditions

=3 when t=0.

Proor. Let

P = (20} ana qu o= (24L)

denote r x r matrices and consider the relations

(11.13) pi (o, d(t,3)) = ds(¢(0, 1), ), b= s wans

Differentiate (11.13) successively with respect to ¢1,...,%, to obtain the
relationship
(11.14) Q(o,$(2,5)) P(t,5) = P($(0,1),5)Q(c,1)

and then with respect to oy,...,0, to find

(11.15) P(o,¢(t,3)) = P(¢(0,1),s) P(o,1).
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The matrices, P and @, are invertible. Set
(11.16) Qt,s) = P~ Yo, t)Q(a,t)
and in the computation below, let
= (t;5) and t" = ¢(a,t).
Then by (11.14) and (11.15) and the definition (11.16),

Qt', §)P(t,s) = P~ (o,t') Q(o,t') P(t, 5)
= P~ Yo, t') P(t", 5) Q(o, 1)
= P~ Yo,t) P(0,t') P"(0,t) Q(c,1)
= P~(0,t) Q(o,1)
= Q(t,0)

so that
(11.17) Qt',0)P(t, s) = Qt, o).

Set 0 =0 and let
Q(t,{)) = (w,,;j(t)).
then (11.17) becomes

. . 96,
(1118) Ej wij(t')% =2 wik(t)-
For s fixed,
O;
di, =3 =%d
Z atk 2

so that if we multiply (11.18) by dt; and sum over k, we get

ij ) dt’ _ij (t) dt;

which was to be proven. U

On the other hand, we can derive the associativity of the solution sys-
tem, ¢(t,s), from these differential equations. To see that, suppose

dw; = dw;
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and let
t" = ¢(t', o), t' = ¢(t, s).

Then from what we have just proven
dw;' = dw; = dw;.
In particular, when ¢ = 0, t" = ¢(s, o). By the uniqueness of the solutions
"= (t, ¢(s,0))
and by the definition of ¢”
= qﬁ(q{)(t, s),a)

which proves the associativity of the system of functions ¢(¢,s), which
appear as solutions to the Maurer-Cartan equations.

Finally, we show that the integrability conditions for the Maurer-Cartan
equations are precisely the equations (11.9).

First, rewrite the conditions dw! = dw; where ¢’ = ¢(t, s) as

T

wa )dt;, = Z“’*J 6‘@ dtk wa(t dty,

so that the integrability conditions is
9 |+ N d v 00,
ﬁg i ———iﬁ”J*—E i) =7 —wi )
o, j wg(t)atk wig(t) ot wii(t") o1, wyi (t)

that is

S5 [0 0 0y _ But8) 0 005] _ B _ Do
o ot oty Ol ati, Oty 0 ot Oty
by the chain rule. In the first part of the summation, sum first with respect
to j and then with respect to m, and in the second, sum first with respect
to m and then with respect to j. Rewriting as a single sum now yields

(11.17) Qui, _ Owq ZZ {3% c’iw?;m(t’)} 3¢; 0¢m

8t Oty ot ot} Oty Ot

Now by (11.17), the d¢;/0t; are the components of a matrix given by

Plt,s) = (%1:3)) = Q Y, 0)w(t,0).

20 — The Herglotz...
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The matrix Q7 1(#,0) is given by
Q7N 0) = (m;()
Moreover, Q(t,0) = (w;;(t)) so that after inserting these expressions into

(11.17) and using the definition (11.8) of the structure constants, we see
that (11.17) is precisely the condition (11.9).

REMARK: If the function defining the group operation satisfies

¢(t= S) = ¢(S, t)v

then the group is abelian and we can show that
T

dw;(t) = Zwij(t) di;
5/

is a total differential. The solution to the Maurer-Cartan equations is
obtained by a quadrature and one gets

wi(t") = wi(t) + wi(s).

If we introduce the parameter

7; = wy(t),
then
T, =7 +o0;
where
T; = wi(t,)a a; = wé(s):
which are
S:8, = S’r+a

In the case r = 1, the possibility of introducing an additive parameter
follows from the associative law, but if r > 2, the commutativity condition
on the group multiplication must be required in addition to associativity.

We now take up the proof of Theorem 11.1. We begin by proving that
the condition

(11.19) Hile,2,p,8) = D K;j(z, 2,p)win(?)

