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Culture is a special evolutionary system that is composed of two types of replicators: public
structures in the world, such as artifacts and behaviors, and private structures in the mind,
such as brain states or grammars. In this paper, I utilize a mathematical equivalence between
replicator dynamics and Bayesian inference to specify a model where cultural artifacts and
learners’ hypotheses co-evolve.

1. A Replicator Dynamics Model of Bayesian Cultural Evolution

1.1. Model A: Artifact Evolution

The replicator dynamics equation (Hofbauer & Sigmund, 1998) is a general model
of natural selection that can be used to describe the evolution of a population
of cultural artifacts or behaviors over time, where p(di) is the proportion of the
ith artifact in the population of artifacts and p(di)

′ is its proportion in the next
generation. The relationship between p(di) and p(di)

′ is

p(di)
′ =

p(di)f(di)∑n
k=1 p(dk)f(dk)

(1)

where f(di) is the fitness of the ith artifact and
∑n

k=1 p(dk)f(dk) is the mean
fitness of all the artifacts in the population. f(di) can be unpacked into the ex-
pression f(di|ej), which specifies that the fitness of d is dependent upon the en-
vironment, e, at any given time. The population of artifacts can adapt to a fixed
environment, where f(di) is the same each generation, or a changing environ-
ment, where f(di) is different each generation.
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1.2. Model B: Bayesian Hypotheses Evolution

Bayesian inference can be used to describe learning, where an agent entertains a
set of hypotheses about the state of the world and then updates the probability of
these hypotheses after observing some data from the world. The agent assigns
each hypothesis a certain probability of being correct before learning, p(hj), and
after learning, p(hj)

′. The relationship between p(hj) and p(hj)
′ is

p(hj)
′ =

p(hj)p(di|hj)∑n
k=1 p(hk)p(di|hk)

(2)

where p(di|hj) is the likelihood of the observed data under the jth hypothesis and∑n
k=1 p(hk)p(di|hj) is the mean probability of the data under all of the agent’s

hypotheses. Bayesian updating can be iterated over a sequence of observations.
These observations can be the same each generation, where the hypotheses adapt
to a fixed environment, or they can can differ each generation, where the hypothe-
ses adapt to a moving target.

1.3. The Fitness Landscape of Learning

Even though Bayesian updating is a model of learning, we can talk about the evo-
lution of hypotheses because the replicator dynamics equation and Bayesian infer-
ence are formally equivalent, as noted by (Shalizi et al., 2009; Harper, 2009).1 The
beauty of this equivalence lies in the interpretation of fitness in learning: the fit-
ness of hypotheses (i.e. what causes them to gain differential support in a learner’s
mind) is simply the likelihood of the data under each hypothesis. Likewise, data
are differentially reproduced on the basis of the support they have under each hy-
pothesis: data that make more sense under a given hypothesis are more likely to
survive than data points that make less sense under it. Therefore, the fitness of the
hypotheses and the fitness of the data are both determined by the likelihood of the
data given the hypotheses, such that:

f(di) = p(di|h∗) (3)

f(hj) = p(d∗|hj) (4)

Where the ∗ indicates one particular hypothesis or data type. This has the effect of
yoking the fitness values of the data and hypotheses to the same fitness landscape,
defined by the likelihood matrix Wij . Equation 5 gives an example matrix for a
population of three data points and three hypotheses:

1Due to this equivalence, we can conceptualize the probability distribution over hypotheses as a
population of hypotheses. Therefore, this paper will refer to p(h) in two ways: as the probability of a
hypothesis and as the proportion of a hypothesis in a population of hypotheses.
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Wij = p(di|hj) =

h1 h2 h3





.8 .2 .3 d1

.1 .6 .3 d2

.1 .2 .4 d3

(5)

For example, if the population of hypotheses consists only of h1, the relative
fitness of {d1, d2, d3} = {.8, .1, .1} and if the population of data consists only of
d1, the relative fitness of {h1, h2, h3} = {.62, .15, .23}. For any population of
hypotheses that contain a mixture between hypotheses types, I define the fitness
of each data type to be the weighted average of its fitness under each hypothesis,
where each weight equals the hypothesis’ proportion in the population. Likewise,
the relative fitness of each hypothesis is the weighted average of its fitness under
each data type, where weights equal each data type’s proportion in the population.

