SUCCESS IN SIGNALING: THE EFFECT OF FEEDBACK TO SIGNALER AND RECEIVER

JUSTIN SULIK*1 and GARY LUPYAN2

*Corresponding Author: justin.sulik@gmail.com
1Department of Psychology, Royal Holloway, University of London
2Department of Psychology, University of Wisconsin–Madison

Communicating without the benefit of a conventional signaling system is hard. Generating and interpreting novel signals involves complex inferences (Levinson, 1995), which often fail. One source of failure is a tendency not to take the other person’s point of view, i.e., being egocentric (Sulik & Lupyan, under review). One solution to such difficulties is feedback (Barr, 2004; Spike, Stadler, Kirby, & Smith, 2017; Micklos, 2016), for example in the form of information about how the recipient behaved on receiving the signal. Here, we investigate how performance in a novel signaling task is affected by various kinds of feedback. We manipulated whether feedback is provided to signaler, receiver or both, and how informative the feedback is. The topic is relevant to language evolution because it helps us understand the factors that make complex communication possible when people cannot rely on the use of conventional word-meaning associations.

Pairs of participants took part in a signaling task (Sulik & Lupyan, 2016). Items, signals and guesses were single words. For instance, to get someone to guess ‘bride’, the signaler might generate the signal ‘groom’, which is quite likely to be successful. Alternatively, they might generate signal ‘wedding’ which is less likely to lead to a correct guess. Participants could generate any English word as a signal or guess (similar to the game show Password1). Although the signals were English words, the overall task could not make full use of a shared conventional language because it required, for example, using ‘groom’ or ‘wedding’ to mean ‘bride’. The target items were selected based on published word association norms (Nelson, McEvoy, & Schreiber, 2004), such that the participants’ perspectives were aligned for some items (‘symmetric’ items) but not for others (‘asymmetric’ items).

The motivation for this unusual task is that it provides a clean measure of how informative signals are, all else being equal. In a more common gesture-based task, someone signaling ‘moose’ might gesture antlers, but performance is con-

1http://bit.ly/2h1ZYK0

This paper is distributed under a Creative Commons CC-BY-ND license.
DOI:10.12775/3991-1.121
founded with the likelihood of recognizing that the gesture represents antlers, with
the ease of gesturing those antlers, and with the degree of resemblance between
the gesture and real antlers, which will vary between people.

Participants completed the task in pairs with each pair assigned to one of four
conditions.

1. **Full feedback**: the signaler was informed of the guesser’s guess and the
guesser was informed of the target item.
2. **Minimal feedback**: both signaler and receiver received minimal feedback
comprising only whether the guess was correct
3. **Signaler-only feedback**: The signaler received full feedback; the receiver
received no feedback.
4. **Receiver-only feedback**: The receiver received full feedback; the signaler
received no feedback.

Unsurprisingly, performance was better at symmetric items overall, though
average performance was similar in each feedback condition. We next measured
whether performance improved over the course of the game. To be clear: because
participants saw each item once, we are not testing whether they discovered stable
ways to signal those items through practice. Rather, our measure of improvement
relates to discovering ways of succeeding at the task itself.

Overall, performance improved over time, but the improvement interacted
with feedback and symmetry. For symmetric items, the improvement was inde-
pendent of feedback. For asymmetric items, performance only improved when the
signaler received full feedback (conditions 1 and 3). Performance in the minimal
feedback and receiver-only feedback conditions (2 and 4) remained flat.

In sum, feedback had little effect when people’s perspectives overlapped (sym-
metric items): performance improved regardless. However, when their perspec-
tives differed, improvement at the task was driven by feedback to the signaler,
though it was not enough for the signaler to just know whether they were correct
or not. This investigation of factors that drive communicative success in the ab-

References

Barr, D. J. (2004). Establishing conventional communication systems: Is common

gence and interaction* (pp. 221–260). Cambridge University Press.

Micklos, A. (2016). Interaction for facilitating conventionalization: Negotiat-
ing the silent gesture communication of noun-verb pairs. In S. Roberts,
C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoeef
(Eds.), *The evolution of language: Proceedings of the 11th international
conference (EVOLANG11)*.