J
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is necessary in order that the H; generate a group of contact transforma-
tions.

We assume, therefore, that the family of contact transformations gener-
ated by the H; forms a group and denote the function describing the group
operation by ¢ so that

(11.20) S¢S = Sy where ¢t = ¢(t,s).
Let (z°,2°,p") and s be fixed but arbitrary, and set
(.’E,Z,p) = St’(IO‘JZO)pO) = StSS(:CO?zO:pO)'

Then

ip,, dz, —dz = ZT:’HJ-(:C, z,p,t)dt’
v ;

and also

ipydﬂfu —dz = Zr: H,(z, 2, p,t) dt
¥ j

whence, together with (11.20)

ZH T,2,p,t 8@58( )dt—Z?{zdt;

and consequently,

Z?{ T2, Py ts))8¢( )z?{;(m,z,p,t).

ot
Set ¢t = 0 to find
a 9$(0, s)
(11.21) Zﬂj(w,z,p, )= = Hilz,2,p,0).
Now let

fC;(:r:,Z,p) = H;(LE,Z,p,O)

and (w;(s)) denote the components of the matrix inverse of (8¢(0, 5)/d%).
Then (11.21) becomes with s now replaced by ¢

(11.22) Hilz,2,p,8) = D Kj(x, 2,p)w;r ().
J
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The (w;x(t)) obviously has a nonzero determinant. The linear indepen-
dence of the K; follows immediately from that of the #,;.

Next, let us show that the condition (11.1) is sufficient. In that case we
are assuming that the canonical system generated by the H; is integrable.
We have seen that this implies the validity of the Maurer relations (11.9),
that is the system

(11.23) dw) = dw;
is integrable. Let
t =dlt,s)
be a solution to (11.23) satisfying
#(0,s) = s
We must prove that
(11.24) (z,2,p) = Su(x,2%,p")
and
(11.25) (x*, z*,p*) = 5,8,(z°, 2%, p%)
are equal when t' = ¢(¢,s). Let s be fixed and arbitrary. We consider

Se(t,s) and S¢S, as functions of £. For t = 0,

(ZE,Z,p) = (:C*:'Z*ap*) = Ss(moazovpﬂ)“'

Both the (z,z,p) and (z*, z*, p*) satisfy the same canonical equations, e.g.
x satisfies

B’H’ oK

dwy—z ¢, aﬂ'd'

T OHE LI~} o
:E —Ldt; =y —2 dw;
— Oop, " ~ Opy !

and by (11.23) these systems are the same, whence by the uniqueness,
and z* are equal. The other cases are similar, which proves the theorem.

Theorem 11.1 is Lie’s first fundamental theorem which we have proven in
the setting of contact transformations. The formula (11.7) with the struc-
ture constants defined by (11.8) is called Lie’s second fundamental theorem
and the formulas (11.9) and (11.10) make up Lie’s third fundamental the-
orem.



Selected Applications

§ 5.0 Introduction

In this chapter we take up some specific applications which illustrate
the use of the theory developed in the previous chapters. In the sequel,

(0.1) L =Lz, @,1t)

will denote the Lagrangian for a mechanical system. The coordinates de-
scribing the system are
& = [y oyiy)

and when n = 1, the subscripts will be dropped. The passage to the
canonical form is effected by solving the system

L . .
(0.2) pjma—wj(m,a:,t), =% . .

for & in terms of p and defining the Hamiltonian function by
(0.3) H(z,p,t) =p- & — L{z,%,1)

where the & are all replaced by their expression involving (z,p,t). The
resulting canonical system which describes the physical situation is

. oH :
Cﬂjzgjg;’, jz}.,...,ﬂ
(0.4) 5?{
7= Live gyt

b = _Eﬂ?
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As we noted earlier, the basic idea is to transform (0.4) into a simpler
system using a contact transformation. The choice of a proper contact
transformation is not always apparent. Even the concept of simplification
is a subjective one. Moreover, it can occur that the work of actually car-
rying through the construction of a desired contact transformation may
be prohibitive. Nevertheless, these examples may provide a guide in some
cases to allow one to arrive at a desired simplification of (0.4).

§ 5.1 Judicious Guessing and the Undamped Harmonic Oscillator

It is often possible to arrive at a desirable contact transformation by
assuming a general form for the transformation, and then choosing free
parameters appropriately. We illustrate the procedure by considering the
undamped harmonic oscillator. See Figure-5.1.

