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VALUE FUNCTIONS IN CONTROL SYSTEMS

AND DIFFERENTIAL GAMES:

A VIABILITY METHOD

Sławomir Plaskacz

Abstract

The present work is the habilitation dissertation of the author written in
the Faculty of Mathematics and Computer Science of the Nicolaus Copernicus
University in Toruń, Poland.

The paper, divided into 6 Chapters, is devoted to the study of properties
of value functions in deterministic control systems and differential games. The
main goal is to characterize the value functions as the unique solution of the
Hamilton–Jacobi equations. New definitions of weak solutions are introduced
and uniqueness as well as existence results are obtained. Viability and invariance
theorems for differential inclusions and differential games are the main tools
to study invariance properties of the epigraph and/or hypograpf of the value
functions.

Viability (invariance) problem is considered for time-dependent constraint sets
(tubes) and measurable in time differential inclusions. The tangential condition
necessary and sufficient to viability (invariance) of the tube is assumed to hold
true for almost all t. The measurable viability and invariance theorems presented
in Chapter 2 are the main tools to obtain the characterization of the value
function in the Mayer problem with dynamics measurable in time and a lower
semicontinuous terminal cost function. The value function is proved to be the
semicontinuous solution such that the equality in the Hamilton–Jacobi equation
holds true for almost all t and every subgradient.

Control systems with state constraints are considered in Chapter 3. State
constraints are given by a closed, not necessarily smooth, set. The value functions
in the Bolza problem and in the infinite horizon problem are the unique solutions
of the corresponding Hamilton–Jacobi–Bellman equations. Set-valued analysis
tools, like paratingent cones, play crucial role in the formulation of controllability
assumptions at the boundary of the set of constraints. This assumptions do not
imply the continuity of the value function.

Zero sum differential games are considered in the framework of non-antici-
pative strategies. It is shown that the upper and lower values coincide for ga-
mes with dynamics measurable in time. In Chapter 4, viability theory is exten-
ded to differential games. Discriminating and leadership tubes in differential
games play a role similar to the one played by viability and invariance tubes
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4 Sławomir Plaskacz

in differential inclusions. The proof of the discrimination theorem makes use of
a non-expansive selection theorem in ultrametric spaces. To prove the existence
of value in the Mayer problem for differential games with semicontinuous termi-
nal cost several methods have been used. The viability method was combined
with inf-convolutions approximation and some stability properties of viscosity
solutions.

Oleinik–Lax explicit formula for the solution of Hamilton–Jacobi equation is
generalized in Chapter 6 to the case when Hamiltonians depend on time and
on u, where u(t, x) denotes the solution. It is used together with a commutation
property of reachable maps of differential inclusions to establish the existence and
uniqueness of solutions to some overdetermined systems of the Hamilton–Jacobi
equations.

The work is based on some earlier papers of the author.



INTRODUCTION

We consider value functions for deterministic control systems and zero-sum
differential games with dynamics governed by ordinary differential equations.
Value functions satisfy the Dynamic Programming Property. If the value func-
tion is smooth then the Dynamic Programming Property leads to a first order
PDE which is called Hamilton–Jacobi–Bellman’s equation in control theory and
Hamilton–Jacobi–Isaacs’ equation in games. One of the main difficulties consists
in the fact that the value function usually is not smooth. In the early 80’ Crandall
and Lions introduced a notion of weak solutions to the Hamilton–Jacobi equ-
ations – called viscosity solutions [35], [34]. Another concepts of weak solutions to
first order PDE’s are minimax solutions introduced by Subbotin [93], [95] in the
framework of positional differential games and contingent solutions introduced
by Aubin to study Lyapunov functions [5]. These concepts of weak solutions base
on some tools of nonsmooth analysis. If the value function is continuous then it
is a unique viscosity solution of the corresponding Hamilton–Jacobi equation, as
well as a unique minimax or contingent solution.

In many control problems, especially with state constraints, the value function
is discontinuous. In order to describe the value function as a unique solution
to the corresponding Hamilton–Jacobi equation it was necessary to modify the
notion of a weak solution. It was done by Barron–Jensen [14] and Frankowska [44]
by means of different methods.

Viability approach to the problem of the description of a discontinuous va-
lue function was initiated by Frankowska in [44]. This method is based on the
fact that the value function is uniquely determined by invariance properties of
its epigraph with respect to an appropriate dynamical system. In the Mayer
problem for control systems the epigraph of value function is forward (in time)
viable and backward invariant. These two properties of the epigraph and a termi-
nal condition uniquely characterize the value function. Viability theory provides
geometric conditions which are equivalent to viability or invariance properties.
These conditions can be expressed with contingent cones or with normal cones.

5
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In the dissertation, we present some generalizations of viability and invariance
theorems. Our generalizations are done in the direction determined by our fu-
ture applications. We obtained viability and invariance theorems for differential
inclusions with the right-hand side measurable in time and for varying in time
state constraints (tube). We assume that the tube is (left) absolutely continuous.
The regularity assumption on the tube is justified by the fact that the epitube
corresponding to the value function satisfies it. The obtained viability and in-
variance results allow to characterize value function as the unique solution of
the corresponding Hamilton–Jacobi equation. Solutions are understood in the
meaning given in the dissertation, i.e. the Hamilton–Jacobi equation holds true
for almost all t. The uniqueness results justify our definition of solution.

We use a similar scheme to study value functions for differential games. Di-
scriminating and leadership theorems play the role of viability and invariance.
Differential games are considered in the framework of nonanticipative strategies.
The proof of existence of a nonanticipative strategy in discriminating theorem
base on a selection lemma about existence of a nonexpansive selection in ultra-
metric spaces. The lemma, in the author’s opinion, is a convenient tool to reduce
some differential games problems to differential inclusion.

Viability approach to optimal control is especially useful for problems with
state constraints. We describe value function as an appropriate solution to the
corresponding Hamilton–Jacobi–Bellman equation under assumptions that a pri-
ori exclude continuity of value. Thus other methods seem to be difficult to apply.

We also use viability approach jointly with some other methods. In the Mayer
problem for differential games with semicontinuous terminal cost we prove exi-
stence of value using discriminating theorem and stability of viscosity superso-
lutions. We show that the value function in this problem is a unique generalized
solution (in the meaning similar to envelope solutions) to the corresponding
Hamilton–Jacobi equation.

In Chapter 2, we apply viability approach for the Mayer problem with dy-
namics measurable in time and a lower semicontinuous terminal cost function.
We generalize viability and invariance theorems to the case when the right-hand
side of differential inclusion is measurable in time and the set of constraints
depends upon the time (Theorems 2.2.5, 2.2.2, 2.2.6). Our key observation is
that tangency conditions have to be satisfied almost everywhere with respect
to t. We assume that the tube of constraints is absolutely continuous. Another
measurable viability theorem was obtained by Bothe [20]. The main difference
between our Theorem 2.2.5 and Bothe’s viability results is that our tangency
condition is formulated in a weaker way involving the convexification of Bouli-
gand’s tangent cone. Thanks to this the tangency conditions in viability and
invariance theorems can be equivalently formulated in a dual way involving nor-
mal cones. Next, we apply our measurable viability and invariance theorems to
prove that the value function is the unique weak solution to the corresponding
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Hamilton–Jacobi–Bellman equation in the meaning that the equality in the equ-
ation holds for almost all t. If the dynamics is measurable in time, then so is
the Hamiltonian H. Viscosity solutions in this case were also studied in [72], [13]
using super- and subdifferentials involving L1 test function. The main result of
the chapter is Theorem 2.3.4.

In Chapter 3, we consider control systems with degenerate state constraints.
The set of constraints K is the closure K = clD of an arbitrary subset D ⊂ Rn.
We present two types of control problems: the Bolza problem and infinite hori-
zon problem. In both cases we pose minimal assumptions to apply the viability
approach. In both cases, the main difficulty appears in the proof that if a func-
tion W is a backward invariance domain of a corresponding differential inclusion
then W is dominated by the value function (comp. Propositions 3.1.6, 3.2.11).
The key point of the proof is the construction of a control u( · ) and a correspon-
ding trajectory xu( · ) that are close to a given pair (u, xu) (xu(t) ∈ K for every
t ∈ [t0, T ]) and moreover the trajectory xu remains in D. The crucial assump-
tions to perform the construction of (u, xu) are (3.4), (3.5) for nonautonomous
systems and (3.32), (3.33) for autonomous one. To formulate the assumptions,
we use paratingent cones. If the set D is an open set Ω with a smooth boundary
∂Ω then our assumptions are equivalent to the following condition

∀t, ∀x ∈ ∂Ω, ∃u, 〈f(t, x, u), n(x)〉 > 0

where n(x) is an exterior normal.
The control problems with state constraints were considered in [92], [23], [62].

In those papers authors assume that the dynamics of the system satisfies an
opposite condition (called the Soner condition)

∃ε > 0, ∀t, ∀x ∈ ∂Ω, ∃u ∈ U, 〈f(t, x, u), n(x)〉 < −ε.

Under Soner’s condition the value function is continuous. We provide examples
of control systems for which the value function is discontinuous but despite of
this fact it is the unique solution (in the sense proposed in the chapter) of the
corresponding Hamilton–Jacobi equation.

A different approach to the Mayer control problems with state constraints
is provided in Section 3.3. Using results of Chapter 5 we obtain a general de-
scription of a value function in the Mayer problems with totally discontinuous
terminal cost function. Next adopting the classical method of adding an extra
variable (usually used to reduce the Bolza problem to the Mayer one) and the
technique of penalty function we characterize the value function in the Mayer
control problem with state constraints as a generalized solution of the correspon-
ding Hamilton–Jacobi equation.

The main results of the chapter are Theorems 3.1.7, 3.2.1 and 3.3.2.
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In the second part of the dissertation we consider zero-sum differential ga-
mes with dynamics given by x′(t) = f(t, x(t), y, z). By x( · ; t0, x0, y( · ), z( · )) we
denote the solution of the Cauchy problem

(1)
{
x′(t) = f(t, x(t), y(t), z(t)) for a.e. t ∈ [0, T ],

x(t0) = x0,

where y: [0, T ]→ Y , z: [0, T ]→ Z are measurable controls (open loops) of player
I and II, respectively and Y , Z are compact metric spaces.

Let Mt = {y: [t, T ] → Y : y is measurable} and Nt = {z: [t, T ] → Z :
z is measurable}. We say that a map α:Nt → Mt is a nonanticipative strategy
of the first player if for every control z1, z2 ∈ Nt such that

z1(s) = z2(s) for almost all s ∈ [t, τ ]

we have
α(z1)(s) = α(z2)(s) for almost all s ∈ [t, τ ].

We say that a map β:Mt → Nt is a nonanticipative strategy of the second player
if for every control y1, y2 ∈Mt such that

y1(s) = y2(s) for almost all s ∈ [t, τ ]

we have
β(y1)(s) = β(y2)(s) for almost all s ∈ [t, τ ].

Let Γt, ∆t denote the set of all nonanticipative strategies of the first and of the
second player, respectively.

We shall consider a terminal time payoff functional

Q(y, z) = Qt0x0(y, z) = g(x(T, t0, x0, y, z)),

where g:Rn → R is a terminal cost function, y ∈ Mt0 , z ∈ Nt0 . The aim of
the first player is to maximize the payoff, the aim of the second player is to
minimize it.

The value function of the first player is given by

(2) U+(t0, x0) = sup
α∈Γt0

inf
z∈Nt0

Qt0x0(α(z), z).

The value function of the second player is given by

(3) U−(t0, x0) = inf
β∈∆t0

sup
y∈Mt0

Qt0,x0(y, β(y)).
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The value of the first player U+ is also called an upper value and U− is called a
lower value. If the upper value is equal to the lower value then we say the game
has a value. The main problem in zero sum differential games is the existence
of value. It has been considered by many authors. A pioneering work was that
of Isaacs [60]. He introduced condition (4) which provides the existence of the
value in the case where both values are smooth,

(4) max
y∈Y

min
z∈Z
〈f(t, x, y, z), p〉 = min

z∈Z
max
y∈Y
〈f(t, x, y, z), p〉

for every t, x and p ∈ Rn.

Later on several concepts of strategies appeared (see [39], [37], [67]). For these
concepts of strategy technical proofs of the existence of value were provided.
Evans and Souganidis in [38] proved that if g is Lipschitz continuous and f is
continuous and Lipschitz continuous with respect to x then the upper value U+

is the viscosity solution of the upper Isaacs equation

(5)
{
Ut +H+(t, x, Ux) = 0 (0 ≤ t ≤ T, x ∈ Rn),

U(T, x) = g(x) (x ∈ Rn),

where the upper Hamiltonian H+ is given by

H+(t, x, p) = min
z∈Z

max
y∈Y
〈f(t, x, y, z), p〉

and the lower value U− is the viscosity solution to the lower Isaacs equation

(6)
{
Ut +H−(t, x, Ux) = 0 (0 ≤ t ≤ T, x ∈ Rn),

U(T, x) = g(x) (x ∈ Rn),

where the lower Hamiltonian H− is defined by

H−(t, x, p) = max
y∈Y

min
z∈Z
〈f(t, x, y, z), p〉.

The Isaacs condition (4) says that H− = H+. Thus the upper and the lower
Isaacs equations are the same. A direct conclusion from uniqueness of viscosity
solutions to (5) and to (6) is that the value of the game exists.

In Chapter 4 we prove the existence of value for a game with dynamics given
by a right-hand side f(t, x, u, v) measurable in t. Our scheme of proof follows
the same arguments as in [38]. We prove that the upper and the lower values
are generalized solutions to the same Isaacs equation (under Isaacs condition).
Our approach is based on the notions of discriminating and leadership doma-
ins. Briefly speaking, we say that a tube P (t) has discriminating property for
the first player if for every initial condition at the tube there exists a strategy
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of the first player such that whatever control is chosen by the second player
the corresponding trajectory remains in the tube P . In Theorem 4.2.2 we give
a geometric sufficient and necessary condition (4.3) to discriminating property
for games with dynamics measurable in time and absolutely continuous tubes. In
the continuous case analogous result was obtained by Cardaliaguet in [24]. The
crucial role in the proof of Theorem 4.2.2 is played by a nonexpansive selection
theorem in ultrametric spaces (see Lemma 4.1.1) and measurable Viability The-
orem 2.2.2. This lemma became a standard tool for reducing some differential
games problems to differential inclusions.

In Chapter 5 we consider the existence of value for a game where the terminal
cost function g is an extended lower semicontinuous function. To prove the exi-
stence of value we have to modify the notion of upper and lower value (see (5.1)).
Since the value function is discontinuous and the Hamiltonian is not convex with
respect to the last variable then the known uniqueness results for viscosity so-
lutions of PDE cannot be used. In the proof of the existence of a value we use
several methods. Firstly, we use viability theory (discriminating theorem in the
version of Theorem 4.2.3) to show that any supersolution (subsolution) is greater
(lower) or equal to the lower (upper) value. Secondly, we apply inf-convolutions
to approximate a lower semicontinuous function by an increasing sequence of
Lipschitz continuous functions. Thirdly, we base on the Barles–Perthame sta-
bility result [10] and the Evans–Souganidis [38] existence of value result in the
Lipschitz case. Our studies were motivated by Subbotin’s existence of a value
result for differential games with positional strategies [94].

In [73], P. L. Lions and J. C. Rochet obtained existence and uniqueness
of viscosity solutions to some overdetermined systems of the Hamilton–Jacobi
equation. In Chapter 6, we generalize this result to a wider class of Hamilto-
nians. In the proof we use a commutation property of reachable maps of diffe-
rential inclusions and the Oleinik–Lax type explicit formula of solution to the
Hamilton–Jacobi equation. We obtain an explicit representation formula of the
value function which generalizes some result obtained recently by Barron–Jen-
sen–Liu [16] and Alvarez–Barron–Ishii [1].

The dissertation is mainly based on some earlier works of the author.
Chapter 2 contains some results obtained with H. Frankowska and T. Rzeżu-

chowski and previously published in [50], [51], [46].
Results of Chapter 3 have been obtained with H. Frankowska and M. Quin-

campoix and come from [47]–[49], [80].
Results obtained with P. Cardaliaguet and published in [26], [25] are collected

in Chapter 4.
The contents of Chapter 5 appears in a joint paper with M. Quincampoix [79].

Chapter 6 is based on results obtained with M. Quincampoix [81].



CHAPTER 1

PRELIMINARIES

In this chapter we shall acquaint the reader with set valued analysis, viability
theory and viscosity solutions of Hamilton–Jacobi equations. Comprehensive tre-
atment of these topics can be found in [7], [87], [3], [34], [9]. So the only properties
relevant to our purposes will be listed here, mostly without proofs.

1.1. Set limits

Let T be a metric space and {Aτ}τ∈T be a family of subsets of a metric
space X. The upper limit Lim sup and the lower limit Lim inf of Aτ at τ0 ∈ T
are closed sets defined by

Lim sup
τ→τ0

Aτ = {v ∈ X : lim inf
τ→τ0

dist(v,Aτ ) = 0},

Lim inf
τ→τ0

Aτ = {v ∈ X : lim sup
τ→τ0

dist(v,Aτ ) = 0}.

A subset A ⊂ X is said to be the limit of Aτ if

A = Lim inf
τ→τ0

Aτ = Lim sup
τ→τ0

Aτ =: Lim
τ→τ0

Aτ .

1.2. Tangent and normal cones

Let K ⊂ Rn be a nonempty subset and x ∈ K. The contingent cone TK(x)
to K at x is defined by

v ∈ TK(x)⇔ lim inf
h→0+

dist(x+ hv,K)
h

= 0.

The proximal normal cone NK(x) to K at x is defined by

NK(x) = {v ∈ Rn : ∃α > 0, dist(x+ αv,K) = |αv|}.

The negative polar cone T− to a subset T ⊂ Rn is given by

T− = {v ∈ Rn : ∀w ∈ T, 〈v, w〉 ≤ 0}.

11
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We set N0
K(x) = T−K (x) and say that N0

K(x) is the normal cone to K at x ∈ K.
It is well known that NK(x) ⊂ N0

K(x). If K is the graph of y = xα, 1 < α < 2
then N0

K(0, 0) = {(v1, v2) : v1 = 0} 6= NK(0, 0) = {(v1, v2) : v1 = 0, v2 ≤ 0}.
Ioffe proved in [59] that

(1.1) Lim sup
K3y→x

N0
K(y) = Lim sup

K3y→x
NK(y).

We denote by MK(x) the cone lim supK3y→xN
0
K(y). For the first time it was

considered by Mordukhovich in [75]. If K = {1/n : n = 1, 2, . . . } ∪ {0} then
MK(0) = R 6= N0

k (0) = (−∞, 0].
It was proved by Cornet [33] (see also [7, p. 130]) that

(1.2) Lim inf
K3y→x

TK(y) = Lim inf
K3y→x

co(TK(y)) = CK(x) ⊂ TK(x),

where CK(x) denotes Clarke tangent cone to K at x

CK(x) = Lim inf
K3y→x, h→0+

K − y
h

.

The paratingent cone PLK(x) to K, relative to L ⊂ K, at x ∈ L is defined by

v ∈ PLK(x)⇔ ∃hn → 0+, ∃vn → v, ∃xn → x, xn ∈ L and xn + hnvn ∈ K.

Proposition 1.2.1 (see Bouligand [21] and Choquet [30]). Let L be a subset
of a closed set K ⊂ Rn, x0 ∈ L and w /∈ PLK(x0). Then there is an ε > 0 such
that for every x ∈ K ∩B(x0, ε)

(x+ (0, ε]B(−w, ε)) ∩K ⊂ (K \ L).

Proof. Otherwise there are xn → x0, xn ∈ K, hn → 0+, wn → w such that
yn := xn − hnwn ∈ L. Then yn → x0, yn ∈ L, yn + hnwn ∈ K, so w ∈ PLK(x0).
Hence we get a contradiction. �

Remark. (a) Consider an open subset Ω ⊂ Rn with sufficiently smooth
boundary and let K = Ω, L = ∂Ω, x ∈ ∂Ω. Denote by n(x) the outer normal
to Ω at x ∈ ∂Ω. We assume that n( · ) is continuous on ∂Ω. Let v /∈ PLK(x). So

for all sequences xn
∂Ω−→ x, hn → 0+, vn → v we have xn + hnvn /∈ K for n large

enough. In particular, taking xn = x, we deduce that for some ε > 0

(1.3) (x+ ]0, ε]B(v, ε)) ∩K = ∅.

Hence 〈n(x), v〉 > 0. Conversely, if for some v ∈ Rn, 〈n(x), v〉 > 0, then v /∈
PLK(x).

(b) If K is a smooth submanifold of Rn with the boundary L = ∂K, then
the paratingent cone PLK(x) at a point x ∈ L is equal to the tangent half space
HxK = {v ∈ TxK : 〈v, n(x)〉 ≤ 0}, where n(x) is an exterior normal to ∂K at x
with respect to K.
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Systematic presentation of different concepts of tangent cones can be found
in Chapter 4 in [7].

1.3. Some elements of nonsmooth analysis

Let us recall generalizations of notions of directional derivatives and gradients
for nonsmooth functions.

Definition 1.3.1. Consider an extended function ϕ:Rn 7→ R ∪ {±∞}.
(a) The domain of ϕ, Dom(ϕ), is the set of all x0 such that ϕ(x0) 6= ±∞.
(b) The subdifferential and the superdifferential of ϕ at x0 ∈ Dom(ϕ) are

respectively given by

∂−ϕ(x0) =
{
p ∈ Rn : lim inf

x→x0

ϕ(x)− ϕ(x0)− 〈p, x− x0〉
‖x− x0‖

≥ 0
}

and

∂+ϕ(x0) =
{
p ∈ Rn : lim sup

x→x0

ϕ(x)− ϕ(x0)− 〈p, x− x0〉
‖x− x0‖

≤ 0
}
.

(c) The contingent epiderivative and the contingent hypoderivative of ϕ at
x0 ∈ Dom(ϕ) in the direction u ∈ Rd are respectively defined by

D↑ϕ(x0)(u) = lim inf
h→0+, u′→u

ϕ(x0 + hu′)− ϕ(x0)
h

and

D↓ϕ(x0)(u) = lim sup
h→0+, u′→u

ϕ(x0 + hu′)− ϕ(x0)
h

.

It was shown in [7, p. 226] that for all x0 ∈ Dom(ϕ)

(1.4) Epi(D↑ϕ(x0)) = TEpi(ϕ)(x0, ϕ(x0)),

where Epi denotes the epigraph. Similarly

Hyp(D↓ϕ(x0)) = THyp(ϕ)(x0, ϕ(x0)),

where Hyp denotes the hypograph.
From [43] (see also [7, pp. 249, 253]) we know that

Proposition 1.3.2. Let ϕ:Rd 7→ R ∪ {±∞} and x0 ∈ Dom(ϕ). Then

p ∈ ∂−ϕ(x0) ⇔ ∀u ∈ Rd, 〈p, u〉 ≤ D↑ϕ(x0)(u)

⇔ (p,−1) ∈ [TEpi(ϕ)(x0, ϕ(x0))]− (the negative polar cone)

and

p ∈ ∂+ϕ(x0) ⇔ ∀u ∈ Rd, 〈p, u〉 ≥ D↓ϕ(x0)(u)

⇔ (p,−1) ∈ [THyp(ϕ)(x0, ϕ(x0))]+ (the positive polar cone).
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Proposition 1.3.3. Let ϕ:Rd 7→ R ∪ {±∞} and x0 ∈ Dom(ϕ). Then

∂−ϕ(x0) 6= ∅ ⇒ [TEpi(ϕ)(x0, ϕ(x0))]− =
⋃
λ≥0

λ(∂−ϕ(x0),−1)

and

∂+ϕ(x0) 6= ∅ ⇒ [THyp(ϕ)(x0, ϕ(x0))]+ =
⋃
λ≥0

λ(∂+ϕ(x0),−1).

Proof. We only prove the first statement. By Proposition 1.3.2

[TEpi(ϕ)(x0, ϕ(x0))]− ⊃
⋃
λ≥0

λ(∂−ϕ(x0),−1).

Fix any (p, q) ∈ [TEpi(ϕ)(x0, ϕ(x0))]−. Since {0} × R+ ⊂ TEpi(ϕ)(x0, ϕ(x0)) we
deduce that q ≤ 0. If q < 0, then (p/|q|,−1) ∈ [TEpi(ϕ)(x0, ϕ(x0))]− and by Pro-
position 1.3.2, p/|q| ∈ ∂−ϕ(x0). Hence (p, q) ∈

⋃
λ≥0 λ(∂−ϕ(x0),−1). It remains

to consider the case q = 0. Let p ∈ ∂−ϕ(x0). Then (p,−1) ∈ [TEpi(ϕ)(x0, ϕ(x0))]−

and from convexity of the polar cone, for all µ ∈ ]0, 1[

(µp+ (1− µ)p,−µ) ∈ [TEpi(ϕ)(x0, ϕ(x0))]−.

By the first part of the proof, (µp+(1−µ)p,−µ) ∈
⋃
λ≥0 λ(∂−ϕ(x0),−1). Taking

the limit when µ→ 0+ we end the proof. �

The following Rockafellar’s result (see [87]) gives more information about the
connection beetwen subgradients and normals to epigraph.

Lemma 1.3.4. Let ϕ:Rn 7→ R∪{+∞} be an extended lower semicontinuous
function. If (p, 0) ∈ [TEpi(ϕ)(x0, ϕ(x0))]− then there exist xn → x0, pn → p,
qn → 0, qn < 0 such that

(pn, qn) ∈ [TEpi(w)(xn, w(xn))]− and ϕ(xn)→ ϕ(x0).

1.4. Viability and invariance for fixed set of state constraint

A subset K ⊂ Rn is locally compact if for every x ∈ K there exists a closed
ball B(x, r) centered at x with a radius r > 0 such that the set D ∩ B(x, r) is
closed. A locally compact subset K of Rn is a viability domain of a set-valued
map G:Rn;Rn if for every x ∈ K

G(x) ∩ TK(x) 6= ∅.

Define the Hamiltonian H:Rn × Rn → R by

H(x, p) = sup
g∈G(x)

〈g, p〉

The following formulation summarizes several versions of the viability theorem
(comp. [4], [3]).
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Theorem 1.4.1 (Viability). Suppose that G:Rn;Rn is an upper semicon-
tinuous map with compact convex values. For a locally compact subset K ⊂ Rn
the following conditions are equivalent:

(a) K is a viability domain of G;
(b) G(x) ∩ coTK(x) 6= ∅ for every x ∈ K;
(c) H(x,−n) ≥ 0 for every x ∈ K and every n ∈ [TK(x)]−;
(d) H(x,−n) ≥ 0 for every x ∈ K and every n ∈ NK(x);
(e) H(x,−n) ≥ 0 for every x ∈ K and every n ∈MK(x);
(f) for every x0 ∈ K there is T > 0 and a solution x: [0, T ] → K of the

Cauchy problem

(1.6)
{
x′(t) ∈ G(x(t)),

x(0) = x0;

(g) for every x0 ∈ K there is T > 0 such that for every h ∈ (0, T ), ε > 0
there is a solution x: [0, h]→ Rn of (1.6) such that

dist(x(h),K) < ε.

If K is closed and G is of linear growth the above conditions (a)–(g) are equiva-
lent to

(h) for every x0 ∈ K there is a solution x: [0,∞) → K of the Cauchy
problem (1.6)

Proof. We sketch the proof for the reader’s convenience. Since G is an upper
semicontinuous set-valued map, it follows that the Hamiltonian H is an upper
semicontinuous function. Thus, by (1.1) we obtain equivalence of (c)–(e). The im-
plication (c)⇒ (b) follows from the separation theorem. In [55], the equivalence
(a) ⇔ (b) was proved. The fact that (a) ⇔ (f) can be found in Aubin–Cellina
[5] or Aubin [4], [3]. Below we prove that (g)⇒ (a).

Fix x0 ∈ K, ε > 0 and choose δ > 0 such that for |x − x0| ≤ δ we have
G(x) ⊂ G(x0)+εB. There is θ > 0 such that every solution x( · ) to (1.6) satisfies
|x(t)−x0| ≤ δ for t ∈ [0, θ]. Thus x(t)−x0 =

∫ t
0 x
′(s) ds and x′(s) ∈ G(x0) + εB

for almost all s ∈ [0, θ]. Then (x(t)− x0)/t ∈ G(x0) + εB. It follows that

(1.7) Lim sup
h→0+

{
x(h)− x0

h
: x( · ) is a solution of (1.6)

}
⊂ G(x0).

Now, we choose hn → 0+ and εn → 0+ such that εn/hn → 0. For every n there
is a solution xn: [0, hn]→ Rn of (1.6) such that

dist(xn(hn),K) ≤ εn.

Passing to a subsequence (again denoted by xn, hn) we can obtain

lim
n→∞

xn(hn)− x0

hn
= v ∈ G(x0).
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Since
dist(x0 + hnv,K)

hn
≤ |x0 + hnv − xn(hn)|

hn
+

dist(xn(hn),K)
hn

,

we obtain v ∈ TK(x0).
It remains to prove that (f)⇒ (h). Since G is of linear growth then a solution

of (1.6) does not escape to infinity in finite time. If x is a solution on the interval
[0, T ) then the limit limt→T− x(t) exists and belongs to K. So, the condition
(f) (existence of local viable solution) implies (h) (existence of global viable
solution). �

A short and elementary proof of (d)⇒ (f) is given in [32].
If K is an open subset then it is locally compact. If K is open and G is an

arbitrary map then K is a viability domain to G. Obviously (a) does not imply
(h) in this case.

We say that a locally compact subset D ⊂ Rn is a backward invariance
domain of a set-valued map G:Rn 7→ Rn if for every x ∈ D

−G(x) ⊂ TD(x).

To make the presentation self-contained we recall the following formulation of
the invariance theorem.

Theorem 1.4.2 (Invariance). Assume that G:Rn;Rn is a locally Lipschitz
continuous map with nonempty compact values and D is a locally compact subset
of Rn. Then the following conditions are equivalent:

(a) D is a backward invariance domain of G;
(b) −G(x) ⊂ coTD(x) for every x ∈ D;
(c) H(x,−n) ≤ 0 for every x ∈ D, n ∈ [TD(x)]−;
(d) H(x,−n) ≤ 0 for every x ∈ D, n ∈ ND(x);
(e) H(x,−n) ≤ 0 for every x ∈ D, n ∈MD(x);
(f) for every x0 ∈ D there exists T > 0 such that every solution x( · ) to

(1.6) satisfies x(t) ∈ D for t ∈ [−T, 0].

Proof. The implications (a) ⇒ (b) and (b) ⇒ (c) are obvious. Since the
Hamiltonian H is lower semicontinuous, it follows, from (1.1) that (c)–(e) are
equivalent. (c) ⇒ (b) by separation theorem. By (1.2), (b) ⇒ (a). (a) ⇔ (f) by
Aubin–Cellina [5]. �

Considering control systems with state constraint we shall use the following

Proposition 1.4.3. Assume that f :Rn → Rn is a locally Lipschitz continu-
ous map and D is a locally compact subset of Rn. Let K := cl(D), M := K \D.
Suppose that

∀x ∈ D, −f(x) ∈ TD(x),(1.8)

∀x ∈M, f(x) /∈ PMK (x).(1.9)
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Then for every x0 ∈M there exists δ > 0 such that for every y0 ∈ K, |y0−x0| < δ

we have
x(t; y0) ∈ D for every t ∈ (−δ, 0),

where x( · ; y0) denotes the solution of the Cauchy problem{
x′(t) = f(x(t)),

x(0) = y0.

Proof. Let w := f(x0). By Proposition 1.2.1 and (1.9), there exists ε > 0
such that for every y0 ∈ K ∩B(x0, ε) we have

(1.10) y0 + (0, ε)B(−w, ε) ∩K ⊂ D.