1.4. Model C: Coevolution of Artifacts and Hypotheses

Model A and B can be combined to model the coevolution of data and hypotheses,
where a population of artifacts adapts to a distribution over hypotheses, and vice
a versa:

p(di)
′ =

∑

j

[(
p(di)p(di|hj)∑n

k=1 p(dk)p(dk|hj)

)
p(hj)

]
(6)

p(hj)
′ =

∑

i

[(
p(hj)p(di|hj)∑n

k=1 p(hk)p(di|hk)

)
p(di)

]
(7)

Equation 6 is equivalent to Equation 1, where f(di) is specified as p(di|hj) and
where the updated proportion p(di)

′ is a sum of its updated proportion under each
hypothesis, weighted by the proportion of the hypotheses at the current time step.
Likewise, Equation 7 is equivalent to Equation 2, where the updated proportion
p(hj)

′ is a sum of its updated proportion under each data type, weighted by the
proportion of each data type in the current population.

2. Example Dynamics of the Model

Figure 1 provides a visualization of the model’s behavior for an example set of
parameters: an initial distribution over data dinit = p(d1, d2, d3) = {.2, .2, .6}
and hypotheses hinit = p(h1, h2, h3) = {.3, .4, .3}. The fitness values used are
those in Equation 5. The top row (Model A) shows a population of data adapting
to hinit, which is held fixed. The data converges to a population distribution of
{0.56, 0.44, 0}, where d1 constitutes 56% of the population, d2 constitutes 44% of
the population, and d3 is extinct. The middle row (Model B) shows a population
of hypotheses adapting to dinit, which is held fixed. The hypotheses converge
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Figure 1. Example behavior of each model on a simplex plot. Axes show the proportion of each
variant in the population. Corners indicate the fixation of one variant and are labeled by that variant
(ex: a point in the “d1” corner means the d1 variant comprises 100% of the population). Model A:
Data replicate while the distribution over hypotheses remains fixed. Model B: Hypotheses replicate
while the distribution over data remains fixed. Model C: Data and hypotheses coevolve, fixating in a
different stable state than either variant would have on its own.
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Figure 2. Example evolutionary trajectories from Model C, demonstrating how the length of time
it takes a population to reach its stable state varies in relation to landscape typography. The y axis
shows the proportion of each replicator type, which was initialized at p(d1, d2, d3) = {.6, .2, .2} and
p(h1, h2, h3) = { 1

3
, 1
3
, 1
3
}. Darker colors denote peakier landscapes.

to a population composed only of h3. The bottom row shows the behavior of
Model C, where the population of data (left) and the population of hypotheses
(right) coevolve with one another. The data were updated first and therefore, the
first step in the trajectory is identical to their first step in Model A. However, the
first step the hypotheses take is not identical to their first step in Model B because
the updated distribution over data caused the relative fitness among hypotheses to
change, sending them in a slightly different direction. Although their trajectory
is now altered, the hypotheses still continue toward h3 until the population of
data becomes sufficiently different to have changed the boundaries of the basin
of attraction for h1. At this point, the hypotheses find themselves in a new basin
which converges to a different attractor: p(h1, h2, h3) = {1, 0, 0}.

In the replicator dynamics equation, convergence rates are an increasing func-
tion of fitness strength: as the differential growth rate among replicators becomes
larger, the population reaches fixation faster. This applies to the first two mod-
els described in this paper, but not to Model C. Figure 2 shows six evolution-
ary trajectories from Model C which vary only in the peakiness of their fitness
landscapes (where peaky entails strong differential fitness). Flatter fitness land-
scapes are shown in lighter grey and peakier fitness landscapes are shown in darker
grey. On the left, an initial data distribution of p(di) = {.6, .2, .2} converges to
p(di) = {1, 0, 0}. On the right, an initial uniform distribution over hyptheses
p(hj) = { 13 , 1

3 ,
1
3} converges to p(hj) = {1, 0, 0}. Trajectories on the flattest

landscape have the longest convergence time, reaching fixation slower than the
trajectories on slightly peakier landscapes. However, as the peakiness continues
to increase, we see a reversal, with the peakiest landscapes leading back to longer
and longer convergence times.
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Figure 3. Example behavior of the Griffiths and Kalish (2007) model, for the likelihoods in Equation
5, a prior distribution over hypotheses p(h1, h2, h3) = {.3, .4, .3}, and three different initial distri-
butions over data. Right: In all cases, the posterior distribution over hypotheses converges to the prior.
Left: In all cases, the distribution over data converges to p(d1, d2, d3) = {.41, .36, .23}, which is the
distribution over data that is most likely under this particular prior.

