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The effect of population size on linguistic stability and evolution has been investigated in 

different linguistic domains. The relationship among these factors, however, is not always 

clear. In this paper, we study a basic population-dynamical model of linguistic spread, 

derive measures of linguistic stability and fitness, and investigate the effect of population 

size on these measures. By allowing for stochasticity in the learning process of linguistic 

constituents, it is shown that a constituent’s stability and fitness increases with population 

size, but that high variability in the learning environment may cause constituent loss, also 

in large populations. The respective roles of learning and usability are also discussed.  

1. Population size and linguistic evolution 

Population size has been proposed to affect linguistic structure (Atkinson, Kirby, 

& Smith, 2015; Hay & Bauer, 2007; Lupyan & Dale, 2010; Nettle, 2012; 

Wichmann, Rama, & Holman, 2011) as well as rate of linguistic change 

(Atkinson, 2011; Wichmann & Holman, 2009) and degree of adaptation with 

respect to cognitive and communicative pressures (Fay & Ellison, 2013). More 

recently, Bromham et al. (2015) have shown in their empirical study that lexical 

items are more stable in large populations and that rates of word loss are higher 

in small populations. Indeed, if linguistic constituents share mechanistic 

similarities with biological replicators (Croft, 2000; Ritt, 2004) the latter 

observation is exactly what one would expect as per evolutionary theory 

(Bromham et al. 2015: 2100). 

Purely computational approaches to this problem have been, to our 

knowledge, primarily limited to simulations (Nettle, 1999; Wichmann, Stauffer, 

Schulze, & Holman, 2008). More recent advances in mathematical ecology (in 

particular, stochastic epidemiological dynamics; Gray, Greenhalgh, Hu, Mao, & 

Pan, 2011; Greenhalgh, Liang, & Mao, 2015) allow for a more analytical 

assessment. This paper adds to the discussion about the relationship between 
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population size, linguistic stability and evolution by modifying and analyzing an 

established population-dynamical model of linguistic spread (Cavalli-Sforza & 

Feldman, 1981; Nowak, 2000; Nowak, Plotkin, & Jansen, 2000; Solé, Corominas-

Murtra, & Fortuny, 2010; Wang & Minett, 2005). We focus on the dynamics of 

single ‘linguistic items’ or ‘constituents’ (like phonemes, n-phones, words or 

constructions) in finite speaker populations. After discussing the deterministic 

dynamics, we also analyze a stochastic version of the model, which accounts for 

variability in the process of constituent learning (e.g. varying density of the 

speaker network due to eco-linguistic factors, or varying usage of the constituent 

in learner-user interactions). It is shown that the general assumption that linguistic 

stability increases with population size only holds if variability in the learning 

process is kept low, and argue that the latter factor provides an interesting 

mechanism in language evolution. 

2. Modeling linguistic spread in finite populations 

2.1. Deterministic model 

We study a modified version of Nowak’s (2000) basic model of linguistic spread. 

In our version of the model, population size 𝑁 is restricted to be finite. The model 

describes the dynamics of a structured population composed of users of a 

particular linguistic item i (e.g. phoneme, n-phone, word or construction) and 

learners that do not use it. Let 𝑈𝑖  and 𝐿𝑖  denote the respective sizes of the 

(disjoint) subpopulations and let 𝑈𝑖 + 𝐿𝑖 = 𝑁. Whenever learners and users meet, 

the former learn 𝑖 at a rate 𝜆 so that they switch from class 𝐿𝑖 to 𝑈𝑖. We assume 𝜆 

to denote the learning rate, where learning of a new form is not necessarily 

restricted to the first years of language acquisition. Rather, we mean any 

interaction of individuals one of which does not yet know and use a given item. 

In Nowak’s (2000) model, this rate 𝜆 is a function of (a) network density, linked 

to the number of communicative encounters a learner is exposed to, (b) 

production rate, i.e. the extent to which the item is produced, and (c) learnability, 

i.e. the probability that the item is successfully acquired when a learner is exposed 

to it. Learners and users die at a normalized mortality rate of 1 (so that each time 

unit equals one speaker generation), and dead learners and users are immediately 

replaced by new individuals that are added to the learner class so that population 

size is kept constant. In addition, users can switch back to class  𝐿𝑖 at a rate 𝛾 

when they stop using 𝑖 (‘unlearning’), for instance because they forget the item or 

because they abandon it in favor of a competing linguistic variant. We suggest 

that 𝛾 is inversely related with the usability of 𝑖 in everyday speech events in 
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which no user-learner interactions are involved. Table 1 summarizes the model 

parameters. 