C000000000] m
7 i

Figure 5.1

Assume that the spring is a linear, Hookian spring with spring constant
k, and thst it is attached to a frictionless mass m. We also assume that the
motion takes place in one dimension. Let z = z(¢) denote the displacement
of the mass from its equilibrium position. The Lagrangian is given by

and the Hamiltonian is
1.1 = e,
(11) Ho,p) = 2+

where p = mt.
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H(z,p) denotes the total energy of the spring-mass system and
H(z,p) = constant

represents an ellipse in the zp-space. Let us take one of the variables to be
the energy in the new coordinate system, say

The X variable has to be brought in so that the transformation is a contact
transformation, i.e. canonical. Since P represents the total energy, with a
little malice of forethought, we try setting

L 2

. Pcos*(wX),
kg2

; = Psin*(wX),

or after taking square roots

p = (2mP) 12 cos(wX),
(1.3) g \V2
r= (EP) sin{wX).

Obviously, (1.3) satisfies (1.2). w is a free parameter which we will choose
so that (1.3) is canonical. This means that

pdr—PdX = [1 / %cos(wX) sin(wX)} dP+ {2w\/}%P cos?(wX) - P] dX

must be a perfect differential. If we equate the derivative with respect to
X of the coefficient of dX, we find that w = /k/m. In that case the
transformation (1.3) is canonical. The Hamiltonian (1.1) transforms to the
simple Hamiltonian

(1.4) H(X,P) =P

and the corresponding canonical equations to

X =1,
P =0,
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which have the simple solutions

X=t+ 61
P=aq,
where «, 8 are constants. The solution to the original problem is

s

3 = (%cx) v sin (w(t + B))

(1.5) 4 2= (2ma)"’? cos (w(t + B))
k

From a geometrical standpoint, the solution curves (z,p,#) with = t,
represent curves winding up an elliptical cylinder. Those curves have been
transformed to straight lines embedded in a plane perpendicular to the
X P-plane. See Figure 5.2.

.
>

P P

Figure 5.2

In the next section, we shall develop this transformation in a more
systematic way. Rather than using the X, P variables, we shall take P = wIl
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and X = (1/w)w. The canonical transformation in that case is given by

p = (2mwI)'/? cosw,

(1.6) (2 )
e EMI sin w,

with w? = k/m. In this case the variable I has the units of action, that is
(mass)(length)?/time and w is an angle. The variables (w, I) are therefore
referred to as action-angle variables.

We could, of course, have taken

2 krz
Wep) = gmt 5 =X

instead of P and would have arrived at the contact transformation

p = (2mX)'/2 cos(wP)
92X 1/2
r=— (—k—) sin{wP)

with w? = k/m.
Another possibility is to manipulate the generating function of the form

QX,z) = ax? cot(BX),

where o and 3 are parameters to be chosen. From Chapter III, section 2,
we know that P and p must be chosen so that

Pe= X = afz csc?(BX),
o0
p=-—5-= —2az cot(BX).

Now solve for z and p in terms of X and P to obtain

T = 1/——% sin(8X),
' | £
p=—2a ~ B cos(BX)

Next we choose o, 8 to achieve a simplification of the Hamiltonian. This is

2 2 2 s -
H(z,p) = g‘;g + k—;"" = % (ET;) cos?(BX) + g (a—g) sin®(6X)

=H(X, P).

2| — The Herglotz...
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We can eliminate the X variable if we take

42
P =7 and d

2m(—ap) 2(—af)

The generating function is, therefore,

vmk
Q(X, =) =—Tm-:tzcot(wX), w:ﬂ%,

and the resulting contact transformation is (1.3).

As a final remark, we reiterate that although this approach of judicious
guessing does have a certain ad hoc character, it often leads quickly to the
desirable contact transformation.