Let C ≥ 1, l ≥ 1 be an upper bound and a Lipschitz constant of f on the ball
B(x0, ε), respectively. We set δ = ε/2Cl.

Fix y0 ∈ K such that |y0 − x0| < δ. For |t| < δ we have

|x(t; y0)− (y0 + tw)| ≤ |t|(l|x0 − y0|+ lC|t|/2).

Hence, for −δ < t < 0 we have

(1.11) x(t; y0) ∈ y0 + (0, ε)B(−w, ε).

First we consider the case y0 ∈ D. We define t1 := inf{t ∈ (−δ, 0) : x(s, y0) ∈
D for s ∈ (t, 0)}. By Invariance Theorem 1.4.2 and (1.8), we have t1 < 0. We
claim that t1 = δ. Suppose to the contrary that t1 > −δ. By (1.10), (1.11), we
obtain x(t1; y0) ∈ D. By Invariance Theorem 1.4.2 and (1.8), there exists t2 < t1
such that x(s, y0) ∈ D for s ∈ (t2, t1), which contradicts the definition of t1.

Next, we consider the case y0 ∈ K, |y0 − x0| < δ/2. We choose a sequence
(yn) ⊂ D such that yn → y0 and |yn − x0| < δ. By the previous part of the
proof we have x(t; yn) ∈ D for t ∈ (−δ, 0). Thus, taking the limit, we deduce
that x(t; y0) ∈ K for t ∈ (−δ, 0). Combining it with (1.10) and (1.11) we get
x(t; y0) ∈ D for t ∈ (−δ, 0). �

1.5. Regularity of tubes

If the set of state constrains P (t) depends on a real variable t (time) we shall
call it a tube. Tubes considered here and in the sequel are assumed to have closed
values in Rn.

Definition 1.5.1. Let P : [0, T ];Rd be a nonempty valued map. We say
that P is left (right) absolutely continuous on [0, T ] if for every R > 0 there
exists an integrable function µ: [0, T ] → [0,+∞) such that for every t1 < t2
(t2 < t1) we have

(1.12) P (t1) ∩B(0, R) ⊂ P (t2) +B

(
0,
∣∣∣∣ ∫ t2

t1

µ(s) ds
∣∣∣∣)
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where B(x0, r) denotes the ball in Rn centered at x0 with radius r and A+D =
{a+ d : a ∈ A and d ∈ D} for A,D ⊂ Rn.

We say that P is absolutely continuous if it is left absolutely continuous and
right absolutely continuous.

If a tube P is left absolutely continuous then the following property holds:

(1.13)


∀ε > 0, ∀ compact K ⊂ Rd, ∃δ > 0, ∀Λ ⊂ N,
∀{ti, τi : ti < τi, i ∈ Λ} with ]ti, τi[ ∩ ]tj , τj [ = ∅ for i 6= j,∑

(τi − ti) ≤ δ ⇒
∑
e(P (ti) ∩K,P (τi)) ≤ ε,

where e(U, V ) = inf{ε > 0 : U ⊂ V + εB} and N is the set of natural numbers
(we choose δ > 0 in such a way that for every measurable subset C ⊂ [0, T ] if
m(C) < δ then

∫
C
µ < ε; m denotes the Lebesque measure).

In general, an absolutely continuous tube P does not have an absolutely
continuous selection passing through each point of its graph. For instance, one
can check that the tube P : [0, 1]→ R given by

P (t) =
{ {1/(1− t), 0} if t ∈ [0, 1),

{0} if t = 1,

is absolutely continuous. However, there is no absolutely continuous function
x: [0, 1]→ R such that x(0) = 1 and x(t) ∈ P (t) for every t ∈ [0, 1].

A different definition of δ( · )-absolutely continuous tubes is given in [83].
A tube P is called δ-absolutely continuous (where δ: (0,∞) → (0,∞) is an ar-
bitrary function) if for every ε > 0 and for arbitrary 0 ≤ t1 < τ1 ≤ . . . ≤ tm ≤
τm ≤ T ∑

i

(τi − ti) < δ(ε)⇒
∑
i

H(P (ti), P (τi)) ≤ ε

where H denotes the Hausdorff distance.
Lemma 1 in [83] states that if P is δ( · )-absolutely continuous, then for

every t0 ∈ [0, T ] and x0 ∈ P (t0) there is a δ( · )-absolutely continuous function
x: [0, T ]→ Rn such that x(t0) = x0 and x(t) ∈ P (t) for every t ∈ [0, T ]. In conc-
lusion, absolutely continuous tubes represent a larger family then δ( · )-absolutely
continuous tubes.

The contingent derivative DP (τ, y) of P at (τ, y) ∈ Graph(P ) is defined as
the set-valued map from R to Rd whose graph is described by

Graph(DP (τ, y)) = TGraph(P )(τ, y).

It is not difficult to prove, using Proposition 5.1.4. from [7], that

(1.14) v ∈ DP (τ, y)(1)⇔ lim inf
h→0+

dist
(
v,
P (τ + h)− y

h

)
= 0.
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1.6. Viscosity solutions of Hamilton–Jacobi equations

The theory of viscosity solution is a topic to broad to cover it in this sec-
tion. Below we provide only some basic definitions and selected facts which we
will need later on. For a more complete presentation we refer to [34], [14], [10],
[12], [95].

First, we recall the definition of viscosity sub- and supersolution for the class
of the Hamilton–Jacobi equations that most often appear in the paper

(1.15) ut +H(t, x, ux) = 0,

where H: [0, T ] × Rn × Rn → R is a continuous function. A smooth function
u: (0, T )×Rn → R is a classical solution of if (1.15) holds true for every (t, x) ∈
(0, T )× Rn. (The function H is called Hamiltonian.)

We say that a lower semicontinuous function ψ: (0, T ]× Rn → R is a super-
solution of (1.15) if

∀(t, x) ∈ (0, T )× Rn, ∀(pt, px) ∈ ∂−ψ(t, x), pt +H(t, x, px) ≤ 0.

An upper semicontinuous function φ: (0, T ]×Rn → R is a subsolution of (1.15) if

∀(t, x) ∈ (0, T )× Rn, ∀(pt, px) ∈ ∂+φ(t, x), pt +H(t, x, px) ≥ 0.

A continuous function u: (0, T0×Rn → R is a viscosity solution of (1.15) if it is
a super- and a subsolution.

If H is positively homogeneous with respect to the last variable, that is

H(t, x, αp) = αH(t, x, p)

for every α ≥ 0, then supersolutions (subsolutions) can be defined equivalently
using normal cones to epigraph (hypograph) instead of subdifferentials (super-
differentials).

Proposition 1.6.1. Let H: [0, T ]×Rn×Rn → R be continuous and positively
homogeneous with respect to the last variable.

(a) A lower semicontinuous function ψ: (0, T ]× Rn → R is a supersolution
of (1.15) if and only if for every (t, x) ∈ (0, T )× Rn

(1.16) ∀(nt, nx, nu) ∈ N0
Epi(ψ)(t, x, ψ(t, x)), nt +H(t, x, nx) ≤ 0.

(b) An upper semicontinuous function φ: (0, T ] × Rn → R is a subsolution
of (1.15) if and only if for every (t, x) ∈ (0, T )× Rn

(1.17) ∀(nt, nx, nu) ∈ N0
Hypo(φ)(t, x, φ(t, x)), −nt +H(t, x,−nx) ≥ 0.
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Proof. We provide the proof for (a) only. By Proposition 1.3.2, if (1.16) holds
true for every (t, x) then ψ is a supersolution. To prove the opposite, let us assume
that ψ is a supersolution and let (nt, nx, nu) ∈ N0

Epi(Ψ)(t, x, ψ(t, x)).
If nu < 0 then (nt/−nu, nx/−nu) ∈ ∂−ψ(t, x). As H(t, x, · ) is homogeneous,

we are done.
Let nu = 0. By Proposition 1.3.4, there exist sequences (tk, xk)→ (t, x) and

(ntk, nx,k, nuk)→ (nt, nx, nu) such that

(ntk, nx,k, nuk) ∈ N0
Epi(Ψ)(tk, xk, ψ(tk, xk)) and nu < 0.

By the previous part of the proof we have ntk + H(tk, xk, nxk) ≤ 0. As H is
continuous, we obtain nt +H(t, x, nx) ≤ 0. �

Proposition 1.6.1 is a special version of the results presented in [95], [31].
Below we recall – in an adapted version – a result proved in [10] (cf. The-

orem 4.1 in [10]).

Lemma 1.6.2. Assume that H: (0, T )×R2n → R is a continuous Hamilton-
ian. If wn: (0, T )×Rn → R is an increasing sequence of uniformly locally bounded
supersolutions of the Hamilton–Jacobi equation (1.15) and w: (0, T ) × Rn → R
is a pointwise limit of wn, then w is a supersolution of (1.15).

1.7. Value function of generalized Bolza problem

We apply Frankowska’s method (see [44]) to characterize the value function
of the generalized Bolza problem as a lower semicontinuous solution of the cor-
responding Hamilton–Jacobi equation.

Suppose that L: [0, T ]× Rn × R× Rn → [0,+∞) satisfies:

(1.18)


L( · , · , · , · ) is locally Lipschitz continuous,

L(t, x, u, · ) is convex,

L(t, x, · , v) is nonincreasing,

and let a set-valued map F : [0, T ]× Rn × R→ Rn be as follows

(1.19)


F (t, x, u) is nonempty convex compact for every (t, x, u),

F is locally Lipschitz,

F (t, x, u1) ⊂ F (t, x, u2) for u1 < u2,

∀u, ∃C, ∀t, x, |F ( · , · , u)| ≤ C(1 + |x|).

We define a new Lagrangian LF : [0, T ]× Rn × R× Rn → [0,+∞] by

(1.20) LF (t, x, u, v) =
{
L(t, x, u, v) if v ∈ F (t, x, u),

+∞ elsewhere.
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We shall consider a dynamical system

(1.21)
{
x′(t) ∈ F (t, x(t), u(t)),

u′(t) ≤ −L(t, x(t), u(t), x′(t)),

where x( · ), u( · ) are absolutely continuous functions with values in Rn, R, re-
spectively. A pair (x( · ), u( · )) is a solution of (1.21) if and only if it is a solution
of the differential inclusion

(1.22) (x′(t), u′(t)) ∈ Q̃(t, x(t), u(t)) for almost all t ∈ [t0, T ],

where Q̃: [0, T ]× Rn × R;Rn × R denotes the following set-valued map

(1.23) Q̃(t, x, u) = {(f,−η) : η ≥ L(t, x, u, f)}.

We define a value function V : [0, T ] × Rn → R ∪ {+∞} corresponding to L, F
and a terminal cost function g:Rn → R ∪ {+∞} by

(1.24) V (t0, x0) = inf{u(t0) : (x( · ), u( · )) solves (1.21)

and x(t0) = x0, u(T ) ≥ g(x(T ))}

(we set inf ∅ = +∞). When L does not depend on u, the definition of V reduces
to the value function

(1.25) V (t0, x0) = min
x( · )∈W 1,1[t0,T ], x(t0)=x0

g(x(T )) +
∫ T

t0

LF (s, x(s), x′(s)) ds

associated with the following control system

x′(t) ∈ F (t, x(t)).

To a pair L(t, x, u, f), F (t, x, u) we associate a Hamiltonian H(t, x, u, p)

(1.26) H(t, x, u, p) = inf
f∈F (t,x,u)

〈f, p〉+ L(t, x, u, f)

which can be viewed as the Legendre–Fenchel transform of LF .
If the value function V (t, x) is smooth then it is a classical solution of the

Hamilton–Jacobi equation

(1.27)


∂U

∂t
+H

(
t, x, U,

∂U

∂x

)
= 0, (t, x) ∈ ]0, T [× Rn,

U(T, x) = g(x), x ∈ Rn.
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Definition 1.7.1. An extended lower semicontinuous function U : (0, T ] ×
Rn → R∪{+∞} is a lower semicontinuous solution of (1.27) if for every (t, x) ∈
Dom(U), t < T

∀(pt, px) ∈ ∂−U(t, x), pt +H(t, x, U(t, x), px) = 0

and

(1.28)

{
for every x ∈ Dom(U(T, · ) there exist xn → x, tn → T−

such that lim
n→∞

U(tn, xn) = U(T, x).

Below we recall a result about the existence and uniqueness of lower semi-
continuous solution of (1.27), which also gives the exact representation of the
solution. The result comes from [82], where, in fact, a more general class of La-
grangians was considered. In the proof of Theorem 1.7.2 it would be enough to
apply the technics of proof used for the first time in [44].

Theorem 1.7.2. Assume that LF is given by (1.20), where L, F satisfy
(1.19), (1.18) and g:Rn → R is a lower semicontinuous function bounded from
below. Then the value funtion V given by (1.24) is the unique bounded from below
lower semicontinuous solution of the corresponding Hamilton–Jacobi equation.

1.8. Inf-convolution

The aim of the section is to provide a tool to approximate a lower semicon-
tinuous function by Lipschitz continuous functions. The suitable one is so called
inf-convolution. We consider it in a special case. A general approach can be found
in [87, Chapter 1].

Suppose that φ:Rn → R is a function bounded from below and L > 0. We
define the inf-convolution φL:Rn → R by

φL(x) = inf
y∈Rn

φ(y) + L‖y − x‖.

Proposition 1.8.1. Suppose that φ:Rn → R is a lower semicontinuous
function bounded from below and Ln is an increasing sequence converging to
+∞. Then φn = φLn is Lipschitz continuous with constant Ln and φn(x) is
nondecreasing and convergent to φ(x) for every x ∈ Rn.

For the readers’ convenience we list some elementary properties of inf-con-
volution.

• If φ is bounded from below by a constant c then c ≤ φL(x) ≤ φ(x) for
every x.

• φL(y)−φL(x) ≤ L‖y−x‖ for every x, y (φL is L-Lipschitz continuous).
• If φ is L-Lipschitz continuous, then φL = φ.
• If ψ, φ are bounded from below and ψ ≤ φ, then ψL ≤ φL.
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• If ψ is L-Lipschitz continuous and ψ ≤ φ, then ψ ≤ φL. Thus, φL is the
greatest L-Lipschitz continuous function dominated by φ.

• If L1 ≤ L2, then φL1 ≤ φL2 and (φL2)L1 = φL1 .

Proof of Proposition 1.8.1. It remains to show the pointwise convergence
of φn to φ. Fix x. If ‖y − x‖ > (φ(x)− c)/L := RL, then

φ(y) + L‖y − x‖ ≥ c+ L‖y − x‖ > c+ φ(x)− c.

Thus, there exists yL such that φL(x) = φ(yL) +L‖yL− x‖ and ‖yL− x‖ ≤ RL.
So,

lim inf
n→∞

φLn(x) ≥ lim inf
n→∞

φ(yLn) ≥ φ(x). �





CHAPTER 2

TIME MEASURABLE CONTROL SYSTEMS

In the chapter we consider the Mayer problem with an extended lower semi-
continuous terminal cost function and dynamics given by a differential inclusion
with right-hand side measurable in time and Lipschitz continuous in space varia-
ble. To describe the value function as the unique solution of the corresponding
Hamilton–Jacobi equation we developed viability theory and adapted it to the
case where the right-hand side is as above and state constraints vary in time.
We assume that the tube of constraints is absolutely continuous. We show that
the necessary and sufficient condition for viability is the Nagumo type one for
almost all t. In the Nagumo type condition we can take the convexification of
the Bouligand tangent cone to the tube. An analogous result is obtained for in-
variance. To investigate viability and invariance problems in measurable case we
use an extension of the Scorza–Dragoni theorem to set-valued maps from [64] and
[88]. Viability problems for nonautonomous case were considered in [20] and [96],
where Nagumo type conditions are in a stronger version, i.e. the right-hand side
of the differential inclusion is supposed to have a nonempty intersection with the
Bouligand tangent cone to the tube. The stronger Nagumo condition cannot be
expressed in an equivalent dual version involving normal cones, what is the key
point in applications to the Hamilton–Jacobi–Bellman equations.

2.1. Infinitesimal generators of reachable maps

2.1.1. Scorza–Dragoni type properties for set-valued maps. We shall
use in the sequel several consequences of the so called Scorza–Dragoni type the-
orems. We first recall a theorem for set-valued maps which are upper semiconti-
nuous with respect to one of its variables. Next we show how some other related
properties can be deduced from it.

We denote by m the Lebesgue measure on [0, T ] and by B the closed unit
ball in Rd. If ϕ:X ; Y is a set-valued map from a set X to a set Y , then by

25
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Graph(ϕ) we denote the graph of ϕ given by

Graph(ϕ) = {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

When Y = Rd we set ‖∅‖ = −∞ and if ϕ(x) 6= ∅

‖ϕ(x)‖ = sup{‖y‖ : y ∈ ϕ(x)}.

Let X, Y be separable metric spaces.

Theorem 2.1.1 ([88]). Let F : [0, T ]×X ; Y be a set-valued map such that
Graph(F (t, · )) is a closed subset of X × Y for almost all t ∈ [0, T ]. Then there
exists a closed-valued map F̂ : [0, T ]×X ; Rd satisfying the following conditions:

(a) For almost all t ∈ [0, T ] and for all x ∈ X, F̂ (t, x) ⊂ F (t, x).
(b) For every measurable set Λ ⊂ [0, T ] and all measurable maps u: Λ→ X,

v: Λ→ Rd such that v(t) ∈ F (t, u(t)) almost everywhere (a.e.) in Λ we
have v(t) ∈ F̂ (t, u(t)) a.e. in Λ.

(c) For any ε > 0 there is a closed set Aε ⊂ [0, T ] such that m([0, T ]\Aε) <
ε and F̂ |Aε×X has a closed graph.

The proof of Theorem 2.1.1 given in [88] was based on Lusin’s Theorem.

Corollary 2.1.2 ([63]). Suppose that F : [0, T ]×X ; Rd has convex closed
values and:

• for almost all t ∈ [0, T ], F (t, · ) is upper semicontinuous, F is measura-
bly bounded, i.e. there is a measurable function µ: [0, T ] → R such that
for almost all t ∈ [0, T ] and every x ∈ X, ‖F (t, x)‖ ≤ µ(t).

Then there exists a set-valued map F̃ : [0, T ]×X ; Rd with closed convex values
satisfying the following conditions:

(a) for almost all t ∈ [0, T ] and for all x ∈ X, F̃ (t, x) ⊂ F (t, x),
(b) for every measurable set Λ ⊂ [0, T ] and every u: Λ → X, v: Λ → Rd

measurable maps such that v(t) ∈ F (t, u(t)) a.e. in Λ we have v(t) ∈
F̃ (t, u(t)) a.e. in Λ,

(c) for any ε > 0 there is a closed set Aε ⊂ [0, T ] such that m([0, T ]\Aε) < ε

and F̃ |Aε×X is an upper semicontinuous map.

Remark. The set valued maps F̂ , F̃ can also have empty values at some
points. We would like to underline that in (b) the condition v(t) ∈ F̂ (t, u(t))
holds true “only” for almost all t ∈ Λ and the sets of measure zero on which it
does not hold can be different for distinct u, v.

We shall use in the proof of the following theorem and in the sequel the
notion of points of density. We recall it now as well as the one of the Lebesgue
points of measurable functions.
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A point x ∈ Rd is a point of density of a measurable set U ⊂ Rd if

lim
δ(Q)→0, x∈Q

md(U ∩Q)
md(Q)

= 1

where Q denotes d-dimensional cubes, md the Lebesgue measure in Rd and δ(Q)
is the diameter of Q, i.e. δ(Q) = sup{|x− y| : x, y ∈ Q}.

Let V be the set of all density points of U . It is well known that md(U \ V )
= 0. For an arbitrary set M ⊂ Rd of measure zero the equality V = V \M holds
true. If the original set U was closed, then V ⊂ U and, of course, V ⊂ U .

A point x ∈ Rd is the Lebesgue point of a measurable function f :Rd → R if

lim
δ(Q)→0, x∈Q

1
md(Q)

∫
Q

‖f(u)− f(x)‖ du = 0.

The set of points which are not the Lebesgue points of f has measure 0.
Here is a version of the original Theorem of Scorza–Dragoni [90]. We give it,

as well as the next theorem, not in the most general possible form but sufficient
for our purposes.

Theorem 2.1.3. Let f : [0, T ] × Rd → R be measurable with respect to t ∈
[0, T ] and continuous with respect to x ∈ Rd. Then, for every ε > 0, there is
a closed set Aε ⊂ [0, T ] such that m([0, T ] \Aε) < ε and the restriction f |Aε×Rd
is continuous.

Proof. Fix ε > 0, k ∈ N and consider the restriction fk = f |[0,T ]×kB and the
function µk(t) = sup{‖f(t, x)‖ : x ∈ kB}. The function µk has finite values. We
apply Theorem 2.1.1 to the map Fk(t, x) = {fk(t, x)} with the domain [0, T ]×kB
and get a corresponding map F̂k. We take Ak ⊂ [0, T ] for which m([0, T ] \
Ak) < ε/2k+1, F̂k|Ak×kB has closed graph and F̂k(t, x) ⊂ Fk(t, x) for all (t, x) ∈
Ak × kB. Let Ãk ⊂ Ak be a closed set for which m(Ak \ Ãk) < ε/2k+1 and
supt∈Ãk µk(t) <∞. Finally, let Uk be the set of density points of Ãk. For any fixed
x ∈ kB there is (by (b) of Theorem 2.1.1) a set Jx ⊂ [0, T ] of measure zero such
that fk(t, x) ∈ F̂k(t, x), for t ∈ Ak \Jx. By the definition of Ak we have, for those
t, the equality F̂ (t, x) = {f(t, x)}. Since the graph of F̂k restricted to Uk×{x} is
compact and Uk = Uk \ Jx so the equality F̂ (t, x) = {f(t, x)} holds for all t ∈ Uk.
The graph of the restriction of fk to Uk × kB is compact so this restriction
is continuous with respect to (t, x). This implies the required continuity of f
restricted to (

⋂∞
k=1 Uk)× Rd and we have, of course, m([0, T ] \

⋂∞
k=1 Uk) ≤ ε.�

The following theorem was proved by N. Kikuchi in [65] for convex valued
maps.

Theorem 2.1.4. Let the compact-valued map F : [0, T ] × Rd ; Rd1 be me-
asurable with respect to t ∈ [0, T ] and continuous with respect to x ∈ Rd. Then,
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for every ε > 0, there exists a closed set Aε ⊂ [0, T ] for which m([0, T ] \Aε) < ε

and the restriction of F to Aε × Rd is continuous.

Proof. Consider the function f(t, x, z) = dist(z, F (t, x)). It is measurable
in t and continuous in (x, z) so we get Aε, as in Theorem 2.1.3, for which the
restriction of f to Aε × Rd × Rd1 is continuous with respect to (t, x, z). This
implies that the restriction of F to the set Aε ×Rd is lower semicontinuous and
has closed graph. For every k > 0 the function µk(t) = sup{‖y‖ : y ∈ F (t, x),
‖x‖ ≤ k} is measurable. Hence we can choose a closed subset Aεk ⊂ Aε such
that the graph of the restriction F |Aεk×kB is compact and m(Aε \Aεk) < ε/2k.
Thus F |(⋂k≥1 Aεk)×Rd is both upper and lower semicontinuous and m([0, T ] \⋂
k≥1Aεk) < 2ε. �

2.1.2. Infinitesimal behaviour of reachable maps. Let V be a separa-
ble, metric space and F : [0, T ]×Rd×V ; Rd a convex-valued map. We consider
a family of differential inclusions

(2.1)
{
x′(t) ∈ F (t, x(t), v),

x(τ) = xτ ,

where τ ∈ [0, T ], xτ ∈ Rd, v ∈ V . The family of solutions of this problem,
defined on some interval contained in [0, T ], for some fixed v, will be denoted by
Sol(F, v, τ, xτ ). The reachable set of (2.1) at time t ∈ [0, T ] is given by

Rv(t, τ)(xτ ) = {x(t) : x ∈ Sol(F, v, τ, xτ )}.

We study here the sets

Lim sup
t→τ

Rv(t, τ)(xτ )− xτ
t− τ

and Lim inf
t→τ

Rv(t, τ)(xτ )− xτ
t− τ

.

Theorem 2.1.5. Let F : [0, T ]×Rd×V ; Rd have closed convex values and
satisfy:

• (x, v) ; F (t, x, v) is continuous for almost all t ∈ [0, T ];
• t ; F (t, x, v) is measurable for all (x, v) ∈ Rd × V ;
• ‖F (t, x, v)‖ ≤ µ(t) for almost all t ∈ [0, T ] and for all (x, v) ∈ Rd × V ,

where µ( · ) is integrable.

Then there exists a set A ⊂ [0, T ] of full measure, i.e. m([0, T ] \ A) = 0, such
that for every (τ, xτ , v) ∈ A× Rd × V

Lim
t→τ

Rv(t, τ)(xτ )− xτ
t− τ

= F (τ, xτ , v).

The proof will follow from the properties given below.
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Lemma 2.1.6. Assume that F : [0, T ] × Rd × V ; Rd have closed convex
values and

(a) the graphs Graph(F (t, · , · )) are closed for almost all t ∈ [0, T ];
(b) ‖F (t, x, v)‖ ≤ µ(t) for almost all t ∈ [0, T ] and for all (x, v) ∈ Rd × V ,

where µ( · ) is integrable;
(c) for all (x, v) ∈ Rd × V the set-valued map F ( · , x, v) is measurable.

Then there exists a set A ⊂ [0, T ] of full measure such that

∀(τ, xτ , v) ∈ A× Rd × V, ∀ε > 0, ∃ δ > 0, ∀x ∈ Sol(F, v, τ, xτ ), ∀0 < |h| < δ

1
h

(x(τ + h)− xτ ) ∈ F (τ, xτ , v) + εB.

In particular, for every (τ, xτ , v) ∈ A× Rd × V

∅ 6= Lim sup
t→τ

Rv(t, τ)(xτ )− xτ
t− τ

⊂ F (τ, xτ , v).

Proof. We give a slight modification of the proof from [89] where the case
without a parameter was considered. The method used in [89] was, in turn, based
on [77] (see also [64]).

Let F̃ be as in Corollary 2.1.2 with X = Rd × V . Then, for every v ∈ V ,
solutions of differential inclusions x′ ∈ F (t, x, v) and x′ ∈ F̃ (t, x, v) coincide.

Fix γ > 0 and choose a closed set Aγ ⊂ [0, T ] for which m([0, T ] \ Aγ) < γ,
F̃ |Aγ×Rd×V is upper semicontinuous with respect to (t, x, v) and F̃ (t, x, v) ⊂
F (t, x, v) for all (t, x, v) ∈ Aγ × Rd × V .

Let Ãγ ⊂ Aγ be the set of density points of Aγ which also are the Lebesgue
points of the function µ( · ) · χ[0,T ]\Aγ ( · ) – note that m(Ãγ) = m(Aγ). We fix

now a τ ∈ Ãγ and an arbitrary (xτ , v) ∈ Rd× V . To make the notations simpler
we shall suppose that t > τ . The case t < τ follows by the same arguments.

Due to assumptions (a), (b) there is δ1 > 0 such that if t−τ < δ1 and t ∈ Aγ
then for every x( · ) ∈ Sol(F, v, τ, xτ )

F̃ (t, x(t), v) ⊂ F̃ (τ, xτ , v) +
ε

3
B.

There also is δ2 > 0 such that if 0 < t− τ < δ2 then

m([τ, t] ∩Aγ)
t− τ

F (τ, xτ , v) ⊂ F (τ, xτ , v) +
ε

3
B.

Next, for some δ3 > 0, if 0 < t− τ < δ3 then

1
t− τ

∫
[τ,t]\Aγ

µ(s) ds <
ε

3
.
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Let now 0 < t− τ < δ = min{δ1, δ2, δ3} and x( · ) ∈ Sol(F, v, τ, xτ ). We get then

x(t)− xτ
t− τ

∈ 1
t− τ

∫
[τ,t]∩Aγ

F̃ (s, x(s), v) ds+
1

t− τ

∫
[τ,t]\Aγ

F̃ (s, x(s), v) ds

⊂ m([τ, t] ∩Aγ)
t− τ

(
F (τ, xτ , v) +

ε

3
B

)
+

1
t− τ

∫
[τ,t]\Aγ

µ(s) ds ·B

⊂ F (τ, xτ , v) +
2ε
3
B +

ε

3
B = F (τ, xτ , v) + εB.

To finish the proof it is enough to consider the set A =
⋃∞
n=1 Ã1/n. �

Lemma 2.1.6 yields the following property which was proved in [89] without
the parameter v.

Corollary 2.1.7. Under the assumptions of Lemma 2.1.6 there is a set A ⊂
[0, T ] of full measure such that for every τ ∈ A, xτ ∈ Rd, v ∈ V and x ∈
Sol(F, v, τ, xτ ), we have

∅ 6= Lim sup
h→0+

{
x(τ + h)− xτ

h

}
⊂ F (τ, xτ , v),

∅ 6= Lim sup
h→0+

{
x(τ − h)− xτ

−h

}
⊂ F (τ, xτ , v).

The following property, which has been proved for the first time in [91] wi-
thout the parameter v, can be deduced from Corollary 2.1.7.

Corollary 2.1.8. Let f : [0, T ] × Rd × V → Rd satisfy the following condi-
tions:

• (x, v)→ f(t, x, v) is continuous for almost all t ∈ [0, T ];
• t→ f(t, x, v) is measurable for all (x, v);
• ‖f(t, x, v)‖ ≤ µ(t) for almost all t ∈ [0, T ] and all (x, v), where µ( · ) is

integrable.

Then there exists a set A ⊂ [0, T ] of full measure such that for every τ ∈ A,
v ∈ V and solution of x′(t) = f(t, x(t), v) the derivative x′(τ) exists and x′(τ) =
f(τ, x(τ), v).

Theorem 2.1.9. Let F : [0, T ]×Rd×V ; Rd have closed convex values and
satisfy:

• (x, v) ; F (t, x, v) is continuous for almost all t;
• t ; F (t, x, v) is measurable for all (x, v);
• ‖F (t, x, v)‖ ≤ µ(t) for all (x, v), where µ( · ) is integrable.

Under these assumptions there exists a set A ⊂ [0, T ] of full measure such that
for every (τ, xτ , v) ∈ A× Rd × V and u ∈ F (τ, xτ , v) the problem

(2.2)
{
x′(t) ∈ F (t, x(t), v),

x(τ) = xτ , x
′(τ) = u,
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has a solution defined on [0, T ]. In particular, for every (τ, xτ , v) ∈ A× Rd × V

F (τ, xτ , v) ⊂ Lim inf
t→τ

Rv(t, τ)(xτ )− xτ
t− h

.

Proof. By Theorem 9.6.2 of  Lojasiewicz [7] there is a function f : [0, T ]×Rd×
V ×B → Rd for which:

• f(t, x, v, B) = F (t, x, v);
• t→ f(t, x, v, b) is measurable for all (x, v, b);
• (x, v)→ f(t, x, v, b) is continuous for all (t, b);
• ‖f(t, x, v, b1) − f(t, x, v, b2)‖ ≤ cµ(t)‖b1 − b2‖, where c is a constant

depending only on the dimension d.

The last two properties imply that for a fixed t the function (x, v, b)→ f(t, x, v, b)
is continuous. We can apply Corollary 2.1.8, where the role of parameter will be
played now by (v, b) ∈ V ×B.

So let A be as in Corollary 2.1.8, τ ∈ A, (xτ , v) ∈ Rd × V , u ∈ F (τ, xτ , v)
and b ∈ B be such that u = f(τ, xτ , v, b). By Corollary 2.1.8 we get a solution
of the problem {

x′(t) = f(t, x(t), v, b),

x(τ) = xτ , x
′(τ) = u,

which is also a solution of (2.2). �

Now, we are in a position to deduce Theorem 2.1.5 from Lemma 2.1.6 and
Theorem 2.1.9.