 

 
Table 1. Variables in the model and how they can be interpreted 

Variable Linguistic and cognitive interpretation 

𝑁 Total size of the population of linguistic agents composed of U users and L learners 

𝜆 

Item-specific learning rate in interactions; depends on network connectivity (linked to 
number of communicative encounters), production rate (linked to utterance 

frequency and ease of production), and learnability (linked to ease of perception)  

𝛾 

Rate at which individuals stop using an item (in addition to speaker death; rate of 

‘unlearning’); inversely related to factors enhancing usability (e.g. ease of 

memorization or ease of production); assumed to be independent from learner-user 
interactions  

𝑅0 Expected number of learners that successfully learn an innovation from a single user 

 

The dynamics are determined by a deterministic two-dimensional dynamical 

system in continuous time which models the respective growth rates of 𝐿𝑖 to 𝑈𝑖. 

In what follows we will omit the index 𝑖, for the sake of simplicity, since we only 

focus on the dynamics of a single item (although the parallel evolution of several 

items clearly can be studied as well). The model equations read: 

d𝐿/d𝑡 = −𝜆𝐿𝑈⏞  
learning

+ 𝛾𝑈⏞
unlearning

− 𝐿⏞
death

+ 𝑁⏞
birth

d𝑈/d𝑡 = 𝜆𝐿𝑈⏟
learning

− (1 + 𝛾)𝑈⏟      
death and unlearning

                                                                               (1) 

If 𝛾 = 0  and 𝑁 = 1  the dynamical system reduces to the model of linguistic 

spread in Nowak (2000) and Solé (2011), which is equivalent with a one-

dimensional model of logistic growth (although the dynamics can be modeled by 

a single equation, e.g. only the second one in (1), we stick to the more explicit 

definition for the sake of clarity). 

The qualitative behavior of the model can be predicted by the basic 

reproductive ratio 𝑅0 which is defined as the expected number of learners that 

learn an item which has been innovatively introduced into the population by a 

single user (cf. Nowak 2000, Heffernan, Smith, & Wahl, 2005). If 𝑅0 > 1 the 

dynamics approach a non-trivial equilibrium so that �̂� = 𝑁(1 − 1/𝑅0)  users 

know and use the item. That is, the item is stably established in the linguistic 

community. If, however, 𝑅0 < 1 then the dynamics approach an equilibrium in 

which �̂�0 = 0 users know the item. In that case, the item drops out of usage. Thus, 
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the basic reproductive ratio functions as a measure of the stability of a linguistic 

item. For that reason we treat 𝑅0 as a measure of diachronic stability (technically, 

𝑅0 measures the stability of the equilibrium �̂�0 = 0; if 𝑅0 > 1 then �̂�0 is unstable 

so that the population of users persists with probability 1 if any users are added to 

the population; if 𝑅0 > 1 then �̂�0 is stable so that the population of users goes 

extinct with probability 1). 

For the present model, the basic reproductive ratio can be shown to read 𝑅0 =

𝑁𝜆/(1 + 𝛾). The formula can be intuitively understood in the following way. The 

expected time an individual knowing the item remains in the user class is 1/(1 +

𝛾);  based on our assumption that the item is an innovation there are 

(approximately) 𝑁 individuals that do not yet know the item; and each learner 

acquires the item at a rate of 𝜆 . Note, crucially, that since the amount of 

individuals which can acquire an item from a user depends on the number of 

learners available in the population 𝑅0  depends on population size. Here this 

dependency is linear, which is an immediate reflex of the assumption that the 

population is homogeneously mixed so that any user can inform any learner in the 

population (see Section 3 for some discussion). 

We are interested in the role that population size plays for the stability of a 

linguistic item. The basic reproductive ratio 𝑅0  increases with 𝑁 since 𝜆/(1 +

𝛾) > 0. The larger the population, the less likely is it that 𝑅0 falls below one so 

that the item would inevitably drop out of usage.  

In evolutionary terms, 𝑅0(𝜆, 𝛾) can be interpreted as a measure the fitness of 

a linguistic item (Metz, Mylius, & Diekmann, 1996). Evidently, 𝑅0 increases with 

𝜆  (because ∂𝑅0/ ∂𝜆 = 𝑁/(1 + 𝛾) > 0 ) and decreases with 𝛾  (because ∂𝑅0/

∂𝜆 = −𝑁𝜆/(1 + 𝛾)2 < 0 ). Thus, items with high learning rates and high 

usability should be selected for. That is, items are expected to evolve in such a 

way that they maximize ease of acquisition, production and use (probably 

governed by some trade-off among these factors). Moreover, the effect of 

optimizing 𝜆 and 𝛾 gets stronger the larger the population size 𝑁, so that items 

are expected to be less optimized in small populations.  