§ 5.2 Action-Angle Variables

We begin this section by treating one dimensional Hamiltonians of the
form
. @
« (A1) H{z,p) = - + V(z), P = ma.
The potential energy function, V(z), is an even function of z. H(z,p)

represents the total energy of the system and for a given motion, it will be
equal to some value E. For each permissible value of F, we suppose that

(2.2) Cg: H(z,p)=E

represents a simple closed curve in the zp phase plane so that the motion
is periodic, with the period in general depending upon E. See Figure 5.3.
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Figure 5.3

The time it will take for a particle governed by (2.2) to traverse Cg is
given by

(2.3)
mdz mdzx d
T(E) = ~—=f — = — ++/2m(FE — V) dx,
( ) cg P Cr i\#2m(E_V) dl Cg ( )

where the plus sign is to be taken when p > 0 and the minus sign when
p < 0. Set

(2.4) I(E) =fo pdz,

so that (2.3) becomes

d
(2.5) T(E) = d—EI(E).
The integral, I(E), of (2.4) has the units of action. By (2.5), I'(E) # 0 so
that I has an inverse

(2.6) I=I(E), E=E(I).

We propose to introduce it as a new canonical variable. It will play the role ‘
of P in the discussion below. The new canonical variables will be denoted
by (w,I) which is the traditional notation. Therefore, if we can introduce
new canonical variables, (w, I), by

(z,p) «— (w,]),
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the canonical system will transform to

(2.7)

@ = E'(I),
1=0,

since E(I) = H(I). The units of E'(I) are one divided by the time, i.e.
has units of frequency so that w is an angular measure. The variables I
and w are therefore referred to as action-angle variables.

More generally, suppose H = H(z, p) is the Hamiltonian for a mechani-
cal system, and suppose that for energies, E, belonging to an interval, the
canonical system has periodic solutions.

Let
Cg: H({z,p) = FE

be a simple closed orbit in the zp phase space and set
I=1I(FE) =/ pdz.
Cg

The canonical transformation
(z,p) «— (w,I)

is characterized by a generating function S = S(x, I). (See IIL.2).

Then
o8 a5

P=%z YT ar
and the generating function, S(s, ), is obtained by solving the Hamilton-
Jacobi differential equation

oS

for S.

Example 2.1. The Linear Harmonic Oscillator

The Hamiltonian is
2 2
p kx
H{z, = — —
(@,p) 2m 2

and the curves Cp: H(z,p) = E are ellipses. See Figure 5.4
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P
N

Figure 5.4

A straight forward calculation yields

2 1
)=, s E=%,
w 2m

where w = /k/m. The Hamilton-Jacobi differential equation for Sy is

S‘% k2 wl
mt 2 =

Thus,

wl  ka? 1/2 mwd kr o Li2
p—Sk—[z"“("z?‘Tﬂ "[T (“mm)]

Let z1/km/wl = sinf and integrate to obtain
S(z,I) = L [6 + 2sin8 cos 8]
3 - 2 3

as 1 .
W= 27 = 5 arcsin (zkn/(wl))
so that 7
T = sin(2mw),
kw

muwl

p= cos(2mw).
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The substitution w* = 2rw, I* = I/(2r) puts this into the form of (1.6) of
the first section.

An easy generalization of these ideas to a system with n degrees of
freedom occurs with the Hamiltonian H(z,p) = H(z1,...,Zn,P1,--->Pn)
can be written as the sum

n

H(z,p) = H;(;,p5)

7

If H(z,p) = E, then one can write

and the motion of (z;,p1) is independent of the motions of (za,ps),...,
(Zyy pn)- Thus,

Hi(zr,p1) =

a constant. The variables in this case separate and one precedes now, if
possible, to introduce the action-angle coordinates

fj=f p; dz;
C i

al

for each coordinate. Examples of this procedure are given in the next
section.

§ 5.3 Separation of Variables

We shall illustrate this procedure by considering two special but typical
problems where the computations can be done explicitly.

Let us treat first the case where we model a thrown ball, neglecting air
resistance. See Figure 5.5.
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(0, 0)
Figure 5.5
The kinetic energy is
T="2 (8" +¢%) = = (&2 +43),
and the potential energy is
V =mgy = mgz»

The Hamiltonian is, therefore,

1 08 o5
(3.1) H(zxy,x2,p1,P2) = K + )] + mgze = F.

E;E 8_51:1 0552

We assume that
5= Sl(.’El) + 52(562)

so that (3.1) becomes

X

2m

(3.2) [(5)(z2) + (85)°(z2)] + mgas = B.

We put the terms depending only upon z; on one side of the equation and

those depending upon z on the other. We obtain

(3.3) S;z(:cl) = 2mE — 2m’gzq — ng(scz).

The left hand side depends only upon 1, and the right hand side on z».
Since they vary independently of each other, they must be constant. Denote

the constant by o®. Then

8 = and omE — 2m2gzy — S’zz(a:z) = a’.
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The function S{(z1) is now found to be
Sl(.’L'l) = QT +181.