3. Comparison to Existing Models of Bayesian Cultural Evolution

In the first model of Bayesian cultural evolution, Griffiths and Kalish (2007) ex-
plored a population of Bayesian agents that shared the same, fixed prior over hy-
potheses. These agents receive data from one another, compute a posterior dis-
tribution, sample a hypothesis from the posterior, and then sample data from that
hypothesis. Over time, the posterior distribution that agents compute converges
to the prior distribution and the data converges to the integrated probability of the
data under the prior distribution of hypotheses (which is the distribution over data
that uniquely leads to the computed posterior being equal to the prior). Figure 3
shows an implementation of the Griffiths and Kalish model for the likelihoods in
Equation 5. Three different initial distributions over data are shown. Each initial
condition results in a trajectory that converges to the same point. In this model,
agents produce data de novo each generation: in no sense are they copying data
from the previous generation. This dynamic gradually erodes the population’s in-
formation about its start state, freeing the system to converge to a unique stable
state: the prior distribution over hypotheses and its corresponding data distribu-
tion. (The same behavior holds for their MAP model, with the exception that the
hypotheses converge to a point near the prior.)

In another model of Bayesian cultural evolution, Beppu and Griffiths (2009)
implemented a population of agents that receive data not from one another, but
from a fixed source in the world. They compute a posterior distribution and then
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communicate complete information about the posterior to the next generation of
agents, who adopt this posterior distribution as their own prior distribution. This
model is formally equivalent to a Bayesian updating model of learning in a single
individual and thus, is equivalent to Model B (see Figure 1 for example dynamics
of the Beppu and Griffiths model, where hypotheses update in response to a fixed
source of data).

The main difference between these two existing models and the coevolutionary
model lies in their number of unique stable states and the effect of initial condi-
tions. The models described above each converge to one stable state regardless
of their initial conditions. In the coevolutionary model, there are a minimum of n
stable states representing the fixation of each variant x in the set {x1, x2, ...xn}.
This holds on any given fitness landscape. For a certain class of fitness land-
scapes, where the fitness matrix is symmetrical about its diagonal, there is an
additional stable state in the center of the simplex when both di = { 13 , 1

3 ,
1
3} and

hj = { 13 , 1
3 ,

1
3}.

In the Griffiths and Kalish model, the evolving population gradually obtains
information about the prior distribution and the speed of the information gain is
determined by the likelihood structure: flatter likelihoods yield faster convergence
rates (and uniform likelihoods yield immediate convergence to the prior). In the
Beppu and Griffiths model, the evolving population gradually obtains information
about the world (via the data received) and the speed of information gain is also
determined by the likelihood structure. However, the direction of the relationship
here is reversed: flatter likelihoods yield slower convergence rates (and uniform
likelihoods result in no change at all). In the model where data and hypotheses
co-evolve, it is less clear what the populations are gaining information about. Pop-
ulations appear to be gaining information about the absorbing state of the basin of
attraction they are currently in. However, as the basins of attraction change, pop-
ulations switch to gain information about new absorbing states, overwriting what
they previously “learned”. In this model, the effects of fitness typography pattern
with the Beppu and Griffiths model: flatter likelihoods yield slower convergence
rates and uniform likelihoods result in no change at all.

4. Discussion and Extensions

This paper introduced a new model for exploring the coevolution of data and hy-
potheses in cultural evolution. I believe that Bayesian models of cultural evolution
provide one possible way of formalizing Sperber (1996)’s concepts of public rep-
resentations (as data) and private representations (as hypotheses). Analysis of
these models could also provide quantitative insight into some of the interesting
dynamics described in Cultural Attraction Theory (Sperber, 1985, 1996). Early
computational models of language evolution contain many examples of private
replicators (as grammars in the agents’ minds) and public replicators (as utter-
ances or strings produced from the grammar) changing in consort with one an-
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other and converging to a rich diversity of semi-stable states (e.g. Kirby, 2001;
Brighton, 2002). The current model was developed in order to broaden the range
of evolutionary dynamics that Bayesian models of cultural evolution can capture.
The next steps include fitting this model to experimental and simulation data from
dynamic-rich examples of cultural evolution such as those found in social learn-
ing theory, cultural attraction theory, and the evolution of language. Various ex-
tensions to this model can be made along these lines. For example, part of the
data distribution can be anchored in an unchanging world, or part of the hypothe-
ses distribution can be anchored in an unchanging inductive bias. Furthermore,
questions about causal primacy in cultural evolution could be addressed using this
model. Do private replicators tend to drive the evolution of public replicators, or
vice a versa? It is quite possible that certain classes of asymmetrical fitness land-
scapes may create dynamics where the hypotheses steer the evolution of the data
and other classes of asymmetry may cause the data to steer the evolution of the
hypotheses. Knowledge of this relationship could prove useful to researchers in
cultural evolution who are working in domains where the likelihood relationships
between public and private representations are known.
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