2.2. Stochastic model 

Things get slightly more complicated when variability in the model dynamics is 

considered. For instance, demographic variability could be accounted for, i.e. 

fluctuations due to random speaker deaths and births in addition to the 

deterministic model dynamics. For the class of models (1) belongs to, it has been 

shown that the effects of demographic variability can be neglected if population 
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size is substantially large (Greenhalgh et al. 2015).1 Another source of variability 

might be more relevant to linguistic dynamics, namely that of parametric (or 

environmental) variability. Here, model parameters fluctuate randomly, thus 

affecting the behavior of all individuals in the population at the same time. In a 

linguistic setting, for instance, network density of the entire speech community 

could vary due to eco-linguistic factors (e.g. migration or areal expansion; cf. 

Mufwene, 2001; Lupyan & Dale, 2010). Likewise, frequency of use of an item 

established in a speech community might fluctuate due to socio-linguistic or 

language-internal factors (e.g. morpho-syntactic or phonological restructuring, or 

emergence of competing variants for instance in language contact). All of these 

factors can be argued to have an impact on the linguistic learning process. Thus, 

we include a stochastic component into the model by extending the rate of 

transition from class 𝐿 to class 𝑈, denoted by �̃�, so that �̃�d𝑡 = 𝜆d𝑡 + 𝜎d𝑊(𝑡). 

Here, 𝑊(𝑡) is a Wiener process (random noise) which accounts for fluctuation 

around 𝜆 , and 𝜎 ≥ 0 is the variance in the ‘learning environment’ due to the 

above-mentioned factors. Thus, 𝜎 measures the magnitude of these fluctuations. 

We consider learning environments with low 𝜎 as more stable that those with 

large 𝜎 . 2  By replacing 𝜆d𝑡  by �̃�d𝑡  in (1), the model becomes a system of 

stochastic differential equations (SDE; Allen, 2010): 

                      
d𝐿 = (−𝜆𝐿𝑈 + 𝛾𝑈 − 𝐿 + 𝑁)d𝑡 − 𝜎𝐿𝑈d𝑊(𝑡)

d𝑈 = (𝜆𝐿𝑈 − (1 + 𝛾)𝑈)d𝑡 + 𝜎𝐿𝑈d𝑊(𝑡)
                                        (2) 

Clearly, if there is no fluctuation (𝜎 = 0), (2) reduces to the deterministic model 

(1).  System (2) belongs to the class of Itô SDEs analyzed by Gray et al. (2011). 

Hence, we can employ the conditions for extinction and persistence derived there. 

By applying Theorem 4.1 in Gray et al. (2011), the basic reproductive ratio for 

system (2) can be shown to read                                           

 𝑅0 =
𝜆𝑁

1 + 𝛾⏟  
(i)

−
1
2
𝜎2𝑁2

1 + 𝛾⏟  
(ii)

 (3) 

where part (i) equals the basic reproductive ratio of the deterministic system (1) 

and part (ii) comes from the diffusion term in the SDE (2). Theorem 5.1 in Gray 

et al. (2011) entails that the system leads to persistence of an item (i.e. stable and 

positive 𝑈), if 𝑅0 > 1. If, on the contrary, 𝑅0 < 1 and 𝜎 ≤ √𝜆/𝑁 (Thm 4.1), or 

                                                           
1  Based on Greenhalgh et al. (2015, Theorem 4.1), demographic variability only has an additional 

effect if population size falls below critical size 𝑁crit = 1/4 + (1 + 𝛾)/𝜆. 
2 Note that this notion of stability differs from the one measured by the basic reproductive ratio. While 

𝜎 measures how constantly transmission of an item takes place,  𝑅0 measures whether or not an item 
persists in the speaker population.  
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𝜎 > √𝜆/𝑁  (Thm 4.3), then the number of users 𝑈  approaches zero with 

probability 1, so that the item goes extinct.  