2.2. Viability and Invariance Theorems for tubes

Consider T > 0, a set-valued map F : [0, T ] × Rd ; Rd and the differential
inclusion

(2.3) x′(t) ∈ F (t, x(t)).

Denote by S[t0,T ](x0) the set of absolutely continuous solutions of (2.3) defined
on [t0, T ] and satisfying the initial condition x(t0) = x0.

We are interested in the existence of solutions of the differential inclusion
(2.3) satisfying constrains of the type x(t) ∈ P (t), where P : [0, T ] ; Rd is a
set-valued map (we shall call it a tube). The tube P ( · ) is said to have a viability
property if for every t0 ∈ [0, T ], x0 ∈ P (t0) there is a solution x ∈ S[t0,T ](x0)
satisfying x(t) ∈ P (t) for every t ∈ [t0, T ]. The tube P ( · ) is called invariant
for F if for every t0 ∈ [0, T ] every solution x ∈ S[t0,T ](x0) starting in the tube
(i.e. x0 ∈ P (t0)) satisfies x(t) ∈ P (t) for every t ∈ [t0, T ].
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2.2.1. Viability Theorem in the Lipschitz case.

Definition 2.2.1 (Viability tube). A tube P : [0, T ] ; Rn is a viability tube
for F : [0, T ]×Rn ; Rn if there exists a full measure set C ⊂ [0, T ] such that for
every t ∈ C and every x ∈ P (t) we have

(2.4) ({1} × F (t, x)) ∩ co(TGraph(P )(t, x)) 6= ∅.

Theorem 2.2.2. Assume that a tube P : [0, T ] ; Rd is left absolutely conti-
nuous, F has convex compact images and satisfies

t ; F (t, x) is measurable for every x ∈ Rd;(2.5) { ‖F (t, x)‖ ≤ µ(t) for almost all t ∈ [0, T ] and all x ∈ Rn,
where µ is integrable;

(2.6)

{ ∀k > 0, ∃ck ∈ L1(0, T ) such that for almost all t ∈ [0, T ]

F (t, · ) is ck(t)-Lipschitz continuous on kB.
(2.7)

Then the following three statements are equivalent:

(a) There exists a set A ⊂ [0, T ] of full measure such that

∀t ∈ A, ∀x ∈ P (t), F (t, x) ∩DP (t, x)(1) 6= ∅;

(b) The tube P is a viability tube for F ;
(c) For every t0 ∈ [0, T ] and x0 ∈ P (t0) there exists x ∈ S[t0,T ](x0) such

that x(t) ∈ P (t) for every t ∈ [t0, T ].

Proof. By Lemma 2.1.6 (c) ⇒ (a). Clearly (a) yields (b). So it remains to
show (b)⇒ (c).

We recall that the reachable set of (2.3) from an initial condition (t0, x0) at
time t ≥ t0 is defined by

R(t, t0)(x0) := {x(t) : x ∈ S[t0,T ](x0)}.

We proceed in several steps. First we show that for all x0 ∈ P (t0), the map

(2.8) [t0, T ] 3 t 7→ g(t) := dist(P (t), R(t, t0)(x0))

is of bounded variation and the Gronwall inequality holds true for g. Then we
check that from (b) it follows that for some c ∈ L1(t0, T ) g′(t) ≤ c(t)g(t) a.e.
in [t0, T ]. In this way g ≡ 0, which in turn implies that (2.3) has a solution viable
in the tube P ( · ).

Lemma 2.2.3. If P is left absolutely continuous then:

(a) g(t2) ≤ g(t1) + 2
∫ t2
t1
µ(s) ds for t0 ≤ t1 < t2 ≤ T ;

(b) g has bounded variation, in particular g is differentiable a.e. in [t0, T ];
(c) if there exists c ∈ L1(t0, T ) such that g′(t) ≤ c(t)g(t), a.e. in [t0, T ],

then g ≡ 0.
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Proof. Fix t1 < t2. Since S[t0,T ](x0) is compact, there exists x ∈ S[t0,T ](x0)
such that g(t1) = dist(x(t1), P (t1)). Since F is integrably bounded there exist
R > 0 such that |x(t)| ≤ R for every x ∈ S[t0,T ](x0). We choose an integrable
function µ such that (2.6) and (1.12) hold true. We have

g(t2) ≤ dist(x(t2), P (t2))

≤ ‖x(t2)− x(t1)‖+ dist(x(t1), P (t1)) + sup{dist(y, P (t2) : y ∈ P (t1)}

≤
∫ t2

t1

µ(s) ds+ g(t1) +
∫ t2

t1

µ(s),

which is our assertion (a).
To estimate the variation of g on [t0, T ] we take a partition t0 < . . . < tk = T .

Let S = {i ∈ {1, . . . , k} : g(ti)− g(ti−1) ≥ 0} and S′ = {1, . . . , k} \ S. We have

g(tk)− g(t0) =
k∑
i=1

g(ti)− g(ti−1) =
∑
i∈S
|g(ti)− g(ti−1)| −

∑
i∈S′
|g(ti)− g(ti−1)|.

Thus

k∑
i=1

|g(ti)− g(ti−1)| = 2
∑
i∈S
|g(ti)− g(ti−1)|+ g(tk)− g(t0) ≤ 6

∫ T

t0

µ(s) ds,

which gives us (b).
Let us set h(t) = sup{g(s) : s ∈ [t0, t]}. The function h is nonnegative,

nondecreasing, g(t) ≤ h(t) for t ∈ [t0, T ] and

h(t2)− h(t1) ≤ 2
∫ t2

t1

µ(s) ds,

for t1 < t2. Hence h is absolutely continuous. Moreover, we have

lim sup
τ→0+

h(t+ τ)− h(t)
τ

≤ max
(

lim sup
τ→0+

g(t+ τ)− g(t)
τ

, 0
)
.

Thus, for almost all t ∈ [t0, T ], we have h′(t) ≤ c(t)h(t). The Gronwall inequality
now yields h ≡ 0, which completes the proof of Lemma 2.2.3. �

Lemma 2.2.4. Under all assumptions of Theorem 2.2.2, g ≡ 0.

Proof. Indeed, assume for a moment that for some t2 > t0, g(t2) > 0. Set t1 =
sup{t < t2 : g(t) = 0}. Thus g > 0 on ]t1, t2] and g(t1) = 0. By Theorem 2.1.9
and Lemma 2.1.6 there exists a subset A ⊂ [0, T ] of full measure such that for
all t ∈ A, x ∈ Rd the following two properties are verified:

(a) For every v ∈ F (t, x) there exists a solution of the problem

y′ ∈ F (t, y), y(t) = x, y′(t) = v.



34 Sawomir Plaskacz

(b) For every t1 < t and y ∈ S[t1,t] satisfying y(t) = x and for every sequence
hi → 0+ we have

∅ 6= Lim sup
i→∞

y(t− hi)− x
hi

⊂ −F (t, x).

Consider t ∈ A such that g is differentiable at t, F (t, · ) is ck(t)-Lipschitz
continuous on kB and let z ∈ R(t), y ∈ P (t) satisfy g(t) = ‖z − y‖. Put

p =
z − y
‖z − y‖

.

Fix (u,w) ∈ TGraph(P )(t, y) and hi → 0+, ui → u, wi → w satisfying y + hiwi ∈
P (t+ hiui).

Case 1. There exists a subsequence {uik}k≥1 with uik ≥ 0 for all k.
Let v ∈ F (t, z) and x ∈ S[t,T ](z) be such that x′(t) = v. Thus

g(t+ hikuik)− g(t) ≤ ‖x(t+ hikuik)− y − hikwik‖ − ‖z − y‖.

Dividing by hik and taking the limit we get g′(t)u ≤ 〈p, uv − w〉.
Case 2. For all i large enough ui < 0.
Consider x ∈ S[t0,t](x0) satisfying x(t) = z and ik, v ∈ F (t, z) such that

lim
k→∞

x(t+ hikuik)− z
hik

= uv.

Hence for all k large enough

g(t+ hikuik)− g(t) ≤ ‖x(t+ hikuik)− y − hikwik‖ − ‖z − y‖,

dividing by hik and taking the limit we get g′(t)u ≤ 〈p, uv − w〉.
Therefore we have shown that for all (u,w) ∈ TGraph(P )(t, y)

(2.9)
{
u ≥ 0⇒ ∀v ∈ F (t, z), g′(t)u ≤ 〈p, uv − w〉,
u < 0⇒ ∃v ∈ F (t, z), g′(t)u ≤ 〈p, uv − w〉.

Consider λj ≥ 0, (uj , wj) ∈ TGraph(P )(t, y), j = 0, . . . , d such that

d∑
j=0

λj = 1 and u :=
d∑
j=0

λjuj > 0.

By reordering we may always assume that for some 0 ≤ r ≤ d and all j ≤ r we
have uj ≥ 0 and for all j > r, uj < 0. Consequently,

(2.10)
∑
j>r

λj |uj | =
∣∣∣∣∑
j>r

λjuj

∣∣∣∣ < r∑
j=0

λjuj .

By (2.9) for every j > r there exists vj ∈ F (t, z) such that

(2.11) g′(t)uj ≤ 〈p, ujvj − wj〉.
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Thus, from (2.9), (2.11) it follows that for all v ∈ F (t, z)

g′(t)
( r∑
j=0

λjuj

)
≤
〈
p,

r∑
j=0

λjujv −
r∑
j=0

λjwj

〉
(2.12)

and

g′(t)
(∑
j>r

λjuj

)
≤
〈
p,
∑
j>r

λjujvj −
∑
j>r

λjwj

〉
.(2.13)

On the other hand, by (2.10) for

µ =

∑
j>r λj |uj |∑r
j=0 λjuj

and µj =
λj |uj |∑r
j=0 λjuj

we have µ < 1, (1− µ) +
∑
j>r µj = 1. Hence, by convexity of F (t, z),

∀vz ∈ F (t, z), v := (1− µ)vz +
∑
j>r

µjvj ∈ F (t, z).

Adding (2.12), (2.13) with such a v we obtain

g′(t)u ≤
〈
p,

( r∑
j=0

λjuj −
∑
j>r

λj |uj |
)
vz +

∑
j>r

λj(|uj |+ uj)vj −
d∑
j=0

λjwj

〉

=
〈
p, uvz −

d∑
j=0

λjwj

〉
and prove that

∀(u,w) ∈ co(TGraph(P )(t, y)) with u > 0, ∀vz ∈ F (t, z), g′(t)u ≤ 〈p, uvz − w〉.

The above inequality holds also true with co replaced by co.
On the other hand, by our assumptions, there exists vy ∈ F (t, y) such that

(1, vy) ∈ co(TGraph(P )(t, y)). Thus

g′(t) ≤
〈

z − y
‖z − y‖

, vy − vy
〉

+ ck(t)‖z − y‖ = ck(t)g(t).

This and the Gronwall inequality yield the result. �

To finish the proof of our theorem it is enough to show that Lemma 2.2.4
implies existence of a viable trajectory for any initial condition x0 ∈ P (t0). Fix
t0, x0. Set r = ‖x0‖+

∫ T
t0
µ(s) ds and

k := r + max{dist(x, P (t)) : t ∈ [t0, T ], x ∈ rB}.

Let K = kB. We first show that for every ε > 0 there exists x ∈ S[t0,T ](x0) such
that supt∈[t0,T ] dist(x(t), P (t)) ≤ ε.
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Pick any ε > 0 and let δ > 0 be such that for all A ⊂ [0, T ] with m(A) ≤ δ

we have
∫
A
µ(s)ds < ε/2 and

∀t0 ≤ t < τ ≤ T, τ − t < δ ⇒ P (t) ∩K ⊂ P (τ) +
ε

2
B.

Let t0 < . . . < tn = T be such that ti+1 − ti < δ. We claim that there
exists xε ∈ S[t0,T ](x0) such that, for every i, xε(ti) ∈ P (ti). We proceed by
the induction. Assume that for some j ≥ 0 there exists xε ∈ S[t0,tj ] such that
xε(ti) ∈ P (ti) for all i ≤ j. Set g(t) = dist(P (t), {x(t) : x ∈ S[tj ,T ](xε(tj))}).
By Lemma 2.2.4 applied with (t0, x0) replaced by (tj , xε(tj)) there exists x ∈
S[tj ,T ](x(tj)) such that x(tj+1) ∈ P (tj+1). Thus we can extend xε on the time
interval [tj , tj+1] by setting xε(t) = x(t) for all t ∈ [tj , tj+1]. This and the
induction argument finish the proof of our claim.

Fix t ∈ [t0, T ] and let i be such that ti ≤ t < ti+1. Then, by the choice of δ,

dist(xε(t), P (t)) ≤ dist(xε(ti), P (t)) + ‖xε(ti)− xε(t)‖ ≤ ε.

Consider a subsequence xεi converging weakly in W 1,1(t0, T ) to some x, where
εi → 0. Then x ∈ S[t0,T ](x0) and x(t) ∈ P (t) for all t ∈ [t0, T ]. Hence x( · ) is the
viable solution we were looking for. �

2.2.2. Viability Theorem in the upper semicontinuous case.

Theorem 2.2.5. Assume that a tube P : [0, T ] ; Rd is absolutely continu-
ous, that F has convex compact images and satisfies (2.6) and

x ; F (t, x) is uppersemicontinuous for almost all t,(2.14)

F ( · , · ) is L × B measurable.(2.15)

Then the following three statements are equivalent:

(a) There exists a set A ⊂ [0, T ] of full measure such that

∀t ∈ A, ∀x ∈ P (t), F (t, x) ∩DP (t, x)(1) 6= ∅;

(b) The tube P is a viability tube for F ;
(c) For every t0 ∈ [0, T ] and x0 ∈ P (t0) there exists x ∈ S[t0,T ](x0) such

that x(t) ∈ P (t) for every t ∈ [t0, T ].

Proof. By Lemma 2.1.6 (c) ⇒ (a). Clearly (a) yields (b). So it remains to
show that (b)⇒ (c).

Without loss of generality we can assume that t0 = 0.
Step 1. We construct an increasing sequence {Kk} of closed subsets of [0, T ]

such that:

(i)
⋃∞
1 Kk is of full measure;

(ii) for every k, the restriction F |Kk×Rd is upper semicontinuous;
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(iii) a function ν: [0, t]→ [0,∞) given by

ν =
∞∑
k=1

sup{ν(t) : t ∈ Kk}χ(Kk\Kk−1)

is integrable, where χA denotes the characteristic function of a set A.

By Theorem 2.4 in [78], there exists an increasing sequence {An} of closed
subsets of [0, T ] such that limn→∞m([0, T ] \ An) = 0 and F |An×Rd is upper
semicontinuous, for every n. Let

Ck = {t ∈ [0, T ] : ν(t) ≥ k}.

Since ν ∈ L1, limk→∞m(Ck) = 0.
If there is k0 such that m(Ck0) = 0, then we choose a decreasing sequence

{Dm} of open subsets of [0, T ] such that limm→∞m(Dm) = 0, Ck0 ⊂ Dm, for
every m, and finally define Kk = Ak \Dk, K0 = ∅.

It remains to investigate the case M(Ck) > 0, for all k. Consider a subsequ-
ence {Ank} such that

m([0, T ] \Ank) <
1

(k + 1)3
m(Ck)

and a decreasing sequence of open subsets Ok of [0, T ] such that Ck ⊂ Ok and

(2.16) m(Ok \ Ck) +m([0, T ] \Ank) <
1

(k + 1)3
m(Ck).

Then Dk := Ank \Ok is a closed subset of Ank such that Dk ∩ Ck = ∅ and

m([0, T ] \Dk) <
(

1 +
1

(k + 1)3

)
m(Ck).

We set Kk =
⋃k
l=1Dl, K0 = ∅. Conditions (i), (ii) are obvious. To show that ν

is an integrable function observe that (2.16) yields∫ T

0
ν ≤

∞∑
k=1

km(Kk \Kk−1) ≤ T +
∞∑
k=1

(k + 1)m(Kk+1 \Kk)

≤ T +
∞∑
k=1

(k + 1){m([0, T ] \ (Ck ∪Kk)) +m(Ck \ Ck+1)}

≤ T +
∞∑
k=1

T

(k + 1)2
+
∞∑
k=1

(k + 1)m(Ck \ Ck+1)

≤ 2T +
∞∑
k=1

T

(k + 1)2
+
∫ T

0
µ

which completes the proof of step one.
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Step 2. Fix k. By theorem 1.13.1 in [5] there exists a sequence {F km}∞m=1 of
nonempty compact convex valued maps from Kk × Rd into Rd such that

(a) ∀t ∈ Kk, ∀x ∈ Rd, ∀m, F km+1(t, x) ⊂ F km(t, x);
(b) ∀t ∈ Kk, ∀x ∈ Rd, F (t, x) =

⋂∞
m=1 F

k
m(t, x);

(c) ∀m, F km is locally Lipschitz continuous;
(d) ∀t ∈ Kk, ∀x ∈ Rd, ∀m, F km(t, x) ⊂ coF (Kk × Rd) ⊂ supt∈Kk µ(t)B.

We define the set-valued map Fk: [0, T ]× Rd → Rd by

Fk(t, x) =
{
ν(t)B if t /∈ Kk,

Fmk (t, x) if t ∈ Km \Km−1 and m ∈ {1, . . . , k}.

Denote by Sk the set of solutions of the following viability problem
x′(t) ∈ Fk(t, x(t)) a.e. in [0, T ],

x(0) = x0,

x(t) ∈ P (t) for all t ∈ [0, T ].

It is easy to check that Fk satisfies assumptions of Theorem 2.2.2. Thus the set
Sk is nonempty and compact in C([0, T ]).

It follows directly from the construction that
Fk+1(t, x) ⊂ Fk(t, x) ∀(t, x) ∈ [0, T ]× Rd,

F (t, x) =
∞⋂
k=1

Fk(t, x) ∀t ∈
∞⋃
k=1

Kk, ∀x ∈ Rd.

Thus Sk+1 ⊂ Sk, which in turn implies that
⋂∞
k=1 Sk is nonempty, which yields

the result. �

2.2.3. Invariance Theorem for tubes.

Theorem 2.2.6 (Invariance). Assume that a tube P : [0, T ] ; Rd is abso-
lutely continuous, that F has convex compact images and satisfies (2.5)–(2.7).
Then the following three statements are equivalent:

(a) There exists a set A ⊂ [0, T ] of full measure such that for every t ∈ A
and all x ∈ P (t) we have

F (t, x) ⊂ DP (t, x)(1);

(b) There exists a set C ⊂ [0, T ] of full measure such that for every t ∈ C
and all x ∈ P (t) we have

{1} × F (t, x) ⊂ co(TGraph(P )(t, x));

(c) For all t0 ∈ [0, T ] and x0 ∈ P (t0) every x ∈ S[t0,T ](x0) satisfies x(t) ∈
P (t) for all t ∈ [t0, T ].
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Proof. Clearly (a) yields (b). From [7, p. 380] there exists a measurable with
respect to the first variable function f : [0, T ]× Rd ×B 7→ Rd, such that

• ∀(t, x) ∈ [0, T ]× Rd, F (t, x) = f(t, x,B),
• ∀u ∈ B, f(t, · , u) is 5dck(t)-Lipschitz on kB for a.e. t ∈ [0, T ],
• ∀u, v ∈ B, ‖f(t, x, u)− f(t, x, v)‖ ≤ 5d(supy∈F (t,x) ‖y‖)‖u− v‖.

Consider a countable family ui ∈ B, i ≥ 1, dense in the unit ball anf fix i. Then
if (b) holds true, for all t ∈ C and x ∈ P (t)

{1} × f(t, x, ui) ∈ co(TGraph(P )(t, x)).

By Theorem 2.2.2 there exists a set Ai ⊂ [0, T ] of full measure such that for all
t ∈ Ai and x ∈ P (t), f(t, x, ui) ∈ DP (t, x)(1). Define A =

⋂
i≥1Ai. Then for

all t ∈ A and x ∈ P (t) we have
⋃
i≥1 f(t, x, ui) ⊂ DP (t, x)(1). Since {ui}i≥1

is dense in the unit ball we finally obtain that for almost all t ∈ [0, T ] and all
x ∈ P (t), F (t, x) ⊂ DP (t, x)(1).

We show next that (a)⇔ (c). Fix t0 ∈ [0, T ], x0 ∈ P (t0) and x ∈ S[t0,T ](x0).
By [7, p. 316] for a measurable u: [t0, T ] 7→ B, it holds x′(t) = f(t, x(t), u(t))
almost everywhere. On the other hand, x( · ) is the only solution of

(2.17)
{
x′(t) = f(t, x(t), u(t)),

x(t0) = x0.

By (a) we know that for all t ∈ A

∀x ∈ P (t), f(t, x, u(t)) ∈ DP (t, x)(1).

The map (t, x) 7→ f(t, x, u(t)) is measurable in t and 5dµ(t)-Lipschitz continuous
in x, hence the Viability Theorem 2.2.2 implies that

∀t ∈ [t0, T ], x(t) ∈ P (t).

Conversely, assume that (iii) is satisfied. Consider a dense family ui ∈ B,
i ≥ 1 and the equations

x′ = f(t, x, ui).

By the assumption (c), for every fixed i, t0 ∈ [0, T ], x0 ∈ P (t0) the solution of
the above equation verifies x(t) ∈ P (t) for all t ∈ [t0, T ]. By Theorem 2.2.2 there
exists a set Ai ⊂ [0, T ] of full measure such that for all t ∈ Ai and x ∈ P (t),
f(t, x, ui) ∈ DP (t, x)(1). Define the set A =

⋂
i≥1Ai of full measure. Then for

all t ∈ A and x ∈ P (t),
⋃
i≥1 f(t, x, ui) ⊂ DP (t, x)(1). Since {ui}i≥1 is dense in

the unit ball we finally obtain that for almost all t ∈ [0, T ] and all x ∈ P (t) we
have F (t, x) ⊂ DP (t, x)(1). �
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2.3. Application: Hamilton–Jacobi–Bellman theory

2.3.1. Value function of Mayer’s problem. Let an extended function
g:Rd 7→ R∪{+∞} be given. Consider the minimization problem (called Mayer’s
problem):

(2.18) min{g(x(T )) : x ∈ S[t0,T ](x0)}.

The value function V: [0, T ]× Rd 7→ R ∪ {±∞} is defined by:

(2.19) ∀(t0, x0) ∈ [0, T ]× Rd, V(t0, x0) = inf{g(x(T )) : x ∈ S[t0,T ](x0)}.

We assume that

(2.20)



• F has nonempty convex compact images,

• ∀x ∈ Rd, F ( · , x) is measurable,

• ∃µ ∈ L1(0, T ) such that for almost all t ∈ [0, T ] we have

∀x ∈ Rd, ‖F (t, x)‖ ≤ µ(t),

• g is lower semicontinuous.

Proposition 2.3.1. If (2.20) holds true and for almost all t ∈ [0, T ], F (t, · )
is continuous, then V is lower semicontinuous and

(2.21) ∀(t0, x0) ∈ [0, T ]× Rd, V(t0, x0) = min{g(x(T )) : x ∈ S[t0,T ](x0)}.

Furthermore, the set-valued map

(2.22) t ; P (t) = {(x, r) ∈ Rd × R : r ≥ V(t, x)} is absolutely continuous

and { ∃A ⊂ ]0, T [ of full measure such that ∀(t, x) ∈ Dom(V) ∩A× Rd,
inf

v∈F (t,x)
D↑V(t, x)(1, v) ≤ 0, sup

v∈F (t,x)
D↑V(t, x)(−1,−v) ≤ 0.

Remark. We observe that Graph(P ) is equal to the epigraph Epi(V) of V
and (2.22) yields the following relations: for every x ∈ Rd

(2.23) g(x) = V(T, x) = lim inf
t→T−, x→x

V(t, x), V(0, x) = lim inf
t→0+, x→x

V(t, x).

Proof. The first two statements follow by exactly the same arguments as
in the proof of [44, Proposition 2.1]. Fix any 0 ≤ t0 < t1 ≤ T . Let (x0, r0) ∈
P (t0) and consider x ∈ S[t0,T ](x0) such that V(t, x(t)) = g(x(T )) for all t ∈
[y0, T ]. Thus (x(t1), r0) ∈ P (t1) and so for all r ≥ V(t0, x0), (x0, r) ∈ P (t1) +
(
∫ t1
t0
µ(s) ds)B, where B denotes at the moment the unit ball in Rd+1. Hence

P (t0) ⊂ P (t1) +
(∫ t1

t0

µ(s) ds
)
B.
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Consider next (x1, r1) ∈ P (t1) and let x ∈ S[t0,t1] be such that x(t1) = x1. Then
V(t0, x(t0)) ≤ V(t1, x1) and therefore we have

(x1, r1) ∈ P (t0) +
(∫ t1

t0

µ(s) ds
)
B.

So,

P (t1) ⊂ P (t0) +
(∫ t1

t0

µ(s) ds
)
B.

To prove the latest statement it is enough to apply Theorem 2.1.5 and the fact
that V is nondecreasing along solutions of (2.3) and is constant along optimal
solutions. �

In [97, Section 3] the following Proposition is shown:

Proposition 2.3.2. If g:Rd 7→ R is a locally Lipschitz continuous function
and (2.7), (2.20) hold true, then the value function V has the following properties:

(2.24)


(a) V(t, · ) is locally Lipschitz continuous for almost all t ∈ [0, T ],

(b) for every compact K ⊂ Rd there is an absolutely continuous

function α: [0, T ] 7→ R such that

∀x ∈ K, ∀t1, t2 ∈ [0, T ], |V(t1, x)− V(t2, x)| ≤ |α(t1)− α(t2)|.

We shall need in the sequel the following result.

Proposition 2.3.3. If a function V : [0, T ]× Rd 7→ R satisfies (2.24), then

m{t ∈ [0, T ] : ∃x ∈ Rd, [TEpi(V )(t, x, V (t, x))]− ∩ R× Rd × {0} 6= {0}} = 0.

Proof. Let αk be choosen for K = {x ∈ Rd : ‖x‖ ≤ k} and A ⊂ [0, T ] be a
set of full measure such that for every t ∈ A the map V (t, · ) is locally Lipschitz
continuous and for every k the function αk is differentiable at t.

Fix t ∈ A and x ∈ Rd. We show that

∀(ut, ux) ∈ R× Rd, D↑V (t, x)(ut, ux) < +∞.

Let sn → ut, un → ux, hn → 0+. Then

V (t+ hnsn, x+ hnun)− V (t, x)
hn

≤ |V (t+ hnsn, x+ hnun)− V (t, x+ hnun)|
hn

+
|V (t, x+ hnun)− V (t, x)|

hn

≤ |αk(t+ hnsn)− αk(t)|
hn

+ l‖un‖,

where k is choosen sufficiently large and l is a Lipschtz constant of V (t, · ). So,
[TEpi(V )(t, x, V (t, x))]− ∩ R× Rd × {0} = {0}. �
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Assume that F has nonempty compact images and define the Hamiltonian
H: [0, T ]× Rd × Rd 7→ R by

(2.25) H(t, x, p) = max
v∈F (t,x)

〈p, v〉.

Then H(t, x, · ) is convex and positively homogeneous. Furthermore, if F (t, · ) is
upper semicontinuous (resp. lower semicontinuous), then so is H(t, · , p) and if
F ( · , x) is measurable, then H( · , x, p) is also measurable.

Consider an extended function V : [0, T ]× Rd 7→ R ∪ {+∞}. We may always
assume that V is defined on R×Rd by setting V (t, x) = +∞, whenever t /∈ [0, T ].
In theorem below we use Definition 1.3.1 with such extension of V .

Theorem 2.3.4. Assume (2.7), (2.20) and let V : [0, T ] × Rd 7→ R ∪ {+∞}
be an extended lower semicontinuous function. Consider the set-valued map

(2.26) [0, T ] 3 t ; P (t) = {(x, r) ∈ Rd × R : r ≥ V (t, x)}.

Then the following three statements are equivalent:

(a) V is the value function, i.e. V = V,
(b) ∃A ⊂ ]0, T [ of full measure such that ∀(t, x) ∈ Dom(V ) ∩ A × Rd,

infv∈F (t,x)D↑V (t, x)(1, v) ≤ 0, supv∈F (t,x)D↑V (t, x)(−1,−v) ≤ 0, P ( · )
is absolutely continuous and V (T, · ) = g( · ),

(c) ∃C ⊂ ]0, T [ of full measure such that ∀(t, x) ∈ Dom(V ) ∩ C × Rd,
∀(pt, px, q) ∈ [TEpi(V )(t, x, V (t, x))]−, −pt + H(t, x,−px) = 0, P ( · ) is
absolutely continuous and V (T, · ) = g( · ).

Remark. If a function V : [0, T ] × Rd 7→ R is locally uniformly absolutely
continuous in the sense of [97], then the tube P given by (2.26) is always abso-
lutely continuous.

Theorem 2.3.5. Under all assumptions of Theorem 2.3.4 let Dom(V ) be
closed, the restriction of V to its domain be continuous and the maps

t ; {(x, r) ∈ Rd × R : r ≥ V (t, x)},
t ; {(x, r) ∈ Rd × R : r ≤ V (t, x) 6= +∞},

be absolutely continuous. Then V is the value function if and only if

(2.27)


V (T, · ) = g( · ), ∃D ⊂ [0, T ] of full measure ∀(t, x) ∈ D × Rd,
∀(pt, px, q) ∈ [TEpi(V )(t, x, V (t, x))]−, −pt +H(t, x,−px) ≥ 0,

∀(pt, px, q) ∈ [THyp(V )(t, x, V (t, x))]+, −pt +H(t, x,−px) ≤ 0.

Proofs of Theorems 2.3.4, 2.3.5 are given at the end of the section.
From Theorem 2.3.4 and Proposition 1.3.3 we obtain
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Corollary 2.3.6. Under all assumptions of Theorem 2.3.4 suppose that

(2.28) m{t ∈ [0, T ] : ∃x ∈ Rd, (t, x) ∈ Dom(V )

and {0} 6= [TEpi(V )(t, x, V (t, x))]− ⊂ R× Rd × {0}} = 0.

Then V is the value function if and only if

(2.29)


∃C ⊂ ]0, T [ of full measure such that ∀(t, x) ∈ C × Rd,
∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) = 0,

P ( · ) is absolutely continuous and V (T, · ) = g( · ).

Corollary 2.3.7. Under all assumptions of Theorem 2.3.4 suppose that a
function V : [0, T ]×Rd 7→ R satisfies (2.24). Then V is the value function if and
only if

∃C ⊂ ]0, T [ of full measure such that ∀(t, x) ∈ C × Rd,
∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) = 0 and V (T, · ) = g( · ).

Corollary 2.3.8. Under all assumptions of Theorem 2.3.5 suppose (2.28)
and

(2.30) m{t ∈ [0, T ] : ∃x ∈ Rd, (t, x) ∈ Dom(V )

and {0} 6= [THyp(V )(t, x, V (t, x))]− ⊂ R× Rd × {0}} = 0.

Then V is the value function if and only if
V (T, · ) = g( · ), ∃D ⊂ [0, T ] of full measure ∀(t, x) ∈ D × Rd,
∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) ≥ 0,

∀(pt, px) ∈ ∂+V (t, x), −pt +H(t, x,−px) ≤ 0.

Remark. It was shown in [44] that when in addition H is continuous with
respect to t, then in the above corollaries stated with C = ]0, T [ = D assump-
tions of absolute continuity, (2.28) and (2.30) can be omitted. Corollary 2.3.6
extends the results from [44] to the measurable case. Corollary 2.3.8 is the uni-
queness result for viscosity solutions of the associated Hamilton–Jacobi–Bellman
equation with data measurable in time.