Next consider
Séz(ﬁ']g) = 2mE — o® — 2mZgz,.

We integrate this differential equation to find

Sa(za) = (QmE — P — 2m2g$2)3/2 + Ba.

 3m2g

The complete solution to the Hamilton Jacobi equation is given by the sum
of S; and 83, thus

1
S = QT — % (2mE s O!z = 2m29$2)3/2 -+ ﬁ

The generating function is therefore

Q=S5-Et
The solution to the problem

o0 o

8:121 =& 322‘2 e
a0 1/2
35 = —t — i [(2mE — o®) - 2ng$2] =
a0 o /2
o= =i + g [(2m*E — o) — 2m29$2] = vs.

Square the equation for 0Q/3FE and rearrange the terms to find

42
Top = _7 + c1t + ¢, c1, C2 constant
and by eliminating the radical from the d2/0F and 0Q2/3a terms, we find
for z;

a
T = —t+k, k a constant.
m

Consider next the motion of a planet m which moves about a fixed sum
of mass, M. The Hamiltionian in spherical coordinates (r, 8, ¢)
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Z
(7,8,9)

L 4
. ' y

v—-u/_““-_ i
0 : Rt

x
Figure 5.6
is given by
(3.4)

E.

2m P

1 1 2 GmM
H="H(prpo,p,7:0) = = | P2+ 505+ 557 | - =
(pryPo, Py, 7, 6) (pr 2Pt 5 Ty

According to Jacobi’s method, we seek a general solution to (3.4). This is
done by assuming a solution in the form

(3.5) S = R(r) + 0(8) + 2(¢),

and determining the unknown functions R, ©, ®. We find

1 12 1 12 1 12 GmM _
- [R (r)+ r2@ @) + = sinzﬂq’ () s E.
We first separate out the ®(¢) variable
1 [ 1 2 GmM 1 2
— —0'°(8)| - - F = = e @’
2m [R ")+ ( )] T = 2myr2 sinzgq) (@),
whence

(3.6) {-2% [R’z(r) + %29’2(0)] - G—":ﬂﬁ - E} 2mr?sin? 6 = —3'*(¢).

The left hand side depends only on (r, #), while the right hand side only on
¢. Thus, they are constant. Set

q”(‘f’) = a3

22 — The Herglotz...



162 V. SELECTED APPLICATIONS

so that
©(¢p) = agp + bs,

where a3, by are constants. Next, return to (3.6) and separate the terms
depending on r from those depending on #. We find first

1 . GmM 1 9 a2
~_R*(r) - —BE=-——0%) - —B
2m (r) r 2mr? ave) 2mr? sin’ §
so that
1 9 Gm 9 o
omr? | —R2(r) _EB|l=-l& 5|
mr 2m G r :| [@ + sin® 6

Once again the variables have been successfully separated, each side there-
fore is constant, denote it by —as. The equation for ©(F) is

@24

Integrate this equation to find

02 1/2
@(Q)I/ l:az—— = 39] d9+bg

sSin

Finally we obtain for R(r),

Y 1II2
R(r) = f [Zm (E+ C’mM) - %] dr +by.

P

The sum of R(r), ©(8), () gives the comple.te integral of the Hamilton
Jacobi differential equation. The (E, as, a3) correspond to the (P, Py, Ps).
We find for S the expression

ag 11/2
S:—Et+a3¢+f[ag— 3 J dé

sin” @

1/2
+/[2m(E+gTiﬁ—/f~)~—a—§jl dr + b,
. r P

where b = by + by + bs. Differentiation with respect to (E, as, a3) yields the
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integrated form of the equations of motion

-1/2
lew—g—g—ztwam (E-I— GH:M) ﬁf‘ﬁ] m dr,

o8

ZB‘-&;

1 a2 ~H2 GmM as] 7Y dr
= - {12 _ %2 .11
2 / [az sinzﬂ] a6 /[ m(E+ ¢ ) ?"2] p2’

‘ 2 1-1/2 9
Q3 —a£=¢+/[a2— .03 } 93 _ 9.

das sin @ sin® @

Q2

§ 5.4 Perturbation Theory

In perturbation theory, the Hamiltonian function, H, is thought of as
being written as the sum of two terms, a principal part which makes the
major contribution to the solution plus a small remainder term, the per-
turbation:

(4.1) H =Hy + Ha,

where H; is the principal term and is itself the characteristic function for
a canonical system. The canonical equations arising from H; are supposed
to be simple in the sense that they can be solved. The idea is to use the
solutions arising from #H; to get some information about the behavior of
the solutions to the system generated by H.