Several observations can be made. To begin with, it is not difficult to see that 

d𝑅0/d𝑁 > 0 if √𝜆/𝑁 > 𝜎. This means that the stability of an item increases with 

population size 𝑁 as long as variability is not too high. In particular, inequality 

𝜎 > √𝜆/𝑁  is favored to hold (a) if learning variability 𝜎  is large or (b) if 

population size is high (or both). Thus, severe fluctuations promote the loss of 

items and impede the establishment of new items in the speaker population 

(Figure 1). Moreover, for fixed 𝜎, larger population sizes can also have negative 

effects on the stability of linguistic items. In large populations, even mild 

fluctuations can yield severe reflexes, as long as they affect the entire linguistic 

population.  

 

 
Figure 1. On the left: Itô-process simulations of diachronic developments (𝑁 = 50, 𝜆 = 0.5, 𝛾 =
1.5,𝑈(0) = 1) in two different environments; lower variability (𝜎 = .073, 𝑅0 = 7.33, light gray), and 

higher variability (𝜎 = .135, 𝑅0 = 0.89,  dark gray). After about 3 generations, the item exposed to 

higher variability in the learning environment goes extinct, as expected. On the right: 𝑅0  as a 

decreasing function of 𝜎  for three different population sizes 𝑁 = 50; 75; 100 (𝜆 = 0.5, 𝛾 = 1.5 

fixed). For high 𝜎 , larger populations yield lower 𝑅0.  Computations were done in Mathematica 

(Wolfram Research, 2016). 

What is more interesting is this: a sensitivity analysis reveals information 

about the relative importance of 𝜆  and 𝛾  in the optimization of 𝑅0  in the 

stochastic model. For the respective directional derivatives of 𝑅0(𝜆, 𝛾), we have 

that 𝜕𝑅0(𝜆, 𝛾)/𝜕(1,0) = 𝑁/(1 + 𝛾) > 0,  and that 𝜕𝑅0(𝜆, 𝛾)/𝜕(0, −1) = 1/2 ∙

𝑁( 2𝜆 − 𝜎2𝑁2) log(1 + 𝛾) > 0, because √𝜆/𝑁 > 𝜎  if the item already exists 

stably. Items benefit from increasing 𝜆  and decreasing 𝛾  (i.e. increasing 

usability), but in contrast to the former parameter, the effect of decreasing  𝛾 

suffers from variability in the learning environment. For an item, to put it casually, 

it pays off to put more effort into improving learning rather than usability if 

variability is high enough. Improving factors that determine learning does always 

contribute to an item’s success, while effects of increased usability may be 
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vanishingly small in the presence of noise. As in the deterministic case, the effects 

of optimizing 𝑅0 (i.e. the directional derivatives shown above) get stronger the 

larger the speaker population (Figure 2). 

 

 

 
Figure 2. Fitness landscape defined by 𝑅0 as a function of 𝛾 and 𝜆 for three different population sizes 

(𝑁 = 50; 75; 100) in the presence of learning variability (𝜎 = .073); fitness increases linearly with 𝜆 

and decreases convexly with 𝛾. Directional slopes (effects of changing parameters) get steeper as 

population size increases. 

 

3. Discussion and conclusion 

By studying systems of ODEs and SDEs, we have shown that population size in 

general increases the stability of linguistic constituents (cf. Table 2) and thus (a) 

facilitates their establishment in the speaker population and (b) prevents their loss. 

This goes in line with Bromham et al. (2015: 2100) who show that “Polynesian 

languages with larger speaker-population sizes [have] higher rates of gain of new 

words than their smaller sister languages” and that “languages with a smaller 

number of speakers [have] higher rates of loss of lexemes”. Our results also 

converge with studies that found a positive correlation between population size 

and the size of a language’s phoneme inventory (see Nettle, 2012 for a review), 

and by implication phonotactic richness (Maddieson, 2013). 

However, the presence of variability in the learning environment decreases 

stability, and the negative effects of variability get stronger, the larger population 

size. In the extreme case, this variability can lead to the loss of a constituent 

(Figure 1, left, dark gray trajectory). As a corollary of this, we can conclude that 

the establishment of an inventory of constituents (e.g. lexicon of words or 
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phoneme inventory) requires a relatively stable learning environment (cf. 