Corollary 2.3.9. Under all assumptions of Theorem 2.3.5 suppose (2.24).
Then V is the value function if and only if

V (T, · ) = g( · ), ∃D ⊂ [0, T ] of full measure ∀(t, x) ∈ D × Rd,
∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) ≥ 0,

∀ (pt, px) ∈ ∂+V (t, x), −pt +H(t, x,−px) ≤ 0.
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Theorem 2.3.10. Let V : [0, T ] × Rd 7→ R ∪ {+∞} be an extended lower
semicontinuous function such that the set-valued map P given by (2.26) is abso-
lutely continuous. Assume that F (t, x) satisfies assumptions of Theorem 2.2.2.
Then the following statements are equivalent:

(a1) There exists a subset A ⊂ ]0, T [ of full measure such that

∀(t, x) ∈ Dom(V ) ∩A× Rd, inf
v∈F (t,x)

D↑V (t, x)(1, v) ≤ 0.

(b1) There exists a subset C ⊂ ]0, T [ of full measure such that for all (t, x) ∈
Dom(V ) ∩ C × Rd

∀(pt, px, q) ∈ [TEpi(V )(t, x, V (t, x))]−, −pt +H(t, x,−px) ≥ 0.

(c1) ∀(t0, x0) ∈ [0, T ] × Rd, ∃x ∈ S[t0,T ](x0), ∀t ∈ [t0, T ], V (t, x(t)) ≤
V (t0, x0).

Corollary 2.3.11. Under all assumptions of Theorem 2.3.10 suppose that
V (T, · ) = g( · ). If V satisfies (a1) or (b1), then V ≥ V.

Proof. Fix (t0, x0) ∈ [0, T ]× Rd and let x be as in (b1). Then

V(t0, x0) ≤ g(x(T )) = V (T, x(T )) ≤ V (t0, x0). �

Proof of Theorem 2.3.10. Observe that conditions (a1)–(c1) in Theorem
2.3.10 are equivalent to conditions (a)–(c) in Theorem 2.2.2, respectively. To
see (a1)⇒ (a) let us fix (t0, x0) ∈ Dom(V ). Then for all t ∈ A, (x, z) ∈ P (t) we
have

(2.31) {(v, u) ∈ Rd+1 : u ≥ D↑V (t, x)(1, v)}
= DP (t, x, V (t, x))(1) ⊂ DP (t, x, z)(1).

Consider the viability problem

(2.32)


(x, z)′ ∈ F (t, x)× {0},
(x, z)(t0) = (x0, V (t0, x0)),

(x, z)(t) ∈ P (t).

By (a1) and (2.31), for all t ∈ A

(2.33) ∀(x, z) ∈ P (t), F (t, x)× {0} ∩DP (t, x, z)(1) 6= ∅.

The opposite implication is obvious.
To obtain the implication (b1) ⇒ (b) we have to use the separation the-

orem. �
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Theorem 2.3.12. Let V : [0, T ]×Rd 7→ R∪{+∞} be an extended lower semi-
continuous function. Assume that F satisfies (2.6), (2.20) and that the set-valued
map P defined by (2.26) is absolutely continuous. Then the following two state-
ments are equivalent:

(a) There exists a subset A ⊂ ]0, T [ of full measure such that

∀(t, x) ∈ Dom(V ) ∩A× Rd, sup
v∈F (t,x)

D↑V (t, x)(−1,−v) ≤ 0.

(b) ∀(t0, x0) ∈ [0, T ] × Rd, ∀x ∈ S[t0,T ](x0), ∀t ∈ [t0, T ], V (t0, x0) ≤
V (t, x(t)).

Corollary 2.3.13. Under all assumptions of Theorem 2.3.12 suppose that
V (T, · ) = g( · ). If V satisfies (a), then V ≤ V.

Proof. Fix (t0, x0) ∈ [0, T ]×Rd and let x ∈ S[t0,T ](x0) be such that V (t0, x0)
= g(x(T )). Then, by (b),

V(t0, x0) = g(x(T )) = V (T, x(T )) ≥ V (t0, x0). �

Proof of Theorem 2.3.12. Assume (a) and fix (t0, x0) ∈ [0, T ] × Rd, x ∈
S[t0,T ](x0). Since (a) does not involve T , it is sufficient to prove the inequality
in (b) for t = T and it is enough to consider the case V (T, x(T )) < ∞. Set
P̂ (t) = P (T − t). Then P̂ is absolutely continuous and for all (x, z) ∈ P̂ (t)

{(−v, u) ∈ Rd+1 : u ≥ D↑V (T − t, x)(−1,−v)}(2.34)

=DP̂ (t, x, V (T − t, x))(1)

=DP (T − t, x, V (T − t, x))(−1) ⊂ DP̂ (t, x, z)(1).

By (a) we know that for almost all t ∈ [0, T ],

(2.35) ∀(x, z) ∈ P̂ (t), −F (T − t, x)× {0} ⊂ DP̂ (t, x, z)(1).

Since the map t 7→ (x(T − t), V (T, x(T ))) solves the differential inclusion

(y, z)′ ∈ −F (T − t, y)× {0}, y(0) = x(T ), z(0) = V (T, x(T ))

by Theorem 2.2.6, for all 0 ≤ t ≤ T − t0, V (T, x(T )) ≥ V (T − t, x(T − t)). In
particular, V (t0, x(t0)) ≤ V (T, x(T )).

If (b) is verified, then by Theorem 2.2.6 there exists a set A ⊂ [0, T ] of full
measure such that for all t ∈ A inclusion (2.35) holds true. This and (2.34)
yield (a). �

Proof of Theorem 2.3.4. The equivalence (a) ⇔ (b) follows from Corolla-
ries 2.3.11 and 2.3.13.
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We show next that (b)⇔ (c). Let A be as in (b). Fix t ∈ A and let (pt, px, q) ∈
[TEpi(V )(t, x, V (t, x))]−. From (1.4) and (b)

pt + inf
v∈F (t,x)

〈px, v〉 ≤ 0 and − pt + sup
v∈F (t,x)

〈px,−v〉 ≤ 0.

These two inequalities yield (c).
Conversely, assume (c). By the separation theorem for all (t, x) ∈ Dom(V )∩

C × Rd we have

{1} × F (t, x)× {0} ∩ co(TEpi(V )(t, x, V (t, x))) 6= ∅

and
{−1} × −F (t, x)× {0} ⊂ co(TEpi(V )(t, x, V (t, x))).

These two relations, (2.31), (2.34) and Theorems 2.2.2, 2.2.6 imply (b) and finish
the proof of Theorem 2.3.4. �

Proof of Theorem 2.3.5. Assume that V is the value function. Then (c) of
Theorem 2.3.4 is verified. Thus for all (t, x) ∈ Dom(V ) ∩ C × Rd

∀(pt, px, q) ∈ [TEpi(V )(t, x, V (t, x))]−, −pt +H(t, x,−px) ≥ 0.

On the other hand by Theorem 2.1.9 there exists a set D ⊂ C of full measure
such that for all t ∈ D, x ∈ Rd, v ∈ F (t, x) the differential inclusion{

x′(s) ∈ F (s, x(s)) for almost all s ∈ [0, T ],

x(t) = x, x′(t) = v,

has a solution. Furthermore, for all h > 0, V (t + h, x(t + h)) − V (t, x) ≥ 0.
Dividing by h and taking the limit we get

D↓V (t, x)(1, v) ≥ 0⇔ (1, v, 0) ∈ THyp(V )(t, x, V (t, x)).

Since v ∈ F (t, x) is arbitrary,

∀(pt, px, q) ∈ [THyp(V )(t, x, V (t, x))]+, −pt +H(t, x,−px) ≤ 0

This proves (2.27).
Conversely, assume (2.27). It is enough to prove (b) of Theorem 2.3.4. By

the separation theorem for all (t, x) ∈ Dom(V ) ∩D × Rd

(2.36)
{ {1} × F (t, x)× {0} ∩ co(TEpi(V )(t, x, V (t, x))) 6= ∅,
{1} × F (t, x)× {0} ⊂ co(THyp(V )(t, x, V (t, x))).

From the first relation, (2.31) and Theorem 2.2.2 we deduce the first inequality
in (b). Applying Theorem 2.2.6 to the absolutely continuous set-valued map

t ; P(t) = {(x, z) : +∞ 6= V (t, x) ≥ z}



Chapter 2. Time Measurable Control Systems 47

we deduce that for a subset A ⊂ [0, T ] of full measure and all (x, z) ∈ P(t),
F (t, x) × {0} ⊂ DP(t, x, z)(1). Fix t0 ∈ [0, T ] and x ∈ S[t0,T ](x0). By The-
orem 2.2.6, (x(t), V (t0, x0)) ∈ P (t) for all t ∈ [t0, T ]. In particular this yields
V (t0, x0) ≤ V (t, x(t)). Hence, by Theorem 2.3.12, the second inequality in (b)
holds true as well. �

2.3.2. Solutions of the Hamilton–Jacobi–Bellman equation with
the Hamiltonian measurable in time. Consider H: [0, T ] × Rd × Rd 7→ R
and the Hamilton–Jacobi–Bellman equation

(2.37) −∂V
∂t

(t, x) +H

(
t, x,−∂V

∂x
(t, x)

)
= 0.

We assume:

(2.38)



(a) ∀t ∈ [0, T ], H(t, · , · ) is continuous,

(b) ∀(x, p) ∈ Rd × Rd, H( · , x, p) is measurable,

(c) H(t, x, · ) is convex,

(d) ∃µ ∈ L1(0, T ), ∀p ∈ B, |H(t, x, p)| ≤ µ(t),

(e) ∀k > 0, ∃ck ∈ L1(0, T ) such that for almost all t ∈ [0, T ],

∀p ∈ B, H(t, · , p) is ck(t)-Lipschitz on kB,

(f) H(t, x, · ) is positively homogeneous.

where B denotes the closed unit ball in Rd.

Remark. Assumption (f) may be replaced by the Lipschitz continuity of
H(t, x, · ) together with modified, with respect to p, conditions (d), (e). Then it
is possible to study solutions of (2.37) via a Hamilton–Jacobi–Bellman equation
with the new (conjugate) Hamiltonian meeting assumptions (2.38) (as it was
done for instance in [14]).

Define F : [0, T ]× Rd ; Rd by

(2.39) F (t, x) =
⋂
‖p‖=1

{v ∈ Rd : 〈p, v〉 ≤ H(t, x, p)}.

Proposition 2.3.14. If (2.38) holds true, then F satisfies (2.6), (2.20) and

∀p ∈ Rd, sup
v∈F (t,x)

〈p, v〉 = H(t, x, p).

Proof. Fix x ∈ Rd and consider a dense subset {pi}i≥1 of the unit sphere
in Rd. For every i ≥ 1 define the set-valued map Pi: [0, T ] ; Rd by

Pi(t) = { v ∈ Rd : 〈pi, v〉 ≤ H(t, x, pi)}.
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From the separation theorem and continuity of H(t, x, · ) it follows that

F (t, x) =
⋂
i≥1

Pi(t).

By [7, Theorem 8.2.9], Pi is measurable. Thus by [7, Theorem 8.2.4] the set-va-
lued map

t ;
⋂
i≥1

Pi(t) = F (t, x)

is also measurable. The remaining properties of F were checked in the proof of
Proposition 7.1 of [44]. �

Consider the differential inclusion

(2.40) x′(t) ∈ F (t, x(t)) almost everywhere

and let S[t0,T ](x0) have the same meaning as before. From Theorems 2.3.4, 2.3.5
we immediately deduce

Theorem 2.3.15. Assume (2.38) and consider an extended lower semicon-
tinuous function V : [0, T ] × Rd 7→ R ∪ {+∞}. Set g( · ) = V (T, · ). Then the
following two statements are equivalent:

(a) The set-valued map t ; {(x, r) : r ≥ V (t, x)} is absolutely continuous
and there exists A ⊂ [0, T ] of full measure such that for all (t, x) ∈ A×Rd

(2.41) ∀(pt, px, q) ∈
[
TEpi(V )(t, x, V (t, x))

]−
, −pt +H(t, x,−px) = 0.

(b) For all (t0, x0) ∈ [0, T ]× Rd,

(2.42) V (t0, x0) = inf{g(x(T )) : x ∈ S[t0,T ](x0)}.

Corollary 2 .3.16 (Maximum Principle). Assume (2.38) and let V1, V2
be extended lower semicontinuous functions from [0, T ] × Rd into R ∪ {+∞}
satisfying (a) of Theorem 2.3.15. If V1(T, · ) ≥ V2(T, · ), then V1 ≥ V2.

Proof. By Theorem 2.3.15, Vi is given by (2.42) with g( · ) = Vi(T, · ). �

Results of Section 5.2 imply different equivalent formulations of statement
(b) of Theorem 2.315 linking V to viscosity solutions. For instance Corollary 2.3.9
yields

Corollary 2.3.17. Assume (2.38) and consider a locally Lipschitz continu-
ous function V : [0, T ] × Rd 7→ R. Set g( · ) = V (T, · ). Then the following three
statements are equivalent:

(a) There exists a set A ⊂ [0, T ] of full measure such that

∀(t, x) ∈ A× Rd, ∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) = 0.
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(b) For all (t0, x0) ∈ [0, T ]× Rd,

V (t0, x0) = inf{g(x(T )) : x ∈ S[t0,T ](x0)}.

(c) There exists C ⊂ [0, T ] of full measure such that for all (t, x) ∈ C ×Rd{ ∀(pt, px) ∈ ∂−V (t, x), −pt +H(t, x,−px) ≥ 0,

∀(pt, px) ∈ ∂+V (t, x), −pt +H(t, x,−px) ≤ 0.





CHAPTER 3

CONTROL PROBLEMS WITH STATE CONSTRAINTS

The value function for control problems with state constraints was consi-
dered in [92], [23], [62] (see also Chapter IV in [2]). In the cited papers un-
der hypotheses including an inward-pointing condition it is shown that the
value function is continuous and is a viscosity solution of the corresponding
Hamilton–Jacobi–Bellman equation. In this chapter we consider the Bolza pro-
blem and an infinite horizon control problem under an outward-pointing condi-
tion (see (3.5), (3.33)). Under hypotheses of the main results of the chapter: The-
orems 3.1.7 and 3.2.1, the value function can be discontinuous but despite of this
fact it is still the unique solution of the corresponding Hamilton–Jacobi–Bellman
equation in the weak sense proposed in the chapter. The method of proof is
attributed to Frankowska [44]. The presence of constraints needs some crucial
improvements in the construction of backward invariant solutions.

3.1. Bolza problem

Let a nonempty subset D ⊂ Rn be locally compact. Set K := D (closure
of D), M := K \ D. Then M is closed. Consider a complete separable metric
space U and let

(3.1) f : [0, T ]× Rn × U 7→ Rn, L: [0, T ]× Rn × U 7→ [0,∞)

be bounded continuous maps;

such that

(3.2) f, L are locally Lipschitz continuous

with respect to (t, x) uniformly in u;

in the following sense

∀r > 0, ∃ lr > 0 such that ∀u ∈ U,
f( · , · , u) and L( · , · , u) are lr-Lipschitz on [0, T ]×B(0, r).

51
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We also assume that

(3.3) {(f(t, x, u), L(t, x, u) + r) ∈ Rn × R : u ∈ U, r ≥ 0}
is closed and convex for every t ∈ [0, T ], x ∈ K,

∀(t, x) ∈ ]0, T ]×D, ∀u ∈ U, −f(t, x, u) ∈ TD(x),(3.4)

∀(t, x) ∈ ]0, T ]×M, ∃u ∈ U, f(t, x, u) /∈ PMK (x).(3.5)

Remark. If D = Ω is an open subset of Rn with a smooth boundary ∂Ω =
M then (3.4) is always satisfied (TΩ(x) = Rn) and (3.5) means

∀(t, x) ∈ ]0, T ]× ∂Ω, ∃u ∈ U, 〈f(t, x, u), n(x)〉 > 0

where n(x) is an outer normal to Ω at x.

Let

(3.6) g:K 7→ R ∪ {+∞} be proper and lower semicontinuous

(Proper means here not identically equal to +∞). For any measurable control
u: [0, T ] 7→ U and t0 ∈ [0, T ] denote by x( · ; t0, x0, u) the unique solution of{

x′(t) = f(t, x(t), u(t)),

x(t0) = x0,

defined on the interval [0, T ]. Let us denote by

A(t0, x0) = {u: [t0, T ] 7→ U : x(t; t0, x0, u) ∈ K for every t ∈ [t0, T ]}

the set of all admissible controls from the initial condition (t0, x0) ∈ [0, T ]×K.
The value function V : [0, T ]×K 7→ R∪{+∞} for the Bolza problem (P) is given
by

V (t0, x0) = inf
u∈A(t0,x0)

∫ T

t0

L(s, x(s; t0, x0, u), u(s)) ds+ g(x(T ; t0, x0, u)).

If the set A(t0, x0) is empty, then we set V (t0, x0) = +∞.
Define a set-valued map F : [0, T ]× Rn × R ; R× Rn × R by

F (t, x, v) = {(1, f(t, x, u),−L(t, x, u)− r) : u ∈ U, r ∈ [0, C − L(t, x, u)]}

where C is a bound on L. If (3.1)–(3.3) hold true then F is locally Lipschitz
continuous bounded set-valued map and it has convex compact values.

Denote by S(t0, x0) the set of all solutions of{
z′(t) ∈ F (z(t)),

z(t0) = (t0, x0, 0),

defined on the interval [t0, T ]. Let

Sv(t0, x0) = {z ∈ S(t0, x0) : z(t) ∈ [t0, T ]×K × R for every t ∈ [t0, T ]}.
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It is easy to check that z ∈ Sv(t0, x0) if and only if there exist u ∈ A(t0, x0) and
a measurable η such that L(s, x(s; t0, x0, u), u(s)) + η(s) ≤ C and

z(t) =
(
t, x(t; t0, x0, u),

∫ T

t

−(L(s, x(s; t0, x0, u), u(s)) + η(s)) ds
)
.

Proposition 3.1.1. Assume that (3.1)–(3.3) and (3.6) hold true. Then the
value function V : [0, T ]×K 7→ R ∪ {+∞} is lower semicontinuous. Moreover,

lim inf
tn→0+, yn→y, yn∈K

V (tn, yn) = V (0, y)

for every y ∈ K.

Proof. The first statement is well known. To prove the second one, fix y ∈ K
such that (0, y) ∈ Dom(V ). Let u: [0, T ] 7→ U be an optimal control for this
initial conditions (0, y). Then

V (s, x(s; 0, y, u)) = V (0, y)−
∫ s

0
L(τ, x(τ ; 0, y, u), u(τ)) dτ.

Clearly lims→0+ V (s, x(s; 0, y, u)) = V (0, y). This and the lower semicontinuity
of V end the proof. �

Proposition 3.1.2. Assume that (3.1)–(3.3) and (3.6) hold true. Then the
epigraph of the value function over [0, T ) × K, i.e. the set K := {(t, x, v) : t ∈
[0, T ), x ∈ K, v ≥ V (t, x)} is a viability domain for the set-valued map F .

Proof. Fix (t0, x0, v0) ∈ K. Consider an optimal control u ∈ A(t0, x0), i.e.
V (t0, x0) =

∫ T
t0
L(s, x(s), u(s)) ds + g(x(T )), where x( · ) = x( · ; t0, x0, u). Then

the function

z(t) =
(
t, x(t), v0 +

∫ t

t0

−L(s, x(s), u(s)) ds
)

is a solution of z′ ∈ F (z). Observe that

v0 −
∫ t

t0

L(s, x(s), u(s)) ds ≥
∫ T

t

L(s, x(s), u(s)) ds+ g(x(T )) ≥ V (t, x(t)).

Thus, z(t) ∈ K for t ∈ [t0, T ). By the Viability Theorem (Theorem 1.4.1), we
obtain the desired conclusion. �

Proposition 3.1.3. Assume that (3.1)–(3.3) and (3.6) hold true. Then the
epigraph

DT = {(t, x, v) : t ∈ (0, T ], x ∈ D and v ≥ V (t, x)}
of the function V restricted to (0, T ]×D is a backward invariance domain for F .

Proof. Let t0 ∈ (0, T ], x0 ∈ D and +∞ > v0 ≥ V (t0, x0). There is ε > 0 such
that for every measurable u: [t0 − ε, t0] 7→ U the solution xu: [t0 − ε, t0] 7→ Rn to{

x′(t) = f(t, x(t), u(t)),

x(t0) = x0,



54 Sławomir Plaskacz

satisfies xu(t) ∈ D. Let vu(t) = v0 +
∫ t
t0
−L(s, xu(s), u(s)) ds and u ∈ A(t0, x0)

be an optimal control. Fix t1 ∈ [t0 − ε, t0] and let x1 = xu(t1). Define

u1(s) =
{
u(t) for t ∈ [t1, t0],

u(t) for t > t0.

We have u1 ∈ A(t1, x1) and

(3.7) V (t1, x1) ≤
∫ T

t1

L(s, x(s; t1, x1, u1), u1(s)) ds+ g(x(T ; t1, x1, u1))

=
∫ t0

t1

L(s, x(s; t1, x1, u1), u1(s)) ds+ V (t0, x0) ≤ vu(t1).

If z(t) is a solution of the differential inclusion z′(t) ∈ F (z(t)) defined on the
interval [t0−ε, t0] and z(t0) = (t0, x0, v0), then there is a control u: [t0−ε, t0] 7→ U

and a measurable function η: [t0−ε, t0] 7→ [0, C] such that z(t) = (t, xu(t), vu(t)+∫ t
t0
η(s) ds). By (3.7), we obtain z(t) ∈ Epi(V ). From Theorem 1.4.2, we get the

conclusion. �

Proposition 3.1.4. Suppose that (3.1)–(3.3) and (3.6) hold true and let
W : [0, T ]×K 7→ R∪{+∞} be a lower semicontinuous function. If W (T, x) ≥ g(x)
for x ∈ K and K := {(t, x, v) : t ∈ [0, T ), x ∈ K, v ≥ W (t, x)} is a viability
domain of F , then

W (t0, x0) ≥ V (t0, x0)

for every (t0, x0) ∈ [0, T ]×K.

Proof. By Theorem 1.4.1 for (t0, x0) ∈ Dom(W ), there is a K-viable solution
z: [t0, t1) 7→ Rn+2 of the Cauchy problem z′ ∈ F (z), z(t0) = (t0, x0,W (t0, x0)).
There is a control u ∈ A(t0, x0) such that z(t) = (t, xu(t), vu(t)), where xu(t) =
x(t; t0, x0, u) and vu(t) = W (t0, x0) −

∫ t
t0

(L(s, xu(s), u(s)) + η(s)) ds for a non-
negative measurable function η. Setting η = 0 we get another K-viable solution
denoted again by z. We have

v1 := lim
t→t−1

vu(t) ≥ lim inf
t→t−1

W (t, xu(t)) ≥W (t1, xu(t1)).

This solution z( · ) can be extended to the interval [t0, T ] and

W (t0, x0)−
∫ T

t0

L(s, xu(s), u(s)) ds ≥W (T, xu(T )) ≥ g(xu(T )).

Hence V (t0, x0) ≤W (t0, x0), which completes the proof. �

Corollary 3.1.5. Assume that (3.1)–(3.6) hold true. Then for every (t0, y0)
∈ (0, T ]×K there is a sequence (tn) converging to t0 from the left and a sequence
(yn) ⊂ D converging to y0 such that limn→∞ V (tn, yn) = V (t0, y0).

Proof. By Proposition 3.1.3 and the lower semicontinuity of V it is enough
to consider y0 ∈ M . By (3.5), there is u ∈ U such that f(t0, y0, u) /∈ PMK (y0).
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Using Theorem 1.4.2, Proposition 1.2.1 and (3.4) it is not difficult to realize that
there is ε > 0 such that x(t) ∈ D for t ∈ (t0 − ε, t0), where x is a solution of{

x′(t) = f(t, x(t), u),

x(t0) = y0.

Setting yn = x(tn), where tn → t−0 , we have

V (tn, yn) ≤ V (t0, y0) +
∫ t0

tn

L(s, x(s), u) ds.

This and the lower semicontinuity of V yield limn→∞ V (tn, yn) = V (t0, y0). �

Proposition 3.1.6. Assume that (3.1)–(3.6) hold true. Let W : [0, T ]×K 7→
R ∪ {+∞} be a lower semicontinuous function such that

lim inf
tn→T−, yn→y0, yn∈D

W (tn, yn) = g(y0) for every y0 ∈ K.

If the set {(t, x, v) : t ∈ (0, T ), x ∈ D and v ≥W (t, x)} is a backward invariance
domain of F , then

W (t0, x0) ≤ V (t0, x0) for every (t0, x0) ∈ [0, T ]×K.

Proof. Fix t0 ∈ [0, T ), x0 ∈ K such that (t0, x0) ∈ Dom(V ). Let u ∈
A(t0, x0), xu(s) = x(s; t0, x0, u) and wu: [t0, T ] 7→ R solves the Cauchy problem{

w′(t) = −L(t, xu(t), u(t)),

w(T ) = g(xu(T )).

It is enough to show that

(3.8) W (t0, xu(t0)) ≤ wu(t0).

Let l > 1 be the Lipschitz constant of f( · , · , u), L( · , · , u) on the set ]0, T ] ×
B(x0, CT + 1), where C is an upper bound f . By the assumption (3.5) and
Proposition 1.2.1 for every (t, x) ∈ ]0, T ]×M there exist ut,x ∈ U , εt,x > 0 such
that for every y ∈ K ∩B(x, εt,x) we have

(y + (0, εt,x]B(−f(t, x, ut,x), εt,x)) ∩K ⊂ D.

If |t′ − t| < εt,x/4l, |x′ − x| < εt,x/4l then

B

(
− f(t′, x′, ut,x),

εt,x
2

)
⊂ B(−f(t, x, ut,x), εt,x).

Hence, for every (t, x) ∈]0, T ] ×M there are ut,x ∈ U , Rt,x > 0 such that for
every t′ ∈ [0, T ], x′, y ∈ K satisfying |y−x′| < Rt,x, |x′−x| < Rt,x, |t−t′| < Rt,x
we have

(y + (0, Rt,x]B(−f(t′, x′, ut,x), Rt,x) ∩K ⊂ D.
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Since the set M is closed,

(3.9) ∃0 < R < 1, ∀t′ ∈ [t0, T ], ∀x′ ∈ K ∩B(M,R) ∩B(x0, CT + 1), ∃u′ ∈ U,
∀y ∈ K ∩B(x′, R), (y + (0, R]B(−f(t′, x′, u′), R))) ∩K ⊂ D.

We choose ∆τ > 0 such that

(3.10) (C + l + 2)(el∆τ − 1) <
R

4
and ∆τ C <

R

2
.

Let N be a natural number such that N∆τ > T . We set

(3.11) C2 :=
4
R
, C1 := (1 + C2(2C + (l + C)T ))N .

Now, we choose a sequence (tk, yk) ∈ (0, T )×D such that tk → T−, yk → xu(T )
and W (tk, yk) → W (T, xu(T )). Without loss of generality we can assume that
for every k

|yk − xu(tk)| ≤ d

C1elT

where

(3.12) d :=
R2

8l(C + 1)
.

We next describe how to construct controls vk: [t0, tk] 7→ U and corresponding
trajectories xk: [t0, tk] 7→ Rn which satisfy:

(3.13)



• xk(tk) = yk and xk(t) ∈ D for t ∈ [t0, tk];

• |xk(t)− xu(t)| ≤ C1e
l(tk−t)|yk − xu(tk)| for t ∈ [t0, tk];

• The interval [t0, tk] is divided into subintervals [τki+1, τ
k
i ],

i = 0, . . . , nk, nk ≤ N. Moreover, vk(t) = u(t+ εki )

for every t ∈ [τki+1, τ
k
i − εki ], i = 0, . . . , nk − 1,

where εki = C2|xk(τk)− xu(τk)|.

Only after having the control vk and the corresponding trajectory defined on
the interval [τki , τ

k
0 ] we choose the left end τki+1 and extend vk to [τki+1, τ

k
i [.

The construction is based on the assumption that the initial condition t′ = τki ,
x′ = xk(τki ) satisfies

(3.14) x′ ∈ D, |xu(t′)− x′| < d, dist(x′,M) < R.

Notice that by (3.9), there exists u′ ∈ U such that

(y + ]0, R]B(−f(t′, x′, u′), R)) ∩K ⊂ D

for every y ∈ K, |y − x′| < R. So, if z ∈ K, y ∈ K, |x′ − y| < R, 0 < r < R and

(3.15) |z − (y − rf(t′, x′, u′))| < rR⇒ z ∈ D.
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Set ε′ := min(C2|xu(t′)− x′|,∆τ) and define a control w: [t0, t′] 7→ U by

w(t) =
{
u′ for t ∈ [t′ − ε′, t′],
u(t+ ε′) for t ∈ [t0, t′ − ε′).

We claim that the trajectory xw corresponding to the control w and to the initial
condition xw(t′) = x′ satisfies xw(t) ∈ D for t ∈ [t′ −∆τ, t′].

First consider the case t ∈ [t′ − ε′, t′]. We have

(3.16) |xw(t)− (x′ − (t′ − t)f(t′, x′, u′))| < R(t′ − t).

Let t1 = inf{t ∈ [t′−ε′, t′] : xw(s) ∈ D for s ∈ [t, t′]}. By (3.4) and the Invariance
Theorem, we obtain t1 < t′. By (3.15), (3.16), we have xw(s) ∈ D for s ∈ (t1, t′].
Since xw(t1) belongs to K and (3.16) holds true for t = t1 we obtain xw(t1) ∈ D.
We claim that t1 = t′−ε′. Suppose to the contrary that t1 > t′−ε′. By (3.4) and
the Invariance Theorem, there exists t2 < t1 such that xw(s) ∈ D for s ∈ [t2, t1]
contradicting the definition of t1.

Next consider the case t ∈ [t′ −∆τ, t′ − ε′]. We have

|xw(t) − (xu(t+ ε′)− ε′f(t′, x′, u′))|

≤ |x′ − xu(t′)|+
∣∣∣∣ ∫ t′

t′−ε′
(f(t′, x′, u′)− f(s, xw(s), u′)) ds

∣∣∣∣
+
∫ t′

t+ε′
|f(s, xu(s), u(s))− f(s− ε′, xw(s− ε′), u(s))| ds

≤ |x′ − xu(t′)|+ l(C + 1)
2

(ε′)2 + ε′(el∆τ − 1)
(
C + l + 1 +

|xu(t′)− x′|
ε′

)
.

Thus

|xw(t)− (xu(t+ ε′)− ε′f(t′, x′, u′))|

≤
(
|x′ − xu(t′)|

ε′
+ ε′

l(C + 1)
2

+ (el∆τ − 1)
(
C + l + 1 +

|xu(t′)− x′|
ε′

))
ε′.

By (3.10)–(3.12), we obtain

|x′ − xu(t′)|
ε′

+ ε′
l(C + 1)

2
+ (el∆τ − 1)

(
C + l + 1 +

|xu(t′)− x′|
ε′

)
≤ 3R

4
.

Moreover,

ε′ ≤ 4
|xu(t′)− x′|

R
< 4

d

R
< R

and

|xu(t+ ε′)− x′| ≤ |xu(t+ ε′)− xu(t′)|+ |xu(t′)− x′| < C∆τ + d < R.

Since xu(t + ε′) ∈ K, by (3.15) as long as xw(t) ∈ K we also have xw(t) ∈ D.
Using the same arguments as in the first case we conclude that xw(t) ∈ D for
t ∈ [t′ −∆τ, t′ − ε′].
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We set t′′ := inf{t ∈ [t0, t′) : for all s ∈ (t, t′), xw(s) ∈ D}. We have just
proved that t′′ ≤ t′ −∆τ . Obviously xw(t′′) ∈ K. We claim that if t′′ > t0 then
xw(t′′) ∈M . Assume to the contrary that xw(t′′) ∈ D. By assumption (3.4) and
invariance theorem there exists δ > 0 such that xw(s) ∈ D for s ∈ (t′ − δ, t′),
which contradicts the definition of t′′. So, we can choose t ∈ [t0, t′) in such a way
that:

• t′ − t < ∆τ ;
• x(s) ∈ D for s ∈ [t, t′];
• t = t0 or xw(t) ∈M +B(0, R).

