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Zipf’s law of abbreviation, the tendency of more frequent words to be shorter,
emerges as a universal property of languages (Bentz & Ferrer-i-Cancho, 2016).
Language users have been shown to adhere to it as a result of combining two con-
ditions: accuracy, i.e. avoiding ambiguity, and “efficiency”, i.e. using word forms
as short as possible (Kanwal, Smith, Culbertson, & Kirby, 2017). Random typing
has been suggested as a non-functional alternative to statistical laws of language
(Miller & Chomsky, 1963; Li, 1992). However, a caveat of random typing is
that it is not purely non-functional from an information theoretic perspective: ran-
dom typing can be seen as a case of optimal nonsingular encoding of information
(Ferrer-i-Cancho, Bentz, & Seguin, 2015). This is an example of how information
theory and evolutionary linguistics can develop mutually enriching connections.

Another example is the striking similarity between the two conditions above
and coding theory, where the problem of compression is the problem of minimiz-
ing L, the mean length of codes (e.g., words) under some coding scheme (Cover
& Thomas, 2006). The minimization of L matches the “efficiency” condition,
whereas nonsingular coding is a coding scheme that matches beautifully the ac-
curacy condition. Nonsingular coding is equivalent to using unambiguous words
to represent meanings (Cover & Thomas, 2006, p. 105). Extensions of standard
information theory predict that in case of optimal coding (maximum “efficiency”
and maximum accuracy), the correlation between word frequency and word length
cannot be positive and, in general, it is expected to be negative in concordance
with Zipf’s law of abbreviation (Ferrer-i-Cancho et al., 2015).

Given the alphabet of a language and the probabilities of the word types, we
can calculate Lmin, the minimum mean word length that can be achieved assum-
ing a certain scheme (Ferrer-i-Cancho et al., 2015). Then, we can measure the
degree of optimality of a language with η = Lmin/L. η is the so-called coding
efficiency (Borda, 2011), and ranges between 0 and 1, reaching 1 in case of an
optimal communication system.
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Figure 1. The distribution of η in the PBC under nonsingular coding (blue) and uniquely decodable
coding (orange). Dashed lines correspond to a prefix of 105 tokens of the original text to reduce the
estimation bias due to differences in text length.

Preliminary analyses of more than 1000 languages in the PBC, the Parallel
Bible Corpus (Mayer & Cysouw, 2014), suggest that real languages are optimized
to a 30% average (Fig. 1). Interestingly, the average optimization ratio increases to
40% (Fig. 1) if the nonsingular coding scheme is replaced by uniquely decodable
encoding, which requires not only that there is no ambiguity between word types
as in nonsingular coding, but also that a concatenation of letters without blanks
allows for just one segmentation into a sequence of word tokens.

Such a mixture of suboptimalities in languages, which are neither perfectly
nonsingular nor perfectly uniquely decodable, provides support for the hypothe-
sis that Zipf’s law for word frequencies stems from a competition between opti-
mal nonsingular coding and optimal uniquely decodable coding (Ferrer-i-Cancho,
2016). This account is not just one more model of Zipf’s law. Compression also
predicts Zipf’s law of abbreviation as reviewed above, as well as Menzerath’s law
(Gustison, Semple, Ferrer-i-Cancho, & Bergman, 2016). Hence, it illustrates the
combination of predictive power, parsimony and mathematical rigor that informa-
tion theory offers to understand how languages evolve universal properties.
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