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Usually, humans use shared language to communicate successfully and efficiently.
But people can also communicate — with considerably more effort and less pre-
dictable success — by creatively inventing novel signals. Modern humans need to
do this comparatively rarely: when playing guessing games, or when interacting
with people with whom they do not share a language. However, our prelinguistic
ancestors had no shared words, so the creative generation of novel signals was one
plausible route to conventional language.

This raises a cognitive puzzle. On one hand, the inferential mechanisms that
underlie the creative generation of novel signals are computationally complex
(Levinson, 1995, 2006; Stolk et al., 2013), and while any neurotypical human
can learn language given the right input, performance at creative signaling is a
great deal less uniform (Sulik & Lupyan, in prep.). On the other hand, the creative
generation of novel signals was evolutionarily prior to the emergence of language.

Thus, creativity is a cognitively expensive bump in the road to language. The
puzzle is how we got over that bump. Generating or interpreting a novel signal
requires extensive investment of cognitive resources, and this investment does not
predictably lead to communicative success. In this work I ask, ‘in what situations
do the computationally expensive mechanisms of creativity boost communicative
success?’ This question is tackled here with agent-based simulations of creativity
and communication. This allows explicit manipulation of relevant features, such
as agents’ mental representations, communicative strategies, and context.

First, I review psychological accounts of the cognitive mechanisms that un-
derlie creativity. For instance, Mednick (1962) characterizes creativity as involv-
ing a relatively flat associative hierarchy in semantic knowledge. Jung-Beeman
(2005) argues that creative problem solving involves coarse coding (weak, broad
spread of activation) as opposed to fine coding (strong, focused spread of activa-
tion). Other accounts emphasize the small-world network properties of creativity
(Schilling, 2005; Kenett, Anaki, & Faust, 2014) or differences in executive con-
trol (Benedek et al., 2017). Some of these mechanisms are demonstrably related
to novelty in communication (Mashal, Faust, Hendler, & Jung-Beeman, 2007).

Second, I introduce the model. Each agent is a graph with weighted, directed
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edges (modeling a semantic network, with concepts as nodes and their associa-
tive relationships as edges). Agents interact repeatedly. In each interaction, one
concept is chosen as the target to be communicated. The signaler generates a sig-
nal by sampling (probabilistically, based on edge weights) from the associates of
the target in their semantic network, much like someone wanting to communicate
‘moose’ might gesture a semantic associate, antlers. The receiver makes a guess
based on spreading activation in their semantic network when the signal nodes
fire. The model explores the factors driving communicative success. There is no
generational turnover or learning, though these are directions for future research.

Most of the model parameters describe the organization and structure of the
agents’ networks (‘neural’ parameters). Some of these are directly related to the
above accounts of creativity (e.g. parameters governing the distribution of weights
among a node’s edges or the extent to which activation spreads), while others are
not directly related to creativity, but do impact communicative success (e.g., how
many neighbors a node has, or how similar the signaler and receiver’s graphs
are), and might thus be expected to interact with the creativity parameters. Other
parameters (‘context’ parameters) describe the communicative context, such as
how constrained the context is, or how complex the signal can be.

The parameters interact in complex ways to affect communication. The fol-
lowing are just some illustrations. It turns out that the complexity of the signal
drastically alters how neural parameters drive success, and that signalers and re-
ceivers are often subject to different pressures. A flat associative hierarchy (cf.
Mednick, above) makes signal generation more entropic, while a steep hierarchy
decreases signaling entropy, but whether either of these boosts communicative
success depends on a variety of other factors. For instance, creative, high-entropic
signalers become less successful as the number of edges increases, but this effect
is counteracted when the signaler’s and receiver’s representations become less
similar, or when signals are allowed to become more complex. I introduce an R
Shiny app to facilitate online interactive visual exploration of the parameter space.

While it may seem discouraging that no simple conclusion can be drawn about
when creativity (or its opposite, rigidity) is adaptive, this result is actually infor-
mative about the evolution of language. Since the parameters interact in complex
ways, then if the communicative context varies in complexity, it is adaptive to
be able to flexibly employ both creative and rigid strategies. One solution is for
individuals to have access to both creative and rigid computational styles; another
way is to distribute the cognitive burden between individuals, so some are more
creative and others more rigid. I review evidence suggesting that human social
cognition makes use of both of these strategies (Jung-Beeman, 2005; Faust &
Kenett, 2014; Sulik & Lupyan, in prep.). I propose that the first steps towards
human language must have been characterized by such variation in communica-
tive context, and an explanation of language evolution must thus encapsulate both
social and cognitive divisions of labor.
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