To repeat the same arguments in the next step, we have to know that (3.14)
holds true for t′ = t, x′ = xw(t). It remains to prove that

(3.17) |xu(t)− xw(t)| < d.

To prove this last inequality let us fix k and set b := tk, y := yk. Define successive
subintervals [τi+1, τi] and a control v( · ) on [τi+1, τi] inductively:

(1) We set ε0 = C2|xu(b)− y|. Assume that τ1 < τ0− ε0 is chosen arbitrarily
and define v( · ) on [τ1, τ0] by

v(t) =
{

arbitrary for t ∈ ]τ0 − ε0, τ0],

u(t+ ε0) for t ∈ [τ1, τ0 − ε0].

Consider the trajectory xv: [τ1, τ0] 7→ Rn which corresponds to the control v and
satisfies xv(τ0) = y.

(2) If v, xv are defined on the interval [τi, τ0] we choose τi+1 < τi− εi, where
εi := C2|xu(τi)− xv(τi)| and extend v onto [τi+1, τi) by

v(t) =
{

arbitrary for t ∈ [τi − εi, τi),
u(t+ εi) for t ∈ [τi+1, τi − εi).

By the Gronwall Lemma we obtain an estimation

|xu(τi+1)− xv(τi+1|
≤ (|xu(τi)− xv(τi)|+ 2εiC + (l + C)εi(τi − εi − τi+1)el(τi−εi−τi+1).

By the definition of εi we get

|xu(τi+1)− xv(τi+1)|
≤ |xu(τi)− xv(τi)|(1 + C2(2C + (l + C)(τi − τi+1)))el(τi−τi+1).

We set q := 1 + C2(2C + (l + C)(τi − τ0)). We can inductively prove that

|xu(τi)− xv(τi)| ≤ qiel(τ0−τi)|xu(b)− y|.

If t ∈ [τi − εi, τi], then

|xu(t)− xv(t)| ≤ |xu(τi)− xv(τi)|+ 2(τi − t)C
≤ qiel(τ0−τi)|xu(b)− y|(1 + 2C2C) ≤ qi+1el(τ0−t)|xu(b)− y|.
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If t ∈ [τi+1, τi − εi), then

|xu(t)− xv(t)| ≤ (|xu(τi)− xv(τi)|+ εi(2C + (l + C)(τi − t)))el(τi−t)

≤ qi+1|xu(b)− y|el(τ0−t).

Since the number of subintervals n is bounded by N and the length of the interval
[τn, τ0] is bounded by T , then we have for t ∈ [τn, τ0],

|xu(t)− xv(t)| ≤ C1e
l(τ0−t)|xu(τ0)− y|

which implies (3.17) and finish the construction of controls vk satisfying (3.13).
Let wk: [t0, tk] 7→ R be a solution of:{

w′k(t) = −L(t, xk(t), vk(t)),

wk(tk) = W (tk, yk).

By (3.13) and the assumption that the set {(t, x, w) : t ∈ (0, T ), x ∈ D, w ≥
W (t, x)} is the backward invariance domain of F we obtain

wk(t0) ≥W (t0, xk(t0)).

Obviously

wk(t0) =
∫ tk

t0

L(t, xk(t), vk(t)) dt+W (tk, yk).

On the other hand∣∣∣∣ ∫ tk

t0

(L(t, xk(t), vk(t))− L(t, xu(t), u(t))) dt
∣∣∣∣

≤
nk−1∑
i=0

∫ τki −ε
k
i

τki+1

|L(t, xk(t), u(t+ εki ))− L(t+ εki , xu(t+ εki ), u(t+ εki ))| dt

+ 2C
nk−1∑
i=0

εki

≤
nk−1∑
i=0

∫ τki −ε
k
i

τki+1

l(εki + C1e
l(tk−t)|yk − xu(tk)|) dt+ 2C

nk−1∑
i=0

εki .

Since εki ≤ C2C1e
lT |yk − xu(tk)| and nk < N ,

lim
k→∞

∫ tk

t0

L(t, xk(t), vk(t)) dt =
∫ T

t0

L(t, xu(t), u(t)) dt.

Thus limk→∞ wk(t0) = wu(t0). Combining it with the lower semicontinuity of W
we obtain

W (t0, xu(t0)) ≤ lim inf
k→∞

W (t0, xk(t0)) ≤ lim
k→∞

wk(t0) = wu(t0). �
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Define H: [0, T ]×K × Rn 7→ R by

H(t, x, p) = sup
u∈U

(〈f(t, x, u), p〉 − L(t, x, u)).

Let us summarize the obtained results in

Theorem 3.1.7. Assume that (3.1)–(3.6) hold true. Then for a function
W : [0, T ]×K 7→ R ∪ {+∞} the following conditions are equivalent:

(a) W = V ;
(b) W is a lower semicontinuous function such that W (T, · ) = g( · ),

lim inf
tn→T−, yn→y, yn∈D

W (tn, yn) = g(y), for all y ∈ K

and

(3.18) {(t, x, v) : t ∈ [0, T ), x ∈ K, , v ≥W (t, x)} is a viability domain of F ,

(3.19) {(t, x, v) : t ∈ (0, T ], x ∈ D, v ≥W (t, x)}
is a backward invariance domain of F ;

(c) W is a lower semicontinuous function such that W (T, · ) = g( · ) and
for all y ∈ K

lim inf
tn→T−, yn→y, yn∈D

W (tn, yn) = g(y),

lim inf
tn→0+, yn→y, yn∈K

W (tn, yn) = W (0, y),

and

(3.20) ∀(t, x) ∈ (0, T )×M, ∀(pt, px) ∈ ∂−W (t, x), −pt +H(t, x,−px) ≥ 0;

(3.21) ∀(t, x) ∈ (0, T )×D, ∀(pt, px) ∈ ∂−W (t, x), −pt +H(t, x,−px) = 0.

Proof. By Propositions 3.1.1–3.1.3 and Corollary 3.1.5, we obtain the impli-
cation (a)⇒ (b). Assume (b). By Propositions 3.1.4 and 3.1.6, we get W = V .

We prove next that (a) ⇒ (c). From Proposition 3.1.1 and Corollary 3.1.5
we obtain the desired regularity of W . The remaining properties of W follow
from (b) (which holds true by the previous part of the proof). Fix t ∈ (0, T )
and x ∈ K. If (pt, px) ∈ ∂−W (t, x) then (pt, px,−1) ∈ [TEpi(W )(t, x,W (t, x))]−.
Viability Theorem 1.4.1 (a)⇒ (b) and (3.18) yield

(3.22) −pt +H(t, x,−px) ≥ 0, (t, x) ∈ (0, T )×K, (pt, px) ∈ ∂−W (t, x).

From Invariance Theorem 1.4.2 and (3.19) we obtain

(3.23) −pt +H(t, x,−px) ≤ 0, (t, x) ∈ (0, T )×D, (pt, px) ∈ ∂−W (t, x).

Combining it with (3.22) we get (3.20), (3.21). It remains to prove that (c)⇒ (a).
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Step 1. We show that (c) implies

(3.24) K = {(t, x, v) : t ∈ (0, T ), x ∈ K, v ≥W (t, x)}
is a viability domain of F ,

(3.25) D = {(t, x, v) : t ∈ (0, T ), x ∈ D, v ≥W (t, x)}
is a backward invariance domain of F .

First observe that (3.22), (3.23) hold true. To prove (3.24) it is enough to verify
the condition (b) in Viability Theorem 1.4.1, i.e.

(3.26) sup
u∈U
〈(1, f(t, x, u),−L(t, x, u)), (−pt,−px,−pv)〉 ≥ 0

for (pt, px, pv) ∈ [TEpi(W )(t, x,W (t, x))]− and (t, x) ∈ (0, T )×K. If pv < 0, then
(pt/−pv, px/−pv) ∈ ∂−W (t, x). From (3.22) we obtain

−pt
−pv

+H

(
t, x,
−px
−pv

)
≥ 0

which implies (3.26).
If pv = 0, then by Lemma 1.3.4, there are tn → t, xn → x, vn → v, pt,n → pt,

px,n → px, pv,n → 0, pv,n < 0 such that

(pt,n, px,n, pv,n) ∈ [TEpi(W )(tn, xn, vn)]−.

By (3.22), we have

sup
u∈U
〈(1, f(tn, xn, u),−L(tn, xn, u)), (−pt,n,−px,n,−pv,n)〉 ≥ 0.

This and assumptions (3.1), (3.3) imply (3.26).
To obtain (3.25) we have to verify the statement (b) in Invariance The-

orem 1.4.2, i.e.

(3.27) sup
u∈U
〈(1, f(t, x, u),−L(t, x, u)), (−pt,−px,−pv)〉 ≤ 0

for (pt, px, pv) ∈ [TEpi(W )(t, x,W (t, x))]−, (t, x) ∈ (0, T )×D.
If pv < 0, then (pt/−pv, px/−pv) ∈ ∂−W (t, x). By (3.23), we obtain

−pt
−pv

+H

(
t, x,
−px
−pv

)
≤ 0

which yields (3.27).
If pv = 0, then by Lemma 1.3.4, there are tn → t, xn → x, vn → v, pt,n → pt,

px,n → px, pv,n → 0, pv,n < 0 such that

(pt,n, px,n, pv,n) ∈ [TEpi(W )(tn, xn, vn)]−.
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By (3.23), we have

sup
u∈U
〈(1, f(tn, xn, u),−L(tn, xn, u)), (−pt,n,−px,n,−pv,n)〉 ≤ 0.

We fix u and pass to the limit with n. Using (3.1), (3.3) we obtain (3.27).

Step 2. Applying Propositions 3.1.4, 3.1.6 with the time interval [0, T ] repla-
ced by [t, T ] with t > 0 we get

W (t, x) = V (t, x) for (t, x) ∈ (0, T ]×K.

For t = 0 and y ∈ K we have

W (0, y) = lim inf
t→0+, x→y, x∈K

W (t, x) = lim inf
t→0+, x→y, x∈K

V (t, x) = V (0, y)

which completes the proof. �

Example 1. T = 1, Ω = {(x, y) : x < 0 or y < 0}, U = [0, 1], f(t, x, y, u) =
(u, 1 − u), L(t, x, y, u) = u and g = 0. Setting D := Ω, K := Ω, M = ∂Ω we
obtain that (3.4)–(3.5) hold true. Indeed, PMK (x, 0) = {(v1, v2) : v2 ≤ 0} for
x > 0, PMK (0, y) = {(v1, v2) : v1 ≤ 0} for y > 0 and PMK (0, 0) = {(v1, v2) : v1 ≤
0 or v2 ≤ 0}. The value function V : [0, 1]×K 7→ R is given by

V (t, x, y) =
{

1− t+ y if x > 0 and t− 1 < y ≤ 0,

0 elsewhere in [0, 1]× Ω.

The function V is the unique discontinuous solution of the Hamilton–Jacobi
equation

−Vt +H(t, (x, y),−(Vx, Vy)) = 0

where

H(t, (x, y), (p1, p2)) =
{
p2 if p2 − p1 + 1 ≥ 0,

p1 − 1 if p2 − p1 + 1 < 0,
satisfying the terminal condition V (1, x) = 0.

Example 2. T = 1, U = {(u1, u2) : u1 ≥ 1, u2
1 + u2

2 ≤ 1}, Ω = {(x1, x2) :
x1 ≤ x2

2}, f(t, (x1, x2), (u1, u2)) = (u1, u2), L(t, (x1, x2), (u1, u2)) = u2 + 1,
g(x1, x2) = 0. The control system satisfies (3.1)–(3.6). Moreover, the set of state
constraints Ω is a smooth submanifold with boundary. The discontinuous value
function V : [0, 1]× Ω 7→ R is given by

V (t, x) =


0 if x1 ≤ 0,

0 if x1 > 0 and x2 ≤ −
√
x1,

0 if x1 > 0 and x2 >
√
x1 + 1− t,

1− t− x2 +
√
x1 if x1 > 0 and −√x1 ≤ x2 ≤

√
x1 + 1− t.
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3.2. Infinite horizon control problem

We assume that D ⊂ Rn is locally compact, K := cl(D), M = K \D, U is a
complete separable metric space and

(3.28) f :Rn × U → Rn, L:Rn × U → [0,∞) are bounded continuous maps;

f(x, u), L(x, u) are x-locally Lipschitz continuous uniformly in u;(3.29)

in the following sense

∀r > 0, ∃lr > 0, ∀u ∈ U, f( · , u), L( · , u) are lr-Lipschitz on B(0, r),

(3.30) {(f(x, u), L(x, u) + r) ∈ Rn × R : u ∈ U, r ≥ 0}
is closed and convex for every x ∈ K,

for every x ∈ K there is u ∈ U such that f(x, u) ∈ TK(x),(3.31)

−f(x, U) ⊂ TD(x) for every x ∈ D,(3.32)

∀x ∈M, ∃u ∈ U, f(x, u) /∈ PMK (x).(3.33)

Remark. The assumption in (3.28) that L is nonnegative may be replaced
by the hypothesis

∃γ > 0, ∀x ∈ K, ∀u ∈ U, L(x, u) ≥ −γ.

We denote by x( · ; t0, x0, u) the unique solution of the Cauchy problem{
x′(t) = f(x(t), u(t)),

x(t0) = x0,

defined on the interval (a, b) containing t0, where (a, b) is the domain of a me-
asurable control u: (a, b)→ U . If t0 = 0 then we write simply x( · ;x0, u). Let us
denote by A(x0) = {u: [0,∞)→ U : x(t;x0, u) ∈ K for every t ∈ [0,∞)} the set
of admissible controls for the point x0 ∈ K. The value function V :K → R for
the discounted cost in the infinite horizon problem is given by

(3.34) V (x0) = inf
u∈A(x0)

∫ ∞
0

e−sL(x(s;x0, u), u(s)) ds.

Let W :K → R be a lower semicontinuous function. We extend W to W̃ defined
on Rn by setting W̃ (x) = +∞ for x /∈ K. The subdifferential of W̃ at x0 ∈ K is
defined by

∂−W̃ (x0) =
{
p ∈ Rn : lim inf

x→x0

W̃ (x)− W̃ (x0)− 〈p, x− x0〉
|x− x0|

≥ 0
}
.

The subdifferential of W at x0 ∈ K relative to K is given by

∂−W (x0) =
{
p ∈ Rn : lim inf

x→x0, x∈K

W (x)−W (x0)− 〈p, x− x0〉
|x− x0|

≥ 0
}
.
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Obviously ∂W̃ (x0) = ∂W (x0). Moreover, p ∈ ∂−W̃ (x0) if and only if (p,−1) ∈
[TEpi(W )(x0,W (x0)]−.

We define the Hamiltonian H:K × Rn → R by

H(x, p) = sup
u∈U
〈f(x, u), p〉 − L(x, u).

The main result of this section is the following one.

Theorem 3.2.1. Assume that (3.28)–(3.33) hold true. Let D be a locally
compact subset of Rn, K := cl(D) and W :K → R+ be a lower semicontinuous
bounded function. Then the following conditions are equivalent:

(a) W = V ;
(b) For F defined by (3.40)

Epi(W ) is a viability domain of F ,(3.35)

(3.36) {(x, v) : v ≥W (x) and x ∈ D} is a backward invariance domain of F ,

and

(3.37) for every x ∈ K \D and every p ∈ ∂−W (x)

W (x) + sup
f(x,u)/∈PMK (x)

(〈−p, f(x, u)〉+ L(x, u)) ≤ 0.

(c) W solves the Hamilton–Jacobi equation

W (x) +H(x,DW (x)) = 0

in the following sense

∀x ∈ D, ∀n ∈ ∂−W (x), W (x) +H(x,−n) = 0,(3.38)

∀x ∈M, ∀n ∈ ∂−W (x), W (x) +H(x,−n) ≥ 0,(3.39)

and (3.37) holds true.

Let C be an upper bound of L. In the sequel we shall use the set valued map
Ff,l,C :Rn ×R 7→ Rn × R given by

(3.40) Ff,l,C(x, v) = {(f(x, u), v−L(x, u)−r) : u ∈ U and r ∈ [0, C−L(x, u)]}.

If we assume that (3.28)–(3.31) hold true then the map Ff,l,C is Lipschitz conti-
nuous, bounded and it has convex compact values. To simplify the notation we
shall skip subscripts f , l, C, i.e.

F (x, v) = Ff,l,C(x, v).
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Lemma 3.2.2. If l: [0,∞) → R is a bounded measurable function, then
a function w(t) =

∫∞
0 e−sl(s+ t) ds is the unique bounded solution of

w′(t) = w(t)− l(t).

Proof. We observe that

w(t+ h) = eh
∫ ∞

0
e−s−hl(s+ t+ h) ds = eh

∫ ∞
h

e−sl(s+ t) ds.

Thus

w(t+ h)− w(t)
h

= eh
(
− 1
h

∫ h

0
e−sl(s+ t) ds+

eh − 1
h

∫ ∞
0

e−sl(s+ t) ds
)
.

Passing to the limit we obtain

w′(t) = −l(t) + w(t)

for almost all t. If a function v is a solution of v′(t) = v(t)− l(t), then there is a
constant C such that v(t) = w(t) + Cet. If v, w are bounded then C = 0. �

Proposition 3.2.3. Assume that (3.28)–(3.31) hold true. Then the value
function V :K → R is lower semicontinuous.

Proof. Fix x0 ∈ K and a sequence xn ∈ K convergent to x0. Choose un ∈
A(xn) such that

lim inf
n→∞

V (xn) = lim inf
n→∞

∫ ∞
0

e−sL(zn(s), un(s)) ds = v0

where zn( · ) = x( · , xn, un). Define wn(t) =
∫∞

0 e−sL(zn(s + t), un(s + t)) ds.
By Lemma 3.2.2, we have wn(t)′ = wn(t) − L(zn(t), un(t)) for a.a. t ≥ 0. Thus
(z′n(t), w′n(t)) ∈ F (zn(t), wn(t)). Passing to the subsequence, if necessary, (deno-
ted again by (zn, wn)) we obtain

lim
n→∞

zn(0) = x0, lim
n→∞

wn(0) = v0.

Fix ε > 0 and T > 0. Let SF (x,w) denote the set of solutions (x( · ), w( · )):
[0, T ]→ K×R to the differential inclusion (x′, w′) ∈ F (x,w) satisfying the initial
condition (x(0), w(0)) = (x,w). The set-valued map SF is upper semicontinuous
and has nonempty compact values. So we can choose a subsequence (denoted
again by (zn, wn)) such that (zn, wn) converges uniformly on [0, T ] to a solution
(zT ( · ), wT ( · )) ∈ SF (x0, v0). We apply the above procedure for an increasing se-
quence Tn converging to ∞. For T1 we choose a subsequence znk , wnk uniformly
converging on [0, T1] to a solution (zT1( · ), wT1( · )). For T2 we choose a subsequ-
ence (znkl ( · ), wnkl ( · )) uniformly converging on [0, T2] to a solution (zT2 , wT2).
For t ∈ [0, T1] we have (zT1(t), wT1(t)) = (zT2(t), wT2(t)). Iterating the procedure
we obtain a solution (z( · ), w( · )) to the differential inclusion (z′, w′) ∈ F (z, w)
such that for every Tn there is a subsequence of the sequence (zn, wn) uniformly
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converging on [0, Tn] to (z( · ), w( · )). Every function wn is bounded by C. Thus
w is a bounded function. By the measurable selection theorem there exist me-
asurable functions u: [0,∞)→ U , r: [0,∞)→ R such that

z′(t) = f(z(t), u(t)); w′(t) = w(t)− L(z(t), u(t))− r(t),

and r(t) ∈ [0, C − L(z(t), u(t))]. By Lemma 3.2.2, we have

w(t) =
∫ ∞

0
e−s(L(z(s+ t), u(s+ t)) + r(t+ s)) ds.

Thus

v0 = w(0) =
∫ ∞

0
e−sL(z(s), u(s)) ds+

∫ ∞
0

e−sr(s) ds

≥ V (z(0)) +
∫ ∞

0
e−sr(s) ds

and therefore v0 ≥ V (z(0)). �

Proposition 3.2.4. Assume that (3.28)–(3.31) hold true. Then for every
x0 ∈ K there is u ∈ A(x0) such that V (x0) =

∫∞
0 e−sL(x(s), u(s)) ds, where

x(s) = x(s;x0, u), i.e. there exists an optimal control u.

Proof. Fix x0 ∈ K and choose un ∈ A(x0) such that

lim
n→∞

∫ ∞
0

e−sL(xn(s), un(s)) ds = V (x0),

where xn(s) = x(s;x0, un). Setting vn(t) =
∫∞

0 e−sL(xn(s+ t), un(s+ t)) ds we
obtain a solution (xn( · ), vn( · )) to a differential inclusion

(3.41) (x′(s), v′(s)) ∈ F (x(s), v(s)).

Let (Tn) be an increasing sequence converging to +∞. There is a subsequence
(xnk , vnk) convergent on the interval [0, T1] to a solution (x1, v1) to (3.41). Fur-
thermore there is a subsequence (xnkl , vnkl ) convergent on the interval [0, T2]
to a solution (x2, v2) of (3.41) and x1(t) = x2(t), v1(t) = v2(t), for t ∈ [0, T1].
Iterating the procedure we obtain a solution (x, v) to (3.41) such that for every
interval [0, T ] there is a subsequence of (xn, vn) convergent uniformly on [0, T ]
to (x, v). Thus for some measurable u(t) ∈ U , r(t) ∈ [0, C −L(x(t), u(t))], where
x(t) = x(t;x0, u) we have

v′(t) = v(t)− L(x(t), u(t))− r(t).

By Lemma 3.2.2, since v is bounded, v(t) =
∫∞

0 e−s(L(x(s+ t), u(s+ t)) + r(s+
t)) ds and therefore

lim
n→∞

vn(0) = v(0) ≤
∫ ∞

0
e−sL(x(s), u(s)) ds.

Hence u( · ) is an optimal control for the initial condition x0. �
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Proposition 3.2.5. Assume that (3.28)–(3.31) hold true. If u ∈ A(x0) is an
admissible control then the function t→ V (xu(t)) is left continuous.

Proof. Let t < t0 and yt = xu(t). By Proposition 3.2.4, there is an optimal
control u ∈ A(yt) such that V (yt) =

∫∞
0 e−sL(xu(s), u(s)) ds, where xu(s) =

x(s; yt, u). We define

ut(s) =
{
u(t+ s) for s ∈ [0, t0 − t),
u(s− (t0 − t)) for s > t0 − t.

Let xt(s) = x(s; yt, ut). We have

V (yt) ≤
∫ ∞

0
e−sL(xt(s), ut(s)) ds =

∫ t0−t

0
e−sL(xt(s), ut(s)) ds+ et−t0V (y0).

Thus lim supt→t0− V (xu(t)) ≤ V (y0). Combining it with the lower semicontinuity
of V we obtain the desired statement. �

Proposition 3.2.6. Assume that (3.28)–(3.31) hold true. Then the epigraph
of the value function Epi(V ) ⊂ K×R is a viability domain of F :Rn×R 7→ Rn×R
defined by (3.40)

Proof. Let u( · ) ∈ A(x0) be an optimal control, i.e.
∫∞

0 e−sL(xu(s), u(s)) ds
= V (x0). Fix t > 0. Setting u1(s) = u(s + t) for s ≥ 0 we obtain u1 ∈ A(xu(t))
and∫ ∞

0
e−sL(xu(s), u(s)) ds

=
∫ t

0
e−sL(xu(s), u(s))ds+ e−t

∫ ∞
0

e−sL(xu1(s), u1(s)) ds,

where xu1 is the output corresponding to the control u1 starting from xu(t) at
time 0. Hence,

V (xu(t)) ≤
∫ ∞

0
e−sL(xu1(s), u1(s)) ds(3.42)

= etV (x0)− et
∫ t

0
e−sL(xu(s), u(s)) ds.

Define v(t) = etv0 − et
∫ t

0 e
−sL(xu(s), u(s)) ds, where v0 ≥ V (x0). It is easy

to see that the function (xu(t), v(t)) is a solution of the differential inclusion
(x′, v′) ∈ F (x, v) such that (x(0), v(0)) = (x0, v0). By (3.42), we have

V (xu(t)) ≤ v(t).

Combining it with Viability Theorem 1.4.1, we obtain the desired conclusion.�
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Proposition 3.2.7. Assume that (3.28)–(3.32) hold true. Then the set
{(x, v) : x ∈ D and v ≥ V (x)} is a backward invariance domain of F defined
by (3.40).

Proof. Let x0 ∈ D and v0 ≥ V (x0). By (3.32) and Invariance Theorem 1.4.2,
there exists ε > 0 such that for every measurable u: [−ε, 0] → U the solution
xu: [−ε, 0]→ Rn of the Cauchy problem{

x′(s) = f(xu(s), u(s)),

x(0) = x0,

satisfies xu(s) ∈ D for s ∈ [−ε, 0]. Let

v(s) = esv(0)− es
∫ s

0
e−τ (L(x(τ), u(τ)) + r(τ)) ds,

where r( · ) is a measurable function such that r(τ) ∈ [0, C − L(x(τ), u(τ))]. Fix
t ∈ [−ε, 0], u ∈ A(x0) and denote x1 = xu(t). Define

u1(s) =
{
u(s+ t) for s ∈ [0,−t],
u(s+ t) for s > −t.

We have u1 ∈ A(x1) and

V (x1) ≤
∫ ∞

0
e−sL(x1(s), u1(s)) ds

=
∫ −t

0
e−sL(x1(s), u1(s)) ds+ et

∫ ∞
0

e−sL(x(s), u(s)) ds.

Since u was arbitrary then

V (x1) ≤
∫ −t

0
e−sL(x1(s), u1(s))ds+ etV (x0) ≤ v(t).

By Invariance Theorem 1.4.2, we obtain the conclusion. �

Proposition 3.2.8. Suppose that (3.28)–(3.31) hold true and the epigraph
Epi(W ) of a lower semicontinuous nonnegative function W :K → R is a viability
domain of F given by (3.40). Then

W (x0) ≥ V (x0) for every x0 ∈ K.

Proof. By Viability Theorem 1.4.1, there is a solution (x( · ), v( · )) to (3.41)
such that x(0) = x0, v(0) = W (x0) and (x(t), v(t)) ∈ Epi(W ) for t > 0. Hence,
v(t) ≥W (x(t)). There are measurable maps u: [0,∞)→ U and r: [0,∞)→ [0, C]
such that {

x′(t) = f(x(t), u(t)),

v′(t) = v(t)− L(x(t), u(t))− r(t).
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Since the function v is nonnegative there is D ≥ 0 such that v(t) = Det +∫∞
0 e−sL(x(s + t), u(s + t)) ds. Hence, W (x0) = D +

∫∞
0 e−sL(x(s), u(s)) ds ≥

V (x0), which completes the proof. �

Proposition 3.2.9. Assume that (3.28)–(3.33) hold true. Then for every
y ∈ K there is a sequence (yn) ⊂ D convergent to y such that limn→∞ V (yn) =
V (y). Moreover, the value function satisfies (3.37) with W replaced by V .

Proof. By (3.33), there is u ∈ U such that −f(y, u) /∈ PMK (y). By Proposi-
tion 1.4.3, there exists ε > 0 such that x(t) ∈ D for t ∈ (−ε, 0), where x is the
solution of the Cauchy problem{

x′(t) = f(x(t), u),

x(0) = y.

Setting yn = x(tn), where tn → 0−, we obtain limn→∞ V (yn) = V (y0), by
Proposition 3.2.5.

To prove the second part of the statement fix x0 ∈ M and u ∈ U such
that f(x0, u) /∈ PMK (x0). By Proposition 1.4.3, there exists δ > 0 such that the
solution of {

x′(t) = f(x(t), u),

x(0) = x0,

satisfies x(t) ∈ D for t ∈ (−δ, 0). Hence

V (x(t)) ≤
∫ |t|

0
e−sL(x(t+ s), u) ds+ etV (x0).

So, for every p ∈ ∂−V (x0)

V (x0) + 〈−p, f(x0, u)〉+ L(x0, u) ≤ 0.

Hence the value function satisfies (3.37). �

Lemma 3.2.10. If (3.28)–(3.33) hold true and W :K → R is lower semi-
continuous and satisfies (3.37) then for every y ∈M

lim inf
y′→y, y′∈D

W (y′) = W (y).

Proof. From the lower semicontinuity of W it follows, that if y ∈ D then the
conclusion holds true.

Assume next that y /∈ D. Then lim infy′→y, y′∈DW (y′) ≥ W (y). Let u be
such that f(y, u) /∈ PMK (x). By Proposition 1.2.1, there exists ε > 0 such that
for every x ∈ K ∩B(y, ε)

(x+ (0, ε]B(−f(y, u), ε)) ∩K ⊂ K \M = D.

Hence, taking ε smaller we get for every x ∈ K ∩B(y, ε)

(x+ (0, ε]B(−f(x, u), ε)) ∩K ⊂ D.
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This yields f(x, u) /∈ PMK (x). Thus W (x) + 〈−p, f(x, u)〉 + L(x, u) ≤ 0 and we
proved that for every x ∈ K ∩B(y, ε)

(−f(x, u),−W (x)− L(x, u)) ∈ coTEpi(W )(x,W (x)).

(To apply the separation theorem and Rockafellar’s result). Since

lim inf
x→y, z→W (x), z≥W (y)

coTEpi(W )(x, z) ⊂ TEpi(W )(y,W (y)).

We get
(−f(y, u),−W (y)− L(y, u)) ⊂ TEpi(W )(y,W (y)).

Hence D↑W (y)(−f(y, u)) ≤ W (y) + L(y, u). Consider hn → 0+, vn → f(y, u)
such that W (y − hnvn) ≤ W (y) − εnhn, where εn → 0+. Set yn = y − hnvn.
Then by (4.43) yn ∈ D, lim supn→∞W (yn) ≤W (y) and we get limn→∞W (yn) =
W (y). �

Proposition 3.2.11. Assume that (3.28)–(3.33) hold true. Let W :K → R
be a bounded lower semicontinuous function such that

∀y ∈M, lim inf
y′→y, y′∈D

W (y′) = W (y).

If the set {(x, v) : x ∈ D and v ≥ V (x)} is a backward invariance domain of F
(defined by (3.40)), then W (x0) ≤ V (x0) for every x0 ∈ K.

Proof. Fix x0 ∈ K, u ∈ A(x0). Let xu(s) = x(s;x0, u).

Step 1. If xu(s) ∈ D for s ∈ [t1, t0], then

(3.44) W (xu(s)) ≤ es−t0W (xu(t0)) +
∫ t0

s

es−τL(xu(τ), u(τ)) dτ

for s ∈ [t1, t0]. Let t2 be the infimum of t ∈ [t1, t0] such that (3.44) holds true for
all s ∈ [t, t0]. Since W is lower semicontinuous we obtain that (3.44) holds true
for s = t2. Suppose that t1 < t2. By Theorem 1.4.2, there is t3 (t1 ≤ t3 < t2)
such that the solution v( · ) of the Cauchy problem{

v′(s) = v(s)− L(xu(s), u(s)),

v(t2) = W (xu(t2)),

satisfies v(s) ≥ W (xu(s)) for s ∈ [t3, t2]. Obviously, v(s) = es−t2v(t2)+∫ t2
s
es−τL(xu(τ), u(τ)) dτ . It follows that (3.44) holds true for s ∈ [t3, t0], which

contradicts the definition of t2.