We illustrate the procedure for a spring-mass system where the restoring
force of the spring is given by

(4.2) f(z) = —(kz + lz?)

This nonlinear spring is referred to as a stiff spring. The parameters k&
and [ are assumed to be constant. z = z(f) is the position of the mass,
m, measured from the equilibrium position. We assume that there are no
external forces acting on m, and that friction is absent as well. See Figure
5.7
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TEETEEE5] m
| 7

x=0 x=x(1)
Figure 5.7

The kinetic energy for the system is

mi
=
and the potential energy is
kz? Izt
V=—-no+—
7 +
so that the Hamiltonian function is
' _ 1 5 ko, 1y
(43) H(ZE,])) = é;;?‘—p + 5.’1’3 + ZI .

We can write (4.3) in the form of (4.1) by setting

‘ 1 k l
(44) Hl (-‘I‘,p) B %‘}72 + 53’)2, and ’Hg(:c,p) = Z.’B‘l.
H; is the characteristic function for the linear harmonic operator.
We have solved the canonical system
g=2
(4.5) m
p=—kz

by reducing it to a simpler system using the contact transformation
p = (2mP)Y? cos(wX)

(4.6) - (% p) sin(wX)
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with w? = k/m. Under (4.6) the function #;(z,p) transforms to P. The
total Hamiltonian, (4.3) transforms to

4.7) HIX P =P §P2 sin2(wX)

where we have taken

21

(48) €= EE’

and we are thinking of € as a small parameter. The resulting canonical
system generated by (4.7) is

X =1+ ePsin®(wX)

(4.9) P = weP?sin(wX) cos(wX)

The initial values
(4.10) z(0) =a°  p(0) =9,
transform to
(4.11) X(0)=X°, Py = P,
and the system (4.9) should be solved subject to (4.11). Observe that when
e = 0, (4.9) reduces to the problem for the harmonic oscillator. There are
several ways we could procede to get some information about solutions to
(4.9), (4.11) and how they compare, at least for small time, to solutions
to the desired problem. We shall, however, only indicate one possibility.
Observe that both X and P depend upon ¢ so that in fact

X = X(i:e) P = P(t;e€).

Expand both X and P in power series in € to find

(4.12) X(t;e) = Xo(t) + X1(t)e+ ...
. P(t,f):PO(t)+P1(t)E+
where
1 @ X(t;e) . 1 8P
Xk(t) = :i;,' ek i 3 Pk(t) E‘f ek o
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Now at ¢ = 0, Xo(0) = X%, X;(0) =0, ..., and Py(0) = P°, Py(0) =0,
... Xo and P, satisfy the system

Xp=1
P[):O
so that
Xo(t) =t + X°
(4.13) o(t)
FBylt) = PL.

Next, differentiate (4.9) with respect to ¢ and set ¢ = 0 to conclude that
X, and P; satisfy

X1 = Po(t)sin? (wXo(t)) = P°sin® (w(t + X°))
P; = wP}(t)sin (wXo(t)) cos (wXo(t))
= wP? sin (w(t + X)) cos (w(t + X)),
so that

0 : 0 : 0
P’  sin 2w(t+ X"))  sin(2wX
Xt = E ( 4w ) * (4w :

(4.14) "

By(t) = —PT [cos (2w(t + X)) — cos(2wX?)] .

One proceeds in this way to generate as many terms in (4.12) as desired,
although the calculations become increasingly laborious. The solution is
given by

(4.15)

X(t;e)=(t+X°)+(

P%  sin (2w(t+ X9)) sin(zwxﬂ))

Sl e + €+

2 o o
po?

P(t;e) = P° + - (cos(2wX®) —cos (2w(t + X)) e+...

and now the solution itself to the original canonical system

. p
&= =
(4.16) m
p = —(kz + l2?),

is given by inserting the expressions (4.15), into (4.16). An approxima-
tion is obtained by truncating the series in (4.15), say neglecting all terms
containing powers of e greater than or equal to two. Thereby achieving a
suitable approximation.
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