McMahon & McMahon, 2013, p. 248). For instance, it can be argued that the 

small phoneme inventories found in a number of remote Polynesian languages 

(Trudgill, 2004) might be a reflex of migration and concomitant variability in 

network density. We argue that complementary to demographic variability 

(linked to linguistic founder effects as suggested by Atkinson 2011), 

environmental variability provides another interesting mechanism for explaining 

linguistic evolution, because it applies even if population size remains constant.3  

 
Table 2. Results and model comparison 

Feature Deterministic model Stochastic model  

Learning environment Constant (𝜎 = 0) Variable (𝜎 > 0) 

Effect of N on stability of 
constituent 

Stability increases with 
population size N 

Stability increases with N if 

variability 𝜎 is small 

Effect of N on evolution of 

learning rate 𝜆 

Adaptive effects of improving 

learning increase with N 

Adaptive effects of improving 

learning increase with N 

Effect of N on evolution of 

usability ~ 𝛾−1  
Adaptive effects of improving 
usability increase with N 

Adaptive effects of improving 
usability increase with N 

Effect of variability on 

evolution of learning rate 𝜆 

Improving learning rate always 

increases fitness 

Improving learning rate 

always increases fitness 

Effect of variability on 

evolution of usability ~ 𝛾−1  
Improving usability always 
increases fitness 

Effects of improving usability 

are mitigated by variability 𝜎 

 

One might wonder, what the prediction of the model, that constituent 

inventories are more likely to shrink in small populations actually means. Clearly, 

it is not plausible that small populations simply drop constituents like phonemes 

or lexemes, since some items obviously fulfil specific functions in the linguistic 

system and cannot be arbitrarily left away. Models like the ones studied in this 

paper cannot easily account for such details. However, one way of looking at this 

prediction is this: if constituents vanish (e.g. due to bad adaptation) the language 

must compensate for this loss, e.g. by adding more complex morpho-syntactic 

rules. Indeed, this is supported by Lupyan and Dale (2010) who show that small 

                                                           
3 Indeed, Bybee (2011) has contested demographic variability as the main explanatory link between 

linguistic evolution and population size. 
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populations sustain morphologically more complex languages.4 This argument 

contrasts the causal directionality proposed by Nettle (2012) who argues that it is 

the smaller number of contacts in small populations that promotes the acquisition 

of complex morphology (which, in turn, would allow for a reduced lexicon).  

The findings also agree with Fay and Ellison (2013: 7) in the sense that 

increased population size enhances the optimization of properties associated with 

linguistic transmission. That is, evolution proceeds faster in large populations. At 

first sight, this may seem paradox: population size is predicted to increase the 

stability of an item, but at the same time population size drives linguistic 

optimization, where an item is effectively replaced by a more successful version 

of itself. Note, crucially, that the more optimized variant is less likely to get lost. 

The analysis of the stochastic model has revealed that constituents always 

benefit from optimizing factors related to learning while advantages gained from 

optimizing factors related to usability can be lost due to random fluctuations in 

the learning environment. Based on this, it can be expected that items are 

relatively more optimized for being learned easily rather than for ease of use 

outside of the learning context. This accords with studies that propose a strong 

connection between (diachronic) stability and ease of acquisition (e.g. Monaghan 

2014). It is less compatible with studies stressing the importance of usability and 

ease of production (i.e. speaker-over-listener dominance) in linguistic 

transmission (Bybee, 2010; Fay & Ellison, 2013).5 

Finally, a more technical caveat is in order. The model builds on the 

assumption that the learning process depends on a mass-action law (i.e., 

interactions are proportional with the product of the number of learners and users). 

It has been pointed out (de Jong, Diekmann, & Heesterbeek, 1996), that this 

assumption does not hold in large populations in realistic ecological scenarios. 

Consequently, the effect of population size on the basic reproductive ratio is 

probably overestimated as populations become larger. Accounting for these issues 

                                                           
4 Note that this observation does not directly follow from the present analysis but rather represents a 

tentative hypothesis which is compatible with our results. It would be interesting, however, to study a 

model which includes the possibility of combining items (perhaps similar to the approach adopted by 

Nowak et al. 2000) to account for complexity. We would like to thank an anonymous reviewer for 
pointing this out. 
5 This observation, however, might be grounded in the abstract and simplified way in which learning 

and using constituents is built into the model. Arguably, the rough distinction between factors relevant 
to learning interactions and those not associated with interactions is very simplistic and must be refined 

in order to capture learnability and usability more accurately.  
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eventually requires the implementation of a more complicated network structure.6 

The observations made in this contribution, nevertheless, do not contradict with 

results from network epidemiology. In large networks, the invasion threshold 

vanishes under the assumption of a more realistic network structure (small world; 

scale free). As a consequence of the presence of super spreaders, items can spread 

easily through large populations (Barabási, 2016). The effects of fluctuations 

during the learning process in more realistic networks, though, is yet to be looked 

at more closely.   
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