Step 2. We claim that for every t0 > 0 there is T ∈ (0, t0] such that (3.44)
holds true for every s ∈ [t0 − T, t0]. If xu(t0) ∈ D then there is T > 0 such that
xu(s) ∈ D for every s ∈ [t0 − T, t0] and we obtain our claim by Step 1.

Next consider the case y0 := xu(t0) ∈ M . There is u ∈ U such that (3.33)
holds true for w = −f(y0, u). By Lemma 1.2.1, there exists R ∈ (0, 1) such
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that (y + (0, R)B(w,R)) ∩K ⊂ D for every y ∈ K ∩B(y0, R). It follows that if
y ∈ K ∩B(y0, R), ε < R, x ∈ K and

(3.45) |x− (y + εw)| < εR

then x ∈ D.
We choose a sequence (yn) ⊂ D convergent to y such that limn→∞W (yn) =

W (y). Let M > 1 be a bound of f(x, u) and l be the Lipschitz constant of
f( · , u) on the ball B(y0,M). We set εn = 3|yn − y0|/R. Moreover, we choose
T ∈ (0, R/M) such that

(M + 1)(elT − 1) <
R

3
.

Define un: [t0 − T, t0]→ U by

un(s) =
{
u for s ∈ [t0 − εn, t0],

u(s+ εn) for s ∈ [t0 − T, t0 − εn).

Define xn(s) = x(s; t0, yn, un) for s ∈ [t0 − T, t0]. We shall show that for suffi-
ciently large n, xn(s) ∈ D for s ∈ [t0 − T, t0]. By Proposition 1.4.3, there exists
δ > 0 such that x(t; y, u) ∈ D for t ∈ (−δ, 0) and y ∈ K, |y − y0| < δ. Thus for
sufficiently large n and s ∈ [t0 − εn, t0) we have xn(s) ∈ D.

Now, we take s ∈ [t0 − T, t0 − εn]. Then

|xn(s)− (xu(s+ εn) + εnw)|

=
∣∣∣∣yn +

∫ t0−εn

t0

f(xn(τ), u) dτ +
∫ s

t0−εn
f(xn(τ), u(τ + εn)) dτ

−
(
y0 +

∫ s+εn

t0

f(xu(τ), u(τ)) dτ + εnw

)∣∣∣∣
≤ |yn − y0|+

∫ t0

t0−εn
|w + f(xn(τ), u)| dτ

+
∫ t0−εn

s

|f(xu(τ + εn), u(τ + εn))− f(xn(τ), u(τ + εn))| dτ

≤ |yn − y0|+
(

1
2
lMε2

n + l|yn − y0|εn
)

+
∫ t0−εn

s

(|yn − y0|+Mεn)el(τ−s)l dτ

≤
(
|yn − y0|

εn
+

1
2
lMεn + l|yn − y0|+

(
|yn − y0|

εn
+M

)
(elT − 1)

)
εn.

Hence, for sufficiently large n we obtain

(3.46) |xn(s)− (xu(s+ εn) + εnw)| ≤ Rεn.
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We set t1 = inf{t ∈ [t0−T, t0−εn] : for all s ∈ (t, t0−εn), xn(s) ∈ D}. We claim
that t1 = t0−T . Since xn(t0−εn) ∈ D, by (3.32) and Invariance Theorem 1.4.2,
we have t1 < t0−εn. Suppose to the contrary that t1 > t0−T . Since K = cl(D),
we obtain xn(t1) ∈ K. By (3.45), (3.46), we obtain xn(t1) ∈ D. Again by (3.32)
and Invariance Theorem 1.4.2, there exist t2 < t1 such that xn(s) ∈ D for
s ∈ (t2, t1), which contradicts the definition of t1.

By Step 1, (3.44) holds true for s ∈ [t0−T, t0] and sufficiently large n. Thus,

W (xu(s)) ≤ lim inf
n→∞

W (xn(s))

≤ lim inf
n→∞

es−t0W (yn) +
∫ t0

s

es−τL(xn(τ), un(τ)) dτ.

Since∫ t0

s

es−τ (L(xn(τ), un(τ))− L(xu(τ), u(τ))) dτ

=
∫ t0

t0−εn
es−τL(xn(τ), un(τ) dτ −

∫ s+εn

s

es−τL(xu(τ), u(τ)) dτ

+
∫ t0

s+εn
es−τ (eεnL(xn(τ − εn), un(τ − εn))− L(xu(τ), u(τ))) dτ

we deduce (3.44) for xu, u.

Step 3. We show here that if u ∈ A(x0) and for every t0 ∈ (0,∞) there is
T ∈ (0, t0] such that (3.44) holds true for every s ∈ [t0 − T, t0], then

W (xu(0)) ≤
∫ ∞

0
e−τL(xu(τ), u(τ)) dτ.

Fix t0 > 0. We define t1 = inf{t ∈ [0, t0) : for all s ∈ (t, t0) such that (3.44) holds
true}. We choose sn → t+1 such that (3.44) holds true for s replaced by sn and
all n. By the lower semicontinuity of W , we obtain (3.44) for s = t1. Suppose
that t1 > 0. Then there exists T ∈ (0, t1) such that for every s ∈ [t1 − T, t1] we
have

W (xu(s)) ≤ es−t1W (xu(t1)) +
∫ t1

s

e−(τ−s)L(xu(τ), u(τ)) dτ.

Hence,

W (xu(s)) ≤ es−t1et1−t0W (xu(t0)) + es−t1
∫ t0

t1

e−(τ−t1)L(xu(τ), u(τ)) dτ

+
∫ t1

s

e−(τ−s)L(xu(τ), u(τ)) dτ

which contradicts the definition of t1. Consequently t1 = 0 and

W (xu(0)) ≤ e−t0W (xu(t0)) +
∫ t0

0
e−τL(xu(τ), u(τ)) dτ.
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Since limt→∞ e−tW (xu(t)) = 0 we obtain

W (xu(0)) ≤
∫ ∞

0
e−τL(xu(τ), u(τ)) dτ.

The admissible control u ∈ A(x0) being arbitrary, we finally obtain

W (x0) ≤ inf
u∈A(x0)

∫ ∞
0

e−τL(xu(τ), u(τ)) dτ,

which completes the proof. �

Proof of Theorem 3.2.1. By Propositions 3.2.3, 3.2.6, 3.2.7, we obtain the
implication (a) ⇒ (b). The implication (b) ⇒ (a) is a direct conclusion from
Propositions 3.2.8, 3.2.11 Lemma 3.2.10.

We prove next that (b)⇒ (c). Let

HF ((x, v), (−px,−pv)) = sup
u∈U, r∈[0,C−L(x,u)]

〈(f(x, u), v−L(x, u)−r), (−px,−pv)〉.

If pv < 0 then

(3.47) HF ((x,W (x)), (−px,−pv)) = (−pv)
(
W (x) +H

(
x,
−px
−pv

))
.

By Theorem 1.4.1 ((a) ⇒ (c)), (3.36) yields HF ((x,W (x)), (−px,−pv)) ≥ 0
for every (px, pv) ∈ [TEpi(W )(x,W (x))]− and x ∈ K. If n ∈ ∂−W (x), then
(n,−1) ∈ [TEpi(W )(x,W (x))]−. From (3.47) we obtain that W (x) +H(x,−n) =
HF ((x,W (x)), (−n, 1)), for n ∈ ∂−W (x). Hence

(3.48) ∀x ∈ K, ∀n ∈ ∂−W (x) W (x) +H(x,−n) ≥ 0.

By Theorem 1.4.2 ((a) ⇒ (c)), (3.36) yields HF ((x,W (x)), (−px,−pv)) ≤ 0 for
every (px, pv) ∈ [TEpi(W )(x,W (x))]− and x ∈ D. By (3.47) we obtain

(3.49) ∀x ∈ D, ∀n ∈ ∂−W (x) W (x) +H(x,−n) ≤ 0.

It is obvious that (3.38), (3.39) are equivalent to (3.48), (3.49).
It remains to prove that (c) ⇒ (b). Let (px, pv) ∈ [TEpi(W )(x,W (x))]−. If

pv < 0 then −px/pv ∈ ∂−W (x). Hence, (3.48) yields

W (x) +H

(
x,
−px
−pv

)
≥ 0.

By (3.47), it follows HF ((x,W (x)), (−px,−pv)) ≥ 0.
Next consider the case pv = 0. By Lemma 1.3.4, there are sequences

(xn), (qn), (pn) such that xn → x, xn ∈ K, pn → px, qn → 0−, (pn, qn) ∈
[TEpi(W )(xn,W (xn))]−. By (3.48), we have

W (xn) +H

(
xn,
−pn
−qn

)
≥ 0.
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Since W is bounded and (3.28)–(3.29) hold true, it follows

HF ((x,W (x)), (−px, 0)) = sup
u∈U
〈f(x, u),−px〉

= lim
n→∞

sup
u∈U

(〈f(xn, u),−pn〉 − (−qn)L(xn, u))

= lim
n→∞

(−qn)H
(
xn,
−pn
−qn

)
= lim
n→∞

(−qn)
(
W (xn) +H

(
xn,
−pn
−qn

))
≥ 0.

By Viability Theorem 1.4.1 we obtain (3.35). In a similar way we prove that
(3.49) implies (3.36). �

Example. We consider D = {(x, y) : x < 0 or y < 0}, U = [0, 1], f(x, y, u)
= (u, 1−u), L(x, y, u) = u. One can easily check that D, f(x, y, u) satisfy (3.33).
The value function V :K → R is given by

V (x, y) =
{

0 if x ≤ 0,

ey if x > 0.

The above example shows that assumption (3.33) does not imply continuity
of the value function. So, it is essentially different from the Soner condition

∀x ∈ ∂D, ∃u ∈ U, f(x, u) · n(x) < −β

where D has a smooth boundary and n(x) is the exterior normal to D and β > 0.
Soner condition was generalized to sets with nonsmooth boundary D by Ishii,
Koike in [62]. The assumption (A3) in [62] can be formulated (in our notation)
as follows

(3.50) ∀x ∈ ∂D, Int(CK(x)) ∩ co(f(x, U)) 6= ∅.

It was shown in [62] that (3.50) and (3.28)–(3.30) yield local Lipschitz continuity
of the value function. So our assumption (3.33) is of essentially different nature.

3.3. Discontinuous Mayer problem

We apply results obtained for games (Theorem 5.2.2) to describe value func-
tion for the Mayer problem with fully discontinuous terminal cost. Next, we use
the obtained description to characterize a value function of a control system with
state constraints. Our characterization of the value function is provided in the
framework of the concept of weak solutions given in Chapter 5.

Proposition 3.3.1. Let g:Rn 7→ R be a bounded function. Assume that U
is a compact metric space and f : [0, T ]×Rn × U → Rn satisfies (5.2) and (5.3).
Then the value-function Wg: (0, T ]× Rn → R given by

Wg(t, x) = inf
u∈U(t)

g(x(T ; t, x, u)),
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where U(t) denotes the set of measurable controls u: [t, T ] → U , is the unique
generalized solution (in the meaning of Definition 5.2.1) to the Hamilton–Jacobi–
Bellmann equation (5.10) where

(3.51) H(t, x, p) := min
u∈U
〈f(t, x, u), p〉.

Proof. Fix (t0, x0) ∈ (0, T ] × Rn. Let ε > 0. There exists uε ∈ U(t0) such
that g(x(T ; t0, x0, uε)) < Wg(t0, x0) + ε. We define h:Rn → R by

h(x) =
{
g(x) for x = x(T ; t0, x0, uε),

M for x 6= x(T ; t0, x0, uε),

where M is a bound of ‖g‖. Obviousily, h is lower semicontinuous. By The-
orem 5.2.2, the value Wh is a supersolution of (5.10). We have Wh(t0, x0) <
Wg(t0, x0) + ε. Hence,

Wg(t0, x0) = inf{ψ(t0, x0) : ψ is a supersolution of (5.10), ψ(T, · ) ≥ g( · )}.

We define l:Rn → R by

l(x) =
{
Wg(t0, x0) if x ∈ {x(T ; t0, x0, u) : u ∈ U(t0)},
−M if x /∈ {x(T ; t0, x0, u) : u ∈ U(t0)}.

By (5.2), (5.3), the reachable set {x(T ; t0, x0, u) : u ∈ U(t0)} is closed. Thus, l
is upper semicontinuous. Obviously, we have Wg(t0, x0) = Wl(t0, x0). By The-
orem 5.2.2 (in a version for upper semicontinuous terminal cost), we obtain Wl

is a subsolution of (5.10). Hence,

Wg(t0, x0) = sup{φ(t0, x0) : φ is a subsolution of (5.10), φ(T, · ) ≤ g( · )}. �

Remark. Proposition 3.3.1 is in fact the existence and uniqueness result for
Hamilton–Jacobi equation (5.10) with Hamiltonian given by (3.51) and arbitrary
terminal condition g. Uniqueness result in the case of lower semicontinuous g has
been obtained in [14], [44] in the framework of different definition of solution. If
g is lower semicontinuous then the solution in the meaning of Definition 5.2.1 as
well as in the meaning of [14], [44] are equal to the value function W , so they
coincides. We give an example of non semicontinuous g.

Example. Let g:R → R be the characteristic function of rationals. The
dynamics x′ = f(t, x) of a system is given by a right hand side that depends
neither on u nor on v and satisfies (5.2). In this case the value V (t0, x0) =
g(x(T ; t0, x0)) is discontinuous at every point. Despite of this, by Theorem 3.3.1,
V is the unique solution (in the sense of Definition 5.2.1) of the corresponding
problem (5.10). Let us remark, that the concepts of solution from [44] and [95]
do not apply to the example.

Now, we apply Proposition 3.3.1 to the Mayer control problem with state
constraints.
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Let K be a closed subset of Rn. We are interested in the characterization of
the following value function WK

g : [0, T ]×K → R

(3.52) WK
g (t0, x0)

= inf
{
g(x(T ; t0, x0, u)) :

{
u ∈ U(t0),

x(t; t0, x0, u) ∈ K for t ∈ [t0, T ).

}
as the unique solution of the Hamilton–Jacobi equation. In the literature there
are many attempts to solve this problem (see [92], [45]). The minimal requirement
in order the function WK

g is well defined by (3.52) is

(3.53)


for any initial condition (t0, x0) ∈ [0, T ]×K
there exist a control u ∈ U(t0) such that

the solution x(t; t0, x0, u) remains in set of constraints K

for every t ∈ [t0, T ].

We provide a characterization of the value functionWK
g under assumption (3.53).

Theorem 3.3.2. Let K ⊂ Rn be closed and g:Rn 7→ R be a function bounded
by M > 0. Assume that f : [0, T ] × Rn × U → Rn satisfies (5.2), (5.3) and that
(3.53) holds true for f , K. Then

WK
g (t, x) = W (t, x, 0) for x ∈ K

where W : [0, T ]× Rn × R→ R is the unique solution of

(3.54)


∂W

∂t
+ H̃

(
t, x, y,

∂W

∂x
,
∂W

∂y

)
= 0,

W (T, x, y) = g(x) + (M + 1)χ(0,∞)(y),

where H̃(t, x, y, px, py) = minu∈U 〈f(t, xu), px〉+dK(x)py and χ(0,∞) denotes the
characteristic function of the open interval (0,∞).

Proof. We adopt the classical method of adding an extra variable (usually
used to reduce the Bolza problem to the Mayer one) and the technique of pena-
lization function. We consider a new control problem{

x′(t) = f(t, x(t), u(t)),

y′(t) = dK(x(t)),

where dK(x) denotes the distance from x to K. It is obvious that (5.2), (5.3)
hold true for the extended control system. By Theorem 3.3.1, we obtain that the
value function

W (t0, x0, y0) = inf
u∈U(t0)

g(x(T ; t0, x0, u))

+ (M + 1)χ(0,∞)

(
y0 +

∫ T

t0

dK(x(t; t0, x0, u)) dt
)
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is the unique generalized solution of (3.54). On the other hand, just from the
very definition, one can easily check that for every x0 ∈ K we have

WK
g (t0, x0) = W (t0, x0, 0). �





CHAPTER 4

TIME MEASURABLE DIFFERENTIAL GAMES

We study invariance of time-varying domains with respect to differential
games with dynamics measurable in time. Invariance in the framework of diffe-
rential games appears as a discriminating and leadership property. In the proof
of the Discriminating Theorem we reduce the problem to the Viability Theorem
thanks to the Nonexpansive Selections Theorem in ultrametric spaces. The geo-
metric property describing discriminating and leadership domains is assumed
to hold true for almost all “t”. This leads to the concept of weak solution of
the Hamilton–Jacobi–Isaacs equation that appeared already in Chapter 2, i.e.
equation holds for almost all t.

4.1. Nonexpansive selections in ultrametric spaces

A metric ρ in a space M is an ultrametric if it satisfies strong triangle inequ-
ality

ρ(x, z) ≤ max (ρ(x, y), ρ(y, z)).

We say that a subset K of an ultrametric space M is (∗)-closed if for every
sequence {yn} ⊂ K and every sequence {cn} (cn ≥ cn+1 ≥ 0) such that
ρ(yn, yn+1) ≤ cn, there is y ∈ K such that ρ(y, yn) ≤ cn, for every n.

Remark. If D1, D2 are nonempty (∗)-closed subsets of an ultrametric space
M , then the Hausdorff distance dH(D1, D2) ≤ r if and only if for every d1 ∈ D1

there is d2 ∈ D2 such that ρ(d1, d2) ≤ r and for every d2 ∈ D2 there is d1 ∈ D1

such that ρ(d1, d2) ≤ r.

We say that a set-valued map A:N ; M is a non-expansive set-valued map
from an ultrametric space (N, ρN ) into another ultrametric space (M,ρM ) if, for
all (n1, n2) ∈ N ×N , A satisfies:

(1) ∀m1 ∈ A(n1), ∃m2 ∈ A(n2), ρM (m1,m2) ≤ ρN (n1, n2),
(2) ∀m2 ∈ A(n2), ∃m1 ∈ A(n1), ρM (m1,m2) ≤ ρN (n1, n2).

79
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Lemma 4.1.1 (Nonexpansive selection). If A:N ; M is a non-expansive
set-valued map from an ultrametric space (N, ρN ) into an ultrametric space
(M,ρM ) with nonempty (∗)-closed values, then there exists a non-expansive se-
lection α:N 7→M of A.

We procede the proof with some elementary properties of ultrametric spaces.

Proposition 4.1.2. If y1, y2, y3 ∈M and ρ(y1, y2) < ρ(y2, y3), then

ρ(y1, y3) = ρ(y2, y3).

Proof. We have ρ(y2, y3) ≤ max (ρ(y1, y2), ρ(y1, y3)). Thus

ρ(y2, y3) ≤ ρ(y1, y3).

Moreover, ρ(y1, y3) ≤ max (ρ(y1, y3), ρ(y2, y3)) = ρ(y2, y3). �

Let K be a nonempty subset of M . We denote by QK the family of nonempty
subsets of K of the form {y ∈ K : ρ(y, y0) ≤ c} where y0 ∈ K and c ≥ 0.

Proposition 4.1.3. If D ∈ QK and y ∈ D, then

D = {y ∈ K : ρ(y, y) ≤ diamD}.

Proof. Fix y0 ∈ K, c ≥ 0 and define D = {y ∈ K : ρ(y, y0) ≤ c}. Let
y ∈ D. Obviously, we have D ⊂ {y ∈ K : ρ(y, y) ≤ diamD}. If y ∈ K and
ρ(y, y) ≤ diamD, then ρ(y, y0) ≤ max (ρ(y, y), ρ(y, y0)) ≤ max (diamD, c) = c.�

Proposition 4.1.4. If D ∈ QK , y1 ∈M , c ≥ 0 are such that D1 = {y ∈ D :
ρ(y, y1) ≤ c} is a nonempty set, then D1 ∈ QK .

Proof. Fix y ∈ D1. By Proposition 4.1.3, we have D = {y ∈ K : ρ(y, y) ≤
diamD}.

Case 1. If diamD ≤ c, then D1 = D.
Indeed, for any y ∈ D, we have

ρ(y, y1) ≤ max (ρ(y, y), ρ(y, y1)) ≤ max (diamD, c) = c.

Case 2. If diamD > c, then D1 = {y ∈ K : ρ(y, y) ≤ c}.
If y ∈ D1, then ρ(y, y) ≤ max (ρ(y, y1), ρ(y1, y)) ≤ c. Thus D1 ⊂ {y ∈ K :

ρ(y, y) ≤ c}. If y ∈ K and ρ(y, y) ≤ c, then y ∈ D and

ρ(y, y1) ≤ max (ρ(y, y), ρ(y, y1)) ≤ c. �

Proposition 4.1.5. If D1, D2 ∈ QK , D1 ⊂ D2 and D1 6= D2, then diamD1

Proof. Suppose that diamD1 = diamD2 = d and D1 ⊂ D2.
If y1 ∈ D1 and y2 ∈ D2, then D1 = {y ∈ K : ρ(y, y1) ≤ d} and D2 =

{y ∈ K : ρ(y, y2) ≤ d}. We have ρ(y1, y2) ≤ d. If y ∈ D2, then ρ(y, y1) ≤
max (ρ(y, y2), ρ(y2, y1)) ≤ d, which implies that y ∈ D1. �



Chapter 4. Time Measurable Differential Games 81

Proposition 4.1.6. Suppose that K is a nonempty (∗)-closed subset of M ,
and a family {Dω ∈ QK : ω ∈ Ω} satisfies the following condition

∀ω1, ω2 ∈ Ω, Dω1 ⊂ Dω2 or Dω2 ⊂ Dω1 .

Then:

(a) ∀ω1, ω2 ∈ Ω, (diamDω1 ≤ diamDω2 → Dω1 ⊂ Dω2).
(b) If a sequence {ωn} ⊂ Ω satisfies the following conditions:
• diamDωn+1 ≤ diamDωn (:= dn),
• limn→∞ dn = infω∈Ω diamDω (:= d),
then for every sequence yn ∈ Dωn there is y ∈ K such that ρ(y, yn) ≤ dn
and

(4.1)
⋂
ω∈Ω

Dω = {y ∈ K : ρ(y, y) ≤ d}.

(c) The set D =
⋂
ω∈ΩDω belongs to QK .

Proof. Assertion (a) is an immediate consequence of Proposition 4.1.5.
By Proposition 4.1.3 Dωn = {y ∈ K : ρ(y, yn) ≤ dn}. According to as-

sertion (a) Dωn+1 ⊂ Dωn for every n. Therefore ρ(yn+1, yn) ≤ dn. Since K is
(∗)-closed, there is y ∈ K such that ρ(y, yn) ≤ dn.

If y ∈ Dωn , then ρ(y, y) ≤ max (ρ(y, yn), ρ(yn, y)) ≤ dn.
Let us choose y ∈ K such that ρ(y, y) ≤ d and pick some ω ∈ Ω. There is ωn

such that dn ≤ diamDω. By the assertion (1), we have Dωn ⊂ Dω. Moreover,
ρ(y, yn) ≤ max (ρ(y, y), ρ(y, yn)) ≤ max (d, dn) = dn. Hence y ∈ Dωn .

By (4.1), we obtain statement (c). �

Proof of Theorem 4.1.1. First, we define a partial order (P,≤). The family
P consists of all nonempty valued non-expansive maps C:N ; M such that
C(z) ∈ QA(z) for every z ∈ N . Since A ∈ P, then the family P is nonempty. We
say that C1 ≤ C2 if C1(z) ⊂ C2(z), for every z ∈ N .

Step 1. Let {Cω}ω∈Ω ⊂ P be a chain. Define a set-valued map C:N ; M by
C(z) =

⋂
ω∈Ω Cω(z). By Proposition 4.1.6(c), we have C(z) ∈ QA(z), for every

z ∈ N . Now, we show that C is a non-expansive map. Let us take z1, z2 ∈ N
and y1 ∈ C(z1).

Case 1. ρ(z1, z2) ≥ infω∈Ω diamCω(z2). We choose a sequence {ωn} ⊂ Ω
such that dn+1 ≤ dn (:= diamCωn(z2)) and limn→∞ dn = infω∈Ω diamCω(z2).
Since Cωn is a non-expansive map, then there is yn ∈ Cωn(z2) such that ρ(y1, yn)
≤ ρ(z1, z2). By Proposition 4.1.6(b), there is y ∈ C(z2) such that ρ(yn, y) ≤ dn.
Therefore ρ(y1, y) ≤ max (ρ(y1, yn), ρ(yn, y)) ≤ max (ρ(z1, z2), dn).

Case 2. ρ(z1, z2) < infω∈Ω diamCω(z2).
Let us fix ω0 ∈ Ω and choose y0 ∈ Cω0(z2) such that ρ(y1, y0) ≤ ρ(z1, z2).

We claim that y0 ∈ C(z2). We pick some ω ∈ Ω and choose yω ∈ Cω(z2) such
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that ρ(y1, yω) ≤ ρ(z1, z2). Thus ρ(y0, yω) ≤ max (ρ(y0, y1), ρ(y1, yω)) ≤ ρ(z1, z2).
By Proposition 4.1.3, we have Cω(z2) = {y ∈ A(z2) : ρ(y, yω) ≤ diamCω(z2)}.
Therefore y0 ∈ Cω(z2).

Step 2. Suppose that C ∈ P and there is z0 ∈ N such that diamC(z0) > 0,
i.e. C is not a single-valued map. We define a map C̃:N ; M by

C̃(z) =
{
C(z) if ρ(z, z0) ≥ d,
{y ∈ C(z) : ρ(y, y0) ≤ ρ(z, z0)} if ρ(z, z0) < d,

where d = diamC(z0) and y0 is a fixed element of C(z0). Obviously, C̃(z0) =
{y0} 6= C(z0). Since C is a non-expansive map, then C̃(z) 6= ∅ for every z ∈ N .
By Proposition 4.1.4, we have C̃(z) ∈ QA(z) for every z ∈ N . Now, we show that
C̃ is a non-expansive map. Let us take z1, z2 ∈ N and y1 ∈ C̃(z1).

Case 1. ρ(z1, z0) ≥ d and ρ(z2, z0) < d.
Let us take an arbitrary y2 ∈ C̃(z2). By Proposition 4.1.2, we have ρ(z1, z2) =

ρ(z1, z0). Since C is a non-expansive map, then there is y0 ∈ C(z0) such that
ρ(y1, y0) ≤ ρ(z1, z0). Therefore ρ(y1, y2) ≤ max (ρ(y1, y0), ρ(y0, y0), ρ(y0, y2)) ≤
max (ρ(z0, z2), d) ≤ ρ(z1, z2).

Case 2. ρ(z1, z0) < d and ρ(z2, z0) < d.

• ρ(z1, z0) < ρ(z2, z0).

By Proposition 4.1.2, we have ρ(z1, z2) = ρ(z2, z0). For any y2 ∈ C̃(z2) we have
ρ(y1, y2) ≤ max (ρ(y1, y0), ρ(y0, y2)) ≤ max (ρ(z1, z0), ρ(z0, z2)) = ρ(z1, z2).

• ρ(z1, z0) > ρ(z2, z0).

By Proposition 4.1.2, we have ρ(z1, z2) = ρ(z1, z0). Let y2 be an arbitrary element
of C̃(z2). Therefore

ρ(y1, y2) ≤ max (ρ(y1, y0), ρ(y0, y2)) ≤ max (ρ(z1, z0), ρ(z0, z2)) = ρ(z1, z2).

• ρ(z1, z0) = ρ(z2, z0).

Since C is a non-expansive map, then there is y2 ∈ C(z2) such that ρ(y1, y2) ≤
ρ(z1, z2). Observe that ρ(z1, z2) ≤ max (ρ(z1, z0), ρ(z0, z2)) = ρ(z1, z0). So
ρ(y2, y0) ≤ max (ρ(y2, y1), ρ(y1, y0)) ≤ max (ρ(z2, z1, ρ(z1, z0)) = ρ(z1, z0) =
ρ(z2, z0). Therefore y2 ∈ C̃(z2).

By Steps 1 and 2 together with Kuratowski–Zorn’s Lemma, we obtain the
existence of a non-expansive (single-valued) selection α:N 7→M of the set-valued
map A:N ; M . �

4.2. Discriminating domains

In the section we study a kind of viability problem for differential games. Let
P (t) be a time dependent set in Rn and let an initial condition (t0, x0) satisfy
x0 ∈ P (t0). The aim of the first player is to keep the trajectory of the game in
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the tube P, i.e. x(t) ∈ P (t) for t ∈ [t0, T ], despite of the behaviour of the second
player. This can be formulated in a rigorous way as follows

(4.2) ∀t0 ∈ (0, T ), ∀x0 ∈ P (t0), ∃α ∈ Γt0 , ∀z ∈ Nt0 ,
x(t; t0, x0, α(z), z) ∈ P (t) for every t ∈ [t0, T ].

We provide a pointwise boundary condition which guarantees (4.2). The first
results of this kind have been obtained by Cardaliaguet (see [24, Theorem 2.1]).

Definition 4.2.1 (Discriminating tube). A tube P : [0, T ] ; Rn is a discri-
minating tube for f : [0, T ]× Rn × Y × Z → Rn if there exists a full measure set
C ⊂ [0, T ] such that for every t ∈ C and every x ∈ P (t) we have

(4.3) ∀(nt, nx) ∈ N0
Graph(P )(t, x), ∀z ∈ Z, ∃y ∈ Y,

〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.

Theorem 4.2.2. We assume that a tube P : [0, T ] ; Rn is left absolutely
continuous and a right-hand side f : [0, T ] × Rn × Y × Z → Rn satisfies the
following conditions:

(4.4) f( · , x, y, z) is measurable for every x, y, z;

(4.5) ∃l ∈ L1(0, T ), ∀x1, x2, ∀y ∈ Y, ∀z ∈ Z,
‖f(t, x1, y, z)− f(t, x2, y, z)‖ ≤ l(t)‖x1 − x2‖ for a.a. t ∈ [0, T ];

f(t, x, · , · ) is continuous for every t, x;(4.6)

∃ µ ∈ L1(0, T ), ∀t, x, y, z, ‖f(t, x, y, z)‖ ≤ µ(t);(4.7)

∀(t, x, z) ∈ [0, T ]× Rn × Z, {f(t, x, y, z) : y ∈ Y } is convex.(4.8)

If P is a discriminating tube for f then for each t0 ∈ [0, T ] and x0 ∈ P (t0)

(4.9) ∃α ∈ Γt0 , ∀z( · ) ∈ Nt0 , ∀t ∈ [t0, T ], x(t; t0, x0, α(z), z) ∈ P (t).

Conversely, if for each t0 ∈ [0, T ] and x0 ∈ P (t0)

(4.10) ∀ε > 0, ∃α ∈ Γt0 , ∀z( · ) ∈ Nt0 , ∀t ∈ [t0, T ],

x(t; t0, x0, α(z), z) ∈ P (t) +B(0, ε),

then P is a discriminating tube for f .

The proof of Theorem 4.2.2 makes use of a viability result for differential
inclusions and a non-expansive selection theorem in ultrametric spaces.

Remark. Given y1, y2 ∈Mt0 we define

ρ(y1, y2) = T − sup{t ∈ [t0, T ] : y1(s) = y2(s) for a.a. t ∈ [t0, t]}.
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It is easy to see that (Mt0 , ρ) is an ultrametric space. Moreover, a strategy
α:Nt0 → Mt0 is nothing but a non-expansive map in the meaning of the ultra-
metric ρ.

Proof of Theorem 4.2.2. Fix t0 ∈ [0, T ], x0 ∈ P (t0) and z̃( · ) ∈ Nt0 . We define
a set-valued map Fz̃( · )(t, x) = {f(t, x, y, z̃(t) : y ∈ Y }. By the regularity of f :
(4.4)–(4.8), the set-valued map Fz̃( · ) satisfies assumptions of Theorem 2.2.2. By
the separation theorem and Theorem 4.2.2, we have for every t ∈ C and x ∈ P (t)

(4.11) ∀z ∈ Z, ∃y ∈ Y, (1, f(t, x, y, z)) ∈ co(TGraph(P )(t, x)).

Thus Fz̃( · ) satisfies statement (a) in Theorem 2.2.2. Therefore there exists an
absolutely continuous solution x̃: [t0, T ]→ Rn of the differential inclusion x̃′(t) ∈
Fz̃( · )(t, x̃(t)) such that x̃(t0) = x0 and x̃(t) ∈ P (t), for every t ∈ [t0, T ]. By
Measurable Selection Theorem 8.2.10 in [7], there exists a measurable map
ỹ: [t0, T ]→ Y such that x(t; t0, x0, ỹ( · ), z̃( · )) = x̃(t) for t ∈ [t0, T ].

We define a set-valued map A:Nt0 ; Mt0 by:

A(z( · )) = {y( · ) ∈Mt0 : x(t; t0, x0, y( · ), z( · )) ∈ P (t) for t ∈ [t0, T ]}.

We have shown that the values of the map A are nonempty. Now we verify that
the map A satisfies the remaining assumptions of Lemma 4.1.1.

Let z1, z2 ∈ Nt0 and y1 ∈ A(z1). We set t1 = T − ρ(z1, z2) and x1 =
x(t1; t0, x0, y1, z1). We have x1 ∈ P (t1). By (4.11) and Theorem 2.2.2, there exists
a solution x̂: [t1, T ]→ Rn of a differential inclusion x̂′(t) ∈ Fz2(t, x̂(t)) such that
x̂(t1) = x1 and x̂(t) ∈ P (t) for t ∈ [t1, T ], where Fz2(t, x) = {f(t, x, y, z2(t)) :
y ∈ Y }. By Theorem 8.2.10 in [7], there exists a measurable map y3: [t1, T ]→ Y

such that x(t; t1, x1, y3, z2) = x̂(t) for t ∈ [t1, T ]. Setting

y2(t) =
{
y1(t) for t ∈ [t0, t1[,

y3(t) for t ∈ [t1, T ],

we get y2 ∈ A(z2) such that ρ(y1, y2) ≤ ρ(z1, z2), which means that the map A

is non-expansive.
Now, we show that the set A(z) is (∗)-closed, for every z ∈ Nt0 . Let 0 ≤

. . . ≤ ck+1 ≤ ck ≤ . . . ≤ c1 ≤ T − t0, c = limk→∞ ck and yk ∈ A(z) satisfy
ρ(yk, yk+1) ≤ ck. We set tk = T − ck. Obviously, we have x(t; t0, x0, yk, z) =
x(t; t0, x0, yk+1, z) for t ∈ [t0, tk]. We define a map y∞: [t0, T − c[→ Y by

y∞(t) =
{
y1(t) for t ∈ [t0, t1[,

yk(t) for t ∈ [tk−1, tk[ and k = 2, 3, . . .

We set x∞ = limt→(T−c)− x(t, t0, x0, y∞, z). It is easy to check that x∞ ∈
P (T−c). By (4.11) and Theorem 2.2.2, there exists a solution x: [T−c, T ]→ Rn of
a differential inclusion x′(t) ∈ Fz(t, x(t)) such that x(T−c) = x∞ and x(t) ∈ P (t)
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for t ∈ [T − c, T ]. By Theorem 8.2.10 in [7], there exists a measurable map
y: [T − c, T ]→ Y such that x(t;T − c, x∞, y, z) = x(t) for t ∈ [T − c, T ]. Setting

y(t) =
{
y∞(t) for t ∈ [t0, T − c[,
y(t) for t ∈ [T − c, T ],

we get y ∈ A(z) such that ρ(yk, y) ≤ ck, which means that the set A(z) is
(∗)-closed.

Finally, by Lemma 4.1.1, there exists a non-expansive selection α:Nt0 →Mt0

of A, which is the desired strategy.
For the converse, we set Fz(t, x) = {f(t, x, y, z) : y ∈ Y }. By Lemma 2.6

in [51], there is a full measure set C ∈ [0, T ] such that

∀(t0, x0, z) ∈ C × Rd × Z, ∀ε > 0, ∃δ > 0, ∀x( · ) ∈ SolFz (t0, x0),

∀0 < |h| < δ,
1
h

(x(t0 + h)− x0) ∈ Fz(t0, x0) +B(0, ε).

Fix t0 ∈ C, x0 ∈ P (t0), z0 ∈ Z. Applying (4.9) we obtain an αn ∈ Γt0 such
that xn(t) := x(t, t0, x0, αn(z), z) ∈ P (t) + B(0, 1/n), for t ∈ [t0, T ], where z( · )
is a constant control on [t0, T ] equal to z0. For fixed h > 0 let x(t0 + h) be a
condensing point of the sequence (xn(t0 + h)). Obviously, we have x(t0 + h) ∈
P (t0 + h) and for sufficiently small h

x(t0 + h)− x(t0)
h

∈ Fz0(t0, x0) +B(0, ε).

There is a sequence hn > tending to zero such that

v := lim
n→∞

x(t0 + hn)− x(t0)
hn

∈ Fz0(t0, x0).

We find y0 ∈ Y such that v = f(t0, x0, y0, z0). We have (1, v) ∈ TGraph(P )(t0, x0),
which yields

〈(nt, nx), (1, f(t0, x0, y0, z0))〉 ≤ 0

for every (nt, nx) ∈ N0
Graph(P )(t0, x0). �

If we assume that f is also continuous with respect to the variable t then
using exactly the same scheme of the proof (we use the viability theorem in the
version of Theorem 1.4.1 instead of Theorem 2.2.2) we obtain the following

Proposition 4.2.3. Assume that f : [0, T ]×Rn×U×V → Rn is continuous,
Lipschitz continuous with respect to x and f(t, x, Y, z) is convex for every t, x, v.
Suppose that the graph of the tube P is closed. If for every t ∈ (0, T ) and every
x ∈ P (t0) (4.3) holds true then (4.2).

Proposition 4.2.3 is generalization of the Cardaliaguet result from [24].
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4.3. Leadership domains

Definition 4.3.1 (Leadership tube). The tube P ( · ) is a leadership tube for
f if there exists a set C of full measure in [0, T ] such that for every t ∈ C and
x ∈ P (t)

(4.12) ∀(nt, nx) ∈ N0
Graph(P )(t, x), ∃z ∈ Z, ∀y ∈ Y,

〈(nt, nx), (1, f(t, x, y, z))〉 ≤ 0.

Theorem 4.3.2. We assume that a tube P : [0, T ] ; Rn is left absolutely
continuous and that the right-hand side f : [0, T ] × Rn × Y × Z → Rn satisfies
(4.4)–(4.7). Then P ( · ) is a leadership tube for f if and only if for any t0 ∈ [0, T ]
and x0 ∈ P (t0)

(4.13) ∀ε > 0, ∀α ∈ Γt0 , ∃z( · ) ∈ Nt0 , ∀t ∈ [t0, T ],

x(t; t0, x0, α(z), z) ∈ P (t) +B(0, ε).

The proof is based on the following lemma.

Lemma 4.3.3. Let f and P ( · ) be as in Theorem 4.3.2. The following as-
sertions are equivalent:

(a) P ( · ) is a leadership tube for f .
(b) From any initial condition (t0, z0) belonging to Graph(P ), for any me-

asurable map a: [0, T ] × Z → Y , there is at least one solution of the
differential inclusion:

(4.14)

 v′(t) ∈ co
⋃
z

f(t, v(t), a(t, z), z) a.e. in [t0, T ],

v(t0) = v0,

with v(t) ∈ P (t) for all t ∈ [t0, T ].

Proof. Assume that P ( · ) is a leadership tube. There exists a set C of full
measure in [t0, T ] such that for all t ∈ C, x ∈ P (t), (nt, nx) ∈ N0

Graph(P )(t, x),

inf
z

sup
y
〈f(t, x, y, z), nx〉+ nt ≤ 0.

For any measurable map a: [t0, T ]× Z → Y , the set-valued map Fa defined by

Fa(t, x) := co
⋃
z

f(t, x, a(t, z), z),

is measurable, integrably bounded by µ( · ), has convex compact values and, for
almost every t ∈ [t0, T ], x ; Fa(t, x) is l(t)-Lipschitz continuous.
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Let us now prove that the tube P ( · ) is viable for Fa. Let t ∈ C, x ∈ P (t),
(nt, nx) ∈ N0

Graph(P )(t, x). Then

inf
w∈Fa(t,x)

〈w, nx〉+ nt = inf
z
〈f(t, x, a(t, z), z), nx〉+ nt

≤ inf
z

sup
y
〈f(t, x, y, z), nx〉+ nt ≤ 0.

So P ( · ) is a viability tube for Fa and Theorem 2.2.2 states that (b) holds true.
Conversely, assume that the tube P ( · ) enjoys property (b). Fix nx ∈ Rn and

x0 ∈ Rn and define:

Ynx,x0(t, z) := {y ∈ Y : 〈f(t, x0, y, z), nx〉 = sup
y
〈f(t, x0, y, z), nx〉},

Gnx,x0(t, x) := co{f(t, x, y, z) : y ∈ Ynx,x0(t, z) and z ∈ Z}.

Let us prove in a first step that the tube P ( · ) is viable for the set-valued map
Gnx,x0 for any nx and x0. The set-valued map Ynx,x0( · , · ) is measurable, so it
enjoys a measurable selection anx,x0( · , · ). Note that

Fanx,x0 (t, x) = co
⋃
z

f(t, x, anx,x0(t, z), z) ⊂ Gnx,x0(t, x)

for almost every t ∈ [t0, T ] and for all x. Thus, from (b), there is a solution of
the differential inclusion for Gnx,x0 which remain in the tube P ( · ).

Let us now point out that Gnx,x0 is measurable and integrably bounded.
Moreover, Gnx,x0 is upper semi-continuous with respect to (nx, x0, x) and has
convex compact values for almost every t ∈ [t0, T ]. Thus Lemma 2.6 of [51] yields
the existence of a set C of full measure in [t0, T ] such that: for all (τ, xτ , nx, x0) ∈
C × Rn × Rn × Rn, and all ε > 0, tehre exists δ > 0 such that, for any solution
x( · ) to the differential inclusion for Gnx,x0 starting at xτ at time τ , one has:

(4.15) ∀0 < |h| < δ,
1
h

(x(τ + h)− xτ ) ∈ Gnx,x0(τ, xτ ) + εB.

Let now τ ∈ C, xτ ∈ P (τ) and (nt, nx) ∈ N0
Graph(P ( · ))(τ, xτ ). We have

already proved that there is a solution x( · ) of the differential inclusion for Gnx,xτ
starting from xτ at time τ and which remains in the tube P ( · ) on [τ, T ]. From
(4.15), for any h ∈]0, δ[, there is some wh ∈ Gnx,xτ (τ, xτ ) such that

1
h

(x(τ + h)− xτ ) ∈ wh + εB.

Since Gnx,xτ (τ, xτ ) is compact, wh converges, up to a subsequence, to some w ∈
Gnx,xτ (τ, xτ ). Thus (1, w) belongs to TGraph(P ( · ))(τ, xτ ) and 〈nx, w〉 + nt ≤ 0.
From the very definition of Gnx,xτ (τ, xτ ), one has:

0 ≥〈nx, w〉+ nt ≥ inf
v∈Gnx,xτ (τ,xτ )

〈v, nx〉+ nt

= inf
z

inf
y∈Ynx,xτ (τ,z)

〈f(τ, xτ , y, z), nx〉+ nt = inf
z

sup
y
〈f(τ, xτ , y, z), nx〉+ nt.
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So we have finally proved that, for any τ ∈ C, for any xτ ∈ P (τ), for any
(nt, nx) ∈ N0

Graph(P ( · ))(τ, xτ ),

inf
y

sup
z
〈f(τ, xτ , y, z), nx〉+ nt ≤ 0,

i.e. P ( · ) is a leadership tube. �

Proof of Theorem 4.3.2. Assume that P ( · ) enjoys the property described
in Theorem 4.3.2 and let us prove that P ( · ) is a leadership tube. Let

a( · , · ): [0, T ]× Z → Y

and define the non-anticipative strategy α in the following way:

∀z( · ) ∈ N, α(z( · ))(t) := a(t, z(t)).

For any initial position (t0, z0) belonging to the graph of P ( · ), for any ε > 0,
there is a control zε( · ) such that the solution xε( · ) := x(t0, x0, α(zε( · )), zε( · ))
satisfies:

∀t ∈ [t0, T ], dP (t)(xε(t)) ≤ ε.
Note that the xε( · ) are solutions of the differential inclusion (4.14). Moreover,
the set of solutions of this differential inclusion being compact for the uniform
convergence, a sub-sequence of the xε( · ) converges to some solution x( · ) of
(4.14) satisfying x(t) ∈ P (t) for any t ∈ [t0, T ]. Then Lemma 4.3.3 states that
the tube P ( · ) is a leadership tube.

Conversely, assume now that P ( · ) is a leadership tube and fix any ε > 0.
The idea of the proof consists in constructing the desired control z( · ) step by
step, on intervals [nτ, (n + 1)τ), where τ > 0 is fixed and shall be chosen later
as a function of ε.

For that purpose, we need the following estimation:

Lemma 4.3.4. Let f and P ( · ) be as in Theorem 4.3.2, t0 ∈ [0, T ) and x0 /∈
P (t0). Assume that P ( · ) is a leadership tube. For any non-anticipative strategy
α, there is a control z( · ) such that, if we set x( · ) := x(t0, x0, α(z( · )), z( · )), for
all t ∈ [t0, T ],

d2
P (t)(x(t)) ≤

(
1 + 2

∫ t

t0

l(s) ds
)
d2
P (t0)(x0) + 4

(∫ t

t0

µ(s) ds
)2

+ 2dP (t0)(x0)
∫ t

t0

l(s)
∫ s

t0

µ(σ) dσ ds.

Proof. The proof is based on Lemma 4.3.3. Let v0 belong to the projection
of x0 onto P (t0). Set ν := x0 − v0. Consider the following set-valued map:

(s, z) ; {y ∈ Y : 〈f(s, v0, y, z), ν〉 = max y〈f(s, v0, y, z), ν〉}.
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This set-valued map is measurable and, so, enjoys a measurable selection a( · , · ).
In the same way, the set-valued map

s ; {z ∈ Z : max y〈f(s, v0, y, z), ν〉 = min
z

max y〈f(s, v0, y, z), ν〉}

is measurable and enjoys a measurable selection z( · ) ∈ Nt0 .
Let us denote now x( · ) := x(t0, x0, α(z( · )), z( · )) and let v( · ) be a solution

of {
v′(t) ∈ co

⋃
z f(t, v(t), a(t, z), z) for a.e. t ∈ [t0, T ],

v(t0) = v0,

which remains in the tube on [t0, T ] (Lemma 4.3.3). Then

d2
P (t)(x(t)) ≤‖x(t)− v(t)‖2 = ‖(x(t)− x0) + (ν) + (v0 − v(t))‖2

= ‖x(t)− x0‖2 + ‖ν‖2 + ‖v0 − v(t)‖2 + 2〈x(t)− x0, ν〉
+ 2〈x(t)− x0, v0 − v(t)〉+ 2〈ν, v0 − v(t)〉.

Note that ‖x(t) − x0‖2, ‖v0 − v(t)‖2 and 〈x(t) − x0, v0 − v(t)〉 are bounded by
(
∫ t
t0
µ(s) ds)2. Note also that ‖ν‖2 = d2

P (t0)
(x(t0)).

Let us now estimate 〈x(t)− x0, ν〉:

〈x(t)− x0, ν〉 =
∫ t

t0

〈f(s, x(s), α(z( · ))(s), z(s)), ν〉 ds

≤
∫ t

t0

〈f(s, v0, α(z( · ))(s), z(s)), ν〉 ds+ ‖ν‖
∫ t

t0

l(s)‖x(s)− v0‖ ds.

For almost every s,

〈f(s, v0,α(z( · ))(s), z(s)), ν〉
≤ 〈f(s, v0, a(s, z(s)), z(s)), ν〉 = min

z
〈f(s, v0, a(s, z), z), ν〉

= min
w∈co

⋃
z f(s,v0,a(s,z),z)

〈w, ν〉 ≤ 〈v′(s), ν〉+ l(s)‖ν‖‖v(s)− v0‖

from the very definition of a( · , · ) and of z( · ) and because

x ; co
⋃
z

f(s, v, a(s, z), z)

is l(s)-Lipschitz continuous for almost all s. So, we have finally:

〈x(t)− x0, ν〉 ≤ 〈v(t)− v(0), ν〉+ ‖ν‖
∫ t

t0

l(s)(‖x(s)− v0‖+ ‖v(s)− v0‖) ds.

Since f is integrably bounded by µ( · ),

‖x(s)− v0‖ ≤
∫ s

t0

µ(σ) dσ + ‖ν‖ and ‖v(s)− v0‖ ≤
∫ s

t0

µ(σ) dσ,
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so that

〈x(t)− x0, ν〉+ 〈ν, v0 − v(t)〉 ≤ ‖ν‖
∫ t

t0

l(s)
(
‖ν‖+ 2

∫ s

t0

µ(σ) dσ
)
ds.

In conclusion,

d2
P (t)(x(t)) ≤ ‖ν‖2+4

(∫ t

t0

µ(s) ds
)2

+2‖ν‖
∫ t

t0

l(s)
(
‖ν‖+2

∫ s

t0

µ(σ) dσ
)
ds. �

Construction of z( · ). We construct z( · ) step by step, on intervals of the
form [nτ, (n + 1)τ) where τ > 0 is fixed and shall be chosen bellow (τ depends
mainly on ε).

Assume that we have already defined z( · ) on [0, nτ ]. Then set xn :=
x(nτ ; t0, x0, α(z( · )), z( · )) (Note that xn is well defined because α is non-antici-
pative).

• If xn belongs to P (nτ), then choose any z ∈ Z and set z( · ) := z on
[nτ, (n+ 1)τ).

• Otherwise, let z1( · ) be the control defined in Lemma 4.3.4 for (t0, x0) :=
(nτ, xn). Then we set z( · ) := z1( · ) on [nτ, (n+ 1)τ).

Note that the distance between x(t) := x(t; t0, x0, α(z( · )), z( · )) and P (t)
(t ∈ [t0, T ]) is maximal if xn /∈ P (nτ) for any n > 0. In that case, this distance
satisfies for all t ∈ [nτ, (n+ 1)τ):

d2
P (t)(x(t)) ≤

(
1 + 2

∫ t

nτ

l(s) ds
)
d2
P (nτ)(xn) + 4

(∫ t

nτ

µ(s) ds
)2

+ 2dP (nτ)(xn)
∫ t

nτ

l(s)
∫ s

nτ

µ(σ) dσ ds

from Lemma 4.3.4. In particular,

∀t ∈ [nτ, (n+ 1)τ), d2
P (t)(x(t)) ≤ dn+1(τ)

where dn(τ) is the sequence defined by

d0(τ) = 0, dn+1(τ) = (1 + αn(τ))dn(τ) + βn(τ),

where αn(τ) := 2
∫ (n+1)τ
nτ

l(s) ds,

β := max {4; 2 sup
z( · )∈Nt0

sup
t∈[t0,T ]

dP (t)(x(t; t0, x0, α(z( · )), z( · )))}

(note that β < +∞ because f is integrably bounded and P ( · ) is absolutely
continuous) and

βn(τ) := β

[(∫ (n+1)τ

nτ

µ(s) ds
)2

+
∫ (n+1)τ

nτ

l(s)
∫ s

nτ

µ(σ) dσ ds
]
.
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To prove that the sequence constructed step-by-step satisfies the conclusion
of Theorem 4.3.2, it is sufficient to apply the following lemma:

Lemma 4.3.5. Let dn be the sequence defined previously. For any ε > 0,
there is τ0 > 0 such that, if 0 < τ < τ0, then

∀n ≤ (T + τ)/τ, dn(τ) ≤ ε.

Proof. Fix ε > 0. To simplify the notations, we shall write di instead of di(τ),
αi instead of αi(τ), etc.

It is easy to prove by induction that

dn+1 =
n∑
i=0

( n−1∏
j=i

(1 + αj)
)
βi

(where, by convention,
∏n−1
j=n(1 + αj) = 1). Note that( n∏

j=0

(1 + αj)
)

= exp
[ n∑
j=0

ln(1 + αj)
]
≤ exp

[ n∑
j=0

αj

]
≤ exp[2‖l( · )‖1]

from the very definition of αi. So,

dn+1 ≤ exp[2‖l( · )‖1]
n∑
i=0

βi.

Set ε0 := ε/(βe2‖l‖1‖l + µ‖1). Choose now τ small enough (say τ < τ0) in such
a way that

∫ (i+1)τ
iτ

l(s) ds ≤ ε0 and
∫ (i+1)τ
iτ

µ(s) ds ≤ ε0 for any i such that
iτ ≤ T . Then, for any n ≤ T/τ ,

n∑
i=0

βi ≤ βε0

n∑
i=0

∫ (i+1)τ

iτ

(µ(s) + l(s)) ds ≤ βε0‖µ+ l‖1

so that dn+1 ≤ βε0‖µ+ l‖1e2‖l‖1 ≤ ε. �

Remark. If Z = {z0} then the differential game reduces to the control
system with dynamics given by f̂(t, x, y) = f(t, x, y, z0). Assume moreover, that
{f(t, x, y, z0) : y ∈ Y } is convex for every t and x. Then leadership tube condition
(4.12) implies that

∀y ∈ Y, (1, f(t, x, y, z0)) ∈ co(TGraph(P )(t, x))

and discriminating tube condition (4.3) implies that

∃y ∈ Y, (1, f(t, x, y, z0)) ∈ co(TGraph(P )(t, x)).
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4.4. Value function and Isaacs equations

In the section we mostly adopt the notations from Introduction. We shall
study regularity of upper value U+ and lower value U− of differential game with
dynamics f satisfying (4.4)–(4.7). Under additional assumptions about convexity
of the sets f(t, x, Y, z), f(t, x, y, Z) we obtain the characterization of upper and
lower value as a unique solutions of corresponding Hamilton–Jacobi–Isaacs’ equ-
ations. As a consequence we obtain the existence of value under Isaacs’ condition
(4).

We shall formulate properties of value functions for upper value. The analo-
gous results for lower value can be obtained by simple change of notations.

We start with dynamic programming property. The result come from [38].
It was formulated there for more regular f . Under our assumptions the same
arguments can be used.

Theorem 4.4.1 ([38, Theorem 3.1]). For each 0 ≤ t < t+h ≤ T and x ∈ Rn

U+(t, x) = sup
α∈Γt

inf
z∈Nt

U+(t+ h, x(t+ h, t, x, α(z), z)).

Next, we examine regularity of the value function. We recall that the modulus
of continuity mf,A(δ) of a function f :X → Y (X, Y are metric spaces) on
a subset A ⊂ X is given by

mf,A(δ) = sup{d(f(x1), f(x2)) : x1, x2 ∈ A, d(x1, x2) ≤ δ}

for δ > 0. It is easy to check that f is uniformly continuous on A if and only if
limδ→0+ mf,A(δ) = 0. Moreover, mf,A( · ) is nondecreasing and if A ⊂ B ⊂ X

then mf,A(δ) ≤ mf,B(δ).

Proposition 4.4.2. If f satisfies (4.4)–(4.7) and g:Rn → R is continuous
then we have

mU+(t0, · ), B(0,R)(δ) ≤ mg, B
(
0,R+

∫ T
t0
µ(s) ds

)(δ exp
(∫ T

t0

l(s) ds
))

.

Proof. Fix t0 ∈ [0, T ], α and z. By (4.5) and the Gronwall inequality, we have

‖x(T, t0, x1, α(z), z)− x(T, t0, x2, α(z), z)‖ ≤ exp
(∫ T

t0

l(s) ds
)
‖x1 − x2‖.

By (4.7), we obtain

‖x(T, t0, x0, α(z), z)− x0‖ ≤
∫ T

t0

µ(s) ds.

Using the above estimations the proof is straightforward. �
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Corollary 4.4.3. For every t0 ∈ [0, T ] the function U+(t0, · ) is continuous.

We define the tubes E,H: [0, T ] ; Rn by E(t) = {(x, u) : u ≥ U+(t, x)},
H(t) = {(x, u) : u ≤ U+(t, x)}. We call E the epitube and H the hypotube ge-
nerated by upper value U+. Obviously Graph(H) = Hyp(U+) and Graph(E) =
Epi(U+).

Proposition 4.4.4. If f satisfies (4.7) then the epitube E and the hypotube
H generated by the upper value U+ are left absolutely continuous, namely, for
t1 < t2,

E(t1) ⊂ E(t2) +
(∫ t2

t1

µ(s)
)
B ds, H(t1) ⊂ H(t2) +

(∫ t2

t1

µ(s)
)
B ds.

Proof. Fix x ∈ Rn, 0 ≤ t1 < t2 ≤ T . By Theorem 4.4.1,

U+(t1, x) = sup
α∈Γt1

inf
z∈Nt1

U+(t2, x(t2, t1, x, α(z), z)).

Take ε > 0. There is α0 ∈ Γt1 such that

U+(t1, x)− ε < inf
z∈Nt1

U(t2, x(t2, t1, x, α0(z), z)) ≤ U+(t1, x).

Next, there is z0 ∈ Nt1 such that

(4.16) U+(t1, x)− ε < U+(t2, x(t2, t1, x, α0(z0), z0)) < U+(t1, x) + ε.

We set x( · ) = x( · , t1, x, α0(z0), z0). If u ≥ U+(t1, x), then U+(t2, x(t2)) < u+ε.
Thus (x(t2), u+ ε) ∈ E(t2). Therefore

dist((x, u), E(t2)) ≤ (‖x(t2)− x‖2 + ε2)1/2.

Hence

E(t1) ⊂ E(t2) +B

(∫ t2

t1

µ(s) ds
)
.

Now, let (x, u) ∈ H(t1). By (4.16), u − ε < U+(t2, x(t2)). Thus (x(t2), u − ε) ∈
H(t2). Therefore

dist((x, u), H(t2)) ≤ (‖x(t2)− x‖2 + ε2)1/2,

which completes the proof. �

Proposition 4.4.5. If U+: [0, T ]×Rn → R is an upper value then for each
t0 ∈ [0, T ] and x0 ∈ Rn

(4.17) ∀ε > 0, ∃α ∈ Γt0 , ∀z ∈ Nt0 , ∀t ∈ [t0, T ],

U+(t0, x0) ≤ U+(t, x(t; t0, x0, α(z), z)) + ε,

(4.18) ∀ε > 0, ∀α ∈ Γt0 , ∃z ∈ Nt0 , ∀t ∈ [t0, T ],

U+(t0, x0) ≥ U+(t, x(t; t0, x0, α(z), z))− ε.
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Proof. Fix t0 ∈ [0, T ], x0 ∈ Rn and ε > 0. First, we prove that if U+ is the
upper value then (4.17) holds true. By the definition of the value function, there
exists an αε ∈ Γt0 such that

U+(t0, x0) ≤ inf
z∈Nt0

g(x(T ; t0, x0, α(z), z)) +
ε

2
.

We show that (4.17) holds true for αε. To the contrary assume that there are
z0 ∈ Nt0 and t1 ∈ [0, T ] such that

U+(t0, x0) > U+(t1, x1) + ε,

where x1 = x(t1; t0, x0, αε(z0), z0). Given z1 ∈ Nt1 we set

(z0, z1)(s) =
{
z0(s) for s ∈ [t0, t1),

z1(s) for s ∈ [t1, T ].

Let α1 ∈ Γt1 be given by

(4.19) α1(z1)(s) = αε(z0, z1)(s)

for s ∈ [t1, T ]. Obviously, U+(t1, x1) ≥ infz1∈Nt1 g(x(T ; t1, x1, α1(z1), z1) and
hence there is z1 ∈ Nt1 such that

inf
z∈Nt1

g(x(T ; t1, x1, α1(z), z) > g(x(T ; t1, x1, α1(z1), z1))− ε

2
.

Setting z̃ = (z0, z1) we have

x(T ; t0, x0, αε(z̃), z̃) = x(T ; t1, x1, α1(z1), z1).

Thus

U+(t0, x0) > U+(t1, x1) + ε > g(x(T ; t0, x0, αε(z̃), z̃)−
ε

2
+ ε,

which is the desired contradiction.
Fix α ∈ Γt0 . We divide the proof of (4.18) into two steps.

Step 1. We fix a division t0 < . . . < tk = T of the interval [t0, T ]. By the
dynamic programming property (Theorem 4.4.1), there is z0 ∈ Nt0 such that

U+(t0, x0) > U+(t1, x1)− ε

2k
where x1 = x(t1; t0, x0, α(z0), z0). Taking α0 = α in (4.19) we obtain an α1 ∈ Γt1 .
By the dynamic programming property again, we obtain z1 ∈ Nt1 such that

U+(t1, x1) > U+(t2, x2)− ε

2k
where x1 = x(t2; t1, x1, α1(z1), z1).

We proceed by induction getting a sequence z2 ∈ Nt2 , . . . , zk−1 ∈ Ntk−1 .
Setting z̃(s) = zi(s), for s ∈ [ti−1, ti), we obtain

U+(t0, x0) ≥ U+(ti, x(ti; t0, x0, α(z̃), z̃))− iε

2k
.
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Step 2. We set R = ‖x0‖+ 1 and find δ > 0 such that

m
g,B

(
R+

∫ T
t0
µ(s) ds

)(δ ∫ T

t0

l(s) ds
)
<
ε

2
.

Next, we choose a division t0 < . . . < tk = T of the interval [t0, T ] such that∫ ti
ti−1

µ(s) ds < δ/2, for i = 1, . . . , k. By Step 1, we find z̃ ∈ Nt0 such that
U+(t0, x0) > U+(ti, x̃(ti))− ε

2 , where x̃(t) = x(t; t0, x0, α(z̃), z̃). Fix t ∈ [ti−1, ti].
By the dynamic programming property

U+(t, x̃(t)) ∈
[

inf
{
U+(ti, y) : ‖y − x̃(t)‖ ≤

∫ ti

t

µ(s) ds
}
,

sup
{
U+(ti, y) : ‖y − x̃(t)‖ ≤

∫ ti

t

µ(s) ds
}]

(:= J).

Since ‖x̃(ti − x̃(t)‖ ≤
∫ ti
t
µ(s) ds then also U+(ti, x̃(ti)) ∈ J . Thus

‖U+(t, x̃(t))− U+(ti, x̃(ti)‖

≤ sup
{
‖U+(t1, y1)− U+(t1, y2)‖ : y1, y2 ∈ B

(
x̃(t0),

∫ ti

t

µ(s) ds
)}
≤ ε/2,

which completes the proof. �

Theorem. Suppose that g:Rn → R is continuous and f : [0, T ] × Rn × Y ×
Z → Rn satisfies (4.4)–(4.8). Let the Hamiltonian H+: [0, T ]×Rn×Rn → R and
the value function U+: [0, T ] × Rn → R be generated by f , g. Then a function
W : [0, T ] × Rn → R is equal to the uper value, i.e. W = U+, if and only if W
satisfies the following conditions:

(a) W (T, · ) = g( · );
(b) W (t, · ) is a continuous function, for every t ∈ [0, T ];
(c) the epitube EW and the hypotube HW are left absolutely continuous,

where EW (t) = {(x,w) ∈ Rn×R : w ≥W (t, x)} and HW (t) = {(x,w) ∈
Rn × R : w ≤W (t, x)};

(d) there exists a full measure set C ⊂ [0, T ] such that for every t ∈ C and
x ∈ Rn

(4.20) ∀(nt, nx, nu) ∈ N0
Graph(HW )(t, x,W (t, x)), −nt +H+(t, x,−nx) ≥ 0,

(4.21) ∀(nt, nx, nu) ∈ N0
Graph(EW )(t, x,W (t, x)), nt +H+(t, x, nx) ≤ 0.

Remark. Note that, if W = U+ is smooth, then equations (4.20) and (4.21)
mean nothing but that W satisfies the Hamilton–Jacobi–Isaacs equation:

∂W

∂t
(t, x) +H

(
t, x,

∂W

∂x
(t, x)

)
= 0.



96 Sławomir Plaskacz

Proof of Theorem 4.4.6. Suppose that W = U+. Corollary 4.4.3 and Pro-
position 4.4.4 yield (b) and (c). Let f̃(t, x, u, y, z) = (f(t, x, y, z), 0), u ∈ R.
The function (x(t), u(t)) = (x(t; t0, x0, α(z), z), U+(t0, x0)) is the solution of the
Cauchy problem {

(x′(t), u′(t)) = f̃(t, x(t), u(t), α(z), z),

(x(t0), u(t0)) = (x0, U(t0, x0)).

From (4.17) it follows that (4.10) holds true for P = HW and f = f̃ . By The-
orem 4.2.2, the hypotube HW is a discriminating tube for f̃ . From this we conc-
lude (4.20).

From (4.18) it follows that (4.13) holds true for P = EW and f = f̃ . By
Theorem 4.3.2, the epitube EW is a leadership tube for f̃ . From this we conc-
lude (4.21).

Now, suppose that a function W satisfies (a)–(d). From (4.20) it follows that
the hypotubeHW is a discriminating tube for f̃ . Fix t0 and x0. By Theorem 4.2.2,
there is α ∈ Γt0 such that, for every z ∈ Nt0 ,

(x(T ; t0, x0, α(z), z),W (t0, x0)) ∈ HW (T ).

Hence

∀α, ∃z, W (t0, x0) ≤W (T, x(T ; t0, x0, α(z), z)).

Thus

W (t0, x0) ≤ sup
α

inf
z
g(x(T ; t0, x0, α(z), z)).

From (4.21) it follows that the epitube EW is a leadership tube for f̃ . Fix t0, x0.
By Theorem 4.3.2, for every ε > 0 and every α ∈ Γt0 , there is z ∈ Nt0

(x(T ; t0, x0, α(z), z),W (t0, x0)) ∈ EW (T ) +B(0, ε).

Since g is uniformly continuous on B(x0,
∫ T
t0
µ(s)ds), we have

W (t0, x0) ≥ sup
α

inf
z
g(x(T ; t0, x0, α(z), z)),

which completes the proof. �

Let us observe that Theorem 4.4.6 is not only the characterization of the
upper (or lower) value. Since the statement of the theorem is “if and only if”
so we obtained also uniqueness of weak solution of the corresponding Isaacs
equation. By a weak solution we mean a function satisfying conditions (b)–(d)
in Theorem 4.4.6. If the upper Hamiltonian H+ is equal to the lower one H−

then condition (d) for the upper value and the lower value coincide. So we obtain
the following:
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Corollary 4.4.7. Suppose that g, f satisfy assumptions of Theorem 4.4.6
and moreover,

∀(t, x, y) ∈ [0, T ]× Rn × Y, {f(t, x, y, z) : z ∈ Z} is convex.

If the Isaacs condition (4) holds true for almost all t then for the game there
exist a value, i.e. U+ = U−.





CHAPTER 5

DIFFERENTIAL GAMES
WITH DISCONTINUOUS TERMINAL COST

In this chapter we use the notation introduced in Chapter 4. We consider
a terminal payoff function given by a function g:Rn → R. We consider the case
where g is lower semicontinuous. It causes the necessity of modifying definitions
of upper and lower value functions.

(5.1)

{
V +
g (t0, x0) := supα∈Γt0

inf{g(x) : x ∈ cl(Aα(t0, x0))},
V −g (t0, x0) := infβ∈∆t0

sup{g(x) : x ∈ cl(Bβ(t0, x0))},

where cl means closure and Aα(t0, x0) = {x(T ; t0, x0, α(z), z) : v ∈ Nt0},
Bβ(t0, x0) = {x(T ; t0, x0, y, β(y)) : y ∈ Mt0} denote the reachable sets. Let
us notice that when g is continuous, we can skip the closure in the definition
(5.1) of value-functions. We provide an example with a discontinuous g showing
that the two value functions V +

g and V −g are not equal when we do not take the
closure in the definition (5.1).

We assume that f : [0, T ]× Rn × Y × Z → Rn satisfies

(5.2)



• f( ·, · , y, z) is Lipschitz continuous,

• f(t, x, ·, · ) is continuous,

• f has a linear growth, i.e.

sup(t,u,v) ‖f(t, x, y, z)‖ ≤ a(1 + ‖x‖)
for some given a > 0.

Throughout the chapter, we assume that

f(t, x, Y, z) is convex for every t, x, z,(5.3)

f(t, x, y, Z) is convex for every t, x, y,(5.4)

hold true.

99
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5.1. Comparison result

For readers convenience we recall the Evans–Souganidis result [38, The-
orem 4.1] stating that if the terminal cost is Lipschitz continuous then the upper
value equals to the lower value.

Theorem 5.1.1. If f : [0, T ] × Rn × Y × Z → Rn satisfies (5.2), (4) and
g:Rn → R is Lipschitz continuous then the game has a value, i.e. V −g = V +

g .

Proposition 5.1.2. If (5.2), (4) hold true and a terminal cost function g is
locally bounded then

V +
g (t, x) ≤ V −g (t, x) for every (t, x) ∈ [0, T ]× Rn.

The proof is a direct conclusion from the following Lemma.

Lemma 5.1.3. Assume that (5.2), (4) hold true. Then

cl(Aα(t0, x0)) ∩ cl(Bβ(t0, x0)) 6= ∅

for each α ∈ Γt0 , β ∈ ∆t0 .

Proof. Suppose, to the contrary, that there exist α0, β0 such that

cl(Aα0(t0, x0)) ∩ cl(Bβ0(t0, x0)) = ∅.

Then, there exists a Lipschitz continuous function h:Rn → [0, 1] such that
h(x) = 0 for x ∈ cl(Aα0) and h(x) = 1 for x ∈ cl(Bβ0). Hence,

V −h (t0, x0) = 0 < 1 = V +
h (t0, x0).

This is a contradiction with Theorem 5.1.1. �

Now, we prove that any supersolution of Isaacs’ Equation is greater then the
corresponding lower value and that any subsolutions is smaller then the upper
value.

Proposition 5.1.4. Assume that (5.2), (5.3) hold true and suppose that
ψ: (0, T ]× Rn → R is lower semicontinuous and is a supersolution of

(5.5) ψt +H−(t, x, ψx) = 0

on (0, T )× Rn, when

H−(t, x, p) = max
y∈Y

min
z∈Z
〈f(t, x, y, z), p〉.

Then for every (t0, x0) ∈ (0, T ) × Rn there exists a non-anticipative strategy
β ∈ ∆t0 such that, for every u ∈Mt0 and t ∈ [t0, T ],

(5.6) ψ(t0, x0) ≥ ψ(t, x(t; t0, x0, u, β(u))).
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Proof. By Proposition 1.6.1, for every (t, x) ∈ (0, T )× Rn we have

∀(nt, nx, nu) ∈ N0
Epi(ψ)(t, x, ψ(t, x)) nt + max

y
min
z
〈f(t, x, y, z), nx〉 ≤ 0.

Thus, if (nt, nx, nu) is a normal to the epigraph of ψ then

∀y ∃z 〈(1, f(t, x, y, z), 0), (nt, nx, nu)〉 ≤ 0.

By Proposition 4.2.3 (players change their role), for every (t0, x0) ∈ (0, T ]× Rn
there exists β ∈ ∆t0 such that for every y ∈Mt0

(t, x(t; t0, x0, y, β(y)), ψ(t0, x0)) ∈ Epi(ψ) for t ∈ [t0, T ]. �

Corollary 5.1.5. Under the assumptions of Proposition 5.1.4 we obtain

ψ(t, x) ≥ V −g (t, x) where g(x) := ψ(T, x).

Proof. Since g is lower semicontinuous then for every subset B ⊂ Rn we have
sup{g(x) : x ∈ B} = sup{g(x) : x ∈ cl(B)}. Thus

V −g (t0, x0) = inf
β∈∆t0

sup{g(x) : x ∈ Bβ(t0, x0)}.

By Proposition 5.1.4 we obtain

ψ(t0, x0) ≥ inf
β∈∆t0

sup{g(x) : x ∈ Bβ(t0, x0)},

which gives us the desired inequality. �

Proposition 5.1.6. Assume that (5.2), (5.4) hold true, φ: (0, T ]× Rn → R
is upper semicontinuous and is a subsolution of

φt +H+(t, x, φx) = 0 on (0, T )× Rn,

when

H+(t, x, p) = min
z∈Z

max
y∈V
〈f(t, x, y, z), p〉.

Then for every (t0, x0) ∈ (0, T ) × Rn there exists a non-anticipative strategy
α ∈ Γt0 such that

φ(t0, x0) ≤ φ(t, x(t; t0, x0, α(z), z))

for every v ∈ Nt0 and t ∈ [t0, T ].

The proof can be done using the same method as in the proof of Proposi-
tion 5.1.4.
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Corollary 5.1.7. Under the assumptions of Proposition 5.1.6 we obtain

φ(t, x) ≤ V +
h (t, x) where h(x) := φ(T, x).

The proof is similar to the proof of Corollary 5.1.5.
If Isaacs’ condition (4) holds true, then H− = H+(=: H) and previous results

can be summarized in the following comparizon result (cf. Théorème d’unicité
forte 4.10 in [10])

Proposition 5.1.8 (Comparison result). Assume that (5.2)–(5.4), (4) hold
true. Suppose that ψ: (0, T ]×Rn → R is lower semicontinuous and is a superso-
lution of

(5.7) ψt +H(t, x, ψx) = 0

on (0, T )× Rn and φ: (0, T ]× Rn → R is upper semicontinuous and is a subso-
lution of (5.7) on (0, T ) × Rn. If ψ(T, x) ≥ φ(T, x), for x ∈ Rn, then ψ(t, x) ≥
φ(t, x), for t ∈ (0, T ] and x ∈ Rn.

Proof. By Proposition 5.1.2, Corollaries 5.1.5, 5.1.7, we have

φ(t, x) ≤ V +
h (t, x) ≤ V −h (t, x) ≤ V −g (t, x) ≤ ψ(t, x)

where h(x) = φ(T, x) and g(x) = ψ(T, x) for x ∈ Rn. �

5.2. Existence of value

In the section we prove the existence of value and characterize it as a gene-
ralized solution of Isaacs’ equation.

If the terminal cost g is discontinuous then so is the value-function. To de-
scribe the value function as a unique solution of the corresponding Hamilton–Ja-
cobi equation we introduce the following definition.

Definition 5.2.1. Let H: [0, T ] × R2n → R be a Hamiltonian. The func-
tion (t, x) 7→ u(t, x) is a generalized solution of the following Hamilton–Jacobi
equation with terminal condition

(5.8)


∂u

∂t
+H

(
t, x,

∂u

∂x

)
= 0,

u(T, x) = g(x), x ∈ Rn,
if and only if

(5.9)


(a) u is the supremum on the set of subsolutions φ

such that φ(T, x) ≤ g(x), for all x ∈ Rn,
(b) u is the infimum on the set of supersolutions ψ

such that ψ(T, x) ≥ g(x), for all x ∈ Rn.

The above meaning of solution is similar to the envelope solution introduced
in [12].
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Theorem 5.2.2. Assume that (5.2)–(5.4) and (4) hold true and g:Rn →
R is a bounded from below lower semicontinuous function. Then the game has
a value, i.e.

V +
g = V −g (=: V ).

The value function V is the smallest supersolution of the Hamilton–Jacobi–Isaacs
equation

(5.10) Vt +H(t, x, Vx) = 0

satisfying V (T, x) ≥ g(x), when H := H+ = H−. Moreover, the value function V
is the unique generalized solution (Definition 5.2.1) of (5.10) satisfying V (T, x) =
g(x).

We have stated the result in lower semicontinuous case. After typical refor-
mulation it remains valid in upper semicontinuous case.

Proof of Theorem 5.2.2. We define a sequence gn:Rn → R by

gn(x) = inf
y∈Rn

g(y) + n‖x− y‖.

The inf-convolutions gn are Lipschitz continuous, gn(x) ≤ gn+1(x) and

lim
n
gn(x) = g(x) for every x ∈ Rn.

Using Theorem 5.1.1, we have V +
gn = V −gn(:= Vn) and Vn is a viscosity solu-

tion (i.e. super- and subsolution) to (5.10). Denote W (t, x) = limn Vn(t, x). By
Lemma 1.6.2, W is a supersolution of (5.10). By Corollary 5.1.5, we obtain
W ≥ V −g . Since V +

g ≥ V +
gn , we deduce V +

g ≥W . Hence V +
g ≥ V −g . Combining it

with Proposition 5.1.2, we obtain V +
g = V −g = W .

If ψ: (0, T ] × Rn → R is a supersolution of (5.10) and ψ(T, x) ≥ g(x), then
ψ ≥ V −g . Thus V is the smallest supersolution of (5.10) satisfying V (T, x) ≥ g(x).
Since Vn is a subsolution of (5.10), Vn(T, x) ≤ g(x) and V = limn Vn, we obtain
that V is a generalized solution of (5.10), V (T, · ) = g( · ). �

Remark. Due to general properties of monotone approximation V is also a
solution of (5.10) in the Ishii sense. Namely, upper semicontinuous envelope of V
coincides with the upper weak limit of Vn (cf. exercise in [10, p. 91]), which by
Theorem 4.1 in [10] is a subsolution of (5.10).

The following example with a slight modification is taken from [9]. It served
in [9] as a counter-example to uniqueness of discontinuous solution – in the Ishii
sense – to a Hamilton–Jacobi’s equation. Definition 5.2.1 is not equivalent to
the notion of solution introduced by Ishii. In the example there exists a unique
solution in the meaning of Definition 5.2.1 and there are several solutions in the
Ishii sense [9].
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Example. Let U = V = [−1, 1]. We define f : (−∞, 0]×R×U × V → R by

f(t, x, u, v) = χ(x≤t)(x− t)v + χ(x≥t)(x− t)u.

It is easy to check that f satisfies (5.2)–(5.4) and the corresponding Hamiltonian
is given by

H(t, x, p) = (x− t)|p|.
To define a terminal cost function g:R → R, we fix t0 = x0 < 0. Let b =
x(0; t0, x0, u1, v), a = x(1; t0, x0, u−1, v) where u1(t) = 1, u−1(t) = −1 for t ∈
[t0, 0], v is an arbitrary control. We define

g(x) =
{

1 if x ∈ (a, b),

−1 elsewhere.

We set the terminal time T to be zero. By Theorem 5.2.2, the value V for this
game exists and is the unique solution of the corresponding Hamilton–Jacobi
equation: {

Vt + (x− t)|Vx| = 0,

V (0, x) = g(x) for every x ∈ R.

Remark. The assumptions (5.3) and (5.4) concerning the convexity of the
right-hand side are crucial for obtaining V +

g ≥ V −g because we used a viability
approach which requires convexity. We recall that thanks to Proposition 5.1.2,
inequality V +

g ≤ V −g holds true.

5.3. On the definition of the values of the game

In the definition of upper and lower values (5.1) we have used the closure of
reachable sets. They can be defined as well without closure{

U+
g (t0, x0) := supα∈Γt0

inf{g(x) : x ∈ Aα(t0, x0)},
U−g (t0, x0) := infβ∈∆t0

sup{g(x) : x ∈ Bβ(t0, x0)}.

We shall exhibit an example where U−g 6= U+
g .

Example. We provide an example of a differential game where U−g > U+
g .

For doing this we construct a pair of non-anticipative strategies (α, β) such that

Aα ∩Bβ = ∅.

(Let us notice that this implies that neither Aα nor Bβ are closed by Proposi-
tion 5.1.2.) We consider the following differential game on R2{

x′(t) = u,

y′(t) = v,

where U = V = [0, 1]. We set x0 = 0, t0 = 0 and T = 1. We denote by xu (yv) the
solution of the Cauchy problem x′(t) = u(t), x(0) = 0 (resp. y′(t) = v(t), y(0) =
0). We define the constant controls u0(t) = v0(t) = 0 and u1(t) = v1(t) = 1 for
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t ∈ [0, 1]. For measurable functions w, z: [0, 1]→ [0, 1] we define an (ultrametric)
distance

ρ(w, z) = 1−max{t ∈ [0, 1] : w(s) = z(s) for a.e. s ∈ [0, t]}.

Set B = {u ∈ M0 : ρ(u, u0) < 1} and S = {u ∈ M0 : ρ(u, u0) = 1}. Define two
non-anticipative strategies α, β as follows

α(v) =
{
u0 if v ∈ B,
u1 if v ∈ S,

β(u) =
{
v1 if u ∈ B,
v0 if u ∈ S.

If u ∈ S then xu(1) > 0. If p ∈ (0, 1] then there exists a control u ∈ S such that
xu(1) = p.

If u ∈ B then xu(1) < 1. If p ∈ [0, 1) then there exists a control u ∈ B such
that xu(1) = p.

We have

Aα = {(xα(v)(1), yv(1)) : v ∈ B} ∪ {(xα(v)(1), yv(1)) : v ∈ S}
= {0} × [0, 1) ∪ {1} × (0, 1],

Bβ = {(xu(1), yβ(u)(1)) : u ∈ B} ∪ {(xu(1), yβ(u)(1)) : u ∈ S}
= [0, 1)× {1} ∪ (0, 1]× {0}.

Setting g = χBβ we obtain U+
g (0, 0) = 0 < 1 = U−g (0, 0).

We did not succeed to find an example where g is semicontinuous. Hence
the question to know if U−g = U+

g (so, it would be equal to V −g = V +
g ) for

semicontinuous g remains an open problem.





CHAPTER 6

OLEINIK–LAX FORMULAS
AND MULTITIME HAMILTON–JACOBI SYSTEMS

We obtain explicit formulas for semicontinuous solutions of the Hamilton–Ja-
cobi equation (1.27) associated with an Hamiltonian of the following form:

H(t, u, p) = inf
f∈F (t,u)

〈f, p〉+ λ(u).

Such explicit formulas have been obtained first by Hopf, Lax and Oleinik. In
this section we obtain an explicit representation formula of the value function
which generalizes some result obtained recently by Barron–Jensen-Liu [16] and
Alvarez–Barron–Ishii [1]. Our approach extends results of these authors firstly
to Hamiltonian depending on time and seconly, and mainly, to the case where
the Lagrangian is nonconstant on its domain (in [16] and [1] the Lagrangian is
constant and equal to zero on its domain).

Next, we study the multitime Hamilton–Jacobi systems using properties of
commutation of semigroups of flows. To our knowledge, this question was firstly
addressed in [73] with Hamiltonians which depend only on p (see also in [11] an
extension to cases where H depends also on x).

We investigate an “overdetermined” system of multitime Hamilton Jacobi’s
equations. 

∂W

∂t
+H1

(
W,

∂W

∂x

)
= 0,

∂W

∂s
+H2

(
W,

∂W

∂x

)
= 0,

W (x, 0, 0) = g(x),

which solution is a function W : (t, s, x) ∈ ]−∞, 0]2 ×RN 7→ R. Following Lions–
Rochet [73], we reduce the question of solving the above system to a property of
commutation of semigroups of flows. We provide a new result for this commu-
tation property, the proof of which is based on commutation of reachable maps
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of differential inclusions. We apply this result to the existence and uniqueness of
the above Hamilton–Jacobi system.

6.1. Oleinik–Lax’s like formulas

We consider Lagrangians

(6.1) LλF (t, u, v) =
{
λ(u) if v ∈ F (t, u),

+∞ elsewhere,

where furthermore

(6.2)


• λ:R→ [0,+∞) is locally Lipschitz continuous and nonincreasing,

• F : [0, T ]× R ; Rn is a locally Lipschitzg continuous map

with nonempty convex compact values,

• F (t, u1) ⊂ F (t, u2) if u1 ≤ u2.

Obviously, the Lagrangian LλF stands for a special case of the class LF given
by (1.20). In particular, Theorem 1.7.2 holds true for the Hamiltonian H(t, u, p)
corresponding to LλF

(6.3) H(t, u, p) = inf
f∈F (t,u)

〈f, p〉+ λ(u).

If λ ≡ 0 then H(t, u, p) is positively homogeneous with respect to p.
The Cauchy problem

(6.4)
{
u′(t) = −λ(u(t)),

u(T ) = g0,

have a left extendable up to 0 solution. Indeed, we have u(t) ≥ g0, from which
follows −λ(g0) ≤ −λ(u(t)) ≤ 0 and |u′(t)| is bounded. We define an operator
Λ: [0, T ]× R→ R by

Λ(t, g0) = u(t)

where u( · ) is the solution of (6.4). Having Λ we can define a kind of reachable
map R: [0, T ]× R ; Rn

R(t, g0) =
∫ T

t

F (s,Λ(s, g0)) ds.

Sets R(t, g0) are nonempty convex compact and R(t, g1) ⊂ R(t, g2) for g1 ≤ g2.
We shall also use a map P :Rn × [0, T ]→ R ∪ {−∞,+∞} given by

P (y, t) = inf{g0 : y ∈ R(t, g0)}.

In the above formula and in the following ones we use the convention that
inf ∅ = +∞.
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Theorem 6.1.1. The unique semicontinuous solution of (1.27), (where the
Hamiltonian is given by (6.3) and λ, F satisfy (6.2)) is represented by

(6.5) V (t, x) = Λ(t, inf
y∈Rn

max[g(y), P (y − x, t)]).

Proof. By Theorem 1.7.2, the semicontinuous solution of (1.27) is the corre-
sponding value function. In the considered case the value function V given by
the formula (1.24) with L replaced by LλF can be represented as follows

V (t0, x0) = inf{u(t0) : u′(t) = −λ(u(t)),

u(T ) ≥ g(x(T )), x′(t) ∈ F (t, u(t)), x(t0) = x0}.

Observe that

{u(t0) : u′(t) = −λ(u(t)), u(T ) ≥ g(x(T )), x′(t) ∈ F (t, u(t)), x(t0) = x0}
= {Λ(t, g0) : ∃y ∈ Rn y ∈ R(t, g0) and g0 ≥ g(x0 + y)}.

The rest of the proof is reduced to the following lemma. �

Lemma 6.1.2. Assume that R:R→ Y is a set valued map such that

R(u1) ⊂ R(u2) for u1 ≤ u2

and Y is a nonempty set. Let g:Y ; R ∪ {+∞} be an arbitrary function and
Λ:R→ R be a nondecreasing function, continuous from the right. Then

inf{Λ(u) : ∃y, y ∈ R(u) and u ≥ g(y)} = Λ( inf
y∈Y

max((g(y), P (y))

where P (y) = inf{u : y ∈ R(u)}.

Proof. Denote

α = inf{Λ(u) : ∃y, y ∈ R(u) and u ≥ g(u)},
β = Λ( inf

y∈Y
max((g(y), P (y)).

First we show that α ≤ β. Let β < b ∈ R. There exists y ∈ Y such that
Λ(max(g(y), P (y)) < b. Since Λ(P (y)) < b then there exists u1 ∈ R such that
Λ(u1) < b and y ∈ R(u1). We set u = max(u1, g(y)). By monotonicity of R we
have y ∈ R(u). Thus α ≤ Λ(u) < b.

Now, we show that β ≤ α. Let α < a ∈ R. There are u ∈ R, y ∈ R(u) such
that Λ(u) < a and u ≥ g(y). Thus max(g(y), P (y)) ≤ u and β ≤ Λ(u) < a. �

Corollary 6.1.3. If λ ≡ 0 then the representation formula (6.5) simplifies
to the following

V (t0, x0) = inf
y∈Rn

max(g(y), P (y − x0, t0)}
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where

P (y, t0) = inf
{
u ∈ R : y ∈

∫ T

t0

F (t, u) dt
}
.

If λ ≡ 0 and F does not depend on the time (F (t, u) = F (u)) then the represen-
tation formula simplifies even more to the following

V (t0, x0) = inf
y∈Rn

max
(
g(y), P

(
y − x0
T − t0

))
where P (y) = inf{u ∈ R : y ∈ F (u)}.

6.2. Commutation of flows and multitime Hamilton–Jacobi systems

We consider the problem of commutation of semigroups generated by two
Hamilton–Jacobi’s equations and the problem of existence of solution of multi-
time Hamilton–Jacobi systems (cf. [73]). We reduce the problem of commutation
of semigroups to the problem of commutation of set-valued reachable sets gene-
rated by corresponding control systems. We shall use the previous approach in
the case of time intervall ]−∞, 0] (T = 0 is the terminal time).

The Hamiltonians H(u, p) satisfy

Assumption A.
H(u, p) = H̃(u, p) + λ(u)

where λ:R→ [0,+∞) is nonincreasing and C1 and H̃:R× Rn → R satisfies

• H̃(u, · ) is concave and positively homogenuous,
• H̃( · , p) is nonincreasing and C1.

Theorem 6.2.1. Suppose that H1, H2 satisfy Assumption A and for all u, p

(6.6)


∂H̃1
∂u

(u, p)λ2(u) =
∂H̃2
∂u

(u, p)λ1(u),

λ′1(u)λ2(u) = λ′2(u)λ1(u).

Then, for all t1, t2 < 0,

S1(t1)S2(t2) = S2(t2)S1(t1)

where (for i = 1, 2) Si(t)g = Ui(t, · ) and Ui: (−∞, 0] × Rn → R ∪ {+∞} is the
unique semicontinuous solution of

(6.7)
{
Ut +Hi(U,Ux) = 0,

U(0, · ) = g( · ).

The semigroup Si acts on the space of extended, bounded from below, lower se-
micontinuous functions on Rn.

Proof. By Theorem 1.7.2, the solution of (6.7) is the value function of the cor-
responding generalized Bolza problem. The Lagrangian Li(u, v) corresponding
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to Hi is given by

Li(u, v) =
{
λi(u) if v ∈ Fi(u),

+∞ elsewhere,
where

Fi(u) = {v ∈ Rn : ∀p ∈ Rn, 〈p, v〉 ≥ H̃i(u, p)}.
The value function Vi: (−∞, 0]×Rn → R∪{+∞} corresponding to the terminal
value g at the terminal time T = 0 is given by

Vi(t0, x0) = inf{u(t0) : x′(s) ∈ Fi(u(s))u′(s) = −λi(u(s))x(t0) = x0,

u(x(0)) ≥ g(x(0))}.

We define reachable maps

Ri((x0, u0), t0) = {(x(0), u(0)) : x′(s) ∈ Fi(u(s)),

x(t0) = x0, u
′(s) = −λi(u(s)), u(t0) = u0}.

We have Si(t)g(x0) = inf{u0 : ∃(y, v) ∈ Ri((x0, u0), t0), v ≥ g(y)}.
The problem of commutation of semigroups can be reduced to the problem

of commutation of reachable maps thanks to the following, easy lemma. �

Lemma 6.2.2. If R1(R2((x, u), t2), t1) = R2(R1((x, u), t1), t2) then

S1(t1)S2(t2) = S2(t2)S1(t1).

Let us notice that the converse is also true. Let u( · ; t0, u0, i) denote the
solution of {

u′(s) = −λi(u(s)),

u(t0) = u0.

We have

Ri((x0, u0), t0) =
(
x0 +

∫ 0
t0

Fi(u(s; t0, u0, i))ds, u(0; t0, u0, i)
)
.

Fix p ∈ Rn. We shall need the following easy claim.

Lemma 6.2.3. If G: [a, b] 7→ Rn is a bounded measurable map with convex
compact values then

inf
{
〈p, q〉 : q ∈

∫ b

a

G(t) dt
}

=
∫ b

a

inf
g∈G(t)

〈p, g〉 dt.

By Lemma 6.2.3,

(6.8) inf{〈p, r〉 : r ∈ Ri((x0, u0), t0)} = 〈p, x0〉+
∫ 0
t0

Hi(u(s; t0, x0, i), p) ds.
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Let t1, t2 < 0 and u1 := u(0; t1, u0, 1), u2 := u(0; t2, u0, 2). We have:

R12 :=R1(R2((x0, u0), t2)t1)

=x0 +
∫ 0
t2

F2(u(s; t2, u0, 2)) ds+
∫ 0
t1

F1(u(s; t1, u2, 1)) ds,

R21 :=R2(R1((x0, u0), t1)t2)

=x0 +
∫ 0
t1

F1(u(s; t1, u0, 1)) ds+
∫ 0
t2

F2(u(s; t2, u1, 2)) ds.

We claim that

(6.9) inf{〈p, r〉 : r ∈ R12} = inf{〈p, r〉 : r ∈ R21}.

One can deduce this fact from the following result (given without proof).

Lemma 6.2.4. If A, B are convex compact subsets of Rn then

inf{〈p, a+ b〉 : a ∈ A, b ∈ B} = inf{〈p, a〉 : a ∈ A}+ inf{〈p, b〉 : b ∈ B}.

By (6.8) and (6.9), we have

(6.10) inf{〈p, r〉 : r ∈ R12} = 〈p, x0〉+
∫ 0
t2

H2(u(s; t2, u0, 2), p) ds

+
∫ 0
t1

H1(u(s; t1, u2, 1), p) ds,

(6.11) inf{〈p, r〉 : r ∈ R21} = 〈p, x0〉+
∫ 0
t1

H1(u(s; t1, u0, 1), p) ds

+
∫ 0
t2

H2(u(s; t2, u1, 2), p) ds.

Now, we consider two planar ordinary differential equations (i = 1, 2)

(6.12)
{
l′(t) = Hi(u(t), p),

u′(t) = λi(u(t)).

Denote the right hand sides by fi(l, u) = (Hi(u, p), λi(u)). Since Df1 f2−Df2 f1
= 0, by Corollary 1.11 in [66] the corresponding to (6.12) flows commute, which
follows that (6.10) and (6.11) coincide.

Following Lions and Rochet [73], we apply commutation property to study
the following system of PDE

(6.13)



∂W

∂t
+H1

(
W,

∂W

∂x

)
= 0 in RN × ]−∞, 0)2,

∂W

∂s
+H2

(
W,

∂W

∂x

)
= 0 in RN × ]−∞, 0)2,

W (x, 0, 0) = g(x),
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where (t, s, x) 7→W (t, s, x) is the unknown solution and H1 H2 are some Hamil-
tonians.

We say that an extended function W : (−∞, 0]2 × Rn → R ∪ {+∞} is a
multitime lower semicontinuous solution of the system (6.13) if for every fixed
s ∈ (−∞, 0] the function Ws(t, x) = W (t, s, x) is a lower semicontinuous solution
of

∂W

∂t
+H1

(
W,

∂W

∂x

)
= 0,

i.e. for every t < 0, x ∈ Rn and every (pt, px) ∈ ∂−Ws(t, x)

pt +H1(Ws(t, x), px) = 0

and the function Wt(s, x) = W (t, s, x) is a lower semicontinuous solution of

∂W

∂t
+H2

(
W,

∂W

∂x

)
= 0,

i.e. for every s < 0, x ∈ Rn and every (ps, px) ∈ ∂−Wt(s, x)

ps +H2(Wt(s, x), px) = 0.

Corollary 6.2.5. Suppose that assumptions of Theorem 6.2.1 holds true. If
g is a bounded from below lower semicontinuous function then

W (t, s, x) := S1(t)S2(s)g(x) = S2(t)S1(s)g(x)

is the unique multitime lower semicontinuous solution of (6.13).

Remark. If (pt, ps, px) ∈ ∂−W (t, s, x) then obviously (pt, px) ∈ ∂−Ws(t, x)
and (ps, px) ∈ ∂−Wt(s, x). So, if W (t, s, x) is a multitime lower semicontinuous
solution of (6.13), then it is also a lower semicontinuous solution of (6.